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Abstract

Enabling large language models to utilize real-
world tools effectively is crucial for achieving
embodied intelligence. Existing approaches to
tool learning have either primarily relied on ex-
tremely large language models, such as GPT-4,
to attain generalized tool-use abilities in a zero-
shot manner, or utilized supervised learning to
train limited scopes of tools on compact models.
However, it remains uncertain whether smaller
language models can achieve generalized tool-
use abilities without tool-specific training. To
address this question, this paper introduces
ToolAlpaca, a novel framework designed to
automatically generate a diverse tool-use cor-
pus and learn generalized tool-use abilities on
compact language models with minimal human
intervention. Specifically, ToolAlpaca first au-
tomatically creates a highly diversified tool-use
corpus by building a multi-agent simulation en-
vironment. The corpus contains 3.9k tool-use
instances from more than 400 real-world tool
APIs spanning 50 distinct categories. Subse-
quently, the constructed corpus is employed
to fine-tune compact language models, result-
ing in two models, namely ToolAlpaca-7B and
ToolAlpaca-13B, respectively. Finally, we eval-
uate the ability of these models to utilize pre-
viously unseen tools without specific training.
Experimental results demonstrate that ToolAl-
paca achieves effective generalized tool-use
capabilities comparable to those of extremely
large language models like GPT-3.5, demon-
strating that learning generalized tool-use abil-
ity is feasible for compact language models.

1 Introduction

Embodied intelligence, the ability to meaningfully
interact with the environment, stands as a core at-
tribute of advanced cognitive systems and a crucial
advancement in artificial intelligence. The ability
to create and use tools has expanded human beings’
physical capabilities to interact with environments
and augmented cognitive functions. Such evolu-

tionary milestone has not only broadened our range
of physical actions, but also brought about trans-
formative changes in our problem-solving abilities
and innovative thinking. The pursuit of incorporat-
ing tool-use capabilities into artificial intelligence
holds great significance in advancing the develop-
ment of general intelligent systems.

Recent advancements in enhancing large lan-
guage models (LLMs) such as GPT-4 (OpenAl,
2023) with tool-use abilities have made significant
progress in this area. These models have shown
their ability to effectively employ external tools
through integrated plugins, thereby expanding their
versatility and enhancing the precision and qual-
ity of their outputs. Unfortunately, due to a lack
of understanding of how existing large language
models acquire the general tool-use capability, cur-
rently compact language models still do not possess
such general ability. Consequently, substantial re-
search efforts are dedicated to fine-tuning smaller
language models to acquire the capacity for tool us-
age (Komeili et al., 2022; Parisi et al., 2022; Schick
et al., 2023) on a limited range of tools, which lacks
the ability to generalize to unseen tools. This dis-
crepancy between the generalized tool-use abilities
of larger models and the more constrained capabili-
ties of compact models presents an intriguing ques-
tion: Can these compact language models learn
to generalize their tool-use abilities, thus enabling
interaction with a broader spectrum of tools?

In this paper, we explore whether it is feasible
for compact language models to learn generalized
tool-use abilities. Intuitively, previous studies have
demonstrated the possibility of equipping com-
pact language models with generalized instruction-
following abilities by fine-tuning them on diversi-
fied instruction datasets (Taori et al., 2023; Zhou
et al., 2023). Therefore, a promising strategy
for equipping language models with generalized
tool-use abilities involves fine-tuning them on a
highly-diversified tool-use corpus. Unfortunately,
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Figure 1: A high-level overview of ToolAlpaca, con-
sisting of three components: (1)Toolset construction,
where structured documentation for each tool is gener-
ated based on the brief introductions provided by public-
apis. (2) Tool-use instance generation via multi-agent
simulation. (3) ToolAlpaca model training, which in-
volves fine-tuning language models on generated tool-
use corpus to get ToolAlpaca.

such a corpus is currently unavailable, especially
where API access is restricted due to confidential-
ity. This scarcity stems from several crucial factors.
Firstly, in environments with limited API access,
directly accessing APIs for data generation, like
ToolLLM (Qin et al., 2023b), is challenging and
poses privacy or security risks, significantly limit-
ing language models’ application in these scenar-
ios. Secondly, real-world tool usage often involves
complex interactions between the language model,
users, and tools, greatly increasing the difficulty
and effort needed to create a broad range of tool in-
stances at scale. These factors substantially hinder
the development of a diversified tool-use corpus for
efficient language model training.

To this end, we propose a framework named
ToolAlpaca, which is designed to automatically cre-
ate a diverse and well-structured toolset for LLMs
and generate multi-turn complex tool-use instances
for generalized tool learning. The overall structure
of ToolAlpaca is shown in Figure 1. Specifically,
ToolAlpaca gathers a substantial amount of brief
introductions of potentially valuable tools from the
internet. It’s important to note that there is no re-
quirement for these tools’ APIs to be accessible
or for them to possess structured documentation
directly usable by LLMs. This ensures our data

generation approach remains applicable even when
APIs are inaccessible or documentation is incom-
plete. Building on this foundation, ToolAlpaca
employs the generative capacity of LLMs by tak-
ing the brief introduction of relevant tools as input
and prompts the model to produce detailed, struc-
tured documentation for each tool. By employing
this methodology, ToolAlpaca has collected more
than 400 tool descriptions spanning 50 categories.
Each tool is uniformly represented using a stan-
dardized documentation format. Subsequently, in
order to acquire tool-use instances involving the
aforementioned tools, we have designed a simula-
tion environment aimed at emulating the multi-step
interactions among language models, users, and
tools. Specifically, we utilize LLMs to simulate
the interactions between the model, users, and the
APIs of the tools by leveraging LLMs to serve as
different kinds of agents. In this way, our simula-
tion environment can generate a substantial volume
of tool-use instances without any manual interven-
tion. Consequently, we have crafted an inclusive
tool-use dataset that comprises 3.9k instances, ef-
fectively showcasing the practical application of
over 400 distinct tools.

To verify whether our corpus can empower com-
pact language models with the generalized tool-use
ability, we conduct experiments to train ToolAl-
paca model on Vicuna (Chiang et al., 2023), a rep-
resentative compact language model, and subse-
quently evaluate its performance on various unseen
tools. Through machine evaluation with GPT-4,
we find that ToolAlpaca can effectively use numer-
ous unseen tools, ranging from real-world APIs
to multi-modal tools, and it exhibits competitive
performance with GPT-3.5. Furthermore, we in-
vestigate the effect of diversity. It is observed that
even with the same number of instances, the model
trained on more varied toolsets will achieve bet-
ter performance. This underscores that diversity is
a pivotal factor for ToolAlpaca to generalize tool
learning with 3000 simulated cases.

In summary, the main contributions of this paper
are:

* To the best of our knowledge, this paper is
the first work that verifies the feasibility of
equipping compact language models with gen-
eralized tool-use capacities, showing that they
can be applied in real-world scenarios even
when trained exclusively on simulated data.

* This paper presents ToolAlpaca, a simple



framework for the automated generation of
tool-use corpus, applicable in special scenar-
ios such as restricted API access and the ab-
sence of structured documentation.

* We create a diverse tool-use corpus containing
3.9k tool-use instances from more than 400
tools across 50 distinct categories. It serves
as a solid foundation for compact language
models to acquire generalized tool-use ability.

2 Related Work

Tool Use The utilization of external tools in
LLMs has emerged as a rapidly growing research
area (Mialon et al., 2023; Qin et al., 2023a). Cur-
rent approaches can be divided into two distinct
categories. The first category leverages the capa-
bilities of LLMs, prompting them to interact with
various tools, ranging from highly specialized ones
such as code interpreters (Gao et al., 2022; Chen
et al., 2022), search engines (Yao et al., 2022), re-
trieval models (Khattab et al., 2023) and Al mod-
els (Shen et al., 2023; Lu et al., 2023), to more
versatile toolsets (Qin et al., 2023a; Li et al., 2023;
Song et al., 2023). Large language models have
already demonstrated robust generalization capa-
bilities in tool usage and enable to equip numerous
unseen tools via prompting. In contrast, the sec-
ond category concentrates on enhancing the tool-
specific usage capabilities of compact language
models through fine-tuning with datasets specifi-
cally designed for the specialized tools (Parisi et al.,
2022; Schick et al., 2023; Xu et al., 2023). Con-
current with our work, GPT4Tools (Yang et al.,
2023) fine-tuning compact models to incorporate
multi-modal tools, which concentrates on a set of
quite similar multi-modal tools. ToolLLM (Qin
et al., 2023b) facilitates language models to mas-
ter massive APIs. However, their data collection
strategy requires the prior accumulation of massive
authentic APIs, which requires manual efforts to
obtain and verify. Despite their effectiveness, the
domain of generalized tool-use abilities in compact
language models remains largely unexplored upon
the accomplishment of this paper. This study aims
to bridge this research gap by automatically con-
structing a diverse dataset on tool utilization that
encompasses various tool-use scenarios.

LLMs for Data Generation Many research stud-
ies have employed LLMs for data generation, fo-
cusing on various tasks such as question answer-

ing (Wang et al., 2021; Agrawal et al., 2022;
Chen et al., 2023), semantic similarity predic-
tions (Schick and Schiitze, 2021), and instruc-
tion tuning (Honovich et al., 2022; Wang et al.,
2023). Furthermore, in the context of tool use, sev-
eral works (Schick et al., 2023; Patil et al., 2023;
Yang et al., 2023) have already employed model-
synthesized data to enhance specific tool-use ca-
pabilities. However, the generation of generalized
tool-use data poses more significant challenges, as
it involves extensive and diverse tools and more
intricate multi-turn interactions.

3 Diversified Tool-use Corpus Generation
via Multi-agent Simulation

In this section, we introduce ToolAlpaca, a multi-
agent simulation framework designed to generate
a diversified tool-use corpus with minimal human
intervention. As shown in Figure 1, our framework
consists of two stages:

1. Toolset Construction. This step aims to con-
struct a collection of tools and represent them
using a standardized format as {name, intro-
duction, description, function documentation,
OpenAPI specification)}. Specifically, we ini-
tiate the process by sourcing tool names and
introductions from the internet and then uti-
lize LLMs to enrich them with structured doc-
umentation that delineates the functionality
and usage of each tool. In this way, we can
construct a diverse and structured toolset that
closely resembles real-world scenarios.

2. Tool-use Instance Generation. Given the
toolset, this step’s objective is to generate
tool-use instances within a simulation envi-
ronment automatically. This environment is
constructed with three distinct virtual agents,
each embodied by a LLM: the user, the tool
executor, and the assistant. Through the multi-
turn interplay among these agents, we can
generate tool-use instances that reflect real-
world tool-use scenarios. Each tool-use in-
stance consists of three elements: {the user’s
instructions, the actions and corresponding
tool outputs, final response).

3.1 Diverse Toolset Construction

This section describes how to construct a diverse
toolset and represent them in a uniform format. The
process initiates with the accumulation of an ex-
tensive API collection from the internet, reflecting
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regional, and religious holidays around the world.
The API's key features are:

Function Documentation:

for which holidays are to be retrieved."}

OpenAPI Specification:
- GET /holidays/{country}

Introduction: Data on national, regional, and religious holidays via API
Description: The Public Holidays APl is a user-friendly interface that provides comprehensive information on national,

1) Get a list of holidays for a particular country with dates, descriptions, and types.
2) Retrieve detailed information on a specific holiday, including its history, purpose, and traditions.
3) Obtain information on public holidays for a specific year, month, or day.

getHolidays: Get a list of holidays for a particular country with dates, descriptions, and types.
Parameters: {"country": "Required. String. The country for which holidays are to be retrieved.", "year": "Integer. The year

Output: A list of holidays with their dates, descriptions, and types for the specified country, year, month, and day.
searchHoliday: Search for holidays based on keywords, country, and date range.

getHolidayDetails: Retrieve detailed information on a specific holiday, including its history, purpose, and traditions.

- GET /holidays/{holidayld}/details

- GET /holidays/search

Figure 2: An instance of a tool documentation, composed of five essential parts: name, introduction, description,

function documentation, OpenAPI specification.

real-world tool usage scenarios. Given the rudimen-
tary descriptions and lack of uniform representation
in these APIs, we further leverage the generative
capabilities of LLM to create comprehensive docu-
mentation for each tool. This documentation assists
language models in understanding the functionality
and usage of each tool. Subsequently, we adhere
to OpenAPI standards to generate a uniform spec-
ification for each API, enabling automated com-
puter invocation and facilitating subsequent tool
execution simulation. In this way, each tool can be
represented as a quintuple {name, introduction, de-
scription, function documentation, OpenAPI spec-
ification}. Figure 2 provides an example, where
the name, description, and introduction offer basic
information and the purpose of the public holiday
tool, the function documentation provides the func-
tionality, inputs and outputs of various functions
(getHolidays, searchHolidays, getHolidayDetails)
contained within the tool, and the OpenAPI Speci-
fication provides a more comprehensive and struc-
tured document. The detailed construction steps
are elaborated as follows.

Tool Collection. Various tools are commonly uti-
lized by human beings, typically manifested in the
form of web-based APIs. To facilitate the utiliza-
tion and discovery of these APIs, a plethora of
repositories exist on the Internet, aggregating a vast
collection of practical and commonly used APIs.
Consequently, this step leverages the representative
API repository, public-apis !, as our target toolset.
This repository encompasses over 1400 APIs span-
ning more than 50 distinct categories. From this,
we collect the name and introduction of each tool.

"https://github.com/public-apis/public-apis

Documentation Generation. To enhance the lan-
guage model’s comprehension of tools’ function-
alities and usage, this step employs LLMs to auto-
matically generate documentation for each tool, in-
cluding its description and function documentation.
Specifically, given the tool’s name and introduction,
we leverage the powerful generative capabilities of
LLMs, such as ChatGPT, and construct correspond-
ing prompts to generate the description and func-
tion documentation for each tool. As illustrated
in Figure 2, for the tool description, we expand
the introduction to provide a general overview of
the tool’s purpose and functionality, enabling the
language model to understand the appropriate task
scenarios for using the tool. For the function doc-
umentation, we prompt LLMs to generate more
specific functions within the scope described in
the description, including their respective input and
output parameters. It ensures that the LLM compre-
hends how to use the tool’s different functionalities.
By employing this approach, we lay a solid founda-
tion for subsequent user instruction generation and
the creation of the simulated tool-use environment.

OpenAPI Specification Generation. Finally, we
prompt LLM to generate a more formalized and
structured representation for each tool in the form
of OpenAPI Specification. OpenAPI Specification
(OAS) defines a standard and language-agnostic
interface for describing APIs, including informa-
tion about endpoints, expected input/output types,
and possible error responses. OAS provides con-
sistency and readability for both humans and ma-
chines, making it an ideal choice for our tool-use
corpus. This comprehensive documentation serves
as the foundation for simulating tool execution in
the subsequent stages of our framework.



Answer the following questions as best you can. You have access to the
following tools:

ﬂ Public Holidays

getHolidays: Get a list of holidays for a particular country with dates,
descriptions, and types.

Parameters: {"country": "Required. String. The country for which holidays are to
be retrieved.", "year": "Integer. The year for which holidays are to be retrieved."}
Output: Alist of holidays with their dates, descriptions, and types for the
specified country, year, month, and day.

searchHoliday: Search for holidays based on keywords, country, and date range.
getHolidayDetails: Retrieve detailed information on a specific holiday, including
its history, purpose, and traditions.

I'm planning a trip to Japan next year, and | want to avoid
any major holidays, so can you tell me the list of holidays in

Japan next year?

I need to know which year the user is referring to.
Action: chatWithUser

Action Input: {"Question": "Could you please specify the
year you are planning your trip for?"}

The year is 2024.

| need to get the list of holidays in Japan for 2024.
Action: getHolidays
Action Input: {"country": "Japan", "year": 2024} @

5

Status Code: 200
Response: {"holidays":[{"name":"New Year's Day",
‘/‘,") "date":"2024-01-01", "type":"National", "description":"..."}, ...]

The list of holidays in Japan for 2024 is New Year's Day
(January 1st), Coming of Age Day (January 8th) ... @

Figure 3: An illustration of the tool-use instance gener-
ation process within the simulation environment. The
user agent initiates the sequence by providing an instruc-
tion. The assistant agent then interprets the instruction
and engages in a multi-turn interaction with the user and
the tool executor until a suitable response is generated.

In this way, we construct a diverse, uniformly
represented toolset, which provides a solid foun-
dation for the multi-agent simulation environment
building and further tool-use corpus generation.

3.2 Automatic Tool-use Instances Generation

Given the toolset, this section describes how to
automatically construct a tool-use corpus, so that
language models can be trained to acquire gener-
alized tool-use ability. Specifically, as depicted in
Figure 3, each tool-use instance can be represent
as a triple {Instruction, Actions, Response}:

¢ Instruction: A user query that requires tool
assistance for resolution. "... so can you tell
me the list of holidays in Japan next year?"
serves as an instruction in our example.

* Actions: The process of resolving an instruc-
tion may involve executing multiple actions in
a specific order. Following React (Yao et al.,
2022), each action is represented by a tuple

that includes the thought, the function name,
the input parameters, and the corresponding
tool response. For example, as shown in Fig-
ure 3, the tuple ("I need to get the list of
holidays in Japan for 2024.", "getHolidays",
{"country": "Japan", "year": 2024}, "Status
Code: 200 Response:...") represents an action.

Response: This refers to the model’s con-
clusive response after the multi-turn interac-
tion, integrating the tool responses to provide
a comprehensive solution to the user instruc-
tion. For instance, the response in our exam-
ple is: "The list of holidays in Japan for 2024
is...".

However, constructing a diverse and authentic
tool-use dataset is a challenging task. Firstly, the
wide variety within our toolset makes it impracti-
cable to manually draft instructions for each tool.
Given the vast array of tools, spanning from recre-
ational to professional domains, and the fact that
the construction of instructions relies on under-
standing the functionality and potential use cases of
the tools, the burden of manual annotation becomes
overwhelming. Secondly, tool usage in real-world
scenarios often involves a multi-round iterative pro-
cess of trial and error, making the automated con-
struction of tool-use instances that reflect real situ-
ations highly challenging.

To this end, we design a simulation environment
to generate a tool-use corpus, encompassing three
virtual agents: the user, the assistant, and the tool
executor. Tool-use instances are generated through
the interplay among these agents. Specifically, each
agent is simulated by a large language model with
a specific prompt. The distinct roles of each agent
are detailed as follows:

» User Agent is designed to mimic the tool
user, with its functionalities encompassing:
(1) drafting task instructions for the current
tool based on its function documentation; (2)
responding to the assistant’s queries based
on the current interaction context, providing
essential information that might be missing
from the initial instruction. For each func-
tionality, we construct corresponding prompt
templates to guide LLMs to generate appropri-
ate outputs. Moreover, to ensure diversity in
task instructions, we have employed various
prompts to generate instructions of different
formats, including commands, questions, and



others. Leveraging the large model’s profi-
ciency across virtually all domains, this ap-
proach enables the generation of high-quality
and diversified instructions. This effectively
addresses the previously mentioned issues
with manual annotation.

* Assistant Agent is designed to simulate an as-
sistant with tool utilization capabilities. It re-
ceives instructions from the user agent and de-
termines the subsequent actions. This involves
choosing the appropriate tools and functions,
generating commands for the tool executor,
and summarizing the interaction to generate
the final response. As shown in Figure 3, fol-
lowing ReAct (Yao et al., 2022), we employ a
(thought, action, observation) format template
to guide LLLM in accomplishing these tasks.

* Tool Executor Agent is constructed to emu-
late the execution of tools, receiving requests
from the assistant agent and generating re-
sponses based on the tool’s predefined func-
tionalities. Specifically, after conducting for-
mat and parameter checks on the assistant’s
requests, these requests are converted into net-
work request formats. Then the tool executor
prompts LLM with the tool’s OpenAPI speci-
fication and the assistant’s requests to gener-
ate simulated execution results. Leveraging
LLMs’ robust simulation and generation ca-
pabilities, we mitigate the intricacies involved
in constructing actual API calls. This method
is notably flexible, making it suitable for a
wide range of scenarios, including those with
restricted API usage. Its accuracy and effec-
tiveness have been empirically validated, as
demonstrated in the following section.

Given the above agents, tool-use cases are gen-
erated through multiple rounds of interaction be-
tween them. Initially, the user agent generates in-
structions based on the tool information. Subse-
quently, the assistant agent selects an appropriate
action and its corresponding input and awaits simu-
lation execution and response from the tool execu-
tor. This iterative procedure of action selection and
tool response collection continues until the assis-
tant agent deems it has gathered sufficient informa-
tion to respond to the user’s instructions. Through
this multi-agent interaction, we can simulate realis-
tic tool-use scenarios and generate comprehensive
and diversified tool-use instances.

4 ToolAlpaca Corpus

4.1 Construction Details

Leveraging the aforementioned multi-agent simu-
lation framework, we have constructed the ToolAl-
paca corpus. Specifically, the process begins with
randomly selecting 500 APIs from the public-apis
repository. Subsequently, we utilize ChatGPT
to generate more comprehensive documentation,
resulting in a varied and well-structured toolset.
Within our simulation environment, we leverage
ChatGPT to serve as the agents to generate diversi-
fied tool-use instances.

As aresult, we automatically construct an exten-
sive and diversified tool-use corpus. As shown in
Table 1, it encompasses 426 distinctive tools from
50 categories, totaling 3938 instances. In the fol-
lowing sections, we will analyze the diversity and
quality of our corpus.

statistics

# of Tool Categories 50
# of Tools 426
# of Instance 3,938
# of single function call 2,512
# of multiple function calls 1,426
avg. functions per tool 4.85
avg. steps 1.66
avg. instruction length 2342
avg. output length 36.19

Table 1: Statistics of ToolAlpaca corpus.

4.2 Diversity

Diversity is pivotal for large models to acquire gen-
eralized capabilities and adapt to unseen scenar-
ios (Wang et al., 2023). ToolAlpaca corpus demon-
strates diversity in two aspects:

* Toolset. As outlined in Table 1, our toolset
demonstrates diversity in multiple aspects:
(1) The toolset encompasses 50 categories of
tools, ranging from common categories, such
as jobs and news, to specialized categories
like blockchain and finance. (2) Each tool pro-
vides an average of five functions, highlight-
ing the comprehensiveness of its capabilities.
(3) The range of function inputs varies from
simple to complex scenarios, including arrays
and objects, further enhancing the richness
and complexity of our toolset.

* Instances. The instances within the ToolAl-
paca corpus demonstrate diversity in terms of
instruction, function calls, and error handling.



Specifically, we employ a variety of prompts
during instruction generation to stimulate the
language model in producing diverse instruc-
tions. Additionally, our dataset contains about
1.5k instances that require multiple function
invocations, further underscoring the compre-
hensiveness of our dataset. Furthermore, our
data adequately reflects the potential errors
that may be encountered in authentic tool us-
age scenarios, encompassing instances that
involve various types of errors, such as invalid
actions and incorrect parameters.

4.3 Quality

To evaluate the quality of ToolAlpaca corpus, we
randomly sample 100 instances and engage a hu-
man annotator for assessment. The evaluation tests
the solvability of the instructions generated by the
user agent, the precision of the output from the tool
executor agent, and the accuracy of the assistant
agent’s actions and responses. As illustrated in
Table 2, we observe that the metrics for assessing
the capabilities of the three agents all exceed 80%.
This substantiates that each agent is proficient in
their respective roles, demonstrating the reliabil-
ity of data constructed based on simulation and
affirming the decent quality of our dataset.

Quality Yes%
solvability of instructions 88%
effectiveness of Tool agent’s response 92%

accuracy of action sequences and final output ~ 80%

Table 2: Data quality review for ToolAlpaca corpus.

5 Experiment

In this section, we investigate whether a set of sim-
ulated data can empower compact language models
to acquire generalized tool-use capabilities. To ver-
ify this, we conduct zero-shot experiments on vari-
ous tools that have not appeared in the training set,
ranging from simulated tools, real-world tools, to
out-of-dataset multi-modal tools. Furthermore, we
investigate how the diversity of the toolset impacts
the generalized tool-use ability of LLMs.

5.1 Experimental Settings

Training We fine-tune Vicuna models (Vicuna-
7B and Vicuna-13B) on ToolAlpaca corpus. The
fine-tuning process consists of three epochs, with a
batch size of 128 and a learning rate of 2e-5.

Evaluation To measure the generalized tool-use
ability of the language model, we create an eval-
uation dataset through our data generation frame-
work and manually annotate the data. This evalu-
ation dataset consists of two subsets: (1) a simu-
lated subset that includes 10 simulated tools and
100 instances, which were not part of the training
toolset; (2) a real-world subset comprising 11 real-
world APIs and 114 cases from various domains,
designed to assess the divergence between our sim-
ulated data and real-world data.

To evaluate the models, we utilize GPT-4 for
machine evaluation across all experiments, with
an additional manual evaluation conducted specifi-
cally for the simulated subset. We prompt GPT-4
with the tool documentation and the standard an-
swer from the human annotator and expect it to
evaluate the performance in the following aspects:

* Procedure: This metric evaluates the model’s
proficiency in accurately selecting suitable ac-
tions, utilizing correct parameters, and avoid-
ing redundant actions.

* Response: This criterion measures whether
the final response can satisfy the instruction.

* Overall: This metric evaluates the whole pro-
cess, requiring the correctness of procedure
and response.

5.2 Results

Effectiveness of ToolAlpaca corpus. Table 3
presents the main results from the simulated set,
evidencing that fine-tuning on ToolAlpaca corpus
can foster generalized tool learning for compact
models. Without fine-tuning on our corpus, Vi-
cuna models demonstrate constrained tool-use ca-
pabilities, with the human accept rate of 16 and
25, respectively. These statistics emphasize the ex-
isting compact models’ insufficiency in achieving
the generalized tool-use capacity like larger mod-
els. Nevertheless, our ToolAlpaca models attain
73 (+57) and 75 (+50) accept rates, respectively.
ToolAlpaca-13B even achieves comparable perfor-
mance to GPT-3.5. This evidences the feasibility
of instilling generalized tool-use capabilities into
compact language models by only training on 3000
simulated instances generated by our framework.

Generalization on real-world tools. The effec-
tiveness of our corpus is further validated through
real-world APIs, demonstrating that simulation



Model Simulated Tools Real-world APIs
Procedure Response Overall Human | Procedure Response Overall

GPT-3.5 (OpenAl, 2022) 71.0 85.0 75.0 79.0 75.4 80.7 72.8
Vicuna-7B (Chiang et al., 2023) 19.0 21.0 17.0 16.0 79 11.4 7.9
Vicuna-13B (Chiang et al., 2023) 17.0 31.0 16.0 25.0 13.2 16.7 12.3
ToolLLM (Qin et al., 2023b) - - - - 46.5 50.0 439
ToolAlpaca-7B 63.0 69.0 60.0 73.0 63.2 57.9 553
ToolAlpaca-13B 70.0 73.0 70.0 75.0 66.7 67.5 61.4

Table 3: Evaluation results on unseen simulated tools and real-world APIs. We can observe that after training
on our corpus, ToolAlpaca’s performance significantly surpasses that of the Vicuna model, reaching comparable

performance with GPT-3.5.

serves as an exceptionally efficient data collec-
tion method. Table 3 exhibits the performance
of ToolAlpaca on the real-world test set, where
it achieves an overall accuracy of 55.3 and 61.4,
respectively, significantly surpassing the perfor-
mance of Vicuna models and. This suggests that
training on simulated data can indeed adapt to
real-world tool usage scenarios. We attribute this
to the current LLMs’ robust simulation capabili-
ties, which provide compelling evidence for future
simulation-based data construction. Furthermore,
ToolAlpaca even surpass ToolLLM (Qin et al.,
2023b), which is trained on more than 100k in-
stances. Further analysis reveals that ToolAlpaca
is more adept at handling repeated API calls, such
as "give me 5 jokes".

Model SRy SRqit SRargs SR
GPT-3.5 99.5 995 915 915
Vicuna-13B 84.4 437 46.7 262
GPT4Tools 982  97.0 922  90.6
ToolAlpaca-13B* - 95.5 853 837

Table 4: Evaluation results on unseen tools from
GPT4Tools. Metrics: successful rate of thought, action,
arguments, and the entire instance. *: As our dataset
does not include data not involving tool use, we exclude
50 out of 652 test cases that do not involve tool usage.

Moreover, to evaluate ToolAlpaca’s generaliza-
tion on out-of-dataset scenarios, we conduct ex-
periments on GPT4Tools(Yang et al., 2023) test
set, which encompasses 8 multi-modal tools. As
shown in Table 4, ToolAlpaca, trained on merely
3.9k cases, gets 83.7 success rate on out-of-dataset
evaluation, which is close to GPT4Tools, trained
on 71k instances constructed with the same process.
This observation indicates that LLLMs can invoke
out-of-dataset tools after training on ToolAlpaca
corpus. We speculate that the performance may be
attributed to the diversity of instances and toolset,
and we delve into it in the subsequent experiment.

Impact of diversity. The diversity of the dataset
is crucial for the generalization of tool learning.
To investigate this, we maintain the number of in-

Accuracy

55 —e— Process
Response
—4%— Overall

100 200 300 400
Number of Tools

Figure 4: Performance variation with the increasing
toolset diversity.

stances and construct datasets on 10, 40, 100, and
400 tools, respectively. Subsequently, we fine-tune
Vicuna-13B on these datasets with the same exper-
imental settings and utilize GPT-4 to evaluate the
validation set. As shown in Figure 4, as the diver-
sity of the toolset increases, the performance on
the validation set gradually improves. Specifically,
training with a dataset of 10 different tools resulted
in mere 51 overall accept rate. In contrast, when
the variety of tools increases to 400 and keeps the
number of instances, the performance escalates to
70. This finding highlights the significant role of
toolset diversity in generalizing tool learning. This
provides valuable insight for the construction of
datasets for generalized ability learning.

6 Conclusion

In this paper, we introduce ToolAlpaca, an auto-
mated framework designed to improve the gen-
eralized tool-use capability of language models.
Specifically, we first create a comprehensive corpus
spanning a broad range of tools with various us-
age instances. Subsequently, this corpus serves as
the basis for fine-tuning compact language models,
leading to the generation of the ToolAlpaca mod-
els. Experimental results indicate that ToolAlpaca
performs comparably to GPT-3.5 in generalized
tool-use scenarios. This finding not only substanti-
ates the potential of our data generation framework
but also highlights the feasibility of mastering gen-
eralized tool use in compact-size models.



Limitations

ToolAlpaca can automatically generate a diversi-
fied tool use corpus to empower compact language
models with generalized tool-use capabilities. In
this paper, we construct 3.9k simulated instances
to verify the effectiveness of our framework. How-
ever, the variation in model performance on larger
scale simulated data still requires exploration. Ad-
ditionally, the tool usage in the dataset focuses on
different functions within the same tool type. In
future work, we will explore the construction of in-
stances that involve calling multiple different types
of tools through simulation generation.
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A Implementation Details

In this section, we show the details of prompt tem-
plates in ToolAlpaca. Figure 5, Figure 6, and
Figure 7 delineate the prompts employed during
toolset construction. Figure 8 and Figure 9 illus-
trate the corresponding prompts for user agent’s
two responsibility, generating user instructions and
providing missing information. The prompts de-
signed for to the assistant agent and the tool execu-
tor agent are detailed in Figure 10 and Figure 11.
"${...}" within the prompts are placeholders, will
be replaced by real variables during the generation
process.

B Experiment Details

B.1 Hyperparameters

The fine-tuning configuration for ToolAlpaca is
recorded in Table 5.
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Hyperparameters  Value
optimizer AdamW
learning rate 2e-5
weight decay 0.0
warmup ratio 0.03
Ir scheduler type  cosine
num train epochs 3
batch size 128
max length 2048

Table 5: The fine-tuning configuration for ToolAlpaca.

B.2 Evaluation Dataset Details

To evaluate the generalized tool-use ability, we
construct the evaluation dataset via our framework,
which consists two subsets: a simulated subset with
10 simulated tools and 100 instances, a real-world
subset with 11 real-world APIs and 114 instances.
The toolset used in the evaluation datset is detailed
in Table 6.

B.3 Evaluation Prompt

Following the evaluation method used by Vi-
cuna (Chiang et al., 2023), we use GPT-4 as our
evaluator. The evaluation prompt is shown in Fig-
ure 12.

B.4 Case Study

Through training on a set of diverse simulated
tool-use instances, ToolAlpaca can equip various
tools, even real-world APIs, some selected cases
are shown in Figure 13, Figure 14 and Figure 15.
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Name Category Introduction

Simulated Tools

Axolotl Animals Collection of axolotl pictures and facts

AniAPI Anime Anime discovery, streaming & syncing with trackers

AbuseIPDB Anti-Malware IP/domain/URL reputation

Améthyste Art & Design Generate images for Discord users

Auth0 Authentication & Authorization Easy to implement, adaptable authentication and authorization platform
Abstract Public Holidays Calendar Data on national, regional, and religious holidays via API

1Forge Currency Exchange Forex currency market data

A Biblia Digital Books Do not worry about managing the multiple versions of the Bible
Apache Superset Business API to manage your BI dashboards and data sources on Superset
Lob.com Data Validation US Address Verification

Real-world APIs

Nager.Date Calendar Public holidays for more than 90 countries

airportsapi Transportation Get name and website-URL for airports by ICAO code

AviationAPI Transportation FAA Aeronautical Charts and Publications, Airport Information, and Airport Weather
chucknorris.io Entertainment JSON API for hand curated Chuck Norris jokes

Random Useless Facts Entertainment Get useless, but true facts

apilayer weatherstack Weather Real-Time & Historical World Weather Data API

Free Dictionary Dictionaries Definitions, phonetics, pronounciations, parts of speech, examples, synonyms
WolframAlpha Machine Learning Provides specific answers to questions using data and algorithms
Fruityvice Food & Drink Data about all kinds of fruit

Cataas Animals Cat as a service (cats pictures and gifs)

CurrencyBeacon Currency Exchange Real-time and historical currency rates JSON API

Table 6: Tools used in our evaluation dataset.

Toolset Construction - Description Prompt

<API>

Name: AdoptAPet
Link: https://www.adoptapet.com/public/apis/pet_list.html
Introduction: Resource to help get pets adopted

Description: The Adopt-a-Pet.com API (Application Programming
Interface) is a series of tools that allows partners to use
Adopt-a-Pet.com's pet adoption features and pet data in other

I will provide the API's name, link, and brief introduction. You need
to generate a detailed description for the API.

Guidelines:
1. Write a general overview of the API's purpose and functionality.
2. List and briefly describe all features provided by the API,
ensuring each feature has a clear and distinct purpose with low
coupling between them.
3. Use clear, concise language and avoid jargon, keeping the
description under 300 tokens in length.

applications. It provides the following features: 1) Retrieve the
list of available pets for the shelter or rescue. 2) Retrieve the
details for a specific pet.

</API>

<API>

Name: ${name}

Link: ${1link}

Introduction: ${introduction}
Description:

Figure 5: Description generation prompt.
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Toolset Construction - Function Documentation Prompt

You are given the name, link, and description of an API. Your task is
to create a comprehensive introduction for this API.

Guidelines:
1. For each function of the API, detail its purpose, input
requirements, and output results.
2. For function input, present it in JSON format. Each key should be
the input parameter's name, and its value should be a string
indicating whether it's required or not, its type, and a brief
description, such as "Required/Optional. Integer. {some
description}".
3. Do not design functions that return excessive data, such as
'getAl1Xxx'. If such a function is necessary, incorporate input
parameters to limit, filter, or paginate the results.
4. Limit the number of functions generated. Only generate functions
based on the API Description. Do not create unnecessary functions
that overcomplicate the API.
5. If any API function requires fields that are not directly
accessible to the users (like IDs, internal codes, etc.) as inputs,
there must be corresponding methods for users to retrieve these
values, such as through 'search' or 'list' functions.
6. Output with the following format:
{index}. Name: {function name, follow the camel case naming
convention.}
Description: {function short description}
Input: {function input, presented as a single line without any
formatting}
Output: {function output, describe all the information that this
function will return}

Begin!

Name: ${name}

Link: ${link}

Description: ${description}
Functions:

Figure 6: Function documentation generation prompt.
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Toolset Construction - OpenAPI Specification Prompt

Please generate API documentation that conforms to the OpenAPI
Specification for the provided API, following these guidelines:
1. Name the API with the 'title' field in the 'info' section, and
include a 'version' and 'description' field to describe the API's
purpose and functionality succinctly.
2. Exclude the 'tags' field in the specification.
3. For each function:
- Design an endpoint, adhering to its definition and input/output
requirements.
- Use the function's name in the 'operationId' field. Decompose the
description of the function into appropriate fields.
- For the endpoint's input, provide additional details in the
'parameters' section to complement the function's input
requirements. For instance, use 'enum' to specify valid parameter
values.
- Generate a detailed model for each endpoint's response, including
status codes and structured return values. This should base on the
function's output description, detailing each field whenever
possible.
- If an endpoint's input includes fields unknown to the user, like
IDs, these fields must be included in the responses of relevant
'search', 'list', or similar endpoints.
4. Include a 'description' field for each input parameter and
'requestBody' in the operation object to explain their purpose and
usage.
5. Ensure the OpenAPI Specification is comprehensive, capturing all
functions mentioned in the API Introduction.
6. For parameters/schemas with a 'type' of 'object', you must include
their properties in the specification.

Name: ${name}

Link: ${link}

Description: ${description}

Functions: ${functions}

OpenAPI Spec(Format with JSON, indent=1):

Figure 7: Openapi specification generation prompt.
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User Agent - Instruction Prompt

Imagine that you are a user who wants to utilize the features
provided by various APIs in your daily life. Your task is to come up
with realistic scenarios for using these APIs and express them as
natural language instructions, as if you were asking a friend or
assistant for help.

Please follow these guidelines:

1. The instructions should be 1 to 2 sentences long. Use a mix of
interrogative sentences, first-person statements, imperative
sentences, and other structures that convey a request. Aim for
diversity in your instructions.

2. Do not mention the API's name in your instructions.

3. Your instructions should only involve the features provided by
these APIs. The instructions that need multiple times of API call is
better.

4. Generate 10 diverse instructions.

5. Use specific nouns and real-world examples from various domains,
such as entertainment, sports, or technology. Avoid using any form of
placeholder or generic phrases, such as "this xxx", "a xxx" or "a
specific xxx", and provide concrete details instead.

6. Try not to repeat the verb for each instruction to maximize
diversity.

7. Ensure diversity in language by combining questions with
imperative statements and other structures that convey a request.

<API>

Name: ${name}

Description: ${description}
API Functions: ${functions}
</API>

Based on the API provided above, generate 10 natural language
instructions with specific examples and diverse language, following
the guidelines.

Figure 8: User agent prompt 1 for instruction generation.

User Agent - Additional Information Prompt

As a user, you ask the AI assistant some questions, but the assistant
believes you have missed crucial information. Please respond to the
AT assistant's inquiries with specific and direct answers using text
or formatted text. Avoid using placeholders. If a file is necessary,
please provide the contents of the file in your response. your
response should startswith "[User]:".

${interaction_history}

Figure 9: User agent prompt 2 for providing missing information.
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Assistant Agent

Your task is to answer the user's question using available tools. The
user cannot see or use the tools themselves, nor can they know the
process of your tool usage. Provide all necessary information in the
"Final Answer" field. Do not make up any information. If required
parameters are missing, use the "getDetails" tool to ask the user for
them.

You have access to the following tools:

${tool_list}

Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [${tool_names}].
Action Input: the input to the action, must be in JSON format. All of
the action input must be realistic and from the user.
Observation: the result of the action

(this Thought/Action/Action Input/Observation can repeat N times)
Thought: Summarize the information gathered and the reasoning behind
your final answer.
Final Answer: Provide a user-friendly and detailed answer to the
original input question that summarizes all relevant information from
the Thought/Action/Action Input/Observation sequences.

Begin!

Question: ${instruction}
Thought : ${agent_scratchpad}

Figure 10: Assistant agent prompt.

Tool Excutor Agent

As an API simulator, your task is to process API requests and
generate appropriate responses based on the provided API
documentation. Please adhere to the following guidelines:

1. Validate the HTTP method and parameters in the request according
to the OpenAPI Spec.

2. Generate a response that strictly adheres to the specified format
in the OpenAPI Spec, and ensure it's in JSON format.

3. Responses should contain realistic data. Avoid using placeholders.
4. Handle edge cases by providing appropriate error responses.

5. For requests without any length limit, ensure to return at least 3
samples in the response.

Output Format:

Status Code: Include the HTTP response status code.

Response: Ensure your response is in JSON format, contains realistic
data, and aligns with the OpenAPI Spec format.

Explanation: Provide a brief explanation for the given response.
Avoid any extraneous content in your output.

API Details:

Name: ${name}

OpenAPI Spec: ${openapi_spec}
Request Details:

${request}

Figure 11: Tool executor agent prompt.
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GPT-4 Evaluation

Given the documentation of a REST API and a task instruction, I need
you to evaluate whether the solution provided by my AI assistant
aligns with the standard answer.

Follow these guidelines:
1. You need to assess both the process and final response of the AI
assistant's solution.
2. For the process, refer to the standard answer:
- The standard answer only includes function names and parameters,
while the AI assistant's solution also includes function returns.
Therefore, it is acceptable to adjust the call situation based on
the function return, such as retrying when the function errors,
calling function “getDetails™ for more information, and calling
function “retrievalDataFromFile® when the function's return is too
long.
- Random calls to unrelated functions are not allowed.
- The solution must contain all the steps in the standard answer.
- The necessary parameters of the function need to be consistent
with the standard answer. Parameters not mentioned in the
instruction can be inconsistent.
3. You need to comprehensively judge whether the final response of
the solution accurately summarizes the entire call process and
provides a reasonable response to the initial instruction.
4. You need to first analyze the entire solution according to the
guidelines, then give your answer. Your output should adhere to the
format:
## Analysis
{some analysis}
## Results
Process Correctness: one of [Yes, No, Uncertain]
Final Response Correctness: one of [Yes, No, Uncertain]

## Documentation
${openapi_spec}

## Task Instruction
${instruction}

## Standard Answer
${standard_answer}

## AI Assistant's Solution
${solution}

## Analysis

Figure 12: Evaluation prompt for GPT-4.
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Case For Real-world API: Nager.Date

[User]: I'm curious about the public holidays in Australia in 2023.
Can you fetch the list for me?

[Assistant]:

Thought: I need to use the PublicHolidayPublicHolidaysV3 tool to get
the list of public holidays in Australia in 2023.

Action: PublicHolidayPublicHolidaysV3

Action Input: {"countryCode": "AU", "year": 2023}

[Tool]: The output is too long. You need to use the
'retrievalDataFromFile' function to retrieve the output from the file:
./tmp/retrieval_ 1692114481 .txt.

[Assistant]:

Thought: I need to use the retrievalDataFromFile tool to retrieve the
output from the file.

Action: retrievalDataFromFile

Action Input: {"file_path": "./tmp/retrieval_1692114481.txt", "query":
"public holidays in Australia in 2023"}

[Tool]l: {"retrieved_info": "Public Holidays in Australia in 2023:\nl.
New Year's Day - January 1st\n2. Australia Day - January 26th\n3.
Labour Day - March 6th (observed in AU-WA)\n4. Canberra Day - March
13th (observed in AU-ACT)\n5. March Public Holiday - March 13th
(observed in AU-SA)\n6. Eight Hours Day - March 13th (observed in
AU-TAS)\n7. Labour Day - March 13th (observed in AU-VIC)\n8. Good
Friday - April 7th\n9. Holy Saturday (Easter Eve) - April 8th
(observed in AU-ACT, AU-NSW, AU-NT, AU-QLD, AU-SA, AU-VIC)\n1O.
Easter Sunday - April 9th (observed in AU-ACT, AU-NSW, AU-VIC,
AU-WA)\nl11. Easter Monday - April 10th\nl12. Anzac Day - April
25th\n13. May Day - May 1st (observed in AU-NT)\nl14. Labour Day - May
1st (observed in AU-QLD)\n15. Reconciliation Day - May 29th (observed
in AU-ACT)\n16. Western Australia Day - June 5th (observed in
AU-WA)\n17. King's Birthday - June 12th (observed in AU-ACT, AU-NSW,
AU-NT, AU-SA, AU-TAS, AU-VIC)\n18. Picnic Day - August 7th (observed
in AU-NT)\n19. Labour Day - October 2nd (observed in AU-ACT, AU-NSW,
AU-SA)\n20. Christmas Day - December 25th\n21. Boxing Day - December
26th"}

[Assistant]:

Thought: The output from the file contains the list of public
holidays in Australia in 2023.

Response: The public holidays in Australia in 2023 are New Year's Day
(January 1st), Australia Day (January 26th), Labour Day (March 6th),
Canberra Day (March 13th), March Public Holiday (March 13th), Eight
Hours Day (March 13th), Labour Day (March 13th), Good Friday (April
7th), Holy Saturday (Easter Eve) (April 8th), Easter Sunday (April
9th), Easter Monday (April 10th), Anzac Day (April 25th), May Day
(May 1st), Labour Day (May 1st), Reconciliation Day (May 29th),
Western Australia Day (June 5th), King's Birthday (June 12th), Picnic
Day (August 7th), Labour Day (October 2nd), Christmas Day (December
25th), and Boxing Day (December 26th).

Figure 13: Cases for real-world API: Nager.Date.
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Case for Real-world API: Currency Beacon

[User]: I'm a business owner and I need to invoice a client in Europe.
Can you provide me with the current exchange rate from US dollars to
Euros, and also the average rate for the July so I can set a fair
price? Authentication information: api_key=**x*

[Assistant]:

Thought: I need to get the current exchange rate and the average rate
for July.

Action: latest_get

Action Input: {"api_key": "*xx*", "base": "USD", "symbols": "EUR"}

[Tool]: Status Code: 200. Response: {"meta": {"code": 200,
"disclaimer": "Usage subject to terms:
https://currencybeacon.com/terms"}, "response": {"date":
"2023-08-15T16:46:58Z", "base": "USD", "rates": {"EUR": 0.91572671}},
"date": "2023-08-15T16:46:58Z", "base": "USD", "rates": {"EUR":
0.91572671}}

[Assistant]:

Thought: I have the current exchange rate from US dollars to Euros.
Action: historical_get

Action Input: {"api_key": "#*x", "base": "USD", "date": "2023-07-01",
"symbols": "EUR"}

[Tool]: Status Code: 200. Response: {"meta": {"code": 200,
"disclaimer": "Usage subject to terms:
https://currencybeacon.com/terms"}, "response": {"date": "2023-07-01",
"base": "USD", "rates": {"EUR": 0.91706262}}, "date": "2023-07-01",
"base": "USD", "rates": {"EUR": 0.91706262}}

[Assistant]:

Thought: I have the average rate for July.

Response: The current exchange rate from US dollars to Euros is
0.91572671, and the average rate for July was 0.91706262.

Figure 14: Cases for real-world API: Currency Beacon.
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Case for Real-world API: apilayer weatherstack

[User]: I'm planning a road trip from New York to Los Angeles next
week. Can you help me check the weather conditions for the major
cities along the route, like Chicago, Denver, and Las Vegas? I'd like
to know if there will be any severe weather conditions that might
affect my trip. Authentication information: access_key=skx**

[Assistant]:

Thought: I need to get the weather conditions for the major cities
along the route.

Action: current_get

Action Input: {"access_key": "x*x",6 "query": "New York, Chicago,
Denver, Las Vegas", "units": "m", "callback": "weatherResponse"}

[Tool]: Status Code: 200. Response: weatherResponse({"request":
{"type": "City", "query": "Denver, United States of America",

"language": "en", "unit": "m"}, "location": {"name": "Denver",
"country": "United States of America", "region": "New York", "lat":
"42.213", "lon": "-74.570", "timezone_id": "America/New_York",
"localtime": "2023-08-15 12:18", "localtime_epoch": 1692101880,
"utc_offset": "-4.0"}, "current": {"observation_time": "04:18 PM",

"temperature": 17, "weather_code": 143, "weather_icons":
["https://cdn.worldweatheronline.com/images/wsymbolsOl_png_64/
wsymbol_0006_mist.png"], "weather_descriptions": ["Mist"],
"wind_speed": 4, "wind_degree": 24, "wind_dir": "NNE", "pressure":
1009, "precip": O, "humidity": 96, "cloudcover": 100, "feelslike": 17,
"uv_index": 4, "visibility": 0, "is_day": "yes"1}})

[Assistant]:

Thought: The response from the current_get tool indicates that the
weather in Denver is currently misty with a temperature of 17°C
Action: current_get

Action Input: {"access_key": "x*x" 6 "query": "Chicago, United States
of America", "units": "m", "callback": "weatherResponse"}

[Tool]: Status Code: 200. Response:

[Assistant]:

Thought: The response from the current_get tool indicates that the
weather in Chicago is currently lightly raining with a temperature of
19°C.

Action: current_get

Action Input: {"access_key": "x*x",6 "query": "Las Vegas, United
States of America", "units": "m", "callback": "weatherResponse"}

[Tool]: Status Code: 200. Response:

[Assistant]:

Thought: The response from the current_get tool indicates that the
weather in Las Vegas is currently sunny with a temperature of 34°C.
Response: The weather conditions for the major cities along the route
from New York to Los Angeles are as follows: Denver: currently misty
with a temperature of 17°C, Chicago: currently lightly raining with a
temperature of 19°C, and Las Vegas: currently sunny with a
temperature of 34°C.

Figure 15: Cases for real-world API: apilayer weatherstack.
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