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Abstract

Enabling large language models to utilize real-001
world tools effectively is crucial for achieving002
embodied intelligence. Existing approaches to003
tool learning have either primarily relied on ex-004
tremely large language models, such as GPT-4,005
to attain generalized tool-use abilities in a zero-006
shot manner, or utilized supervised learning to007
train limited scopes of tools on compact models.008
However, it remains uncertain whether smaller009
language models can achieve generalized tool-010
use abilities without tool-specific training. To011
address this question, this paper introduces012
ToolAlpaca, a novel framework designed to013
automatically generate a diverse tool-use cor-014
pus and learn generalized tool-use abilities on015
compact language models with minimal human016
intervention. Specifically, ToolAlpaca first au-017
tomatically creates a highly diversified tool-use018
corpus by building a multi-agent simulation en-019
vironment. The corpus contains 3.9k tool-use020
instances from more than 400 real-world tool021
APIs spanning 50 distinct categories. Subse-022
quently, the constructed corpus is employed023
to fine-tune compact language models, result-024
ing in two models, namely ToolAlpaca-7B and025
ToolAlpaca-13B, respectively. Finally, we eval-026
uate the ability of these models to utilize pre-027
viously unseen tools without specific training.028
Experimental results demonstrate that ToolAl-029
paca achieves effective generalized tool-use030
capabilities comparable to those of extremely031
large language models like GPT-3.5, demon-032
strating that learning generalized tool-use abil-033
ity is feasible for compact language models.034

1 Introduction035

Embodied intelligence, the ability to meaningfully036

interact with the environment, stands as a core at-037

tribute of advanced cognitive systems and a crucial038

advancement in artificial intelligence. The ability039

to create and use tools has expanded human beings’040

physical capabilities to interact with environments041

and augmented cognitive functions. Such evolu-042

tionary milestone has not only broadened our range 043

of physical actions, but also brought about trans- 044

formative changes in our problem-solving abilities 045

and innovative thinking. The pursuit of incorporat- 046

ing tool-use capabilities into artificial intelligence 047

holds great significance in advancing the develop- 048

ment of general intelligent systems. 049

Recent advancements in enhancing large lan- 050

guage models (LLMs) such as GPT-4 (OpenAI, 051

2023) with tool-use abilities have made significant 052

progress in this area. These models have shown 053

their ability to effectively employ external tools 054

through integrated plugins, thereby expanding their 055

versatility and enhancing the precision and qual- 056

ity of their outputs. Unfortunately, due to a lack 057

of understanding of how existing large language 058

models acquire the general tool-use capability, cur- 059

rently compact language models still do not possess 060

such general ability. Consequently, substantial re- 061

search efforts are dedicated to fine-tuning smaller 062

language models to acquire the capacity for tool us- 063

age (Komeili et al., 2022; Parisi et al., 2022; Schick 064

et al., 2023) on a limited range of tools, which lacks 065

the ability to generalize to unseen tools. This dis- 066

crepancy between the generalized tool-use abilities 067

of larger models and the more constrained capabili- 068

ties of compact models presents an intriguing ques- 069

tion: Can these compact language models learn 070

to generalize their tool-use abilities, thus enabling 071

interaction with a broader spectrum of tools? 072

In this paper, we explore whether it is feasible 073

for compact language models to learn generalized 074

tool-use abilities. Intuitively, previous studies have 075

demonstrated the possibility of equipping com- 076

pact language models with generalized instruction- 077

following abilities by fine-tuning them on diversi- 078

fied instruction datasets (Taori et al., 2023; Zhou 079

et al., 2023). Therefore, a promising strategy 080

for equipping language models with generalized 081

tool-use abilities involves fine-tuning them on a 082

highly-diversified tool-use corpus. Unfortunately, 083
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ToolAlpaca Training

Public-apis

NL Documentation

getHolidays: Get a list of holidays 
for a particular country with dates, 
descriptions, and types.
searchHoliday: Search for holidays 
based on keywords, country, and date 
range.

OpenAPI

openapi: 3.0.0
info:
title: Public Holidays
description: ...

servers:
- url: ...

paths:
/holidays/{country}:...
/holidays/search: ...

Toolset Construction

Tool-use Instance Generation

Figure 1: A high-level overview of ToolAlpaca, con-
sisting of three components: (1)Toolset construction,
where structured documentation for each tool is gener-
ated based on the brief introductions provided by public-
apis. (2) Tool-use instance generation via multi-agent
simulation. (3) ToolAlpaca model training, which in-
volves fine-tuning language models on generated tool-
use corpus to get ToolAlpaca.

such a corpus is currently unavailable, especially084

where API access is restricted due to confidential-085

ity. This scarcity stems from several crucial factors.086

Firstly, in environments with limited API access,087

directly accessing APIs for data generation, like088

ToolLLM (Qin et al., 2023b), is challenging and089

poses privacy or security risks, significantly limit-090

ing language models’ application in these scenar-091

ios. Secondly, real-world tool usage often involves092

complex interactions between the language model,093

users, and tools, greatly increasing the difficulty094

and effort needed to create a broad range of tool in-095

stances at scale. These factors substantially hinder096

the development of a diversified tool-use corpus for097

efficient language model training.098

To this end, we propose a framework named099

ToolAlpaca, which is designed to automatically cre-100

ate a diverse and well-structured toolset for LLMs101

and generate multi-turn complex tool-use instances102

for generalized tool learning. The overall structure103

of ToolAlpaca is shown in Figure 1. Specifically,104

ToolAlpaca gathers a substantial amount of brief105

introductions of potentially valuable tools from the106

internet. It’s important to note that there is no re-107

quirement for these tools’ APIs to be accessible108

or for them to possess structured documentation109

directly usable by LLMs. This ensures our data110

generation approach remains applicable even when 111

APIs are inaccessible or documentation is incom- 112

plete. Building on this foundation, ToolAlpaca 113

employs the generative capacity of LLMs by tak- 114

ing the brief introduction of relevant tools as input 115

and prompts the model to produce detailed, struc- 116

tured documentation for each tool. By employing 117

this methodology, ToolAlpaca has collected more 118

than 400 tool descriptions spanning 50 categories. 119

Each tool is uniformly represented using a stan- 120

dardized documentation format. Subsequently, in 121

order to acquire tool-use instances involving the 122

aforementioned tools, we have designed a simula- 123

tion environment aimed at emulating the multi-step 124

interactions among language models, users, and 125

tools. Specifically, we utilize LLMs to simulate 126

the interactions between the model, users, and the 127

APIs of the tools by leveraging LLMs to serve as 128

different kinds of agents. In this way, our simula- 129

tion environment can generate a substantial volume 130

of tool-use instances without any manual interven- 131

tion. Consequently, we have crafted an inclusive 132

tool-use dataset that comprises 3.9k instances, ef- 133

fectively showcasing the practical application of 134

over 400 distinct tools. 135

To verify whether our corpus can empower com- 136

pact language models with the generalized tool-use 137

ability, we conduct experiments to train ToolAl- 138

paca model on Vicuna (Chiang et al., 2023), a rep- 139

resentative compact language model, and subse- 140

quently evaluate its performance on various unseen 141

tools. Through machine evaluation with GPT-4, 142

we find that ToolAlpaca can effectively use numer- 143

ous unseen tools, ranging from real-world APIs 144

to multi-modal tools, and it exhibits competitive 145

performance with GPT-3.5. Furthermore, we in- 146

vestigate the effect of diversity. It is observed that 147

even with the same number of instances, the model 148

trained on more varied toolsets will achieve bet- 149

ter performance. This underscores that diversity is 150

a pivotal factor for ToolAlpaca to generalize tool 151

learning with 3000 simulated cases. 152

In summary, the main contributions of this paper 153

are: 154

• To the best of our knowledge, this paper is 155

the first work that verifies the feasibility of 156

equipping compact language models with gen- 157

eralized tool-use capacities, showing that they 158

can be applied in real-world scenarios even 159

when trained exclusively on simulated data. 160

• This paper presents ToolAlpaca, a simple 161

2



framework for the automated generation of162

tool-use corpus, applicable in special scenar-163

ios such as restricted API access and the ab-164

sence of structured documentation.165

• We create a diverse tool-use corpus containing166

3.9k tool-use instances from more than 400167

tools across 50 distinct categories. It serves168

as a solid foundation for compact language169

models to acquire generalized tool-use ability.170

2 Related Work171

Tool Use The utilization of external tools in172

LLMs has emerged as a rapidly growing research173

area (Mialon et al., 2023; Qin et al., 2023a). Cur-174

rent approaches can be divided into two distinct175

categories. The first category leverages the capa-176

bilities of LLMs, prompting them to interact with177

various tools, ranging from highly specialized ones178

such as code interpreters (Gao et al., 2022; Chen179

et al., 2022), search engines (Yao et al., 2022), re-180

trieval models (Khattab et al., 2023) and AI mod-181

els (Shen et al., 2023; Lu et al., 2023), to more182

versatile toolsets (Qin et al., 2023a; Li et al., 2023;183

Song et al., 2023). Large language models have184

already demonstrated robust generalization capa-185

bilities in tool usage and enable to equip numerous186

unseen tools via prompting. In contrast, the sec-187

ond category concentrates on enhancing the tool-188

specific usage capabilities of compact language189

models through fine-tuning with datasets specifi-190

cally designed for the specialized tools (Parisi et al.,191

2022; Schick et al., 2023; Xu et al., 2023). Con-192

current with our work, GPT4Tools (Yang et al.,193

2023) fine-tuning compact models to incorporate194

multi-modal tools, which concentrates on a set of195

quite similar multi-modal tools. ToolLLM (Qin196

et al., 2023b) facilitates language models to mas-197

ter massive APIs. However, their data collection198

strategy requires the prior accumulation of massive199

authentic APIs, which requires manual efforts to200

obtain and verify. Despite their effectiveness, the201

domain of generalized tool-use abilities in compact202

language models remains largely unexplored upon203

the accomplishment of this paper. This study aims204

to bridge this research gap by automatically con-205

structing a diverse dataset on tool utilization that206

encompasses various tool-use scenarios.207

LLMs for Data Generation Many research stud-208

ies have employed LLMs for data generation, fo-209

cusing on various tasks such as question answer-210

ing (Wang et al., 2021; Agrawal et al., 2022; 211

Chen et al., 2023), semantic similarity predic- 212

tions (Schick and Schütze, 2021), and instruc- 213

tion tuning (Honovich et al., 2022; Wang et al., 214

2023). Furthermore, in the context of tool use, sev- 215

eral works (Schick et al., 2023; Patil et al., 2023; 216

Yang et al., 2023) have already employed model- 217

synthesized data to enhance specific tool-use ca- 218

pabilities. However, the generation of generalized 219

tool-use data poses more significant challenges, as 220

it involves extensive and diverse tools and more 221

intricate multi-turn interactions. 222

3 Diversified Tool-use Corpus Generation 223

via Multi-agent Simulation 224

In this section, we introduce ToolAlpaca, a multi- 225

agent simulation framework designed to generate 226

a diversified tool-use corpus with minimal human 227

intervention. As shown in Figure 1, our framework 228

consists of two stages: 229

1. Toolset Construction. This step aims to con- 230

struct a collection of tools and represent them 231

using a standardized format as {name, intro- 232

duction, description, function documentation, 233

OpenAPI specification}. Specifically, we ini- 234

tiate the process by sourcing tool names and 235

introductions from the internet and then uti- 236

lize LLMs to enrich them with structured doc- 237

umentation that delineates the functionality 238

and usage of each tool. In this way, we can 239

construct a diverse and structured toolset that 240

closely resembles real-world scenarios. 241

2. Tool-use Instance Generation. Given the 242

toolset, this step’s objective is to generate 243

tool-use instances within a simulation envi- 244

ronment automatically. This environment is 245

constructed with three distinct virtual agents, 246

each embodied by a LLM: the user, the tool 247

executor, and the assistant. Through the multi- 248

turn interplay among these agents, we can 249

generate tool-use instances that reflect real- 250

world tool-use scenarios. Each tool-use in- 251

stance consists of three elements: {the user’s 252

instructions, the actions and corresponding 253

tool outputs, final response}. 254

3.1 Diverse Toolset Construction 255

This section describes how to construct a diverse 256

toolset and represent them in a uniform format. The 257

process initiates with the accumulation of an ex- 258

tensive API collection from the internet, reflecting 259
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Public Holidays

Introduction: Data on national, regional, and religious holidays via API
Description: The Public Holidays API is a user-friendly interface that provides comprehensive information on national, 
regional, and religious holidays around the world. 
The API's key features are: 
1) Get a list of holidays for a particular country with dates, descriptions, and types. 
2) Retrieve detailed information on a specific holiday, including its history, purpose, and traditions. 
3) Obtain information on public holidays for a specific year, month, or day.
Function Documentation: 
getHolidays: Get a list of holidays for a particular country with dates, descriptions, and types.
Parameters: {"country": "Required. String. The country for which holidays are to be retrieved.",  "year": "Integer. The year 
for which holidays are to be retrieved."}
Output: A list of holidays with their dates, descriptions, and types for the specified country, year, month, and day.
searchHoliday: Search for holidays based on keywords, country, and date range.
getHolidayDetails: Retrieve detailed information on a specific holiday, including its history, purpose, and traditions.
OpenAPI Specification:
- GET /holidays/{country}        - GET /holidays/{holidayId}/details         - GET /holidays/search

Figure 2: An instance of a tool documentation, composed of five essential parts: name, introduction, description,
function documentation, OpenAPI specification.

real-world tool usage scenarios. Given the rudimen-260

tary descriptions and lack of uniform representation261

in these APIs, we further leverage the generative262

capabilities of LLM to create comprehensive docu-263

mentation for each tool. This documentation assists264

language models in understanding the functionality265

and usage of each tool. Subsequently, we adhere266

to OpenAPI standards to generate a uniform spec-267

ification for each API, enabling automated com-268

puter invocation and facilitating subsequent tool269

execution simulation. In this way, each tool can be270

represented as a quintuple {name, introduction, de-271

scription, function documentation, OpenAPI spec-272

ification}. Figure 2 provides an example, where273

the name, description, and introduction offer basic274

information and the purpose of the public holiday275

tool, the function documentation provides the func-276

tionality, inputs and outputs of various functions277

(getHolidays, searchHolidays, getHolidayDetails)278

contained within the tool, and the OpenAPI Speci-279

fication provides a more comprehensive and struc-280

tured document. The detailed construction steps281

are elaborated as follows.282

Tool Collection. Various tools are commonly uti-283

lized by human beings, typically manifested in the284

form of web-based APIs. To facilitate the utiliza-285

tion and discovery of these APIs, a plethora of286

repositories exist on the Internet, aggregating a vast287

collection of practical and commonly used APIs.288

Consequently, this step leverages the representative289

API repository, public-apis 1, as our target toolset.290

This repository encompasses over 1400 APIs span-291

ning more than 50 distinct categories. From this,292

we collect the name and introduction of each tool.293

1https://github.com/public-apis/public-apis

Documentation Generation. To enhance the lan- 294

guage model’s comprehension of tools’ function- 295

alities and usage, this step employs LLMs to auto- 296

matically generate documentation for each tool, in- 297

cluding its description and function documentation. 298

Specifically, given the tool’s name and introduction, 299

we leverage the powerful generative capabilities of 300

LLMs, such as ChatGPT, and construct correspond- 301

ing prompts to generate the description and func- 302

tion documentation for each tool. As illustrated 303

in Figure 2, for the tool description, we expand 304

the introduction to provide a general overview of 305

the tool’s purpose and functionality, enabling the 306

language model to understand the appropriate task 307

scenarios for using the tool. For the function doc- 308

umentation, we prompt LLMs to generate more 309

specific functions within the scope described in 310

the description, including their respective input and 311

output parameters. It ensures that the LLM compre- 312

hends how to use the tool’s different functionalities. 313

By employing this approach, we lay a solid founda- 314

tion for subsequent user instruction generation and 315

the creation of the simulated tool-use environment. 316

OpenAPI Specification Generation. Finally, we 317

prompt LLM to generate a more formalized and 318

structured representation for each tool in the form 319

of OpenAPI Specification. OpenAPI Specification 320

(OAS) defines a standard and language-agnostic 321

interface for describing APIs, including informa- 322

tion about endpoints, expected input/output types, 323

and possible error responses. OAS provides con- 324

sistency and readability for both humans and ma- 325

chines, making it an ideal choice for our tool-use 326

corpus. This comprehensive documentation serves 327

as the foundation for simulating tool execution in 328

the subsequent stages of our framework. 329
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Answer the following questions as best you can. You have access to the
following tools:

Public Holidays

getHolidays: Get a list of holidays for a particular country with dates, 
descriptions, and types.
Parameters: {"country": "Required. String. The country for which holidays are to 
be retrieved.", "year": "Integer. The year for which holidays are to be retrieved."}
Output: A list of holidays with their dates, descriptions, and types for the 
specified country, year, month, and day.
searchHoliday: Search for holidays based on keywords, country, and date range.
getHolidayDetails: Retrieve detailed information on a specific holiday, including 
its history, purpose, and traditions.

I'm planning a trip to Japan next year, and I want to avoid
any major holidays, so can you tell me the list of holidays in
Japan next year?

I need to know which year the user is referring to.
Action: chatWithUser
Action Input: {"Question": "Could you please specify the
year you are planning your trip for?"}

The year is 2024.

I need to get the list of holidays in Japan for 2024.
Action: getHolidays
Action Input: {"country": "Japan", "year": 2024}

Status Code: 200
Response: {"holidays":[{"name":"New Year's Day",
"date":"2024-01-01", "type":"National", "description":"..."}, ...]

The list of holidays in Japan for 2024 is New Year's Day
(January 1st), Coming of Age Day (January 8th) ...

Figure 3: An illustration of the tool-use instance gener-
ation process within the simulation environment. The
user agent initiates the sequence by providing an instruc-
tion. The assistant agent then interprets the instruction
and engages in a multi-turn interaction with the user and
the tool executor until a suitable response is generated.

In this way, we construct a diverse, uniformly330

represented toolset, which provides a solid foun-331

dation for the multi-agent simulation environment332

building and further tool-use corpus generation.333

3.2 Automatic Tool-use Instances Generation334

Given the toolset, this section describes how to335

automatically construct a tool-use corpus, so that336

language models can be trained to acquire gener-337

alized tool-use ability. Specifically, as depicted in338

Figure 3, each tool-use instance can be represent339

as a triple {Instruction, Actions, Response}:340

• Instruction: A user query that requires tool341

assistance for resolution. "... so can you tell342

me the list of holidays in Japan next year?"343

serves as an instruction in our example.344

• Actions: The process of resolving an instruc-345

tion may involve executing multiple actions in346

a specific order. Following React (Yao et al.,347

2022), each action is represented by a tuple348

that includes the thought, the function name, 349

the input parameters, and the corresponding 350

tool response. For example, as shown in Fig- 351

ure 3, the tuple ("I need to get the list of 352

holidays in Japan for 2024.", "getHolidays", 353

{"country": "Japan", "year": 2024}, "Status 354

Code: 200 Response:...") represents an action. 355

• Response: This refers to the model’s con- 356

clusive response after the multi-turn interac- 357

tion, integrating the tool responses to provide 358

a comprehensive solution to the user instruc- 359

tion. For instance, the response in our exam- 360

ple is: "The list of holidays in Japan for 2024 361

is ...". 362

However, constructing a diverse and authentic 363

tool-use dataset is a challenging task. Firstly, the 364

wide variety within our toolset makes it impracti- 365

cable to manually draft instructions for each tool. 366

Given the vast array of tools, spanning from recre- 367

ational to professional domains, and the fact that 368

the construction of instructions relies on under- 369

standing the functionality and potential use cases of 370

the tools, the burden of manual annotation becomes 371

overwhelming. Secondly, tool usage in real-world 372

scenarios often involves a multi-round iterative pro- 373

cess of trial and error, making the automated con- 374

struction of tool-use instances that reflect real situ- 375

ations highly challenging. 376

To this end, we design a simulation environment 377

to generate a tool-use corpus, encompassing three 378

virtual agents: the user, the assistant, and the tool 379

executor. Tool-use instances are generated through 380

the interplay among these agents. Specifically, each 381

agent is simulated by a large language model with 382

a specific prompt. The distinct roles of each agent 383

are detailed as follows: 384

• User Agent is designed to mimic the tool 385

user, with its functionalities encompassing: 386

(1) drafting task instructions for the current 387

tool based on its function documentation; (2) 388

responding to the assistant’s queries based 389

on the current interaction context, providing 390

essential information that might be missing 391

from the initial instruction. For each func- 392

tionality, we construct corresponding prompt 393

templates to guide LLMs to generate appropri- 394

ate outputs. Moreover, to ensure diversity in 395

task instructions, we have employed various 396

prompts to generate instructions of different 397

formats, including commands, questions, and 398
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others. Leveraging the large model’s profi-399

ciency across virtually all domains, this ap-400

proach enables the generation of high-quality401

and diversified instructions. This effectively402

addresses the previously mentioned issues403

with manual annotation.404

• Assistant Agent is designed to simulate an as-405

sistant with tool utilization capabilities. It re-406

ceives instructions from the user agent and de-407

termines the subsequent actions. This involves408

choosing the appropriate tools and functions,409

generating commands for the tool executor,410

and summarizing the interaction to generate411

the final response. As shown in Figure 3, fol-412

lowing ReAct (Yao et al., 2022), we employ a413

(thought, action, observation) format template414

to guide LLM in accomplishing these tasks.415

• Tool Executor Agent is constructed to emu-416

late the execution of tools, receiving requests417

from the assistant agent and generating re-418

sponses based on the tool’s predefined func-419

tionalities. Specifically, after conducting for-420

mat and parameter checks on the assistant’s421

requests, these requests are converted into net-422

work request formats. Then the tool executor423

prompts LLM with the tool’s OpenAPI speci-424

fication and the assistant’s requests to gener-425

ate simulated execution results. Leveraging426

LLMs’ robust simulation and generation ca-427

pabilities, we mitigate the intricacies involved428

in constructing actual API calls. This method429

is notably flexible, making it suitable for a430

wide range of scenarios, including those with431

restricted API usage. Its accuracy and effec-432

tiveness have been empirically validated, as433

demonstrated in the following section.434

Given the above agents, tool-use cases are gen-435

erated through multiple rounds of interaction be-436

tween them. Initially, the user agent generates in-437

structions based on the tool information. Subse-438

quently, the assistant agent selects an appropriate439

action and its corresponding input and awaits simu-440

lation execution and response from the tool execu-441

tor. This iterative procedure of action selection and442

tool response collection continues until the assis-443

tant agent deems it has gathered sufficient informa-444

tion to respond to the user’s instructions. Through445

this multi-agent interaction, we can simulate realis-446

tic tool-use scenarios and generate comprehensive447

and diversified tool-use instances.448

4 ToolAlpaca Corpus 449

4.1 Construction Details 450

Leveraging the aforementioned multi-agent simu- 451

lation framework, we have constructed the ToolAl- 452

paca corpus. Specifically, the process begins with 453

randomly selecting 500 APIs from the public-apis 454

repository. Subsequently, we utilize ChatGPT 455

to generate more comprehensive documentation, 456

resulting in a varied and well-structured toolset. 457

Within our simulation environment, we leverage 458

ChatGPT to serve as the agents to generate diversi- 459

fied tool-use instances. 460

As a result, we automatically construct an exten- 461

sive and diversified tool-use corpus. As shown in 462

Table 1, it encompasses 426 distinctive tools from 463

50 categories, totaling 3938 instances. In the fol- 464

lowing sections, we will analyze the diversity and 465

quality of our corpus. 466

statistics
# of Tool Categories 50
# of Tools 426
# of Instance 3, 938

# of single function call 2, 512
# of multiple function calls 1, 426

avg. functions per tool 4.85
avg. steps 1.66
avg. instruction length 23.42
avg. output length 36.19

Table 1: Statistics of ToolAlpaca corpus.

4.2 Diversity 467

Diversity is pivotal for large models to acquire gen- 468

eralized capabilities and adapt to unseen scenar- 469

ios (Wang et al., 2023). ToolAlpaca corpus demon- 470

strates diversity in two aspects: 471

• Toolset. As outlined in Table 1, our toolset 472

demonstrates diversity in multiple aspects: 473

(1) The toolset encompasses 50 categories of 474

tools, ranging from common categories, such 475

as jobs and news, to specialized categories 476

like blockchain and finance. (2) Each tool pro- 477

vides an average of five functions, highlight- 478

ing the comprehensiveness of its capabilities. 479

(3) The range of function inputs varies from 480

simple to complex scenarios, including arrays 481

and objects, further enhancing the richness 482

and complexity of our toolset. 483

• Instances. The instances within the ToolAl- 484

paca corpus demonstrate diversity in terms of 485

instruction, function calls, and error handling. 486
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Specifically, we employ a variety of prompts487

during instruction generation to stimulate the488

language model in producing diverse instruc-489

tions. Additionally, our dataset contains about490

1.5k instances that require multiple function491

invocations, further underscoring the compre-492

hensiveness of our dataset. Furthermore, our493

data adequately reflects the potential errors494

that may be encountered in authentic tool us-495

age scenarios, encompassing instances that496

involve various types of errors, such as invalid497

actions and incorrect parameters.498

4.3 Quality499

To evaluate the quality of ToolAlpaca corpus, we500

randomly sample 100 instances and engage a hu-501

man annotator for assessment. The evaluation tests502

the solvability of the instructions generated by the503

user agent, the precision of the output from the tool504

executor agent, and the accuracy of the assistant505

agent’s actions and responses. As illustrated in506

Table 2, we observe that the metrics for assessing507

the capabilities of the three agents all exceed 80%.508

This substantiates that each agent is proficient in509

their respective roles, demonstrating the reliabil-510

ity of data constructed based on simulation and511

affirming the decent quality of our dataset.512

Quality Yes%
solvability of instructions 88%
effectiveness of Tool agent’s response 92%
accuracy of action sequences and final output 80%

Table 2: Data quality review for ToolAlpaca corpus.

5 Experiment513

In this section, we investigate whether a set of sim-514

ulated data can empower compact language models515

to acquire generalized tool-use capabilities. To ver-516

ify this, we conduct zero-shot experiments on vari-517

ous tools that have not appeared in the training set,518

ranging from simulated tools, real-world tools, to519

out-of-dataset multi-modal tools. Furthermore, we520

investigate how the diversity of the toolset impacts521

the generalized tool-use ability of LLMs.522

5.1 Experimental Settings523

Training We fine-tune Vicuna models (Vicuna-524

7B and Vicuna-13B) on ToolAlpaca corpus. The525

fine-tuning process consists of three epochs, with a526

batch size of 128 and a learning rate of 2e-5.527

Evaluation To measure the generalized tool-use 528

ability of the language model, we create an eval- 529

uation dataset through our data generation frame- 530

work and manually annotate the data. This evalu- 531

ation dataset consists of two subsets: (1) a simu- 532

lated subset that includes 10 simulated tools and 533

100 instances, which were not part of the training 534

toolset; (2) a real-world subset comprising 11 real- 535

world APIs and 114 cases from various domains, 536

designed to assess the divergence between our sim- 537

ulated data and real-world data. 538

To evaluate the models, we utilize GPT-4 for 539

machine evaluation across all experiments, with 540

an additional manual evaluation conducted specifi- 541

cally for the simulated subset. We prompt GPT-4 542

with the tool documentation and the standard an- 543

swer from the human annotator and expect it to 544

evaluate the performance in the following aspects: 545

• Procedure: This metric evaluates the model’s 546

proficiency in accurately selecting suitable ac- 547

tions, utilizing correct parameters, and avoid- 548

ing redundant actions. 549

• Response: This criterion measures whether 550

the final response can satisfy the instruction. 551

• Overall: This metric evaluates the whole pro- 552

cess, requiring the correctness of procedure 553

and response. 554

5.2 Results 555

Effectiveness of ToolAlpaca corpus. Table 3 556

presents the main results from the simulated set, 557

evidencing that fine-tuning on ToolAlpaca corpus 558

can foster generalized tool learning for compact 559

models. Without fine-tuning on our corpus, Vi- 560

cuna models demonstrate constrained tool-use ca- 561

pabilities, with the human accept rate of 16 and 562

25, respectively. These statistics emphasize the ex- 563

isting compact models’ insufficiency in achieving 564

the generalized tool-use capacity like larger mod- 565

els. Nevertheless, our ToolAlpaca models attain 566

73 (+57) and 75 (+50) accept rates, respectively. 567

ToolAlpaca-13B even achieves comparable perfor- 568

mance to GPT-3.5. This evidences the feasibility 569

of instilling generalized tool-use capabilities into 570

compact language models by only training on 3000 571

simulated instances generated by our framework. 572

Generalization on real-world tools. The effec- 573

tiveness of our corpus is further validated through 574

real-world APIs, demonstrating that simulation 575
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Model
Simulated Tools Real-world APIs

Procedure Response Overall Human Procedure Response Overall
GPT-3.5 (OpenAI, 2022) 77.0 85.0 75.0 79.0 75.4 80.7 72.8
Vicuna-7B (Chiang et al., 2023) 19.0 21.0 17.0 16.0 7.9 11.4 7.9
Vicuna-13B (Chiang et al., 2023) 17.0 31.0 16.0 25.0 13.2 16.7 12.3
ToolLLM (Qin et al., 2023b) - - - - 46.5 50.0 43.9
ToolAlpaca-7B 63.0 69.0 60.0 73.0 63.2 57.9 55.3
ToolAlpaca-13B 70.0 73.0 70.0 75.0 66.7 67.5 61.4

Table 3: Evaluation results on unseen simulated tools and real-world APIs. We can observe that after training
on our corpus, ToolAlpaca’s performance significantly surpasses that of the Vicuna model, reaching comparable
performance with GPT-3.5.

serves as an exceptionally efficient data collec-576

tion method. Table 3 exhibits the performance577

of ToolAlpaca on the real-world test set, where578

it achieves an overall accuracy of 55.3 and 61.4,579

respectively, significantly surpassing the perfor-580

mance of Vicuna models and. This suggests that581

training on simulated data can indeed adapt to582

real-world tool usage scenarios. We attribute this583

to the current LLMs’ robust simulation capabili-584

ties, which provide compelling evidence for future585

simulation-based data construction. Furthermore,586

ToolAlpaca even surpass ToolLLM (Qin et al.,587

2023b), which is trained on more than 100k in-588

stances. Further analysis reveals that ToolAlpaca589

is more adept at handling repeated API calls, such590

as "give me 5 jokes".591

Model SRt SRact SRargs SR

GPT-3.5 99.5 99.5 91.5 91.5
Vicuna-13B 84.4 43.7 46.7 26.2
GPT4Tools 98.2 97.0 92.2 90.6
ToolAlpaca-13B* - 95.5 85.3 83.7

Table 4: Evaluation results on unseen tools from
GPT4Tools. Metrics: successful rate of thought, action,
arguments, and the entire instance. *: As our dataset
does not include data not involving tool use, we exclude
50 out of 652 test cases that do not involve tool usage.

Moreover, to evaluate ToolAlpaca’s generaliza-592

tion on out-of-dataset scenarios, we conduct ex-593

periments on GPT4Tools(Yang et al., 2023) test594

set, which encompasses 8 multi-modal tools. As595

shown in Table 4, ToolAlpaca, trained on merely596

3.9k cases, gets 83.7 success rate on out-of-dataset597

evaluation, which is close to GPT4Tools, trained598

on 71k instances constructed with the same process.599

This observation indicates that LLMs can invoke600

out-of-dataset tools after training on ToolAlpaca601

corpus. We speculate that the performance may be602

attributed to the diversity of instances and toolset,603

and we delve into it in the subsequent experiment.604

Impact of diversity. The diversity of the dataset605

is crucial for the generalization of tool learning.606

To investigate this, we maintain the number of in-607

100 200 300 400
Number of Tools

50

55

60

65

70

Ac
cu

ra
cy

Process
Response
Overall

Figure 4: Performance variation with the increasing
toolset diversity.

stances and construct datasets on 10, 40, 100, and 608

400 tools, respectively. Subsequently, we fine-tune 609

Vicuna-13B on these datasets with the same exper- 610

imental settings and utilize GPT-4 to evaluate the 611

validation set. As shown in Figure 4, as the diver- 612

sity of the toolset increases, the performance on 613

the validation set gradually improves. Specifically, 614

training with a dataset of 10 different tools resulted 615

in mere 51 overall accept rate. In contrast, when 616

the variety of tools increases to 400 and keeps the 617

number of instances, the performance escalates to 618

70. This finding highlights the significant role of 619

toolset diversity in generalizing tool learning. This 620

provides valuable insight for the construction of 621

datasets for generalized ability learning. 622

6 Conclusion 623

In this paper, we introduce ToolAlpaca, an auto- 624

mated framework designed to improve the gen- 625

eralized tool-use capability of language models. 626

Specifically, we first create a comprehensive corpus 627

spanning a broad range of tools with various us- 628

age instances. Subsequently, this corpus serves as 629

the basis for fine-tuning compact language models, 630

leading to the generation of the ToolAlpaca mod- 631

els. Experimental results indicate that ToolAlpaca 632

performs comparably to GPT-3.5 in generalized 633

tool-use scenarios. This finding not only substanti- 634

ates the potential of our data generation framework 635

but also highlights the feasibility of mastering gen- 636

eralized tool use in compact-size models. 637
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Limitations638

ToolAlpaca can automatically generate a diversi-639

fied tool use corpus to empower compact language640

models with generalized tool-use capabilities. In641

this paper, we construct 3.9k simulated instances642

to verify the effectiveness of our framework. How-643

ever, the variation in model performance on larger644

scale simulated data still requires exploration. Ad-645

ditionally, the tool usage in the dataset focuses on646

different functions within the same tool type. In647

future work, we will explore the construction of in-648

stances that involve calling multiple different types649

of tools through simulation generation.650
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A Implementation Details777

In this section, we show the details of prompt tem-778

plates in ToolAlpaca. Figure 5, Figure 6, and779

Figure 7 delineate the prompts employed during780

toolset construction. Figure 8 and Figure 9 illus-781

trate the corresponding prompts for user agent’s782

two responsibility, generating user instructions and783

providing missing information. The prompts de-784

signed for to the assistant agent and the tool execu-785

tor agent are detailed in Figure 10 and Figure 11.786

"${...}" within the prompts are placeholders, will787

be replaced by real variables during the generation788

process.789

B Experiment Details790

B.1 Hyperparameters791

The fine-tuning configuration for ToolAlpaca is792

recorded in Table 5.793

Hyperparameters Value
optimizer AdamW
learning rate 2e-5
weight decay 0.0
warmup ratio 0.03
lr scheduler type cosine
num train epochs 3
batch size 128
max length 2048

Table 5: The fine-tuning configuration for ToolAlpaca.

B.2 Evaluation Dataset Details 794

To evaluate the generalized tool-use ability, we 795

construct the evaluation dataset via our framework, 796

which consists two subsets: a simulated subset with 797

10 simulated tools and 100 instances, a real-world 798

subset with 11 real-world APIs and 114 instances. 799

The toolset used in the evaluation datset is detailed 800

in Table 6. 801

B.3 Evaluation Prompt 802

Following the evaluation method used by Vi- 803

cuna (Chiang et al., 2023), we use GPT-4 as our 804

evaluator. The evaluation prompt is shown in Fig- 805

ure 12. 806

B.4 Case Study 807

Through training on a set of diverse simulated 808

tool-use instances, ToolAlpaca can equip various 809

tools, even real-world APIs, some selected cases 810

are shown in Figure 13, Figure 14 and Figure 15. 811
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Name Category Introduction
Simulated Tools
Axolotl Animals Collection of axolotl pictures and facts
AniAPI Anime Anime discovery, streaming & syncing with trackers
AbuseIPDB Anti-Malware IP/domain/URL reputation
Améthyste Art & Design Generate images for Discord users
Auth0 Authentication & Authorization Easy to implement, adaptable authentication and authorization platform
Abstract Public Holidays Calendar Data on national, regional, and religious holidays via API
1Forge Currency Exchange Forex currency market data
A Bíblia Digital Books Do not worry about managing the multiple versions of the Bible
Apache Superset Business API to manage your BI dashboards and data sources on Superset
Lob.com Data Validation US Address Verification
Real-world APIs
Nager.Date Calendar Public holidays for more than 90 countries
airportsapi Transportation Get name and website-URL for airports by ICAO code
AviationAPI Transportation FAA Aeronautical Charts and Publications, Airport Information, and Airport Weather
chucknorris.io Entertainment JSON API for hand curated Chuck Norris jokes
Random Useless Facts Entertainment Get useless, but true facts
apilayer weatherstack Weather Real-Time & Historical World Weather Data API
Free Dictionary Dictionaries Definitions, phonetics, pronounciations, parts of speech, examples, synonyms
WolframAlpha Machine Learning Provides specific answers to questions using data and algorithms
Fruityvice Food & Drink Data about all kinds of fruit
Cataas Animals Cat as a service (cats pictures and gifs)
CurrencyBeacon Currency Exchange Real-time and historical currency rates JSON API

Table 6: Tools used in our evaluation dataset.

Toolset Construction - Description Prompt

I will provide the API's name, link, and brief introduction. You need
to generate a detailed description for the API.

Guidelines:
1. Write a general overview of the API's purpose and functionality.
2. List and briefly describe all features provided by the API,
ensuring each feature has a clear and distinct purpose with low
coupling between them.
3. Use clear, concise language and avoid jargon, keeping the
description under 300 tokens in length.

<API>
Name: AdoptAPet
Link: https://www.adoptapet.com/public/apis/pet_list.html
Introduction: Resource to help get pets adopted
Description: The Adopt-a-Pet.com API (Application Programming
Interface) is a series of tools that allows partners to use
Adopt-a-Pet.com's pet adoption features and pet data in other
applications. It provides the following features: 1) Retrieve the
list of available pets for the shelter or rescue. 2) Retrieve the
details for a specific pet.
</API>

<API>
Name: ${name}
Link: ${link}
Introduction: ${introduction}
Description:

1

Figure 5: Description generation prompt.
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Toolset Construction - Function Documentation Prompt

You are given the name, link, and description of an API. Your task is
to create a comprehensive introduction for this API.

Guidelines:
1. For each function of the API, detail its purpose, input
requirements, and output results.
2. For function input, present it in JSON format. Each key should be
the input parameter's name, and its value should be a string
indicating whether it's required or not, its type, and a brief
description, such as "Required/Optional. Integer. {some
description}".
3. Do not design functions that return excessive data, such as
'getAllXxx'. If such a function is necessary, incorporate input
parameters to limit, filter, or paginate the results.
4. Limit the number of functions generated. Only generate functions
based on the API Description. Do not create unnecessary functions
that overcomplicate the API.
5. If any API function requires fields that are not directly
accessible to the users (like IDs, internal codes, etc.) as inputs,
there must be corresponding methods for users to retrieve these
values, such as through 'search' or 'list' functions.
6. Output with the following format:

{index}. Name: {function name, follow the camel case naming
convention.}
Description: {function short description}
Input: {function input, presented as a single line without any
formatting}
Output: {function output, describe all the information that this
function will return}

Begin!
Name: ${name}
Link: ${link}
Description: ${description}
Functions:

2

Figure 6: Function documentation generation prompt.
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Toolset Construction - OpenAPI Specification Prompt

Please generate API documentation that conforms to the OpenAPI
Specification for the provided API, following these guidelines:
1. Name the API with the 'title' field in the 'info' section, and
include a 'version' and 'description' field to describe the API's
purpose and functionality succinctly.
2. Exclude the 'tags' field in the specification.
3. For each function:

- Design an endpoint, adhering to its definition and input/output
requirements.
- Use the function's name in the 'operationId' field. Decompose the
description of the function into appropriate fields.
- For the endpoint's input, provide additional details in the
'parameters' section to complement the function's input
requirements. For instance, use 'enum' to specify valid parameter
values.
- Generate a detailed model for each endpoint's response, including
status codes and structured return values. This should base on the
function's output description, detailing each field whenever
possible.
- If an endpoint's input includes fields unknown to the user, like
IDs, these fields must be included in the responses of relevant
'search', 'list', or similar endpoints.

4. Include a 'description' field for each input parameter and
'requestBody' in the operation object to explain their purpose and
usage.
5. Ensure the OpenAPI Specification is comprehensive, capturing all
functions mentioned in the API Introduction.
6. For parameters/schemas with a 'type' of 'object', you must include
their properties in the specification.

Name: ${name}
Link: ${link}
Description: ${description}
Functions: ${functions}
OpenAPI Spec(Format with JSON, indent=1):

3

Figure 7: Openapi specification generation prompt.
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User Agent - Instruction Prompt

Imagine that you are a user who wants to utilize the features
provided by various APIs in your daily life. Your task is to come up
with realistic scenarios for using these APIs and express them as
natural language instructions, as if you were asking a friend or
assistant for help.

Please follow these guidelines:
1. The instructions should be 1 to 2 sentences long. Use a mix of
interrogative sentences, first-person statements, imperative
sentences, and other structures that convey a request. Aim for
diversity in your instructions.
2. Do not mention the API's name in your instructions.
3. Your instructions should only involve the features provided by
these APIs. The instructions that need multiple times of API call is
better.
4. Generate 10 diverse instructions.
5. Use specific nouns and real-world examples from various domains,
such as entertainment, sports, or technology. Avoid using any form of
placeholder or generic phrases, such as "this xxx", "a xxx" or "a
specific xxx", and provide concrete details instead.
6. Try not to repeat the verb for each instruction to maximize
diversity.
7. Ensure diversity in language by combining questions with
imperative statements and other structures that convey a request.

<API>
Name: ${name}
Description: ${description}
API Functions: ${functions}
</API>

Based on the API provided above, generate 10 natural language
instructions with specific examples and diverse language, following
the guidelines.

4

Figure 8: User agent prompt 1 for instruction generation.

User Agent - Additional Information Prompt

As a user, you ask the AI assistant some questions, but the assistant
believes you have missed crucial information. Please respond to the
AI assistant's inquiries with specific and direct answers using text
or formatted text. Avoid using placeholders. If a file is necessary,
please provide the contents of the file in your response. your
response should startswith "[User]:".
${interaction_history}

5

Figure 9: User agent prompt 2 for providing missing information.
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Assistant Agent

Your task is to answer the user's question using available tools. The
user cannot see or use the tools themselves, nor can they know the
process of your tool usage. Provide all necessary information in the
"Final Answer" field. Do not make up any information. If required
parameters are missing, use the "getDetails" tool to ask the user for
them.
You have access to the following tools:

${tool_list}

Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [${tool_names}].
Action Input: the input to the action, must be in JSON format. All of
the action input must be realistic and from the user.
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: Summarize the information gathered and the reasoning behind
your final answer.
Final Answer: Provide a user-friendly and detailed answer to the
original input question that summarizes all relevant information from
the Thought/Action/Action Input/Observation sequences.

Begin!

Question: ${instruction}
Thought:${agent_scratchpad}

6

Figure 10: Assistant agent prompt.

Tool Excutor Agent

As an API simulator, your task is to process API requests and
generate appropriate responses based on the provided API
documentation. Please adhere to the following guidelines:

1. Validate the HTTP method and parameters in the request according
to the OpenAPI Spec.
2. Generate a response that strictly adheres to the specified format
in the OpenAPI Spec, and ensure it's in JSON format.
3. Responses should contain realistic data. Avoid using placeholders.
4. Handle edge cases by providing appropriate error responses.
5. For requests without any length limit, ensure to return at least 3
samples in the response.

Output Format:
Status Code: Include the HTTP response status code.
Response: Ensure your response is in JSON format, contains realistic
data, and aligns with the OpenAPI Spec format.
Explanation: Provide a brief explanation for the given response.
Avoid any extraneous content in your output.

API Details:
Name: ${name}
OpenAPI Spec: ${openapi_spec}
Request Details:
${request}

7

Figure 11: Tool executor agent prompt.
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GPT-4 Evaluation

Given the documentation of a REST API and a task instruction, I need
you to evaluate whether the solution provided by my AI assistant
aligns with the standard answer.

Follow these guidelines:
1. You need to assess both the process and final response of the AI
assistant's solution.
2. For the process, refer to the standard answer:
- The standard answer only includes function names and parameters,
while the AI assistant's solution also includes function returns.
Therefore, it is acceptable to adjust the call situation based on
the function return, such as retrying when the function errors,
calling function `getDetails` for more information, and calling
function `retrievalDataFromFile` when the function's return is too
long.
- Random calls to unrelated functions are not allowed.
- The solution must contain all the steps in the standard answer.
- The necessary parameters of the function need to be consistent
with the standard answer. Parameters not mentioned in the
instruction can be inconsistent.

3. You need to comprehensively judge whether the final response of
the solution accurately summarizes the entire call process and
provides a reasonable response to the initial instruction.
4. You need to first analyze the entire solution according to the
guidelines, then give your answer. Your output should adhere to the
format:
## Analysis
{some analysis}
## Results
Process Correctness: one of [Yes, No, Uncertain]
Final Response Correctness: one of [Yes, No, Uncertain]

## Documentation
${openapi_spec}

## Task Instruction
${instruction}

## Standard Answer
${standard_answer}

## AI Assistant's Solution
${solution}

## Analysis

8

Figure 12: Evaluation prompt for GPT-4.
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Case For Real-world API: Nager.Date

[User]: I'm curious about the public holidays in Australia in 2023.
Can you fetch the list for me?

[Assistant]:
Thought: I need to use the PublicHolidayPublicHolidaysV3 tool to get
the list of public holidays in Australia in 2023.
Action: PublicHolidayPublicHolidaysV3
Action Input: {"countryCode": "AU", "year": 2023}

[Tool]: The output is too long. You need to use the
'retrievalDataFromFile' function to retrieve the output from the file:
./tmp/retrieval_1692114481.txt.

[Assistant]:
Thought: I need to use the retrievalDataFromFile tool to retrieve the
output from the file.
Action: retrievalDataFromFile
Action Input: {"file_path": "./tmp/retrieval_1692114481.txt", "query":
"public holidays in Australia in 2023"}

[Tool]: {"retrieved_info": "Public Holidays in Australia in 2023:\n1.
New Year's Day - January 1st\n2. Australia Day - January 26th\n3.
Labour Day - March 6th (observed in AU-WA)\n4. Canberra Day - March
13th (observed in AU-ACT)\n5. March Public Holiday - March 13th
(observed in AU-SA)\n6. Eight Hours Day - March 13th (observed in
AU-TAS)\n7. Labour Day - March 13th (observed in AU-VIC)\n8. Good
Friday - April 7th\n9. Holy Saturday (Easter Eve) - April 8th
(observed in AU-ACT, AU-NSW, AU-NT, AU-QLD, AU-SA, AU-VIC)\n10.
Easter Sunday - April 9th (observed in AU-ACT, AU-NSW, AU-VIC,
AU-WA)\n11. Easter Monday - April 10th\n12. Anzac Day - April
25th\n13. May Day - May 1st (observed in AU-NT)\n14. Labour Day - May
1st (observed in AU-QLD)\n15. Reconciliation Day - May 29th (observed
in AU-ACT)\n16. Western Australia Day - June 5th (observed in
AU-WA)\n17. King's Birthday - June 12th (observed in AU-ACT, AU-NSW,
AU-NT, AU-SA, AU-TAS, AU-VIC)\n18. Picnic Day - August 7th (observed
in AU-NT)\n19. Labour Day - October 2nd (observed in AU-ACT, AU-NSW,
AU-SA)\n20. Christmas Day - December 25th\n21. Boxing Day - December
26th"}

[Assistant]:
Thought: The output from the file contains the list of public
holidays in Australia in 2023.
Response: The public holidays in Australia in 2023 are New Year's Day
(January 1st), Australia Day (January 26th), Labour Day (March 6th),
Canberra Day (March 13th), March Public Holiday (March 13th), Eight
Hours Day (March 13th), Labour Day (March 13th), Good Friday (April
7th), Holy Saturday (Easter Eve) (April 8th), Easter Sunday (April
9th), Easter Monday (April 10th), Anzac Day (April 25th), May Day
(May 1st), Labour Day (May 1st), Reconciliation Day (May 29th),
Western Australia Day (June 5th), King's Birthday (June 12th), Picnic
Day (August 7th), Labour Day (October 2nd), Christmas Day (December
25th), and Boxing Day (December 26th).

9

Figure 13: Cases for real-world API: Nager.Date.
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Case for Real-world API: Currency Beacon

[User]: I'm a business owner and I need to invoice a client in Europe.
Can you provide me with the current exchange rate from US dollars to
Euros, and also the average rate for the July so I can set a fair
price? Authentication information: api_key=***

[Assistant]:
Thought: I need to get the current exchange rate and the average rate
for July.
Action: latest_get
Action Input: {"api_key": "***", "base": "USD", "symbols": "EUR"}

[Tool]: Status Code: 200. Response: {"meta": {"code": 200,
"disclaimer": "Usage subject to terms:
https://currencybeacon.com/terms"}, "response": {"date":
"2023-08-15T16:46:58Z", "base": "USD", "rates": {"EUR": 0.91572671}},
"date": "2023-08-15T16:46:58Z", "base": "USD", "rates": {"EUR":
0.91572671}}

[Assistant]:
Thought: I have the current exchange rate from US dollars to Euros.
Action: historical_get
Action Input: {"api_key": "***", "base": "USD", "date": "2023-07-01",
"symbols": "EUR"}

[Tool]: Status Code: 200. Response: {"meta": {"code": 200,
"disclaimer": "Usage subject to terms:
https://currencybeacon.com/terms"}, "response": {"date": "2023-07-01",
"base": "USD", "rates": {"EUR": 0.91706262}}, "date": "2023-07-01",
"base": "USD", "rates": {"EUR": 0.91706262}}

[Assistant]:
Thought: I have the average rate for July.
Response: The current exchange rate from US dollars to Euros is
0.91572671, and the average rate for July was 0.91706262.

10

Figure 14: Cases for real-world API: Currency Beacon.
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Case for Real-world API: apilayer weatherstack

[User]: I'm planning a road trip from New York to Los Angeles next
week. Can you help me check the weather conditions for the major
cities along the route, like Chicago, Denver, and Las Vegas? I'd like
to know if there will be any severe weather conditions that might
affect my trip. Authentication information: access_key=***

[Assistant]:
Thought: I need to get the weather conditions for the major cities
along the route.
Action: current_get
Action Input: {"access_key": "***", "query": "New York, Chicago,
Denver, Las Vegas", "units": "m", "callback": "weatherResponse"}

[Tool]: Status Code: 200. Response: weatherResponse({"request":
{"type": "City", "query": "Denver, United States of America",
"language": "en", "unit": "m"}, "location": {"name": "Denver",
"country": "United States of America", "region": "New York", "lat":
"42.213", "lon": "-74.570", "timezone_id": "America/New_York",
"localtime": "2023-08-15 12:18", "localtime_epoch": 1692101880,
"utc_offset": "-4.0"}, "current": {"observation_time": "04:18 PM",
"temperature": 17, "weather_code": 143, "weather_icons":
["https://cdn.worldweatheronline.com/images/wsymbols01_png_64/
wsymbol_0006_mist.png"], "weather_descriptions": ["Mist"],
"wind_speed": 4, "wind_degree": 24, "wind_dir": "NNE", "pressure":
1009, "precip": 0, "humidity": 96, "cloudcover": 100, "feelslike": 17,
"uv_index": 4, "visibility": 0, "is_day": "yes"}})

[Assistant]:
Thought: The response from the current_get tool indicates that the
weather in Denver is currently misty with a temperature of 17°C
Action: current_get
Action Input: {"access_key": "***", "query": "Chicago, United States
of America", "units": "m", "callback": "weatherResponse"}

[Tool]: Status Code: 200. Response: ...

[Assistant]:
Thought: The response from the current_get tool indicates that the
weather in Chicago is currently lightly raining with a temperature of
19°C.
Action: current_get
Action Input: {"access_key": "***", "query": "Las Vegas, United
States of America", "units": "m", "callback": "weatherResponse"}

[Tool]: Status Code: 200. Response: ...

[Assistant]:
Thought: The response from the current_get tool indicates that the
weather in Las Vegas is currently sunny with a temperature of 34°C.
Response: The weather conditions for the major cities along the route
from New York to Los Angeles are as follows: Denver: currently misty
with a temperature of 17°C, Chicago: currently lightly raining with a
temperature of 19°C, and Las Vegas: currently sunny with a
temperature of 34°C.

11

Figure 15: Cases for real-world API: apilayer weatherstack.
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