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ABSTRACT

In the age of large neural network models and their high energy demand, Spik-
ing Neural Networks (SNNs) offer a compelling alternative to Artificial Neural
Networks (ANNSs) due to their energy efficiency and resemblance to biological
brains. However, directly training SNNs with spatio-temporal backpropagation
remains challenging due to their discrete signal processing and temporal dynamics.
Alternative methods, notably ANN-SNN conversion, have enabled SNNs to achieve
performance in various machine learning tasks, comparable to ANNSs, but often
to the expense of long latency needed to achieve such performance, especially on
large scale complex datasets. The present work deals with ANN-SNN setting and
identifies a new phenomenon we term “temporal misinformation”, where random
spike rearrangement through time in the converted SNN model improves its per-
formance. To account for this, we propose bio-plausible, two-phase probabilistic
(TPP) spiking neurons to be used in ANN-SNN conversion. We showcase the ben-
efits of our proposed methods both theoretically and empirically through extensive
experiments on CIFAR-10/100 and a large-scale dataset ImageNet over a variety

of architectures, reaching SOTA performance. Code is available on GitHub.

1 INTRODUCTION

Spiking neural networks (SNNs), often re-
ferred to as the third generation of neural net-
works (1997), are inspired by and de-
signed to mimic how biological neurons pro-
cess and share information McCulloch & Pitts
1943)); [Hodgkin & Huxley| (1952); [Izhikevich
2003). The efficiency of biological brains in
terms of both energy use and task performance
has long inspired the development of neural net-
works with similar capabilities. This inspira-
tion has driven the growing interest in SNNs,
particularly in time when large machine learn-
ing models demand increasingly high energy
consumption. The main difference from the ar-

tificial neural networks (ANNS)
(1995) comes from the way spiking neu-

rons in an SNN process information. Spiking
neurons communicate through a series of (dis-
crete, often binary) spikes, emulating the biolog-
ical brain’s communication via electrical pulses.
The (weighted) incoming spikes are accumu-
lated in the neuron’s membrane potential, and a
spike is emitted only when the potential reaches
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Figure 1: The initial experiment: After ANN-SNN
conversion, we compared the accuracy of the baseline
model with its “permuted” version, i.e. the baseline
model but the output spike trains are permuted after
each layer (setting is VGG16 - CIFAR100, ANN acc.
76.23%).

a threshold. This makes SNN processing event-driven and binary, and multiplication, as an energy
demanding operation, is eliminated from the process. In contrast, ANNs process information using
floating-point operations, which rely on multiplication, leading to energy-inefficient deep learning

models at large scales (2019).
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Furthermore, recent advancements in neuromorphic chip production [Pei et al. (2019); DeBole
et al.| (2019); loi; [ Ma et al.| (2023) further emphasize the advantages of SNN models. These chips,
specifically designed to support and embed SNN models in hardware aware and efficient way, have
opened new aspects of interest in SNNs, and various SNN models have been challenging traditional
neural networks in various domains, including object detection [Kim et al.| (2020b); |Cheng et al.
(2020), object tracking |Yang et al.|(2019), video reconstruction Zhu et al.| (2022), event camera and
point clouds |Ren et al.|(2024), speech recognition|[Wang et al.|(2023a) and generative models Kamata
et al.| (2022) such as SpikingBERT [Bal & Senguptal (2024) and SpikeGPT |[Zhu et al.| (2023)); |Wang
et al.[|(2023Db), to name a few.

Training SNNs presents a challenge in itself, due to the very same reasons from which the advantages
of SNNs stem: their discrete processing of information. Unsupervised direct training, inspired by bio-
logical learning mechanisms, leverages local learning rules and spike timing to update weights Diehl
& Cook|(2015). While these methods are computationally friendly and could be performed on the
specialized hardware, SNNs trained this way often underperform compared to models trained with
other methods, and there is still plenty of room for the understanding and improvement of this method.

On the other side, supervised training methods can be categorized in two branches: direct training
and ANN-SNN conversion based methods. The main challenge for direct training methods lies
in the discrete nature of spike production. Namely, the operation of comparison of the membrane
potential with the threshold is not differentiable, or, where it is, does not produce useful gradients.
The success of direct training hinges on the development of spatio-temporal backpropagation through
time (BPTT) and surrogate gradient methods|O’Connor et al.| (2018);|Zenke & Ganguli| (2018); [Wu
et al.| (2018)); Bellec et al.| (2018)); [Fang et al.[| (2021ab); [Zenke & Vogels| (2021)); Mukhoty et al.
(2024). Although, they address and overcome the main problem of non-differentiability of spikes,
these methods encounter further challenges with deep architectures due to gradient instability and
high computational costs during training simulations. Direct training focuses on optimizing not
only synaptic weights but also dynamic parameters like firing thresholds Wei et al.|(2023)) and leaky
factors |Rathi & Roy|(2023)). Novel loss functions such as rate-based counting loss|Zhu et al.| (2024)
and distribution-based loss|Guo et al.|(2022) were proposed to provide sufficient positive gradients and
rectify the distribution of membrane potential during the propagation of binary spikes. Furthermore,
hybrid training methods Wang et al.|(2022b)) combine ANN-SNN conversion with BPTT to achieve
higher performance with low latency. Recent advancements include Ternary Spike |Guo et al.|(2024)
for enhanced information capacity and the reversible SNN |Zhang & Zhang| (2024) to reduce memory
costs during training.

The ground idea of ANN-SNN conversion is to use pre-trained ANN models to train an SNN. This
starts by copying the weights of the ANN model to the SNN model following the same architecture,
and then initializing hyperparameters of the spiking neurons in the SNN layers in such a way that
the rate of the spikes approximate the values of the corresponding activation layers in the ANN.
The advantages of this method lie in the fact that there is (usually) no extra computation needed for
training the SNN, so the computation of gradients can largely be avoided, or just reduced to the
calculations during fine-tuning of the SNN model. This method (of which we will say more in Section
[2) has been behind many of the state of the art performing SNNs, particularly on classification tasks.

The present work explores ideas that belong to the ANN-SNN conversion line of research. We start
by identifying a phenomenon, that is rather counter-intuitive and, to the best of our knowledge, has
gone unnoticed until now. Namely, when performing ANN-SNN conversion, the main assumption
is that the sole carrier of information is the rate of the spiking activity, and precise timing of the
spikes should not affect the performance of the SNN Bu et al.| (2023). We challenged this assumption
by using a baseline SNN obtained through ANN-SNN conversion, following methods proposed in
recent literature. Then, after each spiking layer, we permuted the spike trains obtained when data
samples are passed, and sent the permuted spikes to the following layer in SNN. The results of one
of these initial experiments and comparison of the “permuted” and original models are presented
in Figure[I] For every latency we performed this experiment, the “permuted” model surpassed the
baseline and reached the original ANN accuracy much earlier. We dubbed this occurrence “the
temporal misinformation” in ANN-SNN conversion and further explored it by giving it a more
conceptual flavor in form of the bursting probabilistic spiking neurons which are designed to mimic
the effect of permutations in SNNs. The proposed neurons work in two-phases, in the first phase they
collect the input (often beyond the threshold) while in the second they output spikes in a probabilistic
manner with varying temporal probabilities. Two crucial properties that define our proposed spiking
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neurons, namely the accumulation of membrane potential beyond the threshold and entering into a
firing phase (bursting), and probabilistic firing are bio-plausible, and were extensively studied in the
neuroscience literature (see Section [3.3).

The main contributions of this paper are summarized as follows:

* We recognize the “temporal misinformation” phenomenon in ANN-SNN conversion, chal-
lenging the underlying assumption of ANN-SNN conversion which states that the spike rate
is the sole carrier of information in the method.

* We propose a framework for its exploitation in ANN-SNN conversion utilizing two-phase
probabilistic spiking neurons. We provide the theoretical insights into their functioning and
superior performance, as well as support for their biological grounding.

* We performed a comprehensive experimental validation that demonstrates that our proposed
method outperforms state-of-the-art conversion as well as the other training methods, in
terms of accuracy on large scale CIFAR-10/100 and ImageNet datasets.

2 PRELIMINARIES
The base model that we use in this paper is Integrate-and-Fire (IF) spiking neuron whose internal
dynamics, after discretization, is given by the equations
vO[t] = vO[t — 1)+ WOl . gU=D ) — O [t — 1], (1)
s = HvO[1] - 6). @

Here, 01 is the threshold (vector), H (+) is the Heaviside function, while the superscript [ pertains to
the layer in the SNN. Later on, we will later modify these equations and use more advanced neuron

models, but for now, by unrolling the equations through ¢ = 1,..., 7T, and rearranging the terms, we
obtain
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On the ANN side, a passage between the layers takes the form
a® = Jz{(l)(\y\/*(l)a(lfl))7 5)

where A" is the activation function. The ANN-SNN conversion process starts with copying the
weights (and biases) of a pre-trained ANN model to the SNN model following the same architecture.
Then, by comparing the equations for the ANN outputs equation[5]and the average output of the SNN
equation E]Rueckauer et al.|(2017a)), one ideally wants a relation of the form

T (0
M) 0 2i=18i [1]
of) v St ©)
The most commonly used activation function A is ReLU , due to its simplicity and non-negative
output, which aligns well with the properties of IF neurons.

For a successful conversion that leads to minimal conversion error, one can note the importance of
the three components, namely: 1) The threshold value 6, 2) The initialization v[0], 3) The ANN
activation function A.

2.1 RELATED WORK

ANN-SNN conversion leverages pre-trained ANNSs to initialize SNNs, aiming to minimize ac-
curacy degradation by aligning ANN activations with SNN firing rates, as demonstrated in early
works Rueckauer et al.|(2017a); (Cao et al.| (2015). Subsequent studies addressed conversion errors
and improved temporal accuracy through techniques like weight normalization |Diehl et al.| (2015),
soft-reset mechanisms Rueckauer et al.|(2017b)); Han et al.| (2020), and dynamic threshold adjust-
ment |Stockl & Maass|(2021);|Ho & Chang|(2021)); Wu et al.|(2023)). Efficient conversion with fewer
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spikes was achieved through rate-coding and time-coding methods Kim et al.|(2020a), as well as
specialized weight renormalization Sengupta et al.|(2018)).

A recent direction involves modifying the ANN activation functions to reduce conversion errors.
Methods using thresholded ReLLU activation Ding et al.|(2021)) and quantized activation functions Bu
et al.|(2022c); Liu et al.| (2022); |Hu et al.|(2023)); \Shen et al.|(2024) have achieved high accuracy at
lower latencies. However, these approaches often reduce the original ANN accuracy, limiting the
potential performance of the converted SNN. Techniques like L1 & Zeng| (2022); Wang et al.|(2022a);
Liu et al.| (2022) propose modifications to the inner function of IF neurons to reduce conversion errors.
Notably, a two-phase spiking neuron mechanism similar to ours has been used in|Liu et al.|(2022).

Membrane potential and threshold initialization play crucial roles in reducing conversion errors. Many
methods utilize layer-wise maximum ANN activations, or some percentile of them, for threshold
initialization Rueckauer et al.|(2017a); Deng & Gul (2021a); [Li et al.[(2021). Detailed studies on
membrane potential initialization and threshold settings are provided in|[Hao et al.| (2023a); |Bojkovic
et al.| (2024). Post-conversion weight calibration [Li et al.| (2021); |Bojkovic et al.| (2024) further
enhances SNN performance, leading to hybrid training methods that combine ANN-SNN conversion
with fine-tuning.

In general, one can argue that ANN-SNN conversion based methods of training SNNs can be classified
in two categories. The first line of thought deals with modification on the ANN side, most notably in
quantization of the ANN activation functions, in order to reduce the conversion error in low latency.
The second line deals with modification on ANN side, where the spiking neuron mechanisms are
modified in order to reduce this error. The advantage in the former case comes from the lower latency
to have a good performance, but the disadvantage comes from the fact that quantization of the ANN
activations in general, yields the poorer ANN performance, hence limits the SNN performance as
well. In the latter case, the situation is reversed, the ANNSs utilized have higher performance, but
SNNs sometimes need longer latency to achieve it. Our approach belongs to the second category.

Direct training This method allows SNNs to exploit precise spike timing and operate within
a few timesteps. The success of direct training hinges on the development of spatio-temporal
backpropagation through time (BPTT) and surrogate gradient methods|O’Connor et al.[(2018)); |[Zenke
& Ganguli (2018);|[Wu et al.[(2018)); Bellec et al.|(2018)); |[Fang et al.| (2021afb);|Zenke & Vogels|(2021);
Mukhoty et al.|(2024). However, these methods encounter challenges with deep architectures due to
gradient instability and high computational costs during training simulations. Various gradient-based
methods leverage surrogate gradients O’Connor et al.|(2018)); Zenke & Gangulil (2018)); [Wu et al.
(2018); Bellec et al.| (2018); Fang et al.| (2021alb)); Zenke & Vogels|(2021); [Mukhoty et al.| (2024)
to address the non-differentiable nature of spike functions. Direct training focuses on optimizing
not only synaptic weights but also dynamic parameters like firing thresholds |[Wei et al.| (2023) and
leaky factors Rathi & Roy|(2023)). Novel loss functions such as rate-based counting loss|Zhu et al.
(2024) and distribution-based loss [Guo et al.| (2022) were proposed to provide sufficient positive
gradients and rectify the distribution of membrane potential during the propagation of binary spikes.
Furthermore, hybrid training methods|Wang et al.|(2022b)) combine ANN-SNN conversion with BPTT
to achieve higher performance with low latency. Recent advancements include Ternary Spike Guo
et al.| (2024) for enhanced information capacity and the reversible SNN |Zhang & Zhang| (2024) to
reduce memory costs during training.

3  MOTIVATION AND PROPOSED METHOD

When performing ANN-SNN conversion, one usually employs constant or rate encoding in the
obtained SNN model, with the underlying idea that the expectation of the input at each time step
is equal to the original input to the ANN model. In particular, there is no temporal information in
the encoding, as the precise timing of spikes does not carry any extra information. In the constant
encoding this is obvious, while in the rate encoding, for a fixed input channel, and for every time step,
the probability of having the spike is constant (and equal to the value of the channel assumed to be
between 0 and 1).

The obtained SNN model is initialized in such a way that it approximates the outputs of the starting
ANN model, through the paradigm that for each spiking neuron, the average number of spikes it
produces, or its expectation of the output, should approximate the output of the corresponding ANN
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neuron. In particular, one assumes and expects that there is no temporal information throughout
the SNN model, i.e. the spike train outputs of each SNN layer should not carry any extra temporal
information, other than the spike firing rates.

To our surprise, we discovered that this was not the case (see Figure|[I).

3.1 PERMUTING SPIKE TRAINS

To test the initial hypothesis of the absence of “temporal information”, we designed an experiment
where for an SNN model obtained through the ANN-SNN conversion, after each layer we would
collect the output spike trains, and permute them through the temporal dimension. More precisely,
for a fixed latency 7" and for each spiking layer, we would collect the output spike trains of temporal
length T, permute them, and pass them to the next layer, and continue this process until the output
layer. We used the constant encoding for the input. We further compared the performance of this
model with the original base SNN model, whose output spike trains have not been manipulated
through permutations.

The performance of the base and “permuted” SNN models has been compared in two ways. First, for
the latency 7" and for the latencies ¢ < T'. What we discovered is that if we consider the latency T},
where the base model achieves the top accuracy, the performance of the two models is pretty much
the same. However, if we consider the latency T' < T}, the “permuted” model outperforms the base
model, in some cases drastically. Moreover, the situation becomes more contrasted if we consider the
latencies ¢ < T'. The reader can refer to the Table [I]for more information, while the details of the
experiment are in the Appendix.

The conclusion of these initial experiments is that, contrary to the expectation, ANN-SNN conversion
is not invariant under the temporal manipulation of output spike trains. Moreover, the effect of
permuting the spike trains yields better performance of the converted SNN model, a phenomenon to
which we refer as temporal misinformation in ANN-SNN conversion.

3.2 FROM PERMUTATIONS TO BURSTING PROBABILISTIC SPIKING NEURONS

Permute

WD

(a) (b)

Figure 2: (a) The “permutation” layer collects the spike outputs of the layer in the first Accumulation
phase, while in the second Spiking phase it outputs the same spike trains, but permuted. (b) Bursting
probabilistic spiking neurons accumulate the weighted outputs from the previous layer and then
output them according to their inner dynamics.

The previous sections hint at the motivation of the present work. Our aim is to answer the question:
How to incorporate the action of permutation of the output spike trains into the dynamics of the
spiking neurons?

Suppose that we want to permute the spikes trains coming from the layer ¢. A general idea would be
to have a “permutator”- a layer immediately after, whose goal would be to collect all the spikes, and
outputs them in a permuted fashion, and sends such obtained spike trains to the following layer. One
may refer to Figure[2] (a) for the visual representation of this concept. This immediately suggests the
two-phase nature of the “permutator”, namely, in the first phase the incoming spikes are accumulated
and the firing is delayed until the beginning of the second, firing phase.

The second line of thought concerns the nature of the outputting mechanism of the “permutator”.
In particular, we would like to have a mechanism of spiking neurons which keep the “random”
component of the permutations. This lead us to the probabilistic firing of spiking neurons.
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The final question that we consider is, can we make the situation more compact, by using probabilistic
spiking neuron which would collect the weighted input of the previous layer (rather than the spikes
of the spiking layer), and output what would be “permutation” of spike trains (see Figure[2](b))?

TPP neurons The answer to all of the above is given in form of the proposed two-phase probabilistic
spiking neurons (TPP). Namely, in the first phase, the neurons will only accumulate the (weighted)
input coming from the previous layer, while in the second phase, the neurons will spike. More
precisely, suppose that at a particular layer ¢ the spiking neurons accumulate the whole output of
the previous layer, without emitting spikes. Let us denote the accumulated membrane potential by
v()[0]. Then, the spiking phase is described with equations

1
O =B vt —1
1= 8 (g v 1), @
v =vOit—1] — 0O - s[t],
andt =1,...,T. Here, B(z) is a Bernoulli random variable with bias x, extended for z € R in a

natural way (B(z) = B(max(min(z, 1),0))). If the weights of the SNN network are not normalized,
the produced spikes will be scaled with the thresholds () - s()[¢], before being sent to the next layer.

One may notice that the presence of 7' — ¢ + 1 in the denominator of the bias in B, implying that the
probability of spiking does not only depend on the current membrane potential, but also on the time
step: in the absence of spiking, for the same membrane potential, the probability of spiking increases
through time.

Total output Although the proposed spiking activity is
probabilistic, the total output of the spiking neuron (the
number of spikes) expresses little variability, which is seen
in the following.

Theorem 1. Suppose that for some 0 < t < T, we have
t-00 <vO[0] < (t+1) -0, and we are in the setting
of equation[]| Then, the probability that the neuron will
spike more than t + 1 times, or less than t times is zero.
Moreover, the probability of having a spike at any given
time stept = 1,...,T is non-zero.

The proof is given in the Appendix, but we may note
that the result states that TPP neurons output the exact
number of spikes as they should, and those spikes can
have arbitrary positioning throughout the time steps. In
other words, they act somewhat as a “permutation” on the
output spike trains.

Heuristics behind permutations We come back to the
original motivation, and the mysterious effect of temporal
misinformation. To this end, we notice that permutations
may act as a “uniformizer” of the inputs to the spiking
neuron, which is highly related to notions of phase lag or
unevenness of the inputs (see|Li et al.| (2022) and Bu et al.
(2022c)), respectively).

Figure 3: (a) ReLU activation with inputs
of % and i, and corresponding weights of
+1 and —1. After summing, the ground truth
output is 1; (b) Baseline case: input spike
Theorem 2. Suppose we have N spiking neurons that pro- trains without permutation yields an ANN-

duced spike trains s;[1],8;[2],...,s;[T], i = 1,...,N. SNN conversion error 1 due to delayed spike
Furthermore, suppose that these spike trains are modu- att = 4 (orange spike); (c) Spike trains with
lated with weights w1, ..., wn, and as such give input ~Permutation applied to move delayed spikes

att = 4 forward to t = 2. This adjustment
heuristically aligns the output with the origi-
nal ANN output %

to a neuron (say from the following layer) in the form
x[t] = > w;si[t], fort =1,...,T. For a given permuta-
tionw = (71,...,7N), let ws; denote the permutation of
the spike train s;. Then, for every t1,ts € {1,2,...,T},

Eﬂ— [Z wiTFSZ'[tlH = Eﬂ— [Z W;TS; [tg]].

The previous result deals with the expected outputs with respect to the permutations. When it comes
to the action of a single permutation, we make the following observation. The effect of a single
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permutation is mostly visible on spike trains that have a low number of spikes. This, in turn, is
related to the situation where the input to the neuron is low throughout time, and it takes longer for
a neuron to accumulate enough potential in order to spike, hence the neuron spikes at a later time
during latency. In this case, a single permutation of the output spike(s) actually move the spikes
forward in time (in general) and as such contributes to the elimination of the unevenness error, which
appears when the input to a neuron in the beginning is higher than the average input through time
(hence, the neuron produces superfluous spikes in the beginning, which shouldn’t be the case), see

Figure 3]
3.3 BIO-PLAUSIBILITY AND HARDWARE IMPLEMENTATION OF TPP NEURONS

Our proposed neurons have two distinct properties: The two-phase regime and probabilistic spike
firing. Both of these properties are biologically plausible and extensively studied in the neuroscience
literature. For example, the two phase regime can be related to firing after a delay of biological
spiking neurons, where a neuron collects the input beyond the threshold value and fires after delay or
after some condition is met. It could also be related to the bursting, when a biological neuron starts
emitting bursts of spikes, after a certain condition is met, effectively dumping their accumulated
potential. One can refer to|Izhikevich! (2007)); (Connors & Gutnick|(1990); [Llinas & Jahnsen|(1982);
Krahe & Gabbiani| (2004) for more details.

On the other side, stochastic firing of biological neurons has been well studied as well, and different
aspects of noise introduction into firing have been proposed. One can refer to|Shadlen & Newsome
(1994); [Faisal et al.|(2008)); Softky & Koch! (1993)); Maass & Natschldger (1997); Pagliarini et al.
(2019); |Stein et al.| (2005)), for some examples.

When it comes to implementation of TPP neurons on neuromorphic hardware, two phase regime can
be easily achieved on many of the modern neuromorphic that support programmable spiking neurons.
The stochastic firing can be achieved through random sampling which is, for example, supported on
IBM TrueNorth Merolla et al.| (2014), Intel Loihi [Davies et al.| (2018)), BrainScaleS-2 [Pehle et al.
(2022), SpiNNaker |[Furber et al.|(2014) neuromorphic chips.

The probabilistic spiking mechanism we introduce aligns with the stochastic firing behaviors observed
in biological neurons, a feature that has been effectively implemented in neuromorphic hardware
such as IBM’s TrueNorth |DeBole et al.| (2019); Merolla et al.| (2014), Intel’s Loihi |loi [Davies et al.
(2018), BrainScaleS-2 [Pehle et al.| (2022), SpiNNaker and SpiNNaker2. For example, TrueNorth
incorporates stochastic neuron models using on-chip pseudo-random number generators, enabling
probabilistic firing patterns that mirror our approach. Similarly, Loihi |Gonzalez et al.|(2024) supports
stochastic operations by adding uniformly distributed pseudorandom noise to neuronal variables,
facilitating the implementation of probabilistic spiking neurons.

To reduce the overall latency for processing inputs with our models, which yields linear dependence
on the number of layers (implied by the two phase regime), we note that as soon as a particular layer
has finished the firing phase, it can start receiving the input from the previous layer: The process
of classifying a dataset can be serialized. This has already been observed, for example in|Liu et al.
(2022)). Neuromophic hardware implementation of this serialization has been proposed as well, see
for example Das|(2023); \Song et al.|(2021)); Varshika et al.| (2022).

4 EXPERIMENTS

In this section, we verify the effectiveness and efficiency of our proposed methods. We compare
it with state-of-the-art methods for image classification via converting ResNet-20, ResNet-34 He
et al.|(2016), VGG-16|Simonyan & Zisserman| (2015)), RegNet Radosavovic et al.|(2020) on CIFAR-
10 [LeCun et al.| (1998); |[Krizhevsky et al.| (2010), CIFAR-100 |[Krizhevsky & Hinton| (2009), and
ImageNet Deng et al.| (2009). Our experiments use PyTorch Paszke et al.[(2019), PyTorch vision
modelsﬂmaintainers & contributors| (2016)), and the PyTorch Image Models (Timm) library [Wightman
(2019)

To demonstrate the wide applicability of the TPP neurons and the framework we propose, we combine
them with three representative methods of ANN-SNN conversion from recent literature, each of

'https://github.com/huggingface/pytorch-image-models
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which has their own particularities. These methods are: QCFS [Bu et al.[(2022b)), RTS Deng & Gu
(2021a), and SNNC|Li et al.| (2021). The particularity of QCFS method is that it uses step function
instead of ReLU in ANN models during their training, in order to obtain higher accuracy in lower
latency after the conversion. RTS method uses thresholded ReLLU activation in ANN models during
their training, so that the outliers are eliminated among the activation values, which helps to reduce
the conversion error. Finally, SNNC uses standard ANN models with ReLU activation, and performs
grid search on the activation values to find optimal initialization of the thresholds in the converted
SNNs.

We initialize our SNNs following the standard ANN-SNN conversion process described in Section[3]
(and detailed in[A)), starting with a pre-trained model given by the baseline, or with training an ANN
model using default settings in QCFS Bu et al.|(2022b)), RTS |Deng & Gu| (2021a), and SNNC Li et al.
(2021)). ANN ReL.U activations were replaced with layers of TPP neurons initialized properly. All
experiments were conducted using NVIDIA RTX 4090 and Tesla A100 GPUs. For comprehensive
details on all setups and configurations, see Appendix

4.1 COMPARISON WITH THE STATE-OF-THE-ART ANN-SNN CONVERSION METHODS

We evaluate our approach against previous state-of-the-art ANN-SNN conversion methods, including
ReLU-Threshold-Shift (RTS) Deng & Gu|(2021a)), SNN Calibration with Advanced Pipeline (SNNC-
AP)|Li et al.| (2021)), Quantization Clip-Floor-Shift activation function (QCFS) [Bu et al.| (2022b),
SNM Wang et al.|(2022a)), Burst L1 & Zeng (2022), OPI Bu et al.|(2022a), SRP|Hao et al.| (2023a)),
DDI Bojkovic et al.|(2024) and FTBC et al.| (2024).

Table 1: Comparison between our method and the other ANN-SNN conversion methods on ImageNet.
We provide the average accuracy and the associated standard deviation across 5 experiments (for our
methods, we need extra c steps for summation, see Section .

Architecture Method ANN T=4 T=8 T=16 T=32 T=64 T=128

RTS|Deng & Gu|(2021a) 75.66 - - - 33.01 59.52 67.54

SNNC-AP[Li et al.|(2021) 75.66 - - - 64.54 71.12 73.45

QCFS|Bu et al.[(2022b) 74.32 - - 59.35 69.37 72.35 73.15

ResNet-34 SRP|Hao et al.|(2023a) 74.32 66.71 67.62 68.02 68.40 68.61 -

; FTBC(+QCES)let al.[(2024) 74.32 49.94 65.28 71.66 73.57 74.07 74.23
Ours (TPP) + QCFS 7432 37.23(0.07) 67.32(0.06) = 72.03(0.02) 7297 (0.03) 73.24(0.02) 73.30 (0.02)
Ours (TPP)+ SNNC w/o Cali.  75.65  2.69 (0.03)  49.24 (0.23)  69.97 (0.10) = 74.07 (0.06) 75.23 (0.03)  75.51 (0.05)

SNNC-APILi et al. |(2021) 75.36 - - 63.64 70.69 73.32

SNM|Wang et al.|(2022a) 73.18 - - - 64.78 71.50 72.86

RTSDeng & Gu|(2021a) 72.16 - - 55.80 67.73 70.97 71.89

QCFS|Bu et al.[(2022b) 74.29 - - 50.97 68.47 72.85 73.97

Burst|Li & Zeng|(2022) 74.27 - - - 70.61 73.32 73.00

VGG-16 OPI|Bu et al.|(2022a) 74.85 - 6.25 36.02 64.70 72.47 74.24

SRPHao et al.|[(2023a) 74.29 66.47 68.37 69.13 69.35 69.43 -

FTBC(+QCFS)|et al.[(2024) 73.91 58.83 69.31 72.98 74.05 74.16 74.21
Ours (TPP) + RTS 72.16 3050 (1.19)  56.69(0.67)  67.34(0.25) 70.63 (0.11) 71.75(0.05)  72.05(0.03)
Ours (TPP) + QCFS 7422 © 68.39 (0.08) 72.99 (0.05) 73.98(0.07) 74.23(0.03) 74.29(0.00) 74.33 (0.01)
Ours (TPP)+ SNNC w/o Cali.  75.37 54.14(0.59) 69.75(0.27) 73.44(0.02) = 74.72(0.06) 75.14(0.02) 75.25 (0.03)

RTS|Deng & Gu|(2021a) 80.02 - - - 0.218 3.542 48.60

RegNetX-4GF SNNC-AP|L1 et al. |(2021) 80.02 - - - 55.70 70.96 75.78
Ours (TPP)+ SNNC w/o Cali.  78.45 - - 22.71(298) 66.51(0.44) 75.54(0.07) 77.83(0.04)

* Without modification to ReLU of ANNs.

ImageNet Table [T]compares the performance of our proposed methods with state-of-the-art ANN-
SNN conversion methods on ImageNet. Our method outperforms the baselines across all simulation
time steps for VGG-16, and RegNetX-4GF. For instance, on VGG-16 at T' = 32, our method achieves
74.72% accuracy, surpassing other baselines even at 7' = 128. Moreover, at 7' = 128, our method
nearly matches the original ANN performance with only a 0.12% drop in VGG-16 and a 0.14% drop
in ResNet-34.

We see similar patterns in combining our methods with RTS and QCFS baselines, which use modified
ReLU activations to reduce conversion errors. Table [T shows these results. For instance, applying
TPP with QCFS on ResNet-34 at 7" = 16 improves performance from 59.35% to 72.03%, a 12.68%
increase. Similarly, for VGG-16 at T' = 16, combining TPP with QCFS boosts performance from
50.97% to 73.98%, a 23.01% increase. Using TPP with RTS also shows significant improvements,
such as a 12.82% increase for VGG-16 at T' = 16. These results demonstrate the benefits of
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integrating TPP with other optimization approaches, solidifying its role as a comprehensive solution
for ANN-SNN conversion challenges.

Table 2: Comparison between our proposed method and other ANN-SNN conversion methods on
CIFAR-100 dataset. The average accuracy and standard deviation of the TPP method are reported
over 5 experiments (for our methods, we need extra c steps for summation, see Section [3;2[)

Architecture Method ANN T=4 T=8 T=16 T=32 T=64 T=128
TSCfHan & Roy|(2020} 68.72 - - - - - 58.42
RMP|Han et al. (2020} 68.72 - - - 27.64 46.91 57.69
SNNC-AP[Li et al. 2021}  77.16 - - 76.32 77.29 77.73 77.63
RTS[Deng & Gu|(2021a) 67.08 - - 63.73 68.40 69.27 69.49
ResNet-20 OPIfBu et al.|(2022a) 70.43 - 23.09 52.34 67.18 69.96 7051
QCFS{Bu et al. [(2022b} 67.09 27.87 49.53 63.61 67.04 67.87 67.86
Burst{Li & Zeng|(2022} 80.69 - - - 76.39 79.83 80.52
Ours (TPP) + QCFS 67.10 = 46.88 (0.40) 64.77 (020) 67.25(0.12) 67.74(0.06) 67.77(0.05)  67.79 (0.04)
Ours (TPP)"+ SNNC w/o Cali.  81.89 39.67 (0.99) | 71.05 (0.68) 78.97 (0.24) 81.06 (0.05) 81.61(0.08) 81.62 (0.05)
TSCfHan & Roy|(2020} 71.22 - - - - - 69.86
SNM|Wang et al.|(2022a} 74.13 - - - 71.80 73.69 73.95
SNNC-AP|Li et al.|(2021)  77.89 - - - 73.55 77.10 77.86
RTS[Deng & Gu|(2021a) 76.13 2376 4381 56.23 67.61 7345 75.23
OPIfBu et al.|(2022a} 76.31 - 60.49 70.72 74.82 75.97 76.25
VGG-16 QCFS{Bu et al. [(2022b} 7621 69.29 73.89 75.98 76.53 76.54 76.60
DDI[Bojkovic et al.|(2024)  70.44 51.21 53.65 57.12 61.61 70.44 73.82
FTBC(+QCFS)fet al.|(2024) 7621 7147 75.12 76.22 76.48 76.48 76.48
Ours (TPP) + RTS 76.13 37.88(0.35) 65.81(027) 73.05(0.12) 75.17(0.17) 75.64(0.12)  75.9 (0.08)
Ours (TPP) + QCFS 7621 7393 (0.22) 76.03(023) 7643 (0.07) 76.55(0.03) 76.55(0.07) 76.52(0.04)

Ours (TPP)"+ SNNC w/o Cali. 77.87 59.23 (0.65) 73.16(0.17)  76.05(0.26) | 77.16 (0.09)  77.56 (0.13)  77.64 (0.04)

* Without modification to ReLU of ANNG.
* Using authors’ provided models and code.
¢ Self implemented.

CIFAR We further evaluate the performance of our methods on CIFAR-100 dataset and present
the results in Table 2] We observe similar patterns as with the ImageNet. When comparing our
method with ANN-SNN conversion methods which use non-ReLU activations, e.g. QCFS and RTS,
our method constantly outperforms RTS on ResNet-20 and VGG16. QCFS baseline suffers from
necessity to train ANN models from scratch with custom activations, while our method is applicable
to any ANN model with ReLU -like activation. Furthermore, custom activation functions sometimes
sacrifice the ANN performance as can be seen from the corresponding ANN accuracies.

4.2 COMPARISON WITH OTHER TYPES OF SNN TRAINING METHODS AND MODELS

Table 3: Comparison with direct and hybrid training methods for SNNs on CIFAR-100 and ImageNet
datasets. For baselines, we report their highest reported accuracy and the corresponding latency.

Dataset Architecture Method Category Timesteps Accuracy
LM-H |Hao et al.|(2023b) Hybrid Training 4 73.11
VGG-16 SEENN—ILLi et al.|(2023) Direct Training 1.15" 72.76
Dual-Phase|Wang et al.|(2022b)  Hybrid Training 4/8 70.08 /75.06
CIFAR-100 Ours (TPP) + QCFS ANN-SNN 4/8 73.93/76.03
LM-H|Hao et al.|(2023b) Hybrid Training 4 57.12
ResNet-20 TTS|Guo et al.|(2024) Direct Training 4 74.02
Ours (TPP) + SNNC w/o Cali. ANN-SNN 16 78.97
SEENN-I|Li et al.|(2023) Direct Training 338" 64.66
RMP-Loss|Guo et al.|(2023) Direct Training 4 65.17
RecDis-SNN|Guo et al.|(2022)  Direct Training 6 67.33
SpikeConv|Liu et al.[(2022)  Hybrid Training 16 70.57
ImageNet  ResNet-34 GAC-SNN|Qiu et al.[(2024)  Direct Training 6 70.42
TTS|Guo et al.|(2024) Direct Training 4 70.74
SEENN-I|Li et al. (2023} Direct Training 29.53 " 71.84
Ours (TPP) + QCFS ANN-SNN 16 72.03
Ours (TPP)+ SNNC w/o Cali. ANN-SNN 32 74.07

* The average number of timesteps during inference on the test dataset.

We compare our approach with several state-of-the-art direct training and hybrid training methods
as presented in Table [3] The comparison is founded on performance metrics like accuracy and
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the number of timesteps utilized during inference on the CIFAR-100 and ImageNet datasets. We
benchmark our method against prominent approaches such as LM-H Hao et al.|(2023b), SEENN |Li
et al.| (2023)), Dual-Phase Wang et al.|(2022b)), TTS |Guo et al.| (2024)), RMP-Loss (Guo et al.[(2023)),
RecDis-SNN |Guo et al| (2022), SpikeConv [Liu et al.| (2022), and GAC-SNN Qiu et al.| (2024).
We showcase the best accuracy comparable to state-of-the-art methods achieved by our approach
with minimal timesteps. We prioritize accuracy, but direct training and hybrid training opt for a
lower number of timesteps and sacrifice accuracy. We outperform LM-H Hao et al.[(2023b) and
Dual-Phase |Wang et al.| (2022b) for VGG-16 on CIFAR-100. For ResNet-20 on CIFAR-100, we
have higher accuracy but longer timesteps. Additionally, for ResNet-34 on the ImageNet dataset,
the accuracy of our method with QCFS with 16 timesteps is higher than that of SpikeConv Liu et al.
(2022) with the same number of timesteps. We also achieve higher accuracy with longer timesteps
as expected. Overall, our approach demonstrates promising performance and competitiveness in
comparison with the existing SNN training methods.

4.3  SPIKE ACTIVITY

The event driven nature of various neuromorphic chips implies that the energy consumption is
directly proportional to the spiking activity, i.e., the number of spikes produced throughout the
network: the energy is consumed in the presence of spikes. To this end, we tested our proposed
method (TPP) for the spike activity and compared with the baselines. For a given model, we
counted the average number of spikes produced after each layer, per sample, for both the baseline
and our method. Figure [5] shows the example of RTS and RTS + TPP. Both the baseline and
our method exhibit similar spike counts. In particular, our method constantly outperforms the
baselines, and possibly in doing so it needs longer average latency per sample (7' + ¢). However,
the energy consumed is approximately the same as that for the baseline in time 7". The complete
tables are present in Appendix where we provide more detailed picture of spike activities.

15
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performance. We introduced two-phase proba- Layer

bilistic (TPP) spiking neurons, designed to in-

trinsically perform the effect of spike permuta-  Figure 4: Spike counts of VGG-16 on CIFAR-100 of
tions. We show biological plausibility of such RTS baseline compared with RTS+TPP. Note: The bar
neurons as well as the hardware friendlines of height from bottom indicates the spike counts after each
the underlying mechanisms. We demonstrate timestep T (see Appendix [E.4)

their effectiveness through exhaustive experi-

ments on large scale datasets, showing their com-

peting performance compared to SOTA ANN-

SNN conversion and direct training methods.

In the future work, we aim to study the effect of permutations and probabilistic spiking in combination
with directly trained SNN models.
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A CONVERSION STEPS

Copying ANN architecture and weights ANN-SNN conversion process starts with a pre-trained
ANN model, whose weights (and biases) will be copied to an SNN model following the same
architecture. In this process, one considers ANN models whose non-activation layers become linear
during the inference. In particular, these include fully connected, convolutional, batch normalization
and average pooling layers.

Approximating ANN activation functions The second step of the process considers the activation
layers and their activation functions in ANN. Here, the idea is to initialize the spiking neurons in the
corresponding SNN layer in such a way that their average spiking rate approximates the values of the
corresponding activation functions. For the ReLU (or ReLU -like such as quantized or thresholded
ReLU ) activations, this process is rather well understood. The spiking neuron threshold is usually set
to correspond to the maximum activation ANN channel or layerwise, or to be some percentile of it. If
we denote by f the ANN actiavtion, then ideally, after setting the thresholds, one would like to have

T
0
T) ~ — - t|. 8
St = 7+ 3ol ®)
If we recall the equations for the IF neuron (equations equation [T]in the article)
vt = vO[t — 1] + WOeU=D) .=V — gD gt — 1], ©)
sWlt] = H(vO[t] -0, (10)

we see that the value with which we are comparing the membrane potential (threshold) is the same
as the value with which we are scaling the output spikes. In particular, as soon as our membrane
potential has reached 0, it will produce the value 6. This can be loosely described as, whatever the
input is, the output will be approximately that value (or zero, if the input is negative), which is exactly
what ReL.U does.

Absorbing thresholds Finally, we notice that, once we produce a spike s") [¢], the value #() - s()[¢t]
will be sent to the next layer, and will further be weighted with weights W (1) and the bias b(+1)
will be applied. As we want SNNs to operate only using ones and zeros (to avoid multiplication due
to energy efficiency), the values (") will be absorbed into W (+1 je. WD gy (41

B PROOF OF THE THEORETICAL RESULTS

We prove the main theorems from the article, which we restate here.

Theorem 1. Suppose that for some 0 < t < T, we have t - ) < v(D[0] < (t + 1) - 6D, and we
are in the setting of equation[/| Then, the probability that the neuron will spike more than t + 1
times, or less than t times is zero. Moreover, the probability of having a spike at any given time step
t=1,...,T is non-zero.

Proof. Notice that whenever there is a spike, the membrane potential decreases by (9. In particular,
after at most ¢ + 1 spikes, by the condition in the Theorem, the membrane potential will be negative.
Hence, probability of having a spike will be 0. On the other side, if for 7" — ¢ time steps, we did not
have a spike, this would mean that the bias = of the Bernoulli variable B(x) is larger than 1, which
consequently will yield a spike with probability 1. Furthermore, after spiking, the bias remains bigger
than 0. This means that we will have ¢ spikes with probability 1. The other cases are done in a similar
way. The rest of the claim is easy. O

Theorem 2. Suppose we have N spiking neurons that produced spike trains s;[1], s;[2], ..., s;[T],
i =1,..., N. Furthermore, suppose that these spike trains are modulated with weights w1, ..., Wy,
and as such give input to a neuron (say from the following layer) in the form x[t] = > w;s;[t], for
t=1,...,T. For a given permutation 7 = (m1,...,7N), let ws; denote the permutation of the spike
train s;. Then, for every ti,ts € {1,2,...,T},

Ex[> wimsi[ta]] = Ex[>_ wimsi[ta]].
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Proof. 1t is enough to prove that foreach:=1,..., N,
Er[si[t1]] = Erl[si[t2]). (11)

Let A(t;) be the cardinality of the set of all the permutations that end up with a spike in step ¢;, and
note that the probability of having a spike at ¢; is then % But, for each permutation that ends up
with a spike at ¢;, one can find a permutation that ends up with a spike at ¢5 (by simply applying a
cyclic permutation) and moreover this correspondence is bijective. In particular A(;) is independent

of 4. The equation equation [IT]and the statement follow.

C EXPERIMENTS DETAILS

C.1 DATASETS

CIFAR-10: The CIFAR-10 dataset |Krizhevsky et al.|(2010) contains 60,000 color images of 32x32
pixels each, divided into 10 distinct classes (e.g., airplanes, cars, birds), with each class containing
6,000 images. The dataset is split into 50,000 training images and 10,000 test images.

CIFAR-100: The CIFAR-100 dataset Krizhevsky et al.|(2010) consists of 60,000 color images of
32x32 pixels, distributed across 100 classes, with each class having 600 images. Similar to CIFAR-10,
it is divided into 50,000 training images and 10,000 test images.

ImageNet: The ImageNet dataset|Deng et al.| (2009) comprises 1,281,167 images spanning 1,000
classes in the training set, with a validation set and a test set containing 50,000 and 100,000 images,
respectively. Unlike the CIFAR datasets, ImageNet images vary in size and resolution. The validation
set is frequently used as the test set in various applications.

C.2 CONFIGURATION AND SETUPS

C.2.1 Ours + QCFS

CIFAR: We followed the original paper’s training configurations to train ResNet-20 and VGG-16
on CIFAR-100. The Stochastic Gradient Descent (SGD) optimizer with a momentum of 0.9 was
used. The initial learning rate was set to 0.02, with a weight decay of 5 x 10~%. A cosine decay
scheduler adjusted the learning rate over 300 training epochs. The quantization steps L were set to 8
for ResNet-20 and 4 for VGG-16. All models were trained for 300 epochs.

ImageNet: We utilized checkpoints for ResNet-34 and VGG-16 from the original paper’s GitHub
repository. For ImageNet, L was set to 8 and 16 for ResNet-34 and VGG-16, respectively.

C.2.2 OURS + RTS

CIFAR: We trained models using the recommended settings from the original paper.

ImageNet: We used pre-trained checkpoints for ResNet-34 and VGG-16 from the original paper’s
GitHub repository. Subsequently, all ReLU layers were replaced with spiking neuron layers.

For all datasets, we initialize TPP membrane potential to zero, while in the baselines we do as they
propose.

C.2.3 OURS + SNNC w/0 CALIBRATION

CIFAR: We adhered to the original paper’s configurations to train ResNet-20 and VGG-16 on
CIFAR-100. The SGD optimizer with a momentum of 0.9 was used. The initial learning rate was
set to 0.01, with a weight decay of 5 x 10~* for models with batch normalization. A cosine decay
scheduler adjusted the learning rate over 300 training epochs. All models were trained for 300 epochs
with a batch size of 128.

ImageNet: We used pre-trained checkpoints for ResNet-34 and VGG-16 from the original paper’s
GitHub repository. Subsequently, all ReLU layers were replaced with our proposed spiking neuron
layers.
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D ALGORITHMS

The baseline SNN neuron forward function (Algorithm I)) initializes the membrane potential to zero
and iteratively updates it by adding the layer output at each timestep. Spikes are generated when
the membrane potential exceeds a defined threshold, 6, and the potential is reset accordingly. This
function captures the core dynamics of spiking neurons. The Shuffle Mode (Algorithm [2)) is an
extension of the baseline forward function. After generating the spikes across the simulation length,
this mode shuffles the spike train.

The TPP Mode (Algorithm 3]) introduces a probabilistic component to the spike generation process.
Instead of a deterministic threshold-based spike generation, it uses a Bernoulli process where the
probability of spiking is determined by the current membrane potential relative to the threshold
adjusted for the remaining timesteps.

Algorithm 1 SNN Neuron Forward Function and Additional Modes

Require: SNN Layer ¢; Input tensor x; Threshold 6; Simulation length 7T'.
1: function BASELINESNN(/, x,0,T)
2: v < 0 {Initialize membrane potential }
3 fort =1to 1T do
4 v v+ 4(x(1))
5 s (v>0)x0
6: V< V-—s
7: Store s(t)
8
9
10:

end for
return s
end function

Algorithm 2 SNN Neuron Forward Function of Shuffle Mode

Require: SNN Layer ¢; Input tensor x; Threshold 6; Simulation length 7T'.
1: function SHUFFLEMODE(/, x, 0, T)

2: v < 0 {Initialize membrane potential }

3: fort=1toT do

4: v+ v+ 4(x(t))

5: s+ (v>0)x0

6: V<& V-—S

7: Store s(t)

8:  end for

9:  Shuffle the stored spikes s(1),s(2),...,s(T")

10:  return shuffled s
11: end function

Algorithm 3 SNN Neuron Forward Function of TPP Mode

Require: SNN Layer ¢; Input tensor x; Threshold 6; Simulation length T'.

1: function TPPMODE(/, x,0,T)
vV ZtT:l x(t) {Initialize membrane potential with the sum of inputs}
33 fort=1toT do

4 p < Clamp(v/(0 x (T —t+1)),0,1)
5 s < Bernoulli(p) x 0

6: V<< V—s

7: Store s(t)
8

9
10:

end for
return s
end function
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E ADDITIONAL EXPERIMENTS

E.1 SNNC

We show extra experiment results about the comparison among permutation method and two-phase
probabilistic method. We validated ResNet-20 and VGG-16 on the CIFAR-10/100 dataset , and
ResNet-34, VGG-16 and RegNetX-4GF on ImageNet with batch and channel-wise normalization
enabled. Using a batch size of 128, the experiment was run five times with different random seeds to
ensure reliable and reproducible results.

Table 4: Comparison between our proposed methods and ANN-SNN conversion SNNC method on
CIFAR-10. The average accuracy and standard deviation of the TPP method are reported over 5

experiments.
Architecture Method ANN T=1 T=2 T=4 T=8 T=16 T=32 T=64
SNNC-AP[Lietal[2021) 9695  51.20 66.07 83.60 9279 95.62 96.58 96.85
ResNet-20 Ours (Permute) 9695 3405 61.46 90.54 95.05 96.12 96.62 96.77
Ours (TPP) 96.95 10.05(0.02) 1730(0.52) 79.19(0.67) 93.72(0.05) 95.87(0.09) 96.67(0.04) 96.80 (0.01)
SNNC-AP[Lietal[2021) 9569  60.72 75.82 82.18 91.93 9327 94.97 95.40
Ours (Permute) 9560 3801 64.40 84.65 92.24 92.80 93.33 94.10

VGG-16 Ours (TPP)

95.69 11.46(0.35) 32.24(1.40) 86.85(0.42) 94.34(0.12) 94.86(0.06) 95.48 (0.03) 95.60 (0.04)

Table 5: Comparison between our proposed methods and ANN-SNN conversion SNNC method on
CIFAR-100. The average accuracy and standard deviation of the TPP method are reported over 5

experiments.
Architecture Method ANN  T=I T=2 T=4 T=3 T=16 T=32 T=64
SNNC-AP[Lietal[2021) 81.89  17.91 34.08 54.78 72.28 78.57 81.20 81.95
ResNet-20 Ours (Permute) 8189 5.4 19.54 52.46 75.21 79.76 81.12 81.52
Ours (TPP) 8189 1.94(0.11) 5.15(044) 39.67(0.99) 71.05(0.68) 78.97(0.24) 81.06(0.05) 81.61 (0.08)
SNNC-AP[Li etal[2021) 77.87  28.64 34.87 50.95 6430 71.93 7539 77.05
Ours (Permute) 77.87 1250 34.98 60.81 69.42 72.78 73.50 75.14

VGG-16 Ours (TPP)

77.87 2.05(0.27) 15.90(0.71) 59.23 (0.65) 73.16 (0.17) 76.05(0.26) 77.16 (0.09) 77.56 (0.13)

Table 6: Comparison between our proposed methods and ANN-SNN conversion SNNC method
on ImageNet. The average accuracy and standard deviation of the TPP method are reported over 5

experiments.

Architecture Method ANN T=4 T=3 T=16 T=32 T=64 T=128

SNNC-AP|Li etal.|2021}  75.65 - - - 64.54 71.12 73.45

ResNet-34 Ours (Permute) 7565 1051 57.57 70.94 74.00 75.06 75.47
Ours (TPP) 7565 2.69(0.03) 4924 (023) 69.97(0.10) 74.07(0.06) 75.23(0.03) 75.51 (0.05)

SNNC-AP|Li etal. 2021} 7537 - - - 63.64 70.69 7332

VGG-16 Ours (Permute) 7537 3861 67.29 73.35 74.34 74.82 75.11
- Ours (TPP) 7537 54.14(059) 69.75(027) 73.44(0.02) 74.72(0.06) 75.14(0.02) 75.25(0.03)

SNNC-AP[Li etal|2021) 80.02 - - - 55.70 70.96 75.78

ReaNetXAGF Ours (Permute) 78.45 - - 43.45 68.12 75.63 77.63
g Ours (TPP) 78.45 - - 2271 (298) 66,51 (0.44) 75.54(0.07) 77.83 (0.04)
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E.2 RTS

Table 7: Comparison between our proposed methods and ANN-SNN conversion RTS method on
CIFAR-10/100 and ImageNet. The average accuracy and standard deviation of the TPP method are
reported over 5 experiments.

Dataset Architecture Method ANN T=4 T=8 T=16 T=32 T=64 T=128

RTS|Deng & Gu|(2021a) 94.99 88.64 91.67 93.64 94.50 94.76 94.91

VGG-16 Ours (Permute) 94.99 91.22 93.70 94.50 94.86 94.88 94.97
CIFAR-10 Ours (TPP) 9499 91.49(0.21) 94.11(0.09) 94.72(0.08) 94.84 (0.06) 94.91 (0.02) 94.98 (0.02)

RTS|Deng & Gu|(2021a} 91.07 27.08 40.88 65.13 84.75 90.12 90.76

ResNet-20 Ours (Permute) 91.07 68.18 86.57 90.20 90.81 91.04 90.99
Ours (TPP) 91.07 72.87(0.22) 88.27 (0.14) 90.44 (0.08) 90.86 (0.14) 90.94 (0.04) 91.01 (0.03)

RTS{Deng & Gu|(2021a}  76.13 23.76 43.81 56.23 67.61 73.45 75.23

CIFAR-100 VGG-16 Ours (Permute) 76.13 3531 62.84 71.20 74.34 75.53 75.92
Ours (TPP) + RTS 76.13 37.88(0.35) 65.81(0.27) 73.05(0.12) 75.17(0.17) 75.64 (0.12) 75.90 (0.08)

RTSDeng & Gu|(2021a) 72.16 - - 55.80 67.73 70.97 71.89

ImageNet VGG-16 Ours (Permute) 72.16 33.77 58.31 67.80 70.89 71.65 71.95
Ours (TPP) 72.16  30.50 (1.19)  56.69(0.67) 67.34(0.25) 70.63 (0.11) 71.75(0.05) 72.05(0.03)

E.3 QCFS

Table 8: Comparison between our proposed methods and ANN-SNN conversion QCFS method on
CIFAR-10/100 and ImageNet. The average accuracy and standard deviation of the TPP method are

reported over 5 experiments.

Dataset Architecture Method ANN T=4 T=8 T=16 T=32 T=64
QCFSBu et al.|(2022c)  95.76 94.33 95.21 95.65 95.87 95.99
VGG-16 Ours (Permute) 95.76 95.15 95.58 95.83 95.95 95.97
CIFAR-10 Ours (TPP) 95.76  95.28(0.09)  95.84(0.1)  95.95(0.05) 95.98(0.06) 95.97 (0.03)
QCFS|Bu et al.[(2022c)  92.43 79.45 88.56 91.94 92.79 92.82
ResNet-20 Ours (Permute) 92.43 84.85 91.24 92.67 92.82 92.85
Ours (TPP) 9243 86.24(0.18)  92.08(0.11)  92.70(0.1) 92.78(0.04  92.68(0.06)
QCFSBu et al.[(2022¢c)  76.3 69.29 73.89 75.98 76.52 76.54
VGG-16 Ours (Permute) 76.3 74.28 75.97 76.54 76.60 76.64
CIFAR-100 Ours (TPP) 76.3 74.0(0.15)  76.06(0.08)  76.37(0.1)  76.55(0.09) 76.51(0.07)
QCFS|Bu et al.[(2022c)  67.0 27.44 49.35 63.12 66.84 67.77
ResNet-20 Ours (Permute) 67.0 4533 62.81 66.93 67.85 67.96
Ours (TPP) 67.0 47.0(0.2) 64.66(0.25)  67.28(0.12)  67.61(0.1)  67.77(0.06)
QCFS|Bu et al.|[(2022c)  74.29 - - 50.97 68.47 72.85
ImageNet VGG-16 Ours (Permute) 73.89 55.54 71.12 73.65 74.28 74.28
Ours (TPP) 74.22  68.39(0.08) 72.99(0.05) 73.98(0.07) 74.23(0.03) 74.29 (0.00)

E.4 SPIKING ACTIVITY

The percentage difference between the baseline and our method in TPP mode is calculated as follows:

. __ Ours—Baseline
Percentage Difference = =52 x 100.
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Figure 5: Spike counts of VGG-16 on CIFAR-100 after different timesteps (T). Note: The bar height
from bottom indicates the spike counts after each timestep T, and the color of longer Ts is overlaid by
shorter Ts.
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Table 9: Comparison of firing counts percentage difference between the baseline and our proposed
TPP method for VGG-16 on CIFAR-100 using QCFS.

Layer T=4 T=8 T=16 T=32 T=64 T=128
1 1.073 0.528 0.261 0.136  0.065 0.033

2 2.629 1.022 0438 0206 0.102 0.050
3 0.049 0230 0.185 0.109 0.056 0.028
4 -0.867 -0.664 -0.419 -0.228 -0.118 -0.060
5 0.073 0515 0350 0.182 0.090 0.044
6 0.701  0.010 -0.098 -0.074 -0.041 -0.021
7 -1.071 -0.865 -0.470 -0.246 -0.122 -0.063
8 1.009 1.193  0.731 0385 0.196 0.096
9 0.504 0417 0205 0.108 0.051 0.024
10 -0.112  0.842  0.647 0.375 0.198  0.100
11 2071 2438 1.614 0.898 0.465 0.235
12 0.797 0943 0.756 0461 0247 0.127
13 4503 2156 1.209 0.655 0343 0.171
14 25.898 13.883 7.770  3.852 1.887  0.936
15 33585 16.864 8.945 4474 2227 1.108
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Table 10: Comparison of firing counts percentage difference between the baseline and our proposed
TPP method for ResNet-34 on ImageNet using QCFS.

Layer T=4 T=8 T=16 T=32 T=64 T=128
1 0.587 0.306  0.149  0.079 0.036 0.018
2 -0.921  -0.435 -0.212 -0.108 -0.053 -0.025
3 0.353 0.189  0.082 0.036 0.019 0.010
-2.786  -1.583 -0.920 -0.506 -0.270 -0.141
0.469 0.277  -0.107 -0.020 -0.019 -0.011
-3.955 -1.865 -0.705 -0.344 -0.166 -0.086
-0.381  0.321  -0.090 -0.031 -0.020 -0.013
6.615 3.261 1.494  0.628 0.290 0.131
-5.116  -3.006 -1.555 -0.794 -0.391 -0.195
10 -2.938 3431 3.096 1.794 0975 0.498
11 1.184 0466 0359 0.102 0.053 0.022
12 -17.739  -7.302  -1.788 -0.609 -0.270 -0.132
13 0.105 -0.138 -0.287 -0.292 -0.166 -0.087
14 -8.597  -2.626 0.006 0327 0.289 0.140
15 -0.522  -0.214 -0.273 -0.299 -0.173 -0.094
16 -11.196  -5.194  -1.990 -0.813 -0.405 -0.217
17 -3.828  -1.192  -0320 -0.192 -0.105 -0.058
18 -6.869  -2392 -0.644 0.007 -0.002 0.001
19 0.092  -0.299 -0.181 -0.138 -0.074 -0.035
20 -5.639  -0308 0923 0.796 0.448 0.234
21 0.399  -0.968 -0.796 -0.509 -0.275 -0.145
22 -4474 3712 4440 3.033 1.700 0.880
23 0456  -0.901 -0.703 -0.533 -0.281 -0.145
24 -5.863 4.241  5.617 3.797 2.090 1.074
25 1433  -0464 -0.774 -0.632 -0.347 -0.182
26 -5.034 4908 6328 4362 2459 1.271
27 0.661 -0914 -1.156 -0.931 -0.530 -0.284
28 -15.667 4763  9.616 6975 4.062  2.096
29 -9.747 1.663 3836 2455 1384 0.673
30 -0.151  16.639 15387 9.638 5334  2.769
31 -5.403 0917 1.957 1.555 1.009 0.574
32 17.796  6.777  3.728 3.231 2507 1.583
33 -4.935 -2.141 2.055 2931 2395 1.561
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Table 11: Comparison of firing counts percentage difference between the baseline and our proposed
TPP method for VGG-16 on ImageNet using QCFS.

Layer T=4 T=8 T=16 T=32 T=64 T=128
1 5.487 2.776 1.444 0.712 0363 0.179
2 0.418 0.173 -0.005 0.007 0.007  0.006
3 -2.375  -0.883  -0.351 -0.128  -0.062 -0.031
4 6.170 2.181 0.627 0.121 0.024  -0.002
5 -3.338  -0.318 0.327 0306  0.173  0.097
6 7.036 2.769 0.993 0.385 0.173  0.078
7
8
9
10

-5.722 -3482 -1.661 -0.800  -0.400 -0.200
-6.155 0.310 1.411 0.955 0.507  0.269
-0.718 1.172 0.725 0.337 0.162  0.081
-12.833  -9.060 -4.882  -2.359 -1.145 -0.564
11 12.966  11.241 7.718 4.443 2344 1.188
12 -11.194  -14.874 -12.032 -7.880 -4.437 -2.395
13 -37.388 -30.782 -20.701 -12.296 -6.527 -3.377
14 -23.619  -12312  -3.929  -0.233  0.585 0.382
15 -10.988 -18.476 -13.953 -7.904 -4.091 -2.015

F PERMUTATIONS AND STABILIZATION OF FIRING RATE

Table 12: Recorded accuracy after ¢ < T' time steps, when the baseline model is "permuted” in
latency T'. Setting is VGG-16, CIFAR-100.

Method ANN  t=1 t=2 t=4 t=8 t=16 t=32
QCFS Bu et al.|(2022c) 49.09 6322 6929 73.89 7598 76.52
Ours (Permute) T=4 68.11 7191 74.2
Ours (Permute) T=8 71.76 74.11 7553 75.86
Ours (Permute) T=16 72.75 7427 7563 76.0 76.39
Ours ((Permute) T=32 73.15 7523 7574 7627 76.59 76.52
RTS Deng & Gu|(2021b) 1.0 1.03 23.76 4381 56.23 67.61
Ours (Permute) T=4 229 30.78 34.54
Ours ((Permute) T=8 45.11 52.7 59.2  62.58
Ours ((Permute) T=16 5458 6437 68.6 708 71.79
Ours (Permute) T=32 62.76 69.12 71.76 7331 74.09 74.6

Comments:

1. In Table|12|we combine permutations with baseline models in fixed latency T'. Afterwards,
we record the accuracies of such "permuted" model for lower latencies . We can notice a
sharp increase in the accuracies compared to the baselines, and in particular, the variance in
accuracies across ¢ is reduced.

2. Baseline analysis:

(a) SNN models converted from a pretrained ANN aim to approximate the ANN activation
values with firing rates. In particular, in lower time steps, the approximation is too
coarse as the firing rate has only few possibilities to use to approximate the ANN (con-
tinuous) values. For example, in 7' = 1, the baselines are attempting to approximate
ANN activations with binary values 0 and 6.

(b) Moreover, at each spiking layer, the spiking neurons at early time steps, use only
the outputs of the previous spiking layer from the same, early, time steps. As this
information is already too coarse, the approximation error accumulates throughout
the network, finally yielding in models that are underperfoming in low latencies.
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()

With longer latencies, the model is using more spikes and is able to approximate the
ANN values more accurately, and to correct the results from the first time steps.

3. Effect of permutations:

(a)

(b)

()

(d)

©)]

(9]
(o)

When performing permutations on spike trains after spiking layers in the baseline
models, the input to the next spiking layer in lower time steps, no longer depends only
on the outputs of the previous layer in the same lower time steps, but it depends
on the outputs in all time steps 7.

In particular, when spiking layer is producing spikes at time step ¢ = 1, it does so
"taking into account” (via permutation) outputs at all the time steps from the previous
spiking layer.

As a way of example, consider two spiking neurons N1 and o, where N, receives the
weighted input from N;. If a spiking neuron /V; in one layer has produced spike train
s =[1,0,0,0], in approximating ANN value of .25, then a spiking neuron N5 at the
first time step will use 1 as the approximation and will receive the input W - 1 from
neuron [N;. However, after a generic permutation of s, the probability of having zero at
the first time step of output of neuron N; is % (as oppose to having 1 with probability
%), and at the first time step neuron /N2 will most likely receive the input W -0 =0
from neuron Ny, which is a rather better approximation for W - .25 than W itself.

This property of receiving input at lower ¢ but taking into account the previous layer
spike outputs at all the time steps is not only exclusive to lower ¢. Indeed, at every time
step t < T, the input at a spiking layer is formed by taking into account spiking train
outputs from the previous layer at all the time steps, but having already accounted for
for the observed input at the first t < 1 steps.

In general, the permutations overall increase the performance of the baselines because
the spike trains are "uniformized" in accordance to their rate, and the accumulation
error is reduced. If a layer [ has produced spike outputs that well approximate the [
layer in ANN, then, after a generic permutation, at each time step starting with the first,
the next layer is receiving the most likely binary approximation of those rates.

This is nothing but Theorem [2]in visible action.

Besides Table[I2] we provide further evidence on how permutation affect the baselines
through the observed membrane potential in the following Appendix.
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Figure 7: The membrane potential of the first channel (randomly selected) from layer 1 in SNNC
baseline mode using VGG-16 on CIFAR-100 achieves an accuracy of 24.22% before firing.

The first two timesteps exhibit an abnormal distribution compared to those at t=4 to t=8. This
discrepancy arises from the initially incorrect membrane potential before firing, which affects the
firing rate and propagates errors layer by layer. A detailed quantifiable error analysis is provided in
Appendix Section [} Furthermore, as shown in Figure[§] shuffling the membrane potential effectively
alleviates this effect.
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H THE EFFECT OF PERMUTATIONS ON PERFORMANCE: FURTHER
EXPERIMENTS
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Figure 10: Accuracy comparison for all 7! permutations of input order over 7' = 4 time steps
using QCFS with VGG-16 on CIFAR-100. Results of permuted orders outperform the original,
non-permuted order (0, 1,2, 3). Baseline accuracy is 69.31%, The ANN accuracy is 76.21%.
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I CONVERSION ERROR ANALYSIS

For this section, we use the terminology of |Bu et al.| (2022c) for the classification of conversion errors.
We shortly recall three classes and we refer the reader to the original paper for more details:

1. Clipping error: When performing the ANN-SNN conversion, one uses some heuristics to
set up the threshold, based on the corresponding distribution of the activation values. In
particular, if A is the ANN activation, and 6 is the set threshold for this particular layer,
then the clipping error manifest itself in approximating A(-) with min(.A(-), ) (which is
the maximum output of the spiking layer (before normalization)).

2. Quantization error: As the spiking neurons produce discrete sgikes (values 0 or 6 (before
normalization)), the quantization error manifest itself in using 2 - max(0, [ £ - «]) (which
is tentative output of the spiking neuron) to approximate A(z).

3. The unevenness error: This error potentially occur due to the non-uniformity of the input to
the spiking neurons. In particular, it can happen that the neurons receive streams of positive
input during certain time period, while receiving stream of negative input during another
period. Ideally, two streams should cancel each other parts of each other, but, due to their
temporal mismatch, the neurons fire superfluous spikes, or they do not fire enough spikes as
they theoretically should.

To study what is the main source of errors when performing ANN-SNN conversion with TPP neurons,
we consider in detail the situation of a single layer of ANN neurons, and corresponding layer of
SNN TPP neurons. For a function f and constant ¢, we denote by f. the clipping of f by c, that is
fe(z) = min(f(z), ¢). For example, ReLUg(z) := min(ReLU(z), §) = min(max(0, x), #).

Theorem 3. Let X ) be the input of the ANN layer with ReLU activation and suppose that, during
the accumulation phase, the corresponding SNN layer of TPP neurons accumulated T - X O quantity
of voltage.

(a) Forevery time stept = 1,...,T, we have
9 t
- E ;s@m = ReLUy(X®). (12)
(b) Suppose that for some t = 1,...,T, the TPP layer produced s[1], ..., s [t — 1] vector
spike trains for the first t — 1 steps, and the residue voltage for neuron i is higher than zero.
Then,
4 0) <« .0 0)
" E [sl [t]} +Z;si [i] | = ReLUgy(X;"). (13)
(c) If sW[1], ..., sO[T) are the output vectors of spike trains of the TPP neurons during T time
steps, then

§ - LpReLUo(X}")] or £ - [GReLU(X[")] + £, othervise.
(14)

t—1 ! . . . .
% S0 = {ReLUe<X§ ), ifReLUs (X ") is a multiple of £,

=1

(d) Suppose that max X" < 0 and that the same weights W 1) act on the outputs of layer )

of ANN and SNN as above, and let X 1) (resp. T - XU+V)) be the inputs to the (I + 1)th
ANN layer (resp. the accumulated voltage for the (1 + 1)th SNN layer of TPP neurons), Then

- 0
||X(l+1) _ X(l+1)||oo S ||W(l+1)”oo . T (15)

Comments:

(a) We contrast this result with Theorem 2 of |Bu et al.| (2022c)). Namely, there the authors
show that if one uses half of the threshold as the initialization of the membrane potential,
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(b)

(©) (d)

the expectation of the conversion error (layerwise) is 0. However, the authors in/Bu et al.
(2022c) use the underlying assumption that the distribution of the ANN values layerwise is
uniform, which in practice is not the case (see for example Bojkovic et al|(2024)). Our
result (a) above shows that after every ¢ < T time steps, our expected spiking rate aligns
well with the clipping of the ReLU activation by the threshold, as it should, without any
prior assumptions on the distribution of the ANN activation values.

The point of result (b) is that the activity of TPP neuron adapts to the observed output it
already produced. In particular, as long as the neuron is still active and contains residue
membrane potential, the expectation of its output at the next time step takes into account the
previously produced spikes and will yield the ANN counterpart.

The results (¢) and (d) show that during the accumulation phase, the TPP neuron approxi-
mate well the ANN neurons with ReL.U activation. In particular, the only remaining source
of errors in layerwise approximation is the clipping error due to the set threshold 6, and
the quantization error due to the discrete outputs of the spiking neurons. We also note in
Equation equation [I5]the two possibilities of the output in the second case ("otherwise").
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