© © N O O A W N =

o

QAQ: Query-adaptive Mixed-precision Quantization
for Large Language Models

Anonymous Author(s)
Affiliation
Address

email

Abstract

Large language models (LLMs) achieve strong performance, yet inference is still
bounded by trade-offs between efficiency and accuracy. While quantization cuts
memory and latency, it fails to flexibly accommodate heterogeneous inputs. We
introduce Query-Aware Quantization (QAQ), a dynamic-precision scheme that
decomposes model weights into bit-planes, employs a trainable router for query-
conditioned precision selection, and supports on-demand CPU<+GPU loading. On
Qwen3 and LLaMA-3.1, QAQ matches the accuracy of 8-bit baselines while re-
ducing GPU memory footprint, with an associated latency overhead. These results
suggest that QAQ offers a practical operating point on the efficiency—accuracy
frontier for LLM inference.

1 Introduction

With the rapid adoption of large language models (LLMs) in natural language processing and
other Al applications, the demand for efficient and reliable inference has become increasingly
critical [Zhou et al.| |2024]. Quantization has emerged as a practical means to improve inference
efficiency by reducing memory footprint, bandwidth, and compute cost [Xiao et al.,[2022} [Frantar
et al., 2022a), |Dettmers et al., 2022]. However, aggressive low-bit quantization may incur non-
negligible accuracy degradation [Frantar et al.|[2022b, [Lin et al.|; 2023| Xu et al.,2023]]. Consequently,
in LLM inference there is often an inherent efficiency—accuracy trade-off [Kurtic et al.| 2024].
Striking a balance between efficiency and accuracy remains a central challenge. Existing approaches
often rely on uniform quantization to compress models, but such a one-size-fits-all precision strategy
fails to accommodate the diverse requirements of different inputs or sub-tasks, while maintaining
multiple models at varying precisions further exacerbates memory overhead and system complexity.
Addressing this challenge is particularly critical for enabling the deployment of LLMs on resource-
constrained environments such as edge devices, where both efficiency and accuracy are essential for
practical applications [Zeng et al., [2024].

Static low-bit quantization, while foundational for efficient LLM inference, employs a fixed quan-
tization strategy that assigns uniform bit-widths (e.g., INT4) across all model layers regardless of
input characteristics [Dettmers et al.|[2023]), |[Frantar et al.|[2022a]]. This approach becomes subopti-
mal for real-world workloads where queries exhibit varying computational demands and activation
magnitudes. Since static methods must accommodate the most challenging inputs to maintain accu-
racy, they adopt conservative quantization settings that over-provision precision for the majority of
simpler queries, leading to unnecessary computational overhead. The fundamental issue stems from
input-dependent activation sensitivity: outlier activations in certain inputs require higher precision
to avoid significant quantization errors |Xiao et al.|[2022]], Bondarenko et al.| [2021]], while typical
inputs could be processed accurately with more aggressive quantization. This mismatch creates an

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

36
37

38
39
40
41
42
43
44
45
46
47

48

49
50
51
52
53
54
55

56
57
58
59
60
61
62
63

64

65
66
67

68
69
70

71
72
73
74
75
76
7

78
79

80
81

inherent tension between optimizing for average-case efficiency and preserving worst-case accuracy,
motivating the need for adaptive quantization approaches.

To resolve the core trade-off between efficiency and worst-case accuracy, we introduce Query-
Aware Quantization (QAQ), a novel inference framework that dynamically adapts precision to each
query. Our core innovation is a two-fold approach: a lightweight, query-sensitive policy network
and a specialized memory management system. The policy network, trained to predict layer-wise
sensitivity based on input features, serves as a dynamic router that assigns an optimal bit-width to
each transformer layer. To enable this flexible routing, our system pre-stores multiple quantized
versions of weights in CPU memory, dynamically materializing only the selected layers’ precision
profiles into the GPU cache. This co-designed algorithmic and system-level approach allows QAQ to
tailor the model’s precision to each unique query, delivering correctness with minimal computational
overhead.

2 Query-Adaptive Quantization

Conventional inference paradigms are static: dense models activate all parameters, while quantized
models use a fixed bit-width for all inputs [Frantar et al.|[2022a]].During inference, all parameters
and the entire network depth are usually activated regardless of the input, which further increases
redundant computation. Some approaches attempt to mitigate this issue by introducing expert routing
mechanisms [Cai et al.| |2025]], yet they still suffer from fixed precision and a rigid number of experts.
This universal rigidity leads to a suboptimal trade-off between performance on hard inputs and
efficiency on easy ones, failing to exploit the transient computational demands of the data.

We break this static paradigm with a co-designed, dynamic-precision inference system. Our con-
tribution is the synergistic interplay of three components: (1) A trainable gating network acts as
a per-query router, predicting the minimal sufficient bit-width for each network block based on
input semantics. (2) To efficiently realize this dynamic precision, weights are pre-compressed into
bit-planes, a format that decouples storage from bit-width and allows for flexible, on-the-fly precision
reconstruction. (3) This is operationalized by a hardware-aware loading mechanism that streams only
the router-selected bit-planes from CPU to GPU, minimizing both memory footprint and data transfer
overhead.

The overall design is illustrated in Figure

Bit-Plane Decomposition: We decompose each weight tensor into bit-planes, enabling flexible
precision adjustment at block-level granularity. Let W' € R™*" be the original full-precision weight
matrix. We represent it as:

B—1
W= 2. w® W e{o13m" (1)

b=0

where B is the maximum bit-width (e.g., 8), and (%) denotes the b-th binary bit-plane. By selective
loading only the most significant bit-planes during inference, the system can dynamically adjust
precision without retraining.

Trainable Router: While bit-plane decomposition provides a flexible representation for multi-
precision weights, we still need a mechanism to determine what precision inference should be
performed. To address this, we introduce a trainable router module. Here, precision selection is
formulated as a soft routing decision, where the router assigns probabilities to candidate bit-widths
based on query-dependent features. Given an input query representation x, the router computes an
important score s;(z) for each block j, which reflects the sensitivity of that block to quantization.

Formally, we define:

sj(@) = fo(h;(z)) ()
where h; () is the hidden representation at block j, and fy(-) is a trainable scoring function which is
a lightweight MLP in our work.
The importance scores are normalized into a probability distribution over candidate bit-widths
bl, ey b K-
exp(a - 53())

S expla - sU(x))

pi(b|x) = (€)

82
83

84

85
86
87
88
89
90

91
92
93

94

95

96
97

Notati
(aletatin (b) Router Training
: Low Bit

: Mid Bit Teacher: Full Precision LLM @ —1
: High Bit i P %
% (i Knowledge Distillation
. Router H H
N Loss H
: Trainable = -
Request Student: Quantitated LLM @ - f

: Frozen

Frozen Parameter

r Transformer Layer 1
i
E e e G L . MHA FFN
i 1 @ LLM I HA FFN
1
i : ’ , . ‘ \ MHA FEN
I R layer1 | ! Layer2 | | Transformer LayerN {1 isan—
H 1 b H ! I T Layer1
[[H i {1 Load MHA FFN
=/ i P P P
—_— —_ [i H 1 MHA FFN
1L MHA YR I V17 PN T N1 | —— VAl UER
i i i i 1
Request : H H E H i i Offload ST
i i [! i [Transformer Layer 1
H H
1) i H : MHA FFN
1
.~ _____ e ; MHA FEN
MHA FEN
(c) Block-wise Quantization Inference (d) Dynamic Loader

Figure 1: Framework of QAQ. (a) The notation distinguishes between low, mid, and high precision,
indicating their association with router, trainable, and frozen parameters. (b) In Router Training,
a full-precision teacher LLM instructs a quantized student LLM, with knowledge distillation loss
guiding the training process. (c¢) During Block-wise Quantization Inference, transformer layers in the
LLM are structured with Multi-Head Attention (MHA) and Feed-Forward Network (FFN) blocks.
These layers are quantized at the block level for efficient resource management. (d) The dynamic
loader facilitates the efficient transfer of transformer layers between CPU and GPU during inference,
offloading and loading based on demand to optimize memory usage, ensuring high-performance
inference with minimal computational overhead.

where « is a temperature parameter controlling the sharpness of the distribution. The expected
precision at block j is then:

K
Wi) =Y pib|) w)
b=1

where Wl(b) denotes the reconstructed weight matrix using the top-b bit-planes.

On-Demand Loading Mechanism: In conventional inference pipelines, all precision variants of
weights are preloaded into GPU memory to guarantee fast access [Chen et al.,2018]]. However, this
approach results in a substantial memory footprint, since rarely used bit-planes remain resident in
GPU memory [Qureshi et al., 2023]]. On the other hand, placing the entire model in CPU memory or
disk storage incurs prohibitive data transfer overhead during inference. To address this trade-off, we
design an on-demand loading mechanism that dynamically transfers only the necessary bit-planes

into GPU memory when they are required. Let W = W(b)le denote the set of bit-plane weights
for a given block. At time step ¢, the router determines a subset S; C W to be activated, based on
query-dependent importance scores. GPU memory usage can be expressed as:

M, = Z size(W®)) (5
W(b)ESt

where size(-) denotes the storage cost of a bit-plane.
We define a loading operator £ such that: }
Wy =L(S), Wy CW (6)

where W, is the set of weights available in GPU memory at time ¢. The operator L retrieves the
required weights from CPU memory only when they are requested by the router.

98

99
100
101
102

103
104
105
106
107
108
109
110
111

112

113
114
115
116
117
118
119

Table 1: Accuracy, latency, and memory usgae comparison of QAQ against static quantization
and full-precision baselines across LLaMA-3.1 and Qwen3 models. QAQ consistently maintains
accuracy comparable to 8-bit quantization, while showing associated latency/memory trade-offs
across on-demand modes.

Method Hella- PIQA ARCE ARCC Wino- WT2 PTB Lat.(s) Mem.(GB)
Swag Grande
LLaMA3.1-8B
Full FP16 78.90 81.18 81.10 53.50 73.48 6.24 9.01 75.12 23.12
Static 8-bit 59.99 79.98 81.65 51.45 73.56 6.24 9.01 56.61 13.26
Static 4-bit 59.29 80.30 81.44 50.09 72.93 6.71 9.10 55.72 13.26

QAQ (on-demand off) 59.99 79.98 81.65 5145 73.56 6.24 9.01 53.23 13.26
QAQ (on-demand on) 59.99 79.98 81.65 5145 73.56 6.24 9.01 80.21 12.52

Qwen3-4B
Full FP16 68.42 T74.97 78.49 53.92 66.06 13.64 18.74 44.23 14.23
Static 8-bit 68.45 74.81 78.32 53.92 65.98 14.83 18.75 3891 9.25
Static 4-bit 66.78 75.14 76.94 52.99 63.22 14.83 20.25 38.04 9.25

QAQ (on-demand off) 68.45 74.81 78.32 53.92 6598 14.85 18.75 37.22 9.25
QAQ (on-demand on) 68.45 74.81 7832 53.92 6598 14.85 18.75 55.09 8.78

Qwen3-8B
Full FP16 74.95 77.80 80.89 56.48 67.72 9.72 13.54 72.32 19.32
Static 8-bit 74.92 77.74 80.85 56.57 67.80 10.30 13.54 65.64 11.42
Static 4-bit 73.98 77.80 80.18 57.42 66.06 10.30 14.41 6491 11.42

QAQ (on-demand off) 74.92 77.74 80.85 56.57 67.80 10.30 13.54 61.99 11.42
QAQ (on-demand on) 74.92 77.74 80.85 56.57 67.80 10.30 13.54 93.12 10.80

Notes: Latency measured as end-to-end time for a single evaluation pass on WikiText-2. QAQ “on-demand off”
disables CPU—GPU on-demand loading; “on-demand on” enables it.

3 Experiments

We conduct experiments on standard benchmark datasets to compare the accuracy of our proposed
method. Specifically, we evaluate QAQ against several quantization baselines, including fixed-4 bit,
fixed 8-bit, and full-precision FP16 models. We test across different model scales to assess robustness,
using Qwen3-4B, Qwen3-8B, and Llama3.1-8B.

As shown in table [I] the results show that QAQ achieves accuracy nearly identical to the 8-bit
baseline, with negligible degradation across all benchmarks. This suggests that our compression
and routing strategies do not compromise model performance. In addition, we evaluated various
inference overhead metrics, including latency (measured as the time required for a single inference
pass on WikiText2 and GPU memory usage. Compared to the fixed-bit baselines, QAQ achieves faster
inference when the on-demand loading is disabled (approximately 4.5% faster than the fixed 4-bit
baselines across various models), while maintaining the same GPU memory consumption. However,
when on-demand loading is enabled, the latency increases (41.7% slower than the fixed 8-bit model
across various models), though GPU memory usage is reduced by 5.6% compared to static models.

4 Discussion & Limitation

A key limitation of our current design lies in the on-demand loading mechanism. While the on-
demand loading reduces GPU memory, it introduces additional latency because weight scheduling
is currently synchronous: when a block requires higher precision, inference must pause until the
corresponding bit-planes are fetched from CPU memory. In the absence of pipelined, asynchronous
prefetching, these transfer costs cannot be hidden behind computation. In future work, the core
challenge lies in how to effectively hide the overhead of weight loading, enabling on-demand loading
to truly achieve both memory savings and high-speed inference.

120

121
122
123

124
125
126

127
128
129

130
131
132

133
134

136

137
138
139

140
141
142

143
144
145
146

147
148
149
150
151

152
153
154

155
156
157

159
160

161
162
163

References

Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort. Understanding and overcoming
the challenges of efficient transformer quantization. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, pages 8998-9010, 2021.

Weilin Cai, Juyong Jiang, Fan Wang, Jing Tang, Sunghun Kim, and Jiayi Huang. A survey on mixture
of experts in large language models. IEEE Transactions on Knowledge and Data Engineering,
2025.

Xiaoming Chen, Danny Z Chen, and Xiaobo Sharon Hu. modnn: Memory optimal dnn training
on gpus. In 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), pages
13-18. IEEE, 2018.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm.int8(): 8-bit matrix
multiplication for transformers at scale. arXiv preprint arXiv:2208.07339, 2022. doi: 10.48550/
arXiv.2208.07339. NeurIPS 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pretrained transformers. arXiv preprint arXiv:2210.17323, 2022a.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022b. doi:
10.48550/arXiv.2210.17323. ICLR 2023.

Eldar Kurtic, Alexandre Marques, Shubhra Pandit, Mark Kurtz, and Dan Alistarh. " give me
bf16 or give me death"? accuracy-performance trade-offs in llm quantization. arXiv preprint
arXiv:2411.02355, 2024.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
IIm compression and acceleration. arXiv preprint arXiv:2306.00978, 2023. doi: 10.48550/arXiv.
2306.00978. MLSys 2024 Best Paper.

Zaid Qureshi, Vikram Sharma Mailthody, Isaac Gelado, Seungwon Min, Amna Masood, Jeongmin
Park, Jinjun Xiong, Chris J Newburn, Dmitri Vainbrand, I-Hsin Chung, et al. Gpu-initiated
on-demand high-throughput storage access in the bam system architecture. In Proceedings of the
28th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2, pages 325-339, 2023.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. arXiv preprint
arXiv:2211.10438, 2022. doi: 10.48550/arXiv.2211.10438. ICML 2023.

Zhaozhuo Xu, Zirui Liu, Beidi Chen, Yuxin Tang, Jue Wang, Kaixiong Zhou, Xia Hu, and Anshumali
Shrivastava. Compress, then prompt: Improving accuracy-efficiency trade-off of 1lm inference
with transferable prompt. arXiv preprint arXiv:2305.11186, 2023.

Binrui Zeng, Bin Ji, Xiaodong Liu, Jie Yu, Shasha Li, Jun Ma, Xiaopeng Li, Shangwen Wang, Xinran
Hong, and Yongtao Tang. Lsaq: Layer-specific adaptive quantization for large language model
deployment. arXiv preprint arXiv:2412.18135, 2024.

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning Wang,
Zhihang Yuan, Xiuhong Li, et al. A survey on efficient inference for large language models. arXiv
preprint arXiv:2404.14294, 2024.

	Introduction
	Query-Adaptive Quantization
	Experiments
	Discussion & Limitation

