
Enhancing Incremental Summarization with Structured Representations

Anonymous EMNLP submission

Abstract
Large language models (LLMs) often strug-001
gle with processing extensive input contexts,002
which can lead to redundant, inaccurate, or003
incoherent summaries. Recent methods have004
used unstructured memory to incrementally005
process these contexts, but they still suffer006
from information overload due to the volume007
of unstructured data handled. In our study,008
we introduce structured knowledge represen-009
tations (GUjson), which significantly improve010
summarization performance by 40% and 14%011
across two public datasets. Most notably, we012
propose the Chain-of-Key strategy (CoKjson)013
that dynamically updates or augments these014
representations with new information, rather015
than recreating the structured memory for each016
new source. This method further enhances per-017
formance by 7% and 4% on the datasets.018

1 Introduction019

Individuals commonly use large language models020

(LLMs) to summarize content from sources like021

webpages, books, and articles (Jin et al., 2024;022

Kryscinski et al., 2022; Agarwal et al., 2011;023

Gunel et al., 2024). This aids in efficiently pro-024

cessing large volumes of information, influencing025

daily decision-making tasks. Despite their poten-026

tial, LLMs often struggle with processing exten-027

sive contexts, leading to redundancy or inaccu-028

racies (Hwang et al., 2024). Recent research in-029

tegrates unstructured memory systems (Madaan030

et al., 2022; Zhang et al., 2023) and fine-tunes mod-031

els for larger context windows (Xiong et al., 2023).032

However, unstructured memory formats often re-033

sult in oversized memories that overload the model,034

impairing its processing and summarization abili-035

ties. Zhang et al. (2023) proposes a self-controlled036

memory architecture to manage information via037

heuristics, yet unstructured memory complicates038

retrieval, and Li et al. (2024) finds that larger con-039

text windows still struggle to process documents040

comprehensively.041

Figure 1: Example summaries generated based on a
text memory representation and a structured memory
representation, respectively, given the N paragraphs in
the original texts. Red color marks the values that are
not included in plain text summary.

To address summarization tasks over extensive 042

input contexts, we introduce CoK, the Chain-of- 043

Key update based on JSON structured memory 044

representations. On one hand, this approach lever- 045

ages two key aspects: (1) JSON’s capability to 046

organize information into distinct, easily acces- 047

sible segments, facilitating efficient updates and 048

retrievals–offering superior expansion and nest- 049

ing capabilities compared to markdown tables or 050

graphs (Dagdelen et al., 2024); (2) The prevalence 051

of JSON in LLM pretraining data enhances LLMs’ 052

ability to understand and generate structured JSON 053

content (Ouyang et al., 2022; Xia et al., 2024)1. 054

Consequently, as shown in Figure 1, JSON-based 055

representations produce more well-structured sum- 056

maries than plain text, avoiding verbosity and re- 057

taining critical content across all sections. 058

On the other hand, instead of requiring LLMs to 059

recreate complete structured representations for all 060

previously encountered knowledge upon encoun- 061

tering a new information source, our method dy- 062

namically identifies which new information needs 063

1Our method uses the JSON format, though YAML or
XML could also serve as structured formats.

1

Figure 2: Overall incremental summarization process
with a structured memory representation based on user-
defined schema. The questions under “LLM thoughts”
are for Chain-of-Key Updating process.

to be added or updated within the existing struc-064

tures. This reduces the cognitive load on LLMs,065

enabling them to maintain and process complex066

information more effectively and produce more ac-067

curate and comprehensive summaries, as illustrated068

in Figure 1, where summaries using the CoK strat-069

egy effectively retain essential knowledge, unlike070

unstructured summaries that often miss key details071

(highlighted in red).072

Contributions:073

• We demonstrate that structured knowledge074

representations significantly enhances LLMs’075

summarization capabilities, improving perfor-076

mance by 40% and 14% on two public sum-077

marization benchmarks.078

• We introduce CoK, the Chain-of-Key update079

strategy, which dynamically updates or aug-080

ments structured representations with new in-081

formation, boosting performance further by082

7% and 4% on the benchmarks, without need-083

ing to recreate the JSON structure for each084

new source.085

• We offer an analysis demonstrating that struc-086

tured representations enable models to retain087

more relevant contexts and historical infor-088

mation than plain-text memory, particularly089

when token availability for storing informa-090

tion is limited.091

2 Methodology092

Overview. The goal of the summarization task is093

to generate a summary St from a sequence of doc-094

uments D = D0, D1, . . . , Dt that encapsulates the095

essential contents of all documents up to time t. We 096

primarily approach the task within an incremental 097

framework: Incremental Summarization. This 098

process involves continuously refining the sum- 099

mary by integrating new information from each 100

subsequent document. Each document Di may 101

contain new, relevant information that contributes 102

to an ongoing topic. The task requires producing a 103

summary St at each time step t, encompassing all 104

critical information accumulated, thereby reflect- 105

ing the key insights from the document sequence. 106

Our methodology utilizes a structured representa- 107

tion to efficiently manage and update the summary 108

dynamically with each new document. 109

Initial Structured Summary Generation. As 110

depicted in Figure 2, we initiate the process by 111

establishing a schema tailored to the task. This 112

schema is then provided to the LLM along with 113

any newly available information and, if applica- 114

ble, any pre-existing data in memory. The LLM is 115

tasked with generating outputs that align with the 116

key elements specified in the schema. 117

Chain-of-Key: Structured Summary Updates. 118

We propose the Chain-of-Key (CoK) updating 119

method to merge existing memory data with new 120

input in a structured summary. First, the LLM cre- 121

ates a structured summary from a new document. 122

This new summary, together with any existing struc- 123

tured memories, is then processed by the model. 124

The method uses two main operations, Update and 125

Add, to effectively combine the summaries. 126

The Update operation modifies existing sum- 127

mary to incorporate new data. It progresses 128

through three steps: (1) identifying keys in 129

the existing summary, such as [“Amenities”, 130

“Food & Beverage”], (2) matching these keys 131

with relevant ones in the existing memory, like 132

“Amenities”, and (3) generating a JSON path 133

to integrate the new key information, such as 134

$.attributes.Amenities. This path is then used 135

to programmatically update the summary. 136

The Add operation focuses on incorporating new 137

keys from the new information that are absent in 138

the existing summary. It also follows three steps: 139

(1) identifying new keys in the summary, such as 140

[“Noise Level”], (2) detecting which of these are 141

not in the existing summary, like “Noise Level”, 142

and (3) generating a JSON path for adding the new 143

key, such as $.attributes.Noise Level. Using 144

the generated path, new values are programmati- 145

2

cally added to the summary.146

Breaking down the updating process into sub147

tasks employs the LLM’s reasoning capabilities to148

tackle complex and multifaceted reasoning prob-149

lems in the incremental summarization task. See150

Appendix B and G for the schemas and prompts.151

Final Summary Generation. Once the iterative152

summary update process at each step is completed,153

the LLM receives the aggregated memory from154

D0, D1, ..., Dt and generates the final summary St.155

This summary can be presented in various formats,156

such as JSON or plain text.157

3 Experimental Setup158

Dataset. We evaluate our methods using two159

datasets: SUMIE (Hwang et al., 2024) and160

BooookScore (Chang et al., 2024). The SUMIE161

dataset is designed to assess the incremental en-162

tity summarization capabilities of LLMs. The163

BooookScore dataset is aimed at long document164

summarization and includes 100 recently published165

books, with some books exceeding 100k tokens.166

Due to our models’ 6K token context window size,167

each book is segmented into 2K-token chunks. For168

additional dataset details, see Appendix C.169

Baseline. We compare our method against three170

setups: Generate-Once (GO), Generate-Update171

(GU), and Generate-Merge (GM), using two data172

formats—JSON and plain text—with two state-173

of-the-art LLMs: Gemini-Ultra and Gemini-Pro2.174

In GO, the LLM generates a comprehensive sum-175

mary from all related paragraphs in a single step.176

In GU, the LLM incrementally generates updated177

summaries by integrating each new paragraph. In178

GM, the LLM merges summaries from each new179

paragraph incrementally, utilizing JSON for its key-180

matching capability to facilitate merging. Program-181

matic merging in JSON may retain redundant key-182

values, which are removed by directing the LLM to183

filter out such redundancies. Details on the prompts184

for these methods are in Appendix H and I.185

Evaluation Metrics. For SUMIE, we employ its186

LLM-assisted evaluation method to measure preci-187

sion, recall, and F1 scores of the final summary. For188

the BookScore dataset, we utilize its LLM-based189

metric to assess summary coherence, evaluating190

across eight predefined error dimensions: entity191

2https://deepmind.google/technologies/gemini/
Model temperatures are all set to 0.8 by default.

Ultra Pro
Turn P R F1 P R F1

GOtext last 86.2 42.7 56.4 85.8 40.4 54.1
GOjson last 91.2 58.9 70.9 85.1 61.0 70.1

GUtext start 77.3 70.0 72.6 74.7 66.9 69.7
last 76.6 45.2 55.8 73.3 26.8 38.4

Avg. 76.1 54.3 62.2 73.0 41.8 51.2

GUjson start 88.6 81.6 84.3 85.1 80.7 82.2
last 80.2 76.7 78.1 81.7 69.4 74.7

Avg. 80.9 78.9 79.4 83.4 74.0 77.9

GMjson start 88.6 82.9 85.0 84.2 82.6 82.6
last 86.8 63.2 72.7 84.6 74.3 78.6

Avg. 86.5 70.9 77.3 84.7 78.7 80.9

CoKjson start 89.1 77.8 82.8 81.1 80.5 79.9
last 92.6 78.0 84.5 84.6 83.6 83.9

Avg. 91.8 80.5 85.5 83.7 83.9 83.5

Table 1: Overall performance of Ultra and Pro models
on the SUMIE dataset. "start" indicates performance at
the first paragraph, and "last" represents performance at
the last paragraph aggregating all attribute-value pairs.
P, R, and F1 refer to the average precision, average re-
call, and macro F1 scores, respectively.

omission, event omission, causal omission, discon- 192

tinuity, salience, language inconsistency, and dupli- 193

cation. See Appendix D for more setup details. 194

Limited Token Scenario. To evaluate how much 195

information JSON and text formats retain in in- 196

context memory, we established a scenario with a 197

constrained in-context memory token limit of K 198

tokens. This constraint is crucial for handling long 199

documents, like books, that exceed the model’s 200

context window. For the SUMIE dataset, K is set 201

to 200 and 300 tokens, while for the BooookScore 202

dataset, it’s set to 1000 tokens. See Appendix F 203

for more details about compression criteria and the 204

associated prompts. 205

4 Results 206

Text vs. JSON, Table 1, 2. Table 1 shows that 207

the JSON format outperforms plain text in the in- 208

cremental summarization tasks using the Ultra and 209

Pro models, with notable differences in both the 210

GO and GU methods. Specifically, GOjson aver- 211

ages a 28% F1 score improvement over its text 212

equivalent, while GUjson sees a 40% improvement. 213

This discrepancy primarily stems from the low re- 214

call with the text format, suggesting that plain text 215

leads to information loss over iterations. The JSON 216

format, however, supports better information reten- 217

tion. This is evident in later iterations and the book 218

summarization task shown in Table 2. Here, GUjson 219

posts a 14% gain, enhancing the model’s ability to 220

maintain key details about characters and events. 221

3

https://deepmind.google/technologies/gemini/

Model GUtext GUjson GMjson CoKjson

Pro 53.1 58.5 61.5 62.2
Ultra 51.9 61.7 60.1 63.1

Table 2: BookScore performance on GU, GM, and
CoK, where the token size for existing information was
limited to 1000 tokens.

Effectiveness of Chain-of-Key Update, Table 1,222

2. Table 1 illustrates the effectiveness of the223

Chain-of-Key (CoK) method, which significantly224

outperforms all baseline models. Specifically, the225

CoK method, when applied with the Pro model,226

surpasses the best JSON baseline (GMjson) of the227

larger Ultra model on the SUMIE task by 10% in228

F1 score. Additionally, CoK achieves a 7% F1 im-229

provement over the GUjson and GMjson methods,230

averaged over Pro and Utrla models.231

The analysis also highlights a notable decrease232

in recall for the GM method after removing dupli-233

cates over turns. This is more pronounced in the234

Ultra model, which removes more attribute-value235

pairs than the Pro model, leading to lower recall.236

In contrast, the CoK approach enhances both pre-237

cision and recall across turns in both models, im-238

proving the F1 score by 3% in the final turn. This239

improvement suggests that CoK’s step-by-step pro-240

cessing allows the model to more accurately select241

and update information, maintaining relevance as242

iterations progress.243

Further validation comes from Table 2, where244

CoK shows 3% and 4% improvements in book245

scores over GM and GU. This indicates CoK’s246

effectiveness in preserving detailed explanations of247

complex entities and events within books, crucial248

for the narrative. Although current metrics do not249

measure recall in book scores, this highlights an250

area for future research.251

Limited in-context token size for existing in-252

formation, Figure 3, Appendix A. The CoK253

method uses significantly more tokens (an average254

of 604 tokens) for in-context memory compared to255

text baselines (an average of 269 tokens), raising256

the question of whether JSON can hold more infor-257

mation than text within the same token constraints.258

As shown in Figure 3 and detailed in Appendix A,259

both the average F1 scores and the number of to-260

kens used as existing information are tracked across261

all turns when token size is limited. The GUjson262

method substantially surpasses baseline methods263

even with restricted token counts, achieving a 30%264

average F1 score improvement over textual coun-265

Figure 3: Average F1 score across all turns with limited
memory token size on SUMIE.

terparts. CoK shows an extra 8% F1 score improve- 266

ment, suggesting that JSON format maintains more 267

precise and distinct information in summaries. 268

Error Case Study. We observe that structured 269

memory methods often add excessive details to 270

book summaries. Here are sentences from two 271

different summaries generated by CoK: 272

1. ... The family received support from extended family members and
healthcare professionals, including Katie, Angela, Rachel, and Mira.
Lola, a therapy dog, brought joy during Henry’s illness. ...
2. ...Eleanor Bennett’s children, Benny, Byron, and Marble, are grap-
pling with their complex family history and personal struggles....

The red text highlights unnecessary details, like mi- 273

nor character names, retained for broader coverage. 274

This discrepancy underscores a gap in the LLM’s 275

approach to what constitutes a comprehensive sum- 276

mary versus an effective book summary. While 277

structured representations help retain more details, 278

this excess negatively affects two evaluation met- 279

rics of book score: entity omission (mentioning en- 280

tities without desciptions) and salience (including 281

trivial details irrelevant to the storyline). Managing 282

the level of detail in structured summaries poses a 283

significant challenge for future research. 284

5 Conclusion and Discussion 285

In this paper, we introduce the Chain-of-Key 286

method, which uses structured memory represen- 287

tations and leverages LLM’s step-by-step reason- 288

ing to dramatically improve performance on two 289

summarization tasks, surpassing strong baselines. 290

JSON demonstrates its superiority in organizing 291

knowledge for incremental summarization3. Chal- 292

lenges remain in filtering out trivial details and 293

focusing on crucial information within structured 294

summaries. Developing heuristics based on struc- 295

tured properties to better highlight key information 296

is an area for future research. 297

3See Appendix E for a comparison between JSON and
Markdown tables, discussing the unique capabilities of JSON.

4

Limitations298

Our approach capitalizes on the inherent capabili-299

ties of LLMs to generate structured JSON formats.300

However, while most recent LLMs manage this301

well, smaller models such as Llama3-8B, Mistral-302

7B, and Gemini Nano often produce structured303

outputs with errors.304

In terms of evaluation, we adhere to the methods305

outlined in SUMIE and BookScore, which rely on306

LLM-based metrics. These evaluations are both307

computationally intensive and time-consuming.308

Additionally, although our method improves re-309

call in final summaries, the book summarization310

task currently lacks a specific metric for measuring311

recall. We also did not evaluate the redundancy312

and accuracy of the information produced by the313

LLMs.314

Ethics Statement315

The LLMs we used to evaluate are trained on a316

large-scale web corpus and may also bring some317

bias when generating sentences (or structured data)318

or when evaluating final summries of entities or319

books. We evaluated our method on publicly avail-320

able datasets.321

References322

Nitin Agarwal, Ravi Shankar Reddy, Kiran G. V. R.,323
and Carolyn Penstein Rosé. 2011. Scisumm: A324
multi-document summarization system for scientific325
articles. In ACL (System Demonstrations), pages326
115–120. The Association for Computer Linguistics.327

Yapei Chang, Kyle Lo, Tanya Goyal, and Mohit Iyyer.328
2024. Booookscore: A systematic exploration of329
book-length summarization in the era of LLMs. In330
The Twelfth International Conference on Learning331
Representations.332

John Dagdelen, Alexander Dunn, Sanghoon Lee,333
Nicholas Walker, Andrew S. Rosen, Gerbrand Ceder,334
Kristin A. Persson, and Anubhav Jain. 2024. Struc-335
tured information extraction from scientific text with336
large language models. Nature Communications,337
15(1):1418.338

Beliz Gunel, James B. Wendt, Jing Xie, Yichao Zhou,339
Nguyen Vo, Zachary Fisher, and Sandeep Tata. 2024.340
Strum-llm: Attributed and structured contrastive341
summarization.342

Eunjeong Hwang, Yichao Zhou, Beliz Gunel,343
James Bradley Wendt, and Sandeep Tata. 2024.344
Sumie: A synthetic benchmark for incremental345
entity summarization.346

Hanlei Jin, Yang Zhang, Dan Meng, Jun Wang, and 347
Jinghua Tan. 2024. A comprehensive survey on 348
process-oriented automatic text summarization with 349
exploration of llm-based methods. 350

Wojciech Kryscinski, Nazneen Rajani, Divyansh Agar- 351
wal, Caiming Xiong, and Dragomir Radev. 2022. 352
BOOKSUM: A collection of datasets for long-form 353
narrative summarization. In Findings of the Associa- 354
tion for Computational Linguistics: EMNLP 2022, 355
pages 6536–6558, Abu Dhabi, United Arab Emi- 356
rates. Association for Computational Linguistics. 357

Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and 358
Wenhu Chen. 2024. Long-context llms struggle with 359
long in-context learning. 360

Aman Madaan, Niket Tandon, Peter Clark, and Yiming 361
Yang. 2022. Memory-assisted prompt editing to im- 362
prove GPT-3 after deployment. In Proceedings of 363
the 2022 Conference on Empirical Methods in Nat- 364
ural Language Processing, pages 2833–2861, Abu 365
Dhabi, United Arab Emirates. Association for Com- 366
putational Linguistics. 367

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, 368
Carroll Wainwright, Pamela Mishkin, Chong Zhang, 369
Sandhini Agarwal, Katarina Slama, Alex Ray, John 370
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, 371
Maddie Simens, Amanda Askell, Peter Welinder, 372
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022. 373
Training language models to follow instructions 374
with human feedback. In Advances in Neural In- 375
formation Processing Systems, volume 35, pages 376
27730–27744. Curran Associates, Inc. 377

Congying Xia, Chen Xing, Jiangshu Du, Xinyi Yang, 378
Yihao Feng, Ran Xu, Wenpeng Yin, and Caim- 379
ing Xiong. 2024. Fofo: A benchmark to evaluate 380
llms’ format-following capability. ArXiv preprint, 381
abs/2402.18667. 382

Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia 383
Zhang, Prajjwal Bhargava, Rui Hou, Louis Mar- 384
tin, Rashi Rungta, Karthik Abinav Sankararaman, 385
Barlas Oguz, Madian Khabsa, Han Fang, Yashar 386
Mehdad, Sharan Narang, Kshitiz Malik, Angela Fan, 387
Shruti Bhosale, Sergey Edunov, Mike Lewis, Sinong 388
Wang, and Hao Ma. 2023. Effective long-context 389
scaling of foundation models. 390

Kai Zhang, Fubang Zhao, Yangyang Kang, and Xi- 391
aozhong Liu. 2023. Memory-augmented llm person- 392
alization with short-and long-term memory coordi- 393
nation. ArXiv preprint, abs/2309.11696. 394

5

http://dblp.uni-trier.de/db/conf/acl/acl2011d.html#AgarwalRRR11
http://dblp.uni-trier.de/db/conf/acl/acl2011d.html#AgarwalRRR11
http://dblp.uni-trier.de/db/conf/acl/acl2011d.html#AgarwalRRR11
http://dblp.uni-trier.de/db/conf/acl/acl2011d.html#AgarwalRRR11
http://dblp.uni-trier.de/db/conf/acl/acl2011d.html#AgarwalRRR11
https://openreview.net/forum?id=7Ttk3RzDeu
https://openreview.net/forum?id=7Ttk3RzDeu
https://openreview.net/forum?id=7Ttk3RzDeu
https://doi.org/10.1038/s41467-024-45563-x
https://doi.org/10.1038/s41467-024-45563-x
https://doi.org/10.1038/s41467-024-45563-x
https://doi.org/10.1038/s41467-024-45563-x
https://doi.org/10.1038/s41467-024-45563-x
http://arxiv.org/abs/2403.19710
http://arxiv.org/abs/2403.19710
http://arxiv.org/abs/2403.19710
http://arxiv.org/abs/2406.05079
http://arxiv.org/abs/2406.05079
http://arxiv.org/abs/2406.05079
http://arxiv.org/abs/2403.02901
http://arxiv.org/abs/2403.02901
http://arxiv.org/abs/2403.02901
http://arxiv.org/abs/2403.02901
http://arxiv.org/abs/2403.02901
https://aclanthology.org/2022.findings-emnlp.488
https://aclanthology.org/2022.findings-emnlp.488
https://aclanthology.org/2022.findings-emnlp.488
http://arxiv.org/abs/2404.02060
http://arxiv.org/abs/2404.02060
http://arxiv.org/abs/2404.02060
https://aclanthology.org/2022.emnlp-main.183
https://aclanthology.org/2022.emnlp-main.183
https://aclanthology.org/2022.emnlp-main.183
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://arxiv.org/abs/2402.18667
https://arxiv.org/abs/2402.18667
https://arxiv.org/abs/2402.18667
http://arxiv.org/abs/2309.16039
http://arxiv.org/abs/2309.16039
http://arxiv.org/abs/2309.16039
https://arxiv.org/abs/2309.11696
https://arxiv.org/abs/2309.11696
https://arxiv.org/abs/2309.11696
https://arxiv.org/abs/2309.11696
https://arxiv.org/abs/2309.11696

Figure 4: Average number of tokens used as an existing
information across all turns with limited memory token
size on SUMIE.

A Number of tokens under limited token395

size scenario396

Figure 4 shows the average number of tokens used397

for existing information in prompts across all turns.398

We observe that the models effectively compress399

tokens across all methods. Specifically, when the400

token limit is set to 200 tokens, the models com-401

press the information to fewer than 130 tokens, and402

when the limit is set to 300 tokens, they compress403

it to fewer than 180 tokens.404

B Predefined schema for entity405

summarization and book406

summarization tasks407

For entity summarization, we define the schema as408

follows:409

Summary: {
attributes: {

name: str,
values: list[str]

}
}

To construct structured representations of book410

contexts, we define the schema as follows:411

Summary: {
characters: {

name: str,
explanations: list[str]

},
events: {

name: str,
explanations: list[str]

},
background: {

name: str,
explanations: list[str]

},
motivations: {

name: str,

explanations: list[str]
},
objectives: {

name: str,
explanations: list[str]

},
other: {

name: str,
explanations: list[str]

}
}

C Details about Dataset 412

SUMIE contains 200 entities and each entity is as- 413

sociated with 7 paragraphs. Each paragraph has 414

aggregated a summary, which includes aggregated 415

attribute-value pairs from the 1st paragraph to N -th 416

paragraph (e.g. 7th paragraph contains aggregated 417

attribute-value pairs from all 7 paragraphs). Each 418

summary contains attribute-value pairs that are rel- 419

evant to the specific entity. BookScore dataset con- 420

tains mostly fiction or comtemporary books. Refer 421

to Chang et al. (2024) for the full book list. 422

D Details about Evaluation 423

On SUMIE, the evaluation of the final summary 424

comprises attribute-value pairs related to a specific 425

entity, measuing precision, recall, and f1 score. We 426

use Gemini-Pro as an LLM evaluator. The temper- 427

ature is set to 0.8. 428

For BookScore dataset, we use their LLM-based 429

evaluation metric that assess summary coherence 430

based on 8 predefined error dimensions (entity 431

omission, event omission, causal omission, discon- 432

tinuity, salience, language, inconsistency, duplica- 433

tion). Each error measures the following aspects: 434

- Entity omission: an entity, real or abstract (person, object,
place, concept, etc.) is mentioned, but key details are
missing or unclear

↪→
↪→
- Event omission: an event is mentioned, but key details are

missing or unclear↪→
- Causal omission: the reason or motivation for something is

missing or unclear↪→
- Salience: inclusion of trivial details that do not contribute

to the main storyline↪→
- Discontinuity: an interruption in the flow of the narrative,

including but not restricted to: sudden jumps between
perspectives, time periods, or settings; poor transition
between sentences or paragraphs; sentences or paragraphs
that seem out of place; illogical sentence order or summary
structure

↪→
↪→
↪→
↪→
↪→
- Duplication: redundant repetition of similar information
- Inconsistency: two parts of the summary contain contradicting

information↪→
- Language: grammar issues; confusing wording or phrasing; etc.

To evaluate the summary, each sentence is bro- 435

ken down into individual sentences and given to an 436

LLM evaluator along with the original summary. 437

The evaluation prompt includes multiple examples 438

6

Method Turn P R F1

GMmarkdown last 83.1 74.8 78.3
Avg. 80.8 80.8 80.4

GMjson last 84.6 74.3 78.6
Avg. 84.7 78.7 80.9

CoKjson last 84.6 83.6 83.9
Avg. 83.7 83.9 83.5

Table 3: Performance on SUMIE with Gemini-Pro
on Generate-Merge (GM) and Chain-of-Key (CoK) up-
date with markdown and json formats.

for each error dimension, and the LLM is asked439

to determine whether any errors are present in the440

current sentence and summary. If any errors are441

found, the sentence is marked as a “confusing sen-442

tence”. The final score is calculated by dividing the443

total number of confusing sentences identified by444

the LLM by the total number of sentences in the445

summary.446

Since their evaluation requires an advanced abil-447

ity of understanding book context to identify 8448

predefined error types, we use Gemini-Ultra as449

an LLM evaluator and the temperature was set to450

0.8. To calculate the token size to create a list of451

smaller book chunks, we use tiktoken library4.452

We used TPU v5e for evaluating the entity sum-453

marization and book summarization tasks, with454

each evaluation taking up to 24 hours. In particular,455

Gemini-Pro used 8 pods and Gemini-Ultra used 64456

pods. All experimental results are based on a single457

run using the prompts provided in each section.458

E Markdown vs. JSON459

In our evaluation, presented in Table 3, we com-460

pared the effectiveness of JSON and Markdown in461

data structuring for summarization tasks. While462

both formats demonstrated comparable abilities in463

organizing straightforward data with the Gemini464

Pro model, JSON distinguished itself in handling465

more complex scenarios. Its capability to support466

nested dictionary structures enhances expressibil-467

ity and summarization precision, particularly in468

lengthy or hierarchically complex documents. This469

makes JSON especially valuable for summarizing470

detailed datasets like family trees, where its hier-471

archical structuring capabilities far outperform the472

linear layout of Markdown.473

4https://github.com/openai/tiktoken

F Compressing the information 474

To manage the token size for existing information, 475

we compress the content using 3 criteria with an 476

LLM when the token size exceeds K tokens: 1) 477

Redundancy, 2) Frequency, and 3) Relevance. For 478

redundancy, we remove repetitive information to 479

maintain conciseness. For frequency, the model 480

prioritizes the most frequently mentioned values, 481

as they are likely the most important. For relevance, 482

the model emphasizes information most pertinent 483

to the subject. Figure 13 presents the prompt used 484

for compressing the information. 485

G Prompt for Chain-of-Key update 486

Figure 5 is the prompt used for Chain-of-Key up- 487

date process. In the case of the book summarization 488

task, we simply replace the instructions and a ex- 489

ample given in the prompt: 490

1. Values have a short and concise information: the values of
the [PARTIAL_SUMMARY] should have a short, concise, and
summarized information.

↪→
↪→
2. No redundant keys: If information from [NEW_SUMMARY] can be

incorporated by updating an existing key in
[PARTIAL_SUMMARY], then do not introduce a new redundant
key. For example, if there's already a field for
'activities' do not introduce a new key for 'other
activities' or 'water activities', 'hiking'. Update the
existing key for 'activities'.

↪→
↪→
↪→
↪→
↪→
↪→
3. No redundant values under the same key: If one value

encompasses most of the details in another value, merge
them together. For instance, "beautiful views of the Eiffel
tower" and "view of the Eiffel tower" should be merged into
a single value like "beautiful views of the Eiffel tower".

↪→
↪→
↪→
↪→
4. Do not include trivial information or redundant information

as a value for its corresponding key.↪→
5. Content Focus: Values should highlight the most important

information relevant to the main story.↪→
6. Exclude Ancillary Content: Disregard sections that are not

directly part of the main narrative, such as: Title,
Acknowledgments, Dedication, Chapter titles, Glossary
entries, Timelines, Forewords, Prologues, Epilogues,
Appendices, Author notes.

↪→
↪→
↪→
↪→

H Prompts used for SUMIE baselines 491

We used Figure 6 for Generate-Once, Figure 6 and 492

7 for Generate-Update, and Figure 6 and 8 are 493

used for Generate-Merge, which includes removing 494

duplicates. For text baselines, we simply replace 495

the JSON examples in the prompts to text summary 496

examples. 497

I Prompts used for BookScore baselines 498

For the BookScore dataset, we used the prompt in 499

Figure 9 along with special instructions from Fig- 500

ure 10 for JSON format generation and Figure 11 501

for plain text summary generation during the initial 502

Generate-Update phase and the Generate-Merge 503

phase. In subsequent Generate-Update iterations, 504

7

we used the prompt in Figure 12. To remove dupli-505

cates during the Generate-Merge step, we used the506

prompt in Figure 8.507

8

I will provide a JSON format summary in a section called [NEW_SUMMARY], and a class definition [CLASS], which define some fields
that need to be generated, and an instantiation of that class under [PARTIAL_SUMMARY] that is a response to the question in
[QUESTION]. Your task is to propose updates to [PARTIAL_SUMMARY] gathered from the information in [NEW_SUMMARY].

↪→
↪→

There are two types of revisions that you can suggest: ADD and UPDATE.

For UPDATE, follow these instructions:
1. Your proposed updates must be for valid JSONPaths that already exist in [PARTIAL_SUMMARY]. If the JSONPath does not exist, you

should not propose an update for that JSONPath.↪→
2. Updates can be made by modifying an existing value using content from [NEW_SUMMARY].
3. Updates should never reduce the amount of information in [PARTIAL_SUMMARY].
4. Never remove existing information from the [PARTIAL_SUMMARY].
4. Proposed update must be a `dict[str, ProposedUpdate]` where the key is a valid JSONPath in [CLASS] and `ProposedUpdate` is

defined as follows:↪→
```
class ProposedUpdate(TypedDict):
update: Any # The type must be the same type as at the JSONPath in [CLASS].

```

For ADD, follow these instructions:
1. Proposed additions must be for valid JSONPaths that adhere to the definition in [CLASS]. They are allowed to increase the size

of lists in the definition, but they must not define new fields which are not defined in the class definition.↪→
2. It is OK to add partial objects. Leave fields unset if [NEW_SUMMARY] does not contain a value for one of the fields in

[PARTIAL_SUMMARY].↪→
3. Proposed additions must be a `dict[str, ProposedAdd]` where the key is a valid JSONPath in [CLASS] and `ProposedAdd` is defined

as follows:↪→
```
class ProposedAdd(TypedDict):
add: Any # The type must be the same type as at the JSONPath in [CLASS].

```

For both operations, follow these instructions:
1. Values have sufficient context: the values of the [PARTIAL_SUMMARY] should have enough context so a reader can understand what

it means.↪→
2. No redundant keys: If information from [NEW_SUMMARY] can be incorporated by updating an existing key in [PARTIAL_SUMMARY], then

do not introduce a new redundant key.↪→
3. No redundant values under the same key: If one value encompasses most of the details in another value, merge them together.

[QUESTION]
Merge the new summary and existing summary of HOTEL0.

[NEW_SUMMARY]
{
"attributes": {
"Room Amenities": ["pub opens till midnight", "two large pools"],
"Noise Level": ["Notable street noise at night"],

}
}

[CLASS]
class Summary(TypedDict):
attributes: dict[str, list[str]] # Keyed by attribute, with a list of sufficient details about the attribute.

[PARTIAL_SUMMARY]
{
"attributes": {
"Amenities": ["two pools"],
"Food & Beverage": ["limited breakfast options"],

}
}

[THOUGHTS FOR UPDATE]
1. I need to figure out which fields and values to update.
2. [PARTIAL_SUMMARY] contains information about the following: ["Amenities", "Food & Beverage"]
3. [NEW_SUMMARY] contains new content relevant to the following existing content: ["Amenities"]
4. The content should be updated at the following JSONPaths: ["$.'attributes'.'Amenities'"]

[UPDATED_OBJECTS]
{
"$.'attributes'.'Amenities'": {"update": ["pub opens till midnight"]}

}

[THOUGHTS FOR ADD]
1. I need to figure out which fields and values to add.
2. [NEW_SUMMARY] mentions information about the following: ["Amenities", "Noise Level"]
3. [PARTIAL_SUMMARY] does not yet have information about: ["Noise Level"]
3. The content should be added at the following JSONPaths: ["$.'attributes'.'Noise Level'"]

[ADDED_OBJECTS]
{
"$.'attributes'.'Noise Level'": {"add": ["Notable street noise at night"]},

}

Figure 5: Prompt used for chain-of-key update

9

Task Overview:
Your task involves synthesizing information from detailed descriptive paragraphs about a specific entity into a summary table.
This Json will highlight key attributes of the entity along with their detailed descriptions derived from the given texts.

Instructions:
* Extract Descriptive Values: Focus on extracting specific, detailed information rather than general or vague adjectives like

"good" or "bad." Ensure that descriptions are precise and informative.↪→
* Present a Balanced View: The table should reflect a balanced perspective, including positive, negative, and neutral attributes.

For attributes with mixed reviews, indicate the sources supporting each viewpoint.↪→
* Attribute Selection:
- Commonly Interested Attributes: Include attributes that are generally of interest for the type of entity being described.
- Unique Attributes: Also identify and include unique attributes that are specifically mentioned in the provided descriptions.

* Do not include irrelevant sentences about the given entity in the summary. Irrelevant sentences include entity names (HOTEL1,
HUMAN) that are different from the given entity (HOTEL0).↪→

Structure of the Summary Table:
* The Json should contain a dictionary format data, where keys are attributes and values are detailed descriptions of their

corresponding attributes.↪→
* List attributes with their corresponding values, indicating the source paragraph and relevant excerpts for substantiation.
* If an attribute has multiple values, include all values as a list of the attribute.
* Each value should contain sufficient evidence extracted from the paragraph related to the entity.

Example:
Entity: HOTEL0

Paragraphs:
P1. Great room and service, but breakfast was lacking. We loved the spacious room and friendly staff, but the breakfast options

were limited. There are two pools.↪→
P2. Poor customer service overshadowed the beautiful location. The beachfront view was amazing, but dealing with unhelpful staff

was frustrating. Room is comfortable.↪→
P3. Exceptional dining and comfortable beds, but noisy at night. The restaurant was five-star, and the beds were very cozy, but

there was a lot of street noise.↪→
P4. HOTEL1 offers great room service and breakfast was amazing. (Irrelevant sentence for the given entity "HOTEL0")
P5. HUMAN's creativity looks like a great room service offered by the hotel. (Irrelevant sentence for the given entity "HOTEL0")

Summary JSON:
{
"Room Quality": ["Spacious and comfortable rooms"],
"Amenities": ["There are two pools"],
"Service": ["Friendly staff", "overshadowed by unhelpful staff"],
"Location": ["Beautiful beachfront view"],
"Food & Beverage": ["Exceptional dining experience", "limited breakfast options"],
"Noise Level": ["Notable street noise at night"]

}

Your Task:
Generate a similar table based on the following descriptions of the specified entity.
Entity: {entity_name}

Paragraphs:
{paragraph}

Proceed to generate the summary Json.

Figure 6: Prompt used for generating initial summary

10

Task Overview:
You are tasked with refining and expanding an existing summary table based on new descriptive paragraphs about an entity.
This involves updating the table to include new information, modify existing details without removing any, and ensuring all entries

are supported by evidence from the text.↪→

Instructions:
* Update Descriptive Values: Carefully read the new paragraph(s) and identify any information that should be added to the current

table entries or modify them. Focus on specific, descriptive details, avoiding vague adjectives. **Do not remove any existing
attributes or values**, but rather add to or revise them as necessary.

↪→
↪→
* Maintain a Balanced View: Ensure the updated table continues to present a balanced perspective, incorporating positive, negative,

and neutral values. For any attribute with mixed evidence, update the count of sources supporting each view. All original
attributes and values must be preserved in the table, with modifications only to reflect new insights or corrections based on
the latest information.

↪→
↪→
↪→
* Attribute Revision and Addition:
- Commonly Interested Attributes: Update or add attributes that are of general interest for the type of entity being described,

based on the new information.↪→
- Unique Attributes: Identify and incorporate any unique attributes mentioned in the new paragraphs that were not previously

included in the table.↪→

Structure of the Updated Summary Table:
* Retain the two-column format: Attribute and Value.
* For each attribute, list the updated or new evidence indicating the source paragraph and relevant excerpts. Original attributes

and values should remain listed, with additional information appended as necessary.↪→
* If an attribute has multiple values, include all values as a list of the attribute.
* Each value should contain sufficient evidence extracted from the paragraph related to the entity.

Example
Entity: Hotel0
New Paragraph:
P4. The hotel has recently renovated its lobby, which now features a modern design. Guests have also noted improvements in

breakfast variety and quality.↪→
P5. The hotel boasts impeccably designed rooms, featuring luxurious furnishings.

Given Existing Summary Table:
{
"Room Quality": ["Spacious and comfortable rooms"],
"Amenities": ["two pools"],
"Service": ["Friendly staff", "overshadowed by unhelpful staff"],

}

Updated Summary Json:
{
"Room Quality": ["Spacious and comfortable rooms", "Impeccably designed", "luxurious furnishings"],
"Amenities": ["Two pools"],
"Service": ["Friendly staff", "overshadowed by unhelpful staff"],
"Food & Beverage": ["Exceptional dining experience", "limited breakfast options", "improved breakfast variety and quality"],
"Lobby Design": ["Modern design"],

}

Your Task:
Update the summary Json with the given new descriptions of the specified entity.
Entity: {entity_name}
New Paragraph:
{paragraph}

Given Existing Summary Json:
{existing_summary}

Proceed to update the summary Json.

Figure 7: Prompt used for updating a summary with new information and existing summary information.

11

Task Overview:
Your task involves removing duplicate information from a detailed summary json about a specific entity. This summary will highlight

key attributes of the entity along with their detailed descriptions derived from the given texts.↪→

Instructions:
1. Eliminate repetitive information to ensure the summary is concise.

2. In the given summary json, the keys are attributes of the entity and each attribute has its corresponding values.
3. If one attribute encompasses most of the details in another attribute, merge them together.
4. If one value encompasses most of the details in another value, merge them together.

Here is an example of merging attributes:

Given Existing Summary:
{

"Views": ["beautiful views of the Eiffel tower"],
"views from hotel": ["visible Eiffel tower"],

}

New Summary after removing duplicates and merging:
{

"View": ["beautiful views of the Eiffel tower"]
}

===

Here is an example of merging values:

Given Existing Summary:
{

"Views": ["beautiful views of the Eiffel tower", "view of the Eiffel tower"],
"views from hotel": ["visible Eiffel tower"],

}

New Summary after removing duplicates and merging:
{

"View": ["beautiful views of the Eiffel tower"]
}

===

Figure 8: Prompt used for removing duplicates.

Task Overview:
We are analyzing segments of a story sequentially to progressively build a comprehensive summary of the entire plot. Your task is

to generate a new summary by integrating vital information from the current story segment with the existing summary stored in
memory. The summary can be provided in either text format or JSON format.

↪→
↪→

Instructions:
1. Integrate Key Information: Incorporate new information related to key events, backgrounds, settings, characters, their

objectives, and motivations from the current segment into the existing summary.↪→
2. Introduction of New Elements: Briefly introduce any new characters, places, or major elements mentioned for the first time in

the current segment if they are not already included in the memory.↪→
3. Handling Non-Linear Narratives: Account for non-linear narratives, including flashbacks, and switches between alternate worlds

or viewpoints, ensuring the summary maintains a consistent and chronological narrative.↪→
4. Cohesive Summary: Create a summary that reads as though it was written in one go, despite the step-by-step process of updating

it with each new segment.↪→
5. Exclude Ancillary Content: Disregard sections that are not directly part of the main narrative, such as: Title, Acknowledgments,

Dedication, Chapter titles, Glossary entries, Timelines, Forewords, Prologues, Epilogues, Appendices, Author notes.↪→

{special_instruction}

Your Task:
Generate a summary based on the following segment from a story and the memory of the story up until this point. Ensure the output

follows the specified format.↪→

A segment from a story:

{book_chunk}

Generated summary in {output_format}:

Figure 9: Prompt used for generating book summaries.

12

Structure of the JSON Summary:
- Fields to Generate: Characters, Events, Backgrounds,

Motivations, Objectives, Other.↪→
- Field Format: Each field should be a dictionary where keys

are the names of elements and values are their short
descriptions.

↪→
↪→
- Each key should include a short and concise information as

values that explain the key.↪→
- Content Focus: Values should highlight the most important

information relevant to the main story.↪→
- Do not include trivial information or redundant information

as a value for its corresponding key.↪→

Here is an example of the JSON Summary:
{
"characters": {
"a character's name": [a list of short and summarized

descriptions]↪→
},
"events": {
"an event's name": [a list of short and summarized

descriptions]↪→
},
"objectives": {
"an objective's name": [a list of short and summarized

descriptions]↪→
},
"motivations": {
"a motivation's name": [a list of short and summarized

descriptions]↪→
},
"background": {
"a background's name": [a list of short and summarized

descriptions]↪→
},
"other": {
"other information's name": [a list of short and summarized

descriptions]↪→
}

}

Figure 10: Instructions used for generating JSON for-
mat summary.

Structure of the Text Summary:
- Key Elements to Include: Incorporate key events, characters,

backgrounds, motivations, objectives, and other relevant
details.

↪→
↪→
- Narrative Flow: Ensure the summary flows seamlessly as a

cohesive and comprehensive narrative.↪→

Here is an example of the Text Summary format:
A summary that reads as though it was written in one go. It can

consist of multiple paragraphs.↪→

Figure 11: Instructions used for generating text format
summary.

Your Task:
Generate a summary based on the following segment from a story

and the memory of the story up until this point. Ensure the
output follows the specified format.

↪→
↪→

A segment from a story:

{book_chunk}

A memory of the story up until this point:

{memory}

Output Type: {output_format}

Updated summary in {output_format}:

Figure 12: Prompt used for updating a summary with a
new information and existing summary.

Task Overview:
Your task involves compressing information from a detailed

summary JSON about a book. This summary will highlight key
details of the book that are important when summarizing the
whole story of the book.

↪→
↪→
↪→

Instructions:
- Compress the summary to the specified number of tokens below.
- The condensed summary should retain key details about

characters, events, backgrounds, motivations, objectives,
and other important information.

↪→
↪→
- If the key has multiple values, merge them into a short

summarized description.↪→

Criteria:
- Redundancy: Eliminate repetitive information to ensure the

summary is concise.↪→
- Frequency: Emphasize the most frequently mentioned attributes

or values, as they are likely the most important.↪→
- Relevance: Focus on the information that is most pertinent to

the main story of the book or the overall context of the
summary.

↪→
↪→
- Remove trivial information that does not frequently appear in

the other contexts or not relevant to the main story of the
book based on the overall context of the summary.

↪→
↪→

Figure 13: Prompt used to compress the information to
fit the existing summary into the limited token size.

13

