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Abstract

Document-level Event Argument Extraction
(EAE) requires the model to extract arguments
of multiple events from a single document.
Considering the underlying dependencies be-
tween these events, recent efforts leverage the
idea of “memory”, where the results of al-
ready predicted events are cached and can be
retrieved to help the prediction of upcoming
events. These methods extract events according
to their appearance order in the document, how-
ever, the event that appears in the first sentence
does not mean that it is the easiest to extract.
Existing methods might introduce noise to the
extraction of upcoming events if they rely on
an incorrect prediction of previous events. In
order to provide more reliable memory, we pro-
pose a simple-to-complex progressive frame-
work for document-level EAE. Specifically, we
first calculate the difficulty of each event and
then, we conduct the extraction following a
simple-to-complex order. In this way, the mem-
ory will store the most certain results, and the
model could use these reliable sources to help
the prediction of more difficult events. Experi-
ments on WIKIEVENTS show that our model
outperforms SOTA by 1.4% in F1, indicating
the proposed simple-to-complex framework is
useful in the EAE task. The code is avail-
able at https://github.com/zhangyx0417/
simple_to_complex.

1 Introduction

Document-level Event Argument Extraction (EAE)
aims at identifying the participants of multiple
events from a document and classifying them into
proper roles (Li et al., 2021; Du et al., 2022; Xu
et al., 2022; Huang et al., 2022; Yang et al., 2023).
Understanding events in documents is crucial for
a line of downstream tasks, such as machine read-
ing comprehension (Han et al., 2021) and dialogue
systems (Zhang et al., 2020).

∗ Equal Contribution.

Generation-based document-level EAE methods
are widely used in recent works (Li et al., 2021;
Du et al., 2022; Du and Ji, 2022; Huang et al.,
2022). Among them, one line of studies (Li et al.,
2021; Huang et al., 2022) treats each event inde-
pendently and ignores the underlying correlations
between events in real-world documents. Other
works (Du et al., 2022; Du and Ji, 2022) start to con-
sider inter-event dependencies and model them by
introducing the idea of “memory”, where event pre-
dictions (e.g., arguments, roles) are cached and can
be retrieved to help the prediction of the upcoming
events in a document. However, since these meth-
ods still use front-to-back prediction—extracting
events according to their appearance order in a doc-
ument, an event can only rely on the predictions of
events that appeared before it. Besides, the predic-
tion of an event is cached regardless of its quality,
whereas false predictions may be cached first, mis-
leading the prediction of the following events.

In general, using current retrieval-based meth-
ods to model inter-event dependencies faces two
main challenges: (1) front-to-back prediction only
partially models inter-event dependencies, where
the dependency links from an event to all the events
that appeared after it are ignored; (2) incorrect pre-
dictions may be cached first and retrieved by the
upcoming events.

Considering the challenges, we propose the
simple-to-complex framework. First, we calculate
the difficulty of each event, where the difficulty is
defined as the average probability that the model
assigns to the arguments of an event. We also cali-
brate the argument probabilities before using them
to ensure they truly reflect how certain the model
is on each argument. Second, we reorder events
in a document from simple to complex and predict
them accordingly. In this way, the model could
use the simple instance to help the prediction of
the difficult ones, no matter whether the simple
events appear before or after the difficult ones in
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the original document.
We conduct experiments on widely used bench-

marks WIKIEVENTS(Li et al., 2021), and our pro-
posed simple-to-complex framework outperforms
the previous SOTA by 1.4% in F1, illustrating
the effectiveness of our method. Further analy-
ses show the calibration of probability is very im-
portant when calculating the difficulty of different
events and the success of our framework relies on
the better usage of dependency between an event
and the events that appear after it in the document.

2 Task Definition

In this work, we focus on document-level Informa-
tive Argument Extraction1 (IAE) (Li et al., 2021),
where informative arguments are far more distant
than local/uninformative ones and provide more
useful information about an event. We formulate
document-level IAE as a generative template-filling
task following Li et al. (2021) and Du et al. (2022).
Given a document D with triggers marked (using
a special token <tgr>), our goal is to extract all
the arguments of E to fill in the slots of the event
template T .

Each event consists of (1) an event trigger,
which has a specific type E (we use E to represent
an event); (2) a series of event arguments, each
corresponding to a specific role. In the event ontol-
ogy, event types and argument roles are pre-defined,
and event templates depicting the relationship be-
tween the argument roles of an event are also pro-
vided. For example, the template for E = Attack
in the KAIROS ontology2 is:

<arg1> attacked <arg2> using

<arg3> at <arg4> place

where each slot <argx> is a placeholder for ar-
guments with a specific role. We replace all the
<argx>s in a template with a special token <arg>
before using them as input. If the model extracts
an argument, then <arg> will be replaced by the
argument. If no, the placeholder <arg> remains.

3 Method

In this section, we illustrate our framework based
on simple-to-complex prediction (Figure 1). First,
we introduce our memory-enhanced IAE model

1Name mentions are more informative than nominal men-
tions, and pronouns are the least informative.

2https://www.ldc.upenn.edu/collaborations/
current-projects

(Section 3.1). Here, we use retrieval to augment
model input and apply constrained decoding to im-
prove model output, both leveraging inter-event
dependencies to benefit prediction. Second, we
elaborate on how to define and calculate the diffi-
culty of an event, and how to reorder events in a
document from simple to complex for simple-to-
complex prediction (Section 3.2).

3.1 Memory-Enhanced IAE Model
Our memory-enhanced IAE model is based on a
generative model. When calculating the difficulty
of each event as well as generating (the arguments
of) events in a document from simple to complex,
we use the same generative model. In this study,
we assume that each event has a prediction order
and events in a document are predicted according
to that order. After reordering, the prediction order
of an event may change and further change the
retrieved prediction of that event.

Model Input & Output The generation of an
event E in a document D is conditioned on the
(1) prediction order o ∈ {1, 2, . . . , ne}: the or-
der of predicting (the arguments of) E, where ne

denotes the number of events in D; (2) event con-
text c: the concatenation of E’s context words (a
continuous span in D close to E’s trigger) and E’s
template; (3) retrieved prediction mR: the predic-
tion of an event appeared before E retrieved from
the document memory, a data structure that caches
the predictions of already predicted events in D.
To sum up, the input of event E for the model is:

<s> mR </s> <s> T </s> x1, x2, . . . , xn [EOS]

where x1, x2, . . . , xn are the context words and T
is E’s unfilled template, and these two parts form
the event context c. The prediction of E is a filled
template, with each <arg> placeholder replaced by
the predicted argument (or not), as shown in Figure
1. If there are multiple arguments for the same slot,
the arguments are connected with “and”.

Retrieval-Augmented Generation In the input
stage (both for training and testing), we augment
our model with similarity-based retrieval follow-
ing Du et al. (2022) to make it capable of find-
ing argument mentions beyond the context of an
event, especially informative ones (Li et al., 2021).
When predicting the i-th event Ei in a document
D, the snapshot of the document memory is m =
{m1,m2, . . . ,mi−1}, where mk denotes the pre-
diction of the k-th event. We calculate the cosine
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Figure 1: Our simple-to-complex progressive framework for document-level IAE. First, we calculate the difficulty
of each event in a document D and obtain a new prediction order for that event. Second, we reorder events in
D from simple to complex, and predict them accordingly. S2C denotes Simple-to-Complex, while F2B denotes
Front-to-Back. Here, we plot the process of predicting the arguments of E2.

similarity between Ei’s context ci and each predic-
tion in m using S-BERT (Reimers and Gurevych,
2019) embeddings, and select the prediction with
the highest score as additional input to help the
prediction of Ei:

score(mj |ci) =
exp f(ci,mj)∑

mj∈m exp f(ci,mj)
(1)

f(ci,mj) = SBERT(ci)
TSBERT(mj) (2)

mR
i = argmax

mj

score(mj |ci) (3)

where SBERT() denotes S-BERT encoding, mR
i

denotes the retrieved prediction that Ei relies on.

Constrained Decoding In the output stage, we
introduce argument pair constraints following Du
et al. (2022) to constrain the decoding of arguments
with conflicting roles. For example, if the DE-
TAINEE of event Ea is “Mike”, then “Mike” can
not be decoded as the ATTACKER of another event
Eb (happened after Ea), since “Mike” is already in
jail. Here, “Mike” as DETAINEE and “Mike” as AT-
TACKER is an argument pair constraint. However,
once an incorrect prediction is used to constrain

another, it may cause more errors (Du et al., 2022).
In the example above, “Mike” will never be de-
coded as the ATTACKER of Eb once it is decoded
as the DETAINEE of Ea, even if the prediction
of DETAINEE is incorrect. To alleviate such er-
ror propagation, we disable the constraints when
the model is not certain about the prediction of an
argument. The certainty of an argument can be
measured by the calibrated probability of decoding
it. Low probability intuitively implies the model
is not confident about this prediction, while we
have also found that high probability (e.g. ≥ 0.8)
corresponds to low prediction accuracy, which is
shown in Figure 3. Therefore, we set both lower
and upper bounds for argument probabilities to ex-
clude possibly incorrect constraints, and we refer
to our pruned constraints as bounded constraints.
The heuristics of selecting bounds are discussed in
Appendix A.3.

3.2 Simple-to-Complex Reordering

Since an event usually contains multiple arguments,
we reckon the difficulty of an event lies in the av-
erage difficulty of predicting its arguments. In this



section, we will elaborate on how to calculate the
difficulty of an event as well as how to reorder
events in a document by the difficulty and predict
them from simple to complex.

Suppose the set of prediction orders of events
in a document D be o = {o1, o2, . . . , one}, where
oi represents the i-th appeared event is the oi-th to
be predicted, then front-to-back prediction satisfies
oi = i, i = 1, 2, . . . , ne. Suppose the probabilities
of decoding the arguments of the i-th event Ei in a
document D be:

parg
i =

{
p
(1)
i , p

(2)
i , . . . , p

(na)
i

}
, (4)

where na denotes the number of predicted argu-
ments of Ei, and p

(j)
i denotes the probability that

the generative model assigns to the j-th argument
of the i-th event. The argument probability reflects
the certainty of the generative model on predicting
an argument, inversely proportional to our desired
difficulty. Thus, we define the difficulty of predict-
ing the arguments of Ei as:

darg
i =

{
d
(1)
i , d

(2)
i , . . . , d

(na)
i

}
, (5)

d
(j)
i = 1− p

(j)
i , j = 1, 2, . . . , ne, (6)

where d
(j)
i denotes the difficulty of predicting the

j-th argument of the i-th event. The difficulty of
Ei is defined as the average difficulty of predicting
its arguments, so we take the average of darg

i and
obtain the difficulty of Ei:

devti = mean(darg
i ). (7)

If no arguments of Ei are predicted, then devti = 2.
That means Ei will be placed to the rear, since
it provides no arguments/roles that might benefit
prediction. After calculating the difficulty of events
in D, we obtain a new set of prediction orders
o′ = {o′1, o′2, . . . , o′ne

}. Then, we can predict (the
arguments of) events in D from simple to complex
according to o′.

The method described above assumes that the
model providing the probabilities is well-calibrated,
where confidence (the probability that a model as-
signs to a prediction) equals or nearly equals ac-
curacy (the real correctness of a prediction). In
other words, high confidence corresponds to high
accuracy, and vice versa. However, some studies
reveal that current Deep Neural Networks (DNNs)
are prone to over-confidence, which implies that
the model’s confidence is not reliable (Guo et al.,

2017). We have also found similar problems in our
model, which is discussed in Section 5.1. There-
fore, we should calibrate these probabilities before
using them for our simple-to-complex reordering.
Specifically, we adopt temperature scaling (Guo
et al., 2017; Desai and Durrett, 2020), a simple and
effective method for calibration. In this work, the
temperature T is selected by minimizing the Ex-
pected Calibration Error (ECE) (Pakdaman Naeini
et al., 2015) on the validation set, and we denote
the temperature with the lowest ECE as T ′.

Accounting for calibration, there should be a
revision on the calculation of p(j)i . Suppose the
logits vector of the j-th predicted argument of the
i-th event be z

(j)
i , then:

p
(j)
i = max

k
softmax

(
z
(j)
i

T ′

)
k

, (8)

where k traverses each dimension of z(j)i .

4 Experiments

4.1 Dataset and Evaluation Metrics
We evaluate our framework on WIKIEVENTS (Li
et al., 2021) as it annotates all the events in a doc-
ument (averagely 16 events per document), while
existing document-level datasets such as DocEE
(Tong et al., 2022), RAMS (Ebner et al., 2020) and
MUC-4 (Sundheim, 1992) only annotate at most 3
events per document. Also, it provides complete
coreference annotation for document-level IAE. Its
statistics are shown in Table 1.

Train Dev Test

# Event Types 49 35 34
# Argument Types 57 32 44

# Documents 206 20 20
# Sentences 5262 378 492
# Events 3241 345 365
# Arguments 4413 411 556

# Events (per doc) 15.73 17.25 18.25
# Tokens (per doc) 789.33 643.75 712.00

Table 1: WIKIEVENTS Statistics

We measure the Argument Identification (Arg-I)
and Argument Classification (Arg-C) capabilities
of our model following Li et al. (2013). If an ar-
gument span matches any of the gold informative
arguments of the event, the argument is correctly
identified. If the semantic role also matches, the



Models
Argument Identification (Arg-I) Argument Classification (Arg-C)

Head Match Coref Match Head Match Coref Match

P R F1 P R F1 P R F1 P R F1

BERT-CRF - - 52.71† - - 58.12† - - 43.29† - - 47.70†

BART-Gen 58.62 55.64 57.09† 62.84 59.64 61.19† 54.02 51.27 52.61† 57.47 54.55 55.97†

w/ M 60.38 57.97 59.15 64.72 62.14 63.40 54.53 52.36 53.42 58.11 55.80 56.93
w/ M+C 61.79 58.88 60.30 66.16 63.04 64.56 55.70 53.08 54.36 59.32 56.52 57.88

w/ M+O (S2C) 61.61 59.60 60.59 65.73 63.59 64.64 55.81 53.99 54.88 59.18 57.25 58.20
w/ M+O+C’ (S2C-CD) 62.57 59.96 61.24∗ 66.73 63.95 65.31∗ 56.52 54.17 55.32∗ 59.92 57.43 58.65∗

Table 2: Performance (%) of document-level IAE on WIKIEVENTS. M denotes document Memory, C denotes
original Constraints from Du et al. (2022), O denotes simple-to-complex reordering, and C’ denotes bounded
Constraints. † denotes cited results, ∗ denotes statistical significance compared with (Du et al., 2022) (p < 0.05).

argument is considered correctly classified. Fol-
lowing previous studies on document-level IAE
(Li et al., 2021; Du et al., 2022), we adopt Head
Word Match (Head F1) (Huang and Riloff, 2021)
and Coreferential Match (Coref F1) (Ji and Grish-
man, 2008) to judge whether the predicted argu-
ment span matches the gold argument span. Head
Word Match demands the first word of the predicted
argument to match that of the gold argument, while
Coreferential Match only needs the extracted argu-
ment to be coreferential with the gold argument.
We report the micro-P/R/F1 averaged on three dif-
ferent seeds.

4.2 Baselines
We compare our framework with a series of com-
petitive baselines: (1) BERT-CRF (Shi and Lin,
2019), a simple BERT-based model without incor-
porating lexical or syntactic features for argument
identification and classification. (2) BART-Gen
(Li et al., 2021), a conditional neural text gener-
ation model that generates a filled template for
each event given the event template and context
words. (3) BART-Gen (w/ M+C) (Du et al., 2022),
a framework based on BART-Gen, which utilizes
retrieval to augment model input and constructs
argument pair constraints for decoding. It is the
SOTA model on document-level IAE, but still ex-
tracts events according to their appearance order in
the document. We also report the results of BART-
Gen (w/ M) for comparison.

4.3 Main Results
The main results for document-level IAE are pre-
sented in Table 2. From the results, we can con-
clude that:

• Our S2C-CD model outperforms all previous

methods on WIKIEVENTS as to document-
level IAE, with an average gain of 1.4% in F1
on all four settings.

• All models augmented with retrieval (i.e., w/
M) perform better compared with BERT-CRF
and raw BART-Gen, showing the importance
of modeling inter-event dependencies.

• Compared to BART-Gen (w/ M), the addition
of simple-to-complex reordering (S2C model)
greatly improves F1, where F1 on average
increases by 1.34 in Arg-I and 1.42 in Arg-C.
This improvement can be mainly attributed to
our simple-to-complex prediction paradigm,
since it allows more inter-event dependency
links, i.e., from an event to all the events that
appeared after it.

• After applying our bounded constraints (S2C-
CD model), there is an additional improve-
ment in P and F1, which shows that incorrect
constraints are effectively pruned.

5 Analysis

5.1 Is Calibration Necessary?

What to Calibrate? For each argument, we fo-
cus on its first token probability, and this proba-
bility is what we aim to calibrate. The reason for
using the first token probabilities is that the gener-
ation of the remaining tokens is highly dependent
on the first token. As shown in Figure 2, 87% of
the non-first token probabilities are ≥ 0.9, while
first token probabilities are better distributed, with
only 53% of them ≥ 0.9.

Why to Calibrate? Modern DNNs are prone to
over-confidence, which implies that the model’s



Figure 2: Uncalibrated/Calibrated probability distribution. The left two diagrams respectively show the uncalibrated
first and non-first (remaining) token probability distribution, while the diagram on the right shows the calibrated
first token probability distribution.

Figure 3: The reliability diagram before/after calibra-
tion. The dashed line represents zero error.

confidence is not reliable (Guo et al., 2017). We
have also found similar problems in our model.
As shown in Figure 2, the first and non-first token
probability distribution both exhibit a severe over-
confidence phenomenon before calibration, with
most probabilities ≥ 0.9. This suggests that the
model tends to assign a high (i.e., → 1) probabil-
ity to nearly all of the arguments, which can not
truly reflect how sure the model is of each argu-
ment. Also, over-confidence leads to miscalibra-
tion, which is reflected in the reliability diagram in
Figure 3. The reliability diagram plots the relation
between confidence and accuracy, and its defini-
tion is discussed in Appendix A.2. As shown in
Figure 3, most points on the orange curve (before
calibration) are far from the zero error curve where
confidence exactly equals accuracy, demonstrating
that uncalibrated probabilities are unreliable. After
calibration, the first token probability distribution
becomes flat (Figure 2) and calibrated (Figure 3).
Therefore, we should calibrate probabilities (con-

Models
Arg-I Arg-C

Head F1 Coref F1 Head F1 Coref F1

S2C 60.59 64.64 54.88 58.20

– RC 59.15 63.40 53.42 56.93
+ RU 59.39 63.46 53.65 56.98

Table 3: Ablation (%) for simple-to-complex reorder-
ing. RC denotes Reordering by Calibrated probabilities
(simple-to-complex reordering), RU denotes Reordering
by Uncalibrated probabilities.

fidence) to align them with accuracy before using
them for our simple-to-complex reordering.

Influence of Uncalibrated Probabilities We
conduct an ablation study to further explore what
will happen if we reorder events using uncalibrated
probabilities. As shown in Table 3, if we order
events by uncalibrated probabilities, F1 is only
comparable to excluding simple-to-complex re-
ordering from our S2C model. The performance
is maximized only when the probabilities are cali-
brated. Therefore, calibration is essential.

5.2 Difficulty Calculation Needs Memory?

In this section, we present two possible ways of
calculating the difficulty of an event to explore
their impact on performance. In Figure 4, we de-
fine the first inference as step 1-2 (calculating the
difficulty), and the second inference as step 3 (pre-
dicting the arguments of reordered events).

The first way is utilized in our framework, where
we use the same model for both inferences. When
calculating the difficulty at the first inference, we
also use retrieval. There are two reasons for this.
On the one hand, the model input is augmented
with retrieval during training, so the input/prompt



Figure 4: Two ways of calculating the difficulty.

format should be consistent during testing. On the
other hand, the model is trained to predict the ar-
guments of an upcoming event conditioned on the
prediction of an already predicted event. Therefore,
we should calculate “the difficulty of an event con-
ditioned on the prediction of an earlier predicted
event”. However, the retrieved predictions of the
same event at both inferences are usually different.

The second way is to use separate models for
each inference. At the first inference, we use a
model trained without retrieval to calculate the
“raw” difficulty of an event (i.e., do not condition on
the prediction of an earlier predicted event). At the
second inference, we train a retrieval-augmented
model. This way removes the possible influence of
retrieval on calculating the difficulty of an event,
but the training overhead doubles.

We conduct an experiment to compare these two
ways, as shown in Table 4. R1 and R2 represent
one model and two models, respectively. R1 is
comparable to R2 in Arg-I, while R1 is notably
better than R2 in Arg-C. The results suggest that
using one model is generally better as to perfor-
mance, so we should calculate the difficulty of an
event conditioned on the prediction of an earlier
predicted event. Besides, using one model is more
time-efficient.

5.3 Influence of Bounded Constraints

In this section, we first compare our bounded con-
straints with those presented in Du et al. (2022),
then analyze the impact of the lower and upper
bounds individually.

In Table 5, we observe that when applying the
original constraints (Du et al., 2022), the model

Intervals
Arg-I Arg-C

Head F1 Coref F1 Head F1 Coref F1

S2C (R1) 60.59 64.64 54.88 58.20
S2C (R2) 60.79 64.65 54.55 57.67

Table 4: Performance (%) of using two different ways
to calculate difficulty. R1 and R2 denote the results of
the first and second way, respectively.

performs only comparably with our S2C model.
This implies the number of correct and incorrect
constraints is nearly equal when we predict events
from simple to complex. By contrast, our bounded
constraints perform well, suggesting that the num-
ber of incorrect constraints is indeed reduced and
the correct constraints are (mostly) kept.

Models
Arg-I Arg-C

Head F1 Coref F1 Head F1 Coref F1

S2C-CD 61.24 65.31 55.32 58.65

– BCs (S2C) 60.59 64.64 54.88 58.20
+ OCs 60.61 64.69 54.87 58.20

Table 5: Ablation (%) for bounded constraints. BCs
denote Bounded Constraints, OCs denote Original Con-
straints from Du et al. (2022).

Using the steps presented in Appendix A.3, we
obtain the lower bound 0.5 and the upper bound
0.8, so we will disable a constraint if the probability
of decoding the argument is ≤ 0.5 or ≥ 0.8. Based
on this, we individually analyze the influence of
the lower and upper bounds, as shown in Table 6.
We have found that whether we remove the lower
bound or the upper bound, the performance drops,
indicating that both bounds are useful for reducing
the number of incorrect constraints.

Intervals
Arg-I Arg-C

Head F1 Coref F1 Head F1 Coref F1

[0.5, 0.8] 61.24 65.31 55.32 58.65

[0.0, 0.8] 60.72 64.81 54.78 58.12
[0.5, 1.0] 60.56 64.63 54.81 58.15

Table 6: Influence of the lower and upper bounds.

5.4 Case Study
In the case presented in Figure 5, we would like
to predict the arguments of event E = Damage,
which describes the mental damage that Dzhokhar
Tsarnaev brought to the victims as a bomber. In



Figure 5: Case study on simple-to-complex reordering.

front-to-back prediction, E can only access the pre-
dictions of earlier appeared events and retrieves
E1’s prediction as additional input. The death
of Dzhokhar Tsarnaev in E1 happened after E,
wrongly restricting the prediction of “Dzhokhar
Tsarnaev” as the DAMAGER of E. By contrast,
with our simple-to-complex prediction, E has the
chance to rely on the INJURER argument of a later
appeared event E2 and obtain the correct DAM-
AGER argument “Dzhokhar Tsarnaev”. E2 de-
scribes that Dzhokhar Tsarnaev injured 264 people
in the bombing as the INJURER, thus bringing men-
tal damage to them as the DAMAGER.

Comparing these two prediction paradigms, we
find that simple-to-complex prediction is better,
mainly because it allows more inter-event depen-
dency links. In this example, it is intuitive that E is
more similar to E2, since they respectively depict
the physical damage and mental damage Dzhokhar
Tsarnaev brought to the victims. However, the
dependency link from E to E2 is disabled when
predicting events from front to back.

5.5 Error Analysis

Table 7 summarizes the error types of our S2C-CD
model. The errors mainly come from the inability
to recognize an argument span (around half), while
only about 8% of identified arguments are assigned
incorrect semantic roles. Therefore, identifying the
argument span is more important than assigning a
more accurate role to already extracted arguments.

6 Related Work

6.1 Document-level EAE

Unlike sentence-level EAE (Li et al., 2014; Du
and Cardie, 2020; Xiangyu et al., 2021), events

Unidentified Spurious Misclassified

HM 221 (49.0%) 198 (43.9%) 32 (7.1%)

CM 199 (48.4%) 176 (42.8%) 36 (8.8%)

Table 7: Errors made by our framework under Head
Match (HM) and Coref Match (CM).

and their participants usually spread across the
document in document-level EAE. We focus on
document-level IAE (Li et al., 2021) in this work,
which is more practical but more challenging. Li
et al. (2021) constructed the WIKIEVENTS dataset
and pioneered the research on document-level
IAE. Compared with existing document-level EAE
datasets such as DocEE (Tong et al., 2022), RAMS
(Ebner et al., 2020) and MUC-4 (Sundheim, 1992)
that only annotate at most 3 events per document,
WIKIEVENTS annotates all the events in a docu-
ment, with an average of 16 events per document.
Also, it provides complete coreference annotation
for evaluating document-level IAE.

Recently, generation-based methods have been
proposed for document-level EAE. Among them,
template generation-based approaches (Li et al.,
2021; Huang et al., 2022; Du et al., 2022) are
widely utilized. BART-Gen (Li et al., 2021) con-
ditioned generation on event templates and con-
text words but considered each event independently.
Further, Du et al. (2022); Du and Ji (2022) intro-
duced the idea of “memory” to document-level
EAE, where predictions of already predicted events
were utilized as additional input. Although these
methods can model inter-event dependencies to
some extent, they ignore the dependency links from
an event to all the events that appeared after it in
a document. Besides, uncertain/false event predic-



tions may be cached first and retrieved by future
events, misleading their prediction.

6.2 Confidence Calibration

Studies on the calibration of natural language mod-
els have been drawing attention recently (Desai and
Durrett, 2020; Park and Caragea, 2022; Kim et al.,
2023). Among modern calibration approaches, tem-
perature scaling is a simple and effective method
(Desai and Durrett, 2020) which can produce low
ECE (Guo et al., 2017; Chen et al., 2023). Due
to its low time overhead and low ECE property,
we adopt it in our work. Other works focus on
methods such as label smoothing (Pereyra et al.,
2017) and data augmentation (Hendrycks* et al.,
2020), but these methods cannot produce as low
ECE as temperature scaling (Chen et al., 2023).
More recent studies started to treat calibration as
an additional task, which needs collecting data and
training extra models (Ye and Durrett, 2022; Zhang
et al., 2021). In order to reduce time overhead, we
do not consider these approaches.

7 Conclusion

In this work, we propose the idea of simple-to-
complex prediction for events in a document, where
events in a document are reordered from simple to
complex and predicted accordingly. Besides, we
introduce retrieval to augment model input and ap-
ply constrained decoding to improve model output.
Empirical results and analysis demonstrate that our
best model outperforms prior methods by a notable
margin and our simple-to-complex prediction is
beneficial since it allows more inter-event depen-
dency links, i.e., from an event to all the events
appeared after it.

Limitations

Firstly, our framework requires two inference pro-
cesses, where the first inference is to calculate the
difficulty of events in a document and the second in-
ference is to predict the arguments of these events
from simple to complex. Secondly, the way of
setting lower/upper bounds is a hard pruning strat-
egy that disables constraints where the argument
probability is too low/high. However, this strategy
rigidly excludes constraints for which the model
is not sufficiently certain or less reliable, without
really taking into account the wrong constraints
caused by the incorrectly predicted arguments. We
leave the problems for future work.
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A Appendix

A.1 Hyperparameters
The hyperparameters used in our experiments are
shown in Table 8.

Hyperparameter Value

train_batch_size 2
eval_batch_size 1
learning_rate 3e-5
accumulate_grad_batches 4
train_epoches 5
warmup_steps 0
weight_decay 0
# gpus 1

Table 8: Hyperparameters.

A.2 Confidence Calibration
Confidence & Accuracy Confidence is defined
as the probability that a model assigns to a pre-
diction, while accuracy is the real correctness of a
prediction. In the classification task, “prediction”
means the predicted class of a specific instance. In
our work, “prediction” means a specific argument.

Confidence Calibration The goal of confidence
calibration is to align the model’s posterior prob-
abilities (confidence) with empirical likelihoods
(accuracy) (Guo et al., 2017). For example, if we
take 100 instances where the model’s prediction
receives a posterior probability of 0.8, the model
should get 80 of the instances correct.

Reliability Diagrams Usually, calibration is vi-
sualized by reliability diagrams (Degroot and Fien-
berg, 1983; Niculescu-Mizil and Caruana, 2005).
Reliability diagrams treat expected accuracy as a
function of model confidence. To draw the reliabil-
ity diagram, we usually partition predictions into
k disjoint, equally-sized bins {B1, B2, . . . , Bk},
and calculate the average confidence/accuracy in
each bin as an approximation. In this paper, we set
k = 10.

Evaluation Metrics We use Expected Calibra-
tion Error (ECE) (Pakdaman Naeini et al., 2015) in
this work. ECE is the weighted average of all the
bins’ confidence/accuracy difference in the reliabil-
ity diagram:

ECE =
k∑

i=1

|Bi|
n

|acc(Bi)− conf(Bi)| (9)

where n denotes the number of predictions. ECE
measures how calibrated the model is. The smaller
the ECE, the more calibrated the model is.

A.3 The Heuristics of Selecting Bounds
We select the lower and upper bounds of the ar-
gument probabilities according to the probability
distribution (Figure 2) and the reliability diagram
(Figure 3). The steps are as follows:

1. Firstly, calculate the median Nmed of the
number of probabilities in each interval (e.g.,
[0.9, 1.0]) of the calibrated probability distri-
bution (Figure 2). If the number of proba-
bilities in an interval is ≥ Nmed, then it is
selected as a candidate interval.

2. Secondly, merge all candidate intervals to
form a continuous interval I . If there are
multiple intervals, then prune intervals with
poorer calibration (e.g., [0.8, 1.0]) according
to the reliability diagram (Figure 3), and only
keep one (denoted as I).

3. Finally, prune the less calibrated part of I .

Following these steps, we present the process of
selecting bounds in our work below. First, we can
calculate Nmed = 60.5 according to Figure 2. Af-
ter merging candidate intervals, we obtain a con-
tinuous interval I = [0.3, 0.8]. Then, we should
prune [0.3, 0.5] because probabilities in this inter-
val are less calibrated with low accuracy (Figure 3).
To sum up, our final interval is [0.5, 0.8].


