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ABSTRACT

Video generation technologies are developing rapidly and have broad potential
applications. Among these technologies, camera control is crucial for generating
professional-quality videos that accurately meet user expectations. However, ex-
isting camera control methods still suffer from several limitations, including con-
trol precision and the neglect of the control for subject motion dynamics. In this
work, we propose I2VControl-Camera, a novel camera control method that sig-
nificantly enhances controllability while providing adjustability over the strength
of subject motion. To improve control precision, we employ point trajectory in
the camera coordinate system instead of only extrinsic matrix information as our
control signal. To accurately control and adjust the strength of subject motion,
we explicitly model the higher-order components of the video trajectory expan-
sion, not merely the linear terms, and design an operator that effectively repre-
sents the motion strength. We use an adapter architecture that is independent
of the base model structure. Experiments on static and dynamic scenes show
that our framework outperformances previous methods both quantitatively and
qualitatively. Please see the video results in our anonymous github repository:
https://github.com/iclr2025sub1844/iclr2025sub1844.

1 INTRODUCTION

Video generation technologies are explored to synthesize dynamic and coherent visual content, con-
ditioned on various modalities including text (Blattmann et al., 2023c; Wang et al., 2024a; Gupta
et al., 2023) and images (Blattmann et al., 2023b; Chen et al., 2024). Video generation has broad
application potential across various fields, such as entertainment, social media, and film production.
Motion controllability is crucial for ensuring that generated videos accurately meet user expecta-
tions, with camera control being one of the most important aspects. Camera control is the process
of adjusting the position, angle, and motion of a camera, resulting in changes to the composition,
perspective, and dynamic effects of a video. This technique is essential for generating professional-
quality videos, as it influences the attention of viewers and enhances the expressiveness of scenes.

Although precise camera control is crucial for producing high-quality videos, existing methods still
face challenges. The first challenge pertains to the precision and stability of control. The lack of pre-
cision would result in an inaccurate reflection of the user control intention, significantly degrading
user satisfaction. The second challenge is ensuring the natural dynamics of the subjects themselves,
independent of camera movements. Similar to the challenges in multi-view (Mildenhall et al., 2020;
Kerbl et al., 2023) and 3D geometric algorithms (Wang et al., 2021), where static scenes are much
easier to handle than dynamic ones (Pumarola et al., 2020; Cai et al., 2022), generating plausible
dynamics in videos proves to be more complex than managing static elements.

While AnimateDiff (Guo et al., 2024b) utilizes LoRA (Hu et al., 2022) strategy for controlling cam-
era movements, the motion-LoRAs are confined to a limited set of fixed movement modes, lacking
flexibility, and it only allows for coarse control, thus failing to provide precise scale adjustments.
A direct and intuitive approach allowing for arbitrary camera movements is embedding the camera
pose matrix, as in MotionCtrl (Wang et al., 2023). However, this method results in sparse input sig-
nals that heavily rely on the training set distribution, which leads to poor generalization capability.
Consequently, it may inadequately respond to less common camera parameters within the training
dataset, and thus hinders precise control over the motion’s amplitude. Although CameraCtrl (He
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Figure 1: We propose I2VControl-Camera, a novel camera control method for image-to-video
generation. Our approach supports any camera movement style, offering high control precision and
stability, ensuring natural dynamics and adjustable motion strength, which can be seen in Sec. 4.

et al., 2024) attempts to mitigate this sparsity issue by employing Plücker embeddings (Sitzmann
et al., 2021), this parameterization lacks information of the input image, and it actually does not
offer any additional information compared to the camera matrix used in MotionCtrl. Another nat-
ural strategy is novel view synthesis, which uses 3D implicit representations that can be rendered
from arbitrary views, such as Cat3D (Gao* et al., 2024). Unfortunately, this strategy cannot support
subject motion well, thus undermining the core goal of creating dynamic video content.

In this paper, we propose I2VControl-Camera, a camera control method (some examples shown
in Fig. 1) to surmount these prevalent issues in image-to-video generation, enhancing the control
precision and adding control over the dynamic strength of subject motion in video output. To en-
sure control precision and stability, we use point trajectories in the camera coordinate system as
our control signals, instead of extrinsic matrix. From the point trajectory function, we extract the
linear term to serve as a proxy for camera control, ensuring high precision, stability and user friend-
liness. To control the motion strength, we further represent object motions with higher-order terms
in the trajectory function and explicitly model the degree of dynamics. Specifically, we employ the
derivative of the high-order terms to compute the motion speed of each point and integrate them
in the image domain to obtain the entire motion strength as the control input of the network. This
approach allows us to accurately gauge and adjust the amplitude of subject motion dynamics.

We construct training data from regular RGB videos registering 3D tracking information and motion
mask for them. Our approach features an adapter architecture that remains agnostic to the under-
lying base model structure. Experimentally, we conduct experiments in both static and dynamic
scenes. For static scenes, we can set the motion strength to zero, resulting in significantly higher
precision than previous methods. In dynamic scenes, we can configure a higher motion strength,
which allows for both high control precision and vivid subject motion. Our approach outperforms
previous methods both quantitatively and qualitatively. In summary, our contributions include:

• We explicitly model decoupled motion representations: 3D rigid point trajectories and mo-
tion strength for camera and subject motion controls.

• We propose a data pipeline to construct training control signals from RGB videos.
• For both static and dynamic scenes, our method outperformances previous methods both

quantitatively and qualitatively.

2 RELATED WORK

2.1 TEXT TO VIDEO SYNTHESIS

Text-to-video generation requires models to synthesize realistic videos based on given textual de-
scriptions. Recent progress in diffusion models has boosted the quality of T2V generation to an
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unprecedented degree, achieving both impressive visual quality and surprising text-video consis-
tency (Brooks et al., 2024; Blattmann et al., 2023b). Image Video (Ho et al., 2022) cascaded mul-
tiple video generation and super-resolution diffusion models to generate long and high-resolution
videos from textual descriptions. Make-A-Video (Singer et al., 2022) extended a diffusion-based
T2I model to T2V in a spatiotemporal factorized manner. Based on the successful experiences of
image generation methods, several works (Wang et al., 2024a; Girdhar et al., 2023; Mei & Patel,
2023) performed T2V by first generating images from texts and then synthesizing videos based on
images. EMU VIDEO (Girdhar et al., 2023) introduced adjusted noise schedules and a multi-stage
training strategy for high-quality video generation. To reduce the computational complexity of video
generation, other works (Blattmann et al., 2023c; He et al., 2022; Yu et al., 2023; Gupta et al., 2023)
explored different designs of video auto-encoders, which can map a high-dimensional video into a
low-dimensional latent space. LVDM (He et al., 2022) compressed videos from both the spatial and
temporal dimensions, obtaining a low-dimensional 3D latent for each video. In addition, Lumiere
(Bar-Tal et al., 2024) and Latte (Ma et al., 2024) explored different 3D model structures. Recently,
Sora (Brooks et al., 2024) showed the power of DiT (Peebles & Xie, 2022) in T2V task.

2.2 IMAGE TO VIDEO SYNTHESIS

Image-to-video task aims to generate videos with a static image as the condition. One classic strat-
egy is integrating CLIP embeddings of the static image into DPMs. For instance, VideoCrafter1
(Chen et al., 2023a) and I2V-Adapter (Guo et al., 2024a) utilized a dual cross-attention layer, similar
to the IP-Adapter (Ye et al., 2023), to fuse these embeddings effectively. However, due to the no-
torious issue of CLIP image encoders losing fine-grained details, subsequent works (Hu, 2024; Wei
et al., 2024) have proposed using more expressive image encoders to capture finer image features.
In addition, another strategy is to expand the input channels of DPMs to concatenate noisy frames
and the static image. Notable works in this category include SEINE (Chen et al., 2023b), Pixel-
Dance (Zeng et al., 2024), AnimateAnything (Dai et al., 2023), and PIA (Zhang et al., 2024), which
have demonstrated superior results by enhancing the input channels to integrate image information
more effectively. Finally, methods such as DynamiCrafter (Xing et al., 2023), I2VGen-XL (Zhang
et al., 2023), and SVD (Blattmann et al., 2023a) combined channel concatenation and attention
mechanisms to simultaneously inject image features, aiming to achieve consistency in both global
semantics and fine-grained details. This dual approach ensured that the generated videos maintained
a high level of fidelity to the original static images while introducing realistic and coherent motion.

2.3 VIDEO CAMERA CONTROL

While methods aiming to control video foundation models continue to emerge, relatively few works
explore how to manipulate camera motions in generated videos. AnimateDiff (Guo et al., 2024b)
employed temporal motion LoRA (Hu et al., 2022) trained on video datasets with similar camera
motions, where one single trained LoRA can control a specific type of camera motion. MotionC-
trl (Wang et al., 2023) proposed to employ an adaptor structure to encode the extrinsic matrix of
each frame into the temporal attention layers. Further, CamereCtrl (He et al., 2024) utilized the
Plücker embedding to improve the controllability. Camtrol (Hou et al., 2024) proposed a simple
training-free method to directly render static point cloud to multiview frames and construct the final
output video in a video-to-video manner. CamCo (Xu et al., 2024) integrated an epipolar attention
module in each attention block that enforces epipolar constraints to the feature maps, which keeps
3D-consistent well but causes small motion dynamic. In our work, we propose a method that can
enhance the precision of camera control and add the control over subject motion strength.

3 METHOD

3.1 VIDEO REPRESENTATION AND NOTATIONS

In this section, we introduce the video representation and notation used in this paper. First, we
stipulate that the coordinates of all points we study are in the camera coordinate system. Although
both the camera and the captured scene may move, we transfer all dynamics to the camera coordinate
system, as in Fig. 2. Intuitively, the entire 3D world can be divided into the the static part and the
dynamic part, where the static part corresponds to a linear motion in the camera coordinate system.
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Figure 2: Illustration of point trajectory. We lift the input image from 2D to 3D as a RGBD point
cloud. When the camera moves, the 3D points can be considered as moving in the camera coordinate
system. Then we can project the 3D points onto the 2D camera plane according to current camera
pose to obtain the 2D point trajectory.

Consider a dynamic sequence F(p, λ):

F(p, λ) : R3 × [0,Λ]→ R3, s.t. F(p, 0) = p (1)

where λ ∈ [0,Λ] represents a time moment during the video, and p ∈ R3 denotes a point of the entire
3D world. Notice that we specifically enforce F(p, 0) = p, to ensure that F accurately defines the
3D motion trajectory originating from the first frame. Considering the physical properties of the
macroscopic world, it is reasonable to consider F as a smooth mapping function. Naturally, we can
assert that for any given λ ∈ [0,Λ], there exist unique Rλ ∈ R3×3 and tλ ∈ R3 such that:

F(p, λ) = Rλ · F(p, 0) + tλ + o(p), (2)

where o(p) denotes an infinitesimal of higher order than p. To simply prove it, we only need to
perform a Maclaurin expansion of F(p, λ) and F(p, 0) at p = 0:

F(p, λ) = F(0, λ) + JF (0, λ) · p+ o(p), (3)
F(p, 0) = F(0, 0) + JF (0, 0) · p+ o(p), (4)

where JF denotes the Jacobian matrix, representing the gradient for vector-valued functions. Sub-
tracting the two equations and performing a simple calculation yields:

F(p, λ) = (I+ JF (0, λ)− JF (0, 0)) · F(p, 0) + F(0, λ) + o(p). (5)

Evidently, we can define:

Rλ ≜ I+ JF (0, λ)− JF (0, 0), tλ ≜ F(0, λ), (6)

Subsequently, we further denote:

G(p, λ) ≜ F(p, λ)− (Rλ · F(p, 0) + tλ) = o(p), (7)

which actually represents the extent of nonlinearity, being a higher-order infinitesimal with respect
to p than the linear term. Up to now, we have introduced the variables (Rλ, tλ, G(p, λ)) to facilitate
our forthcoming discussion on video camera control.

3.2 CONTROL SIGNAL CONSTRUCTION

While the most intuitive method is to directly employ Rλ and tλ as the control signals, we aim to
overcome the previously mentioned challenges of controllability and subject motion. Denote the
region of 3D points captured by the first frame as Ω ⊆ R3. We compute the linear translation for Ω
and project it to 2D, which defines a point trajectory on the camera plane:

Tλ = Π(Rλ · Ω+ tλ), λ ∈ [0,Λ] (8)

where Π is the projection operation. Compared to Rλ and tλ, Tλ offers a denser representation,
thereby providing enhanced controllability and stability.

However, at the same time, this could further inhibit the motion of the nonlinear parts, which is
undesirable. To address this issue, we proceed to model the motion of the nonlinear parts (dynamic
regions in the world system) as well. Considering that we have already defined the variable G(p, λ)
to measure the extent of nonlinearity, we employ its first-order derivative with respect to time λ to
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quantify the degree of motion dynamics at time moment λ. In our generative tasks, we cannot control
the motion of every individual point, so we instead resort to a secondary strategy. We integrate the
L2 norm of the first-order derivative (physically represents the motion speed of the point, as shown
in Fig.3) across the entire domain Ω, to characterize an overall measure of motion strength:

mλ =
1

|Ω|

∫
Ω

∥∂G(p, λ)
∂λ

∥2 dp =
1

|Ω|

∫
Ω

√(
∂G(p, λ)

∂λ

)T

·
(
∂G(p, λ)

∂λ

)
dp (9)

Up to this point, we have fully defined the inputs of our camera control framework, (Tλ,mλ), where
the former enhances controllability and stability, and the latter effectively represents the extent of
motion dynamics, thus fulfilling the original intent of our designed method.

Speed 
Value

Point

Motion Vector

Figure 3: Illustration of mo-
tion strength (speed value).

In addition, we discuss some properties for the control signals. As
discussed in Sec. 3.1, Ω can be divided into a static part and a dy-
namic part, which we can denote as ΩS and ΩD respectively. No-
tably, ΩS corresponds to the linear motion within the camera sys-
tem. In fact, we have:

F(p, λ) ≡ Rλ · F(p, 0) + tλ,∀p ∈ ΩS . (10)

In other words, G(p, λ) ≡ 0 on ΩS . According to Eq. 10, if we can
obtain the partition Ω = ΩS ⊔ ΩD, we can calculate (Tλ,mλ) by
simply linear fitting the point trajectory function F(p, λ).

3.3 DATA PIPELINE

In Sec. 3.2, we theoretically analyzed how to derive the input signal (Tλ,mλ) for camera control.
In this section, we show how to compute them for the real-world video data Vgt. For the real-world
video, the timesteps is a discrete sequence λ ∈ [0, T ]∩Z, where λ represents the timestep index. The
region captured by the first frame can be organized on H ×W pixels, denoted as Ω = {pij}H,W

i,j=1.
Further, we divide the whole point set {pij}H,W

i,j=1 into the static part and the dynamic part:

Ω = {pij}H,W
i,j=1 = ΩS ⊔ ΩD, (11)

where ΩS denotes the static part, and ΩD denotes the dynamic part. Different from the theoretical
analysis discussed in above sections, there are several major gaps between real-world RGB video
data and the continous trajectory function:

• Lack of 3D Information: Real-world video data only contains 2D pixels without 3D information.

• Lack of Temporal Correspondence: The raw video data does not explicitly involve the informa-
tion about the temporal movement of dense points as described by the continous trajectory function.

•Lack of dynamic/static partition: In real-world video data, discerning which regions are dynamic
and which are static remains ambiguous, especially when the camera itself is also mobile. This
introduces a coupling between the movement of objects and the motion of the camera.

To address the first issue, we employ metric depth estimation method, Unidepth (Piccinelli et al.,
2024), to bridge the gap between 2D and 3D data representation. For the second issue, we utilize
a tracking method, Cotracker (Karaev et al., 2023), to establish pixel correspondence between con-
secutive frames, so that we can obtain the discrete trajectory (still denoted as F(p, λ) for ease of
reading). For the third issue, we need to extract ΩS ,ΩD ⊆ Ω from Ω. A key insight lies in Eq. 10,
which means the trajectory on ΩS can be linearly fitted well. We solve this problem in a iterative
manner, as described in Alg. 1.

Iteratively, we fit the trajectory and extract the well-fitted region as the updated static region ΩS ,
while the remaining part is the dynamic part ΩD. Once we obtain the result ΩS and ΩD, like in each
iteration, we can final compute (Rλ, tλ) by addressing a nonlinear least squares problem using the
L-BFGS (Liu & Nocedal, 1989) algorithm:

(Rλ, tλ) = argmin
R,t

∥Π(F(ΩS , λ))−Π(R · ΩS + t)∥2. (12)

Then, Tλ can be calculated according to Eq. 8.
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Data: Whole region Ω, point trajectory F(p, λ), tolerable error ϵ, acceptable ratio α,
maximum iterations Nmax

Result: The static region ΩS and the dynamic region ΩD

initialization: n← 0, ΩS ← Ω, ΩD ← ∅;
while n < Nmax do

for each λ ∈ [0, T ] do
Solve with L-BFGS: (Rλ, tλ) = argmin

R,t
∥Π(F(ΩS , λ))−Π(R · ΩS + t)∥2;

end

Compute: ϵmax = maxp∈ΩS

T∑
λ=0

∥Π(F(p, λ))−Π(Rλ · p+ tλ)∥2;

if ϵmax < ϵ then
stop (solution found);

else

ΩS ← {p ∈ Ω |
T∑

λ=0

∥Π(F(p, λ))−Π(Rλ · p+ tλ)∥2 < α · (ϵmax + ϵ)};

if ΩS = Ω then
stop (solution found);

end
end
ΩD = Ω \ ΩS ;
n← n+ 1;

end
Algorithm 1: Static and dynamic region extraction based on trajectory analysis

For the motion strength, we empoly the difference between adjacent frames to replace the first-order
derivative of G(p, λ). Specifically, we calculate:

mλ =


0 if λ = 0,

1
HW

H,W∑
i,j=1

∥G(p, λ)− G(p, λ− 1)∥2 if λ > 0.

(13)

Thus, we can calculate the required control signals (Tλ,mλ) from any raw RGB video, which allows
us to train the model with a vast array of easy-acquired RGB video data.

3.4 NETWORK, TRAINING AND INFERENCE

To ensure our method remains compatible with rapidly evolving base models, we have implemented
an adaptive structure. Our network design is illustrated in Fig. 4. Starting from the original control
signal, our adapter network generates a control feature that can be integrated into any diffusion
process, thereby allowing adaptation to various video generation base frameworks.

Considering that Tλ is a 4-dim tensor with shape (T, 2, H,W ) and mλ is a 2-dim tensor with
shape (T, 1), we use a tiling method to expand mλ to the same shape as Tλ, and then concatenate
them along the channel dimension to finally obtain a (T, 3, H,W )-shaped tensor as the input of the
network. As shown in Fig. 4 (layers marked with flame are our adaptive layers), we first employ
several convolutional layers to convert the input to the same size as the tokens used in the diffusion
process. We then concatenate the features with the tokens before computing self-attention. After
the self-attention computation, we restore the original shape by removing the additional parts added
during concatenation, similar to Hu (2024).

During the training phase, we merely incorporate the insertion of the control signal, while all other
training strategies remain unchanged. We adopt the same loss function and the same scheduler, with
the sole modification being the introduction of the control signal condition. During testing, we first
employ Unidepth (Piccinelli et al., 2024) to lift the input image into a RGBD point cloud. When the
user moves the camera, we convert it as the transformation of 3D points in the camera coordinate
systemcan according to the camera poses. We finally project the transformed 3D points of each

6
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frame onto camera plane to compute the 2D trajectory, as shown in Fig. 2. Additionally, the user
can provide a scalar value for the motion strength control. As a result, this conforms to the training
paradigm and produces suitable camera movement effects. When the motion strength is set small,
nearly static camera movements can be achieved, whereas a significant motion strength allows for
more pronounced dynamics of the subject.

4 EXPERIMENTS

Point 
Trajectory

Motion 
Strength

Tokens

Control Tokens

(𝐵, 𝑇, 𝐶, 𝐻,𝑊)

Tokens

Temporal Self-Attention

Tokens

Adaptive Self-Attention

Temporal Self-Attention

C

Conv Layers

C

Trainable

Frozen

User Input Controls

Figure 4: The adaptive network structure.

In this section, we show our experiments. Sec. 4.1
introduces our implementation details and experi-
ment settings. Sec. 4.2 shows the results and some
properties of our method. In Sec. 4.3, we compare
our method with previous baseline methods.

4.1 SETTINGS

Implementation details. We employ a Image-
to-Video version of Magicvideo-V2 (Wang et al.,
2024b) as our base model, where we set the frame
number as 24 and the resolution as 704 × 448. We
use 16 NVIDIA A100 GPUs to train them with a
batch size 1 per GPU for 20K steps, taking about 36
hours. During training, we fix the parameters of the
base model and only train our adapter part.

Datasets. Although previous methods trained on the
RealEstate10K (Zhou et al., 2018) dataset for train-
ing, we do not choose it as our training set because the videos in this dataset are all nearly static
scenes with very limited dynamic motion of objects, which is conflict with our goal of achieving
controllable motion dynamics. Therefore, we collect a dataset of 30K video clips as our training
set, which contains not only camera movements but also natural motion. For validaition, we choose
two testing sets. The first testing set comprises 500 random static scene clips from RealEstate10K,
where each clip only extracts the initial frames according to the generated frame number. To enrich
the testing set, we randomly substitute the camera movements in half of these clips with one of eight
basic camera movements (as in MotionCtrl (Wang et al., 2023)): pan left, pan right, pan up, pan
down, zoom in, zoom out, anticlockwise rotation, and clockwise rotation. The second testing set
consists of 480 samples generated by text-to-image model that feature movable objects including
humans and animals, each equipped one of the basic camera movements.

Metrics. To comprehensively evaluate the quality of the results generated by our method and to
facilitate a fair comparison with existing techniques, we employ the same metrics as in CameraC-
trl (He et al., 2024): Rotational Error (RotErr), Translational Error (TransErr) and Fréchet
Inception Distance (FID) (Seitzer, 2020). To compute FID, we randomly select 2000 video frames
from WebVid (Bain et al., 2021). As for the calculation of RotErr and TransErr, we refer to
the formula in CameraCtrl (He et al., 2024). Furthermore, as our method supports adjusting the
motion dynamics, we design a metric to measure the motion dynamics in the generated videos, too.
Specifically, we employ the open source RAFT (Teed & Deng, 2020) optical flow model to calcu-
late a motion score, denoted as MSC. Specifically, we use optical flow to establish a correspondence
relationship between any two adjacent frames, then perform 2D rigid alignment between adjacent
frames (to appropriately remove the optical flow caused by camera movement), and compute the
average of the L2 alignment errors as the metric MSC.

4.2 VISUALIZATION RESULTS

In this section, we show the visualization results of our method, demonstrating both pixel-level
controllability and the motion strength adjustment. Due to the length and format of the paper, the
results shown below are all in frame-by-frame image format. As a supplement, please see the video
results in our anonymous github repository: https://github.com/iclr2025sub1844/iclr2025sub1844.
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Figure 5: Visualization of our pixel-level controllability. The figure presents two samples: the top
one demonstrates a pan-left camera movement, while the bottom one shows the camera sliding to
the right. For each sample, we show a preview (directly render the RGBD point cloud on to 2D plane
according to the extrinsic matrix) and our generated result. We can see that the generated result can
almost follow the control signal at the pixel level (can be seen in the green boxes) even when there
exists movable object (the cat in the red box).

4.2.1 PIXEL-LEVEL CONTROLLABILITY

We demonstrate comprehensive pixel-level user controllability in our approach, as illustrated in
Fig. 5. Initially, we estimate the metric depth from the input image, and then directly manipulate
the RGBD point cloud with control signals to render a preview image. This provides users with
an immediate and intuitive visual feedback, labeled as “Preview” in the figure. Below the direct
rendering results, we display the outputs generated by our framework. As observed, the camera
pose in the generated results is largely consistent with the preview, indicating that our control system
achieves precise pixel-level control. In the first sample, where we set the motion strength to 0, the
fox remains static, and the entire image aligns perfectly with the preview. In the second sample,
with the motion strength set to 600, the cat is able to walk on the floor. Despite the movement
of cat, the camera positioning remains consistent with the preview across all static elements, such
as the fireplace. These examples underscore the ability of our framework to maintain pixel-level
alignment regardless of the motion strength. This high level of controllability ensures that users
can interactively and effortlessly tailor their visual outputs with exceptional precision, epitomizing
a truly user-friendly experience.

4.2.2 MOTION STRENGTH ADJUSTMENT

In Fig. 6, we illustrate the effects of varying motion strength values on the same input image with
consistent camera movements. When the motion strength is 0, the image content appears almost
stationary. Conversely, as the motion strength is increased, the main objects within the scenes begin
to exhibit motion. For instance, in the first example, the camera performs a pan-right movement,
shifting the entire scene to the left. At a motion strength of 0, the polar bear remains static, moving
uniformly with the background. However, increasing the motion strength allows the bear to move
independently, walking naturally and vividly across the frame, giving an impression of freedom and
animation. In the second example, with the camera moving downward, the scene seems to ascend.
With motion strength as 0, the astronaut stands still, anchored to the ground. Increasing the motion
strength causes the astronaut to walk toward the camera, thereby enhancing the dynamic interaction
and realism within the scene. The third example features the camera rotating counterclockwise,
which results in the scene rotating clockwise. Here, a motion strength of 0 keeps the wolf stationary.
Yet, upon intensifying the motion strength, the wolf begins to run, infusing the scene with action
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Figure 6: Results under different motion strength values. We test the same camera control signal
with different motion strength value. When the motion strength is set as 0, the entire scene is nearly
static even when there are movable objects in the figure (polar bear, astronaut, wolf); when the
motion strength is large, the main objects moves obviously.

and enlivening the overall visualization. These demonstrations confirm the efficacy of our controlled
motion strength system, showcasing its capability to customize dynamic behaviors in accordance
with the desired camera movements and scene compositions.

4.3 COMPARISONS

In this section, we compare our results with previous baselines: MotionCtrl (Wang et al., 2023) and
CameraCtrl (He et al., 2024). It is important to note that the original MotionCtrl and CameraCtrl
differ significantly from our training configurations, including differences in the base model, training
set, image resolution, and even the number of frames. Fortunately, they both employ an adapter
architecture, allowing their designs to be adaptable to various base models. Therefore, to ensure
a fair comparison, we choose to retrain MotionCtrl and CameraCtrl using the same experimental
settings and base model (Magicvideo-V2) as ours. In the subsequent text of this section, whenever
we refer to MotionCtrl and CameraCtrl, we are referring to the version that have been retrained
by us. Considering that the motion-LoRA of AnimateDiff only supports a limited number of fixed
camera movement patterns, we excluded it from our comparison.

4.3.1 COMPARISON ON REALESTATE10K DATASET

We compare our method with MotionCtrl and CameraCtrl on the RealEstate10K dataset. Consider-
ing that data in this dataset are nearly all static scenes, we set our motion strength to 0. Quantitative
comparisons are presented in Tab. 1. Our method significantly outperforms the previous methods
in both RotErr and TransErr, consistent with the pixel-level precision control observed in Sec-
tion 4.2.1. For a qualitative comparison, refer to the left sample in Fig. 7. While our results are
largely consistent with the preview, the outputs from CameraCtrl and MotionCtrl exhibit noticeable
deviations. The results from MotionCtrl has the right trend but with some extra zoom-in, while
CameraCtrl, although correct in the direction of camera movement, applies excessive movement
amplitude, resulting in a failure to align at the pixel level with the ground truth. It can be seen that
our method is closest to the preview image, which is consistent with the conclusion of quantita-
tive comparison, further confirming the superiority of our controllability. Our results also show the
smallest values in terms of FID and MSC, indicating that our method not only produces the highest
quality of generated images but also maintains the static nature in static scenes.

4.3.2 COMPARISON ON DATASET OF MOVABLE OBJECTS.

We also evaluate our method against MotionCtrl and CameraCtrl on the movable object dataset.
Considering it contains movable objects, we experimented with several motion strength values: 0,
200, 400, 600. Quantitative comparisons are presented in Tab. 2. Our method performs best in both
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Figure 7: Qualitative comparison with previous methods. By comparing the preview with the gen-
erated results of different methods, we can see that our control precision is the best.

Table 1: Comparison on the RealEstate10k dataset.

Methods RotErr↓ TransErr↓ FID↓ MSC↓
MotionCtrl 2.66 12.70 164.62 13.71
CameraCtrl 1.26 21.60 156.69 15.52

Ours-0 0.53 9.72 155.01 12.93

Table 2: Comparison on the movable object dataset.

Methods RotErr↓ TransErr↓ FID↓ MSC ↓ ↑
MotionCtrl 2.10 8.08 98.54 42.28
CameraCtrl 1.56 11.32 99.59 32.69

Ours-0 0.76 6.97 100.36 18.96
Ours-200 1.03 7.53 93.28 38.23
Ours-400 1.12 7.23 91.93 47.13
Ours-600 1.18 8.16 91.86 47.70

RotErr and TransErr. Although Ours-200, Ours-400 and Ours-600 perform slightly worse on
these two metrics than Ours-0, they are still better than the comparison methods. Ours-600 achieves
the best FID and thus the best image quality. The FID of Ours-0 is slightly higher than that of the
other settings. A possible reason for this could be that the movable objects are forcibly held static,
resulting in unnatural and insufficiently diverse frames, while diversity is crucial for FID. For MSC,
our smallest value (Ours-0) is lower than the comparing methods, and our largest value (ours-600)
is higher than the comparing methods, which proves our adjustable motion strength control abality
again. Qualitative comparison is shown on the right sample in Fig. 7, where only our method is
pixel-level aligned with the ground truth.

5 CONCLUSION

In this work, we introduced I2VControl-Camera, a precise camera control method designed to en-
hance the controllability of video generation while maintaining a robust range of subject motion. We
successfully addressed the challenge of control stability by employing point trajectories in the cam-
era coordinate system, rather than relying on extrinsic matrices. Additionally, our approach involved
modeling higher-order components of video trajectory expansion, enabling the network to precisely
perceive and adjust the amplitude of subject motion dynamics. Our method demonstrated superior
performance over previous methods in both quantitative and qualitative assessments. Looking for-
ward, possible future work includes extending our framework to include more control modalities,
such as drag and motion brush controls. These enhancements will allow for even more detailed and
varied manipulations of video content, enabling creators to achieve a wider range of visual effects
and further personalize their video productions.
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