
QAQ: Query-adaptive Mixed-precision Quantization
for Large Language Models

Anonymous Author(s)
Affiliation
Address
email

Abstract

Large language models (LLMs) achieve strong performance, yet inference is still1

bounded by trade-offs between efficiency and accuracy. While quantization cuts2

memory and latency, it fails to flexibly accommodate heterogeneous inputs. We3

introduce Query-Aware Quantization (QAQ), a dynamic-precision scheme that4

decomposes model weights into bit-planes, employs a trainable router for query-5

conditioned precision selection, and supports on-demand CPU↔GPU loading. On6

Qwen3 and LLaMA-3.1, QAQ matches the accuracy of 8-bit baselines while re-7

ducing GPU memory footprint, with an associated latency overhead. These results8

suggest that QAQ offers a practical operating point on the efficiency–accuracy9

frontier for LLM inference.10

1 Introduction11

With the rapid adoption of large language models (LLMs) in natural language processing and12

other AI applications, the demand for efficient and reliable inference has become increasingly13

critical [Zhou et al., 2024]. Quantization has emerged as a practical means to improve inference14

efficiency by reducing memory footprint, bandwidth, and compute cost [Xiao et al., 2022, Frantar15

et al., 2022a, Dettmers et al., 2022]. However, aggressive low-bit quantization may incur non-16

negligible accuracy degradation [Frantar et al., 2022b, Lin et al., 2023, Xu et al., 2023]. Consequently,17

in LLM inference there is often an inherent efficiency–accuracy trade-off [Kurtic et al., 2024].18

Striking a balance between efficiency and accuracy remains a central challenge. Existing approaches19

often rely on uniform quantization to compress models, but such a one-size-fits-all precision strategy20

fails to accommodate the diverse requirements of different inputs or sub-tasks, while maintaining21

multiple models at varying precisions further exacerbates memory overhead and system complexity.22

Addressing this challenge is particularly critical for enabling the deployment of LLMs on resource-23

constrained environments such as edge devices, where both efficiency and accuracy are essential for24

practical applications [Zeng et al., 2024].25

Static low-bit quantization, while foundational for efficient LLM inference, employs a fixed quan-26

tization strategy that assigns uniform bit-widths (e.g., INT4) across all model layers regardless of27

input characteristics Dettmers et al. [2023], Frantar et al. [2022a]. This approach becomes subopti-28

mal for real-world workloads where queries exhibit varying computational demands and activation29

magnitudes. Since static methods must accommodate the most challenging inputs to maintain accu-30

racy, they adopt conservative quantization settings that over-provision precision for the majority of31

simpler queries, leading to unnecessary computational overhead. The fundamental issue stems from32

input-dependent activation sensitivity: outlier activations in certain inputs require higher precision33

to avoid significant quantization errors Xiao et al. [2022], Bondarenko et al. [2021], while typical34

inputs could be processed accurately with more aggressive quantization. This mismatch creates an35

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



inherent tension between optimizing for average-case efficiency and preserving worst-case accuracy,36

motivating the need for adaptive quantization approaches.37

To resolve the core trade-off between efficiency and worst-case accuracy, we introduce Query-38

Aware Quantization (QAQ), a novel inference framework that dynamically adapts precision to each39

query. Our core innovation is a two-fold approach: a lightweight, query-sensitive policy network40

and a specialized memory management system. The policy network, trained to predict layer-wise41

sensitivity based on input features, serves as a dynamic router that assigns an optimal bit-width to42

each transformer layer. To enable this flexible routing, our system pre-stores multiple quantized43

versions of weights in CPU memory, dynamically materializing only the selected layers’ precision44

profiles into the GPU cache. This co-designed algorithmic and system-level approach allows QAQ to45

tailor the model’s precision to each unique query, delivering correctness with minimal computational46

overhead.47

2 Query-Adaptive Quantization48

Conventional inference paradigms are static: dense models activate all parameters, while quantized49

models use a fixed bit-width for all inputs Frantar et al. [2022a].During inference, all parameters50

and the entire network depth are usually activated regardless of the input, which further increases51

redundant computation. Some approaches attempt to mitigate this issue by introducing expert routing52

mechanisms [Cai et al., 2025], yet they still suffer from fixed precision and a rigid number of experts.53

This universal rigidity leads to a suboptimal trade-off between performance on hard inputs and54

efficiency on easy ones, failing to exploit the transient computational demands of the data.55

We break this static paradigm with a co-designed, dynamic-precision inference system. Our con-56

tribution is the synergistic interplay of three components: (1) A trainable gating network acts as57

a per-query router, predicting the minimal sufficient bit-width for each network block based on58

input semantics. (2) To efficiently realize this dynamic precision, weights are pre-compressed into59

bit-planes, a format that decouples storage from bit-width and allows for flexible, on-the-fly precision60

reconstruction. (3) This is operationalized by a hardware-aware loading mechanism that streams only61

the router-selected bit-planes from CPU to GPU, minimizing both memory footprint and data transfer62

overhead.63

The overall design is illustrated in Figure 1.64

Bit-Plane Decomposition: We decompose each weight tensor into bit-planes, enabling flexible65

precision adjustment at block-level granularity. Let W ∈ Rm×n be the original full-precision weight66

matrix. We represent it as:67

W =

B−1∑
b=0

2b ·W (b), W (b) ∈ {0, 1}m×n (1)

where B is the maximum bit-width (e.g., 8), and W (b) denotes the b-th binary bit-plane. By selective68

loading only the most significant bit-planes during inference, the system can dynamically adjust69

precision without retraining.70

Trainable Router: While bit-plane decomposition provides a flexible representation for multi-71

precision weights, we still need a mechanism to determine what precision inference should be72

performed. To address this, we introduce a trainable router module. Here, precision selection is73

formulated as a soft routing decision, where the router assigns probabilities to candidate bit-widths74

based on query-dependent features. Given an input query representation x, the router computes an75

important score sj(x) for each block j, which reflects the sensitivity of that block to quantization.76

Formally, we define:77

sj(x) = fθ(hj(x)) (2)
where hj(x) is the hidden representation at block j, and fθ(·) is a trainable scoring function which is78

a lightweight MLP in our work.79

The importance scores are normalized into a probability distribution over candidate bit-widths80

b1, . . . , bK :81

pj(b | x) =
exp(α · sbj(x))∑K

k=1 exp(α · sbkj (x))
(3)

2



(c) Block-wise Quantization Inference 

(b) Router Training

MHA

Transformer Layer 1

Teacher: Full Precision LLM

Student: Quantitated LLM

Knowledge Distillation 
Loss

FFN MHA

Transformer Layer 2

FFN ... … MHA

Transformer Layer N

FFN

LLM

GPU CPU

(d) Dynamic Loader

Load

Offload

Request

Request

MHA

Transformer Layer 1

FFN

MHA

MHA

FFN

FFN

MHA

Transformer Layer 1

FFN

MHA

MHA

FFN

FFN

MHA

Transformer Layer 1

FFN

MHA

MHA

FFN

FFN

(a) Notation

: Low Bit

: Mid Bit

: High Bit

: Router

: Trainable

: Frozen

Frozen Parameter

Figure 1: Framework of QAQ. (a) The notation distinguishes between low, mid, and high precision,
indicating their association with router, trainable, and frozen parameters. (b) In Router Training,
a full-precision teacher LLM instructs a quantized student LLM, with knowledge distillation loss
guiding the training process. (c) During Block-wise Quantization Inference, transformer layers in the
LLM are structured with Multi-Head Attention (MHA) and Feed-Forward Network (FFN) blocks.
These layers are quantized at the block level for efficient resource management. (d) The dynamic
loader facilitates the efficient transfer of transformer layers between CPU and GPU during inference,
offloading and loading based on demand to optimize memory usage, ensuring high-performance
inference with minimal computational overhead.

where α is a temperature parameter controlling the sharpness of the distribution. The expected82

precision at block j is then:83

Ŵj(x) =

K∑
b=1

pj(b | x) ·W (b)
j (4)

where W
(b)
l denotes the reconstructed weight matrix using the top-b bit-planes.84

On-Demand Loading Mechanism: In conventional inference pipelines, all precision variants of85

weights are preloaded into GPU memory to guarantee fast access [Chen et al., 2018]. However, this86

approach results in a substantial memory footprint, since rarely used bit-planes remain resident in87

GPU memory [Qureshi et al., 2023]. On the other hand, placing the entire model in CPU memory or88

disk storage incurs prohibitive data transfer overhead during inference. To address this trade-off, we89

design an on-demand loading mechanism that dynamically transfers only the necessary bit-planes90

into GPU memory when they are required. Let W = W (b)B

b=1 denote the set of bit-plane weights91

for a given block. At time step t, the router determines a subset St ⊆ W to be activated, based on92

query-dependent importance scores. GPU memory usage can be expressed as:93

Mt =
∑

W (b)∈St

size(W (b)) (5)

where size(·) denotes the storage cost of a bit-plane.94

We define a loading operator L such that:95

W̃t = L(St), W̃t ⊆ W (6)

where W̃t is the set of weights available in GPU memory at time t. The operator L retrieves the96

required weights from CPU memory only when they are requested by the router.97

3



Table 1: Accuracy, latency, and memory usgae comparison of QAQ against static quantization
and full-precision baselines across LLaMA-3.1 and Qwen3 models. QAQ consistently maintains
accuracy comparable to 8-bit quantization, while showing associated latency/memory trade-offs
across on-demand modes.

Method Hella-
Swag

PIQA ARC-E ARC-C Wino-
Grande

WT2 PTB Lat.(s) Mem.(GB)

LLaMA3.1-8B
Full FP16 78.90 81.18 81.10 53.50 73.48 6.24 9.01 75.12 23.12
Static 8-bit 59.99 79.98 81.65 51.45 73.56 6.24 9.01 56.61 13.26
Static 4-bit 59.29 80.30 81.44 50.09 72.93 6.71 9.10 55.72 13.26
QAQ (on-demand off) 59.99 79.98 81.65 51.45 73.56 6.24 9.01 53.23 13.26
QAQ (on-demand on) 59.99 79.98 81.65 51.45 73.56 6.24 9.01 80.21 12.52

Qwen3-4B
Full FP16 68.42 74.97 78.49 53.92 66.06 13.64 18.74 44.23 14.23
Static 8-bit 68.45 74.81 78.32 53.92 65.98 14.83 18.75 38.91 9.25
Static 4-bit 66.78 75.14 76.94 52.99 63.22 14.83 20.25 38.04 9.25
QAQ (on-demand off) 68.45 74.81 78.32 53.92 65.98 14.85 18.75 37.22 9.25
QAQ (on-demand on) 68.45 74.81 78.32 53.92 65.98 14.85 18.75 55.09 8.78

Qwen3-8B
Full FP16 74.95 77.80 80.89 56.48 67.72 9.72 13.54 72.32 19.32
Static 8-bit 74.92 77.74 80.85 56.57 67.80 10.30 13.54 65.64 11.42
Static 4-bit 73.98 77.80 80.18 57.42 66.06 10.30 14.41 64.91 11.42
QAQ (on-demand off) 74.92 77.74 80.85 56.57 67.80 10.30 13.54 61.99 11.42
QAQ (on-demand on) 74.92 77.74 80.85 56.57 67.80 10.30 13.54 93.12 10.80

Notes: Latency measured as end-to-end time for a single evaluation pass on WikiText-2. QAQ “on-demand off”
disables CPU→GPU on-demand loading; “on-demand on” enables it.

3 Experiments98

We conduct experiments on standard benchmark datasets to compare the accuracy of our proposed99

method. Specifically, we evaluate QAQ against several quantization baselines, including fixed-4 bit,100

fixed 8-bit, and full-precision FP16 models. We test across different model scales to assess robustness,101

using Qwen3-4B, Qwen3-8B, and Llama3.1-8B.102

As shown in table 1, the results show that QAQ achieves accuracy nearly identical to the 8-bit103

baseline, with negligible degradation across all benchmarks. This suggests that our compression104

and routing strategies do not compromise model performance. In addition, we evaluated various105

inference overhead metrics, including latency (measured as the time required for a single inference106

pass on WikiText2 and GPU memory usage. Compared to the fixed-bit baselines, QAQ achieves faster107

inference when the on-demand loading is disabled (approximately 4.5% faster than the fixed 4-bit108

baselines across various models), while maintaining the same GPU memory consumption. However,109

when on-demand loading is enabled, the latency increases (41.7% slower than the fixed 8-bit model110

across various models), though GPU memory usage is reduced by 5.6% compared to static models.111

4 Discussion & Limitation112

A key limitation of our current design lies in the on-demand loading mechanism. While the on-113

demand loading reduces GPU memory, it introduces additional latency because weight scheduling114

is currently synchronous: when a block requires higher precision, inference must pause until the115

corresponding bit-planes are fetched from CPU memory. In the absence of pipelined, asynchronous116

prefetching, these transfer costs cannot be hidden behind computation. In future work, the core117

challenge lies in how to effectively hide the overhead of weight loading, enabling on-demand loading118

to truly achieve both memory savings and high-speed inference.119

4



References120

Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort. Understanding and overcoming121

the challenges of efficient transformer quantization. In Proceedings of the 2021 Conference on122

Empirical Methods in Natural Language Processing, pages 8998–9010, 2021.123

Weilin Cai, Juyong Jiang, Fan Wang, Jing Tang, Sunghun Kim, and Jiayi Huang. A survey on mixture124

of experts in large language models. IEEE Transactions on Knowledge and Data Engineering,125

2025.126

Xiaoming Chen, Danny Z Chen, and Xiaobo Sharon Hu. modnn: Memory optimal dnn training127

on gpus. In 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), pages128

13–18. IEEE, 2018.129

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm.int8(): 8-bit matrix130

multiplication for transformers at scale. arXiv preprint arXiv:2208.07339, 2022. doi: 10.48550/131

arXiv.2208.07339. NeurIPS 2022.132

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning133

of quantized llms. arXiv preprint arXiv:2305.14314, 2023.134

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training135

quantization for generative pretrained transformers. arXiv preprint arXiv:2210.17323, 2022a.136

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training137

quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022b. doi:138

10.48550/arXiv.2210.17323. ICLR 2023.139

Eldar Kurtic, Alexandre Marques, Shubhra Pandit, Mark Kurtz, and Dan Alistarh. " give me140

bf16 or give me death"? accuracy-performance trade-offs in llm quantization. arXiv preprint141

arXiv:2411.02355, 2024.142

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan143

Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for144

llm compression and acceleration. arXiv preprint arXiv:2306.00978, 2023. doi: 10.48550/arXiv.145

2306.00978. MLSys 2024 Best Paper.146

Zaid Qureshi, Vikram Sharma Mailthody, Isaac Gelado, Seungwon Min, Amna Masood, Jeongmin147

Park, Jinjun Xiong, Chris J Newburn, Dmitri Vainbrand, I-Hsin Chung, et al. Gpu-initiated148

on-demand high-throughput storage access in the bam system architecture. In Proceedings of the149

28th ACM International Conference on Architectural Support for Programming Languages and150

Operating Systems, Volume 2, pages 325–339, 2023.151

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:152

Accurate and efficient post-training quantization for large language models. arXiv preprint153

arXiv:2211.10438, 2022. doi: 10.48550/arXiv.2211.10438. ICML 2023.154

Zhaozhuo Xu, Zirui Liu, Beidi Chen, Yuxin Tang, Jue Wang, Kaixiong Zhou, Xia Hu, and Anshumali155

Shrivastava. Compress, then prompt: Improving accuracy-efficiency trade-off of llm inference156

with transferable prompt. arXiv preprint arXiv:2305.11186, 2023.157

Binrui Zeng, Bin Ji, Xiaodong Liu, Jie Yu, Shasha Li, Jun Ma, Xiaopeng Li, Shangwen Wang, Xinran158

Hong, and Yongtao Tang. Lsaq: Layer-specific adaptive quantization for large language model159

deployment. arXiv preprint arXiv:2412.18135, 2024.160

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning Wang,161

Zhihang Yuan, Xiuhong Li, et al. A survey on efficient inference for large language models. arXiv162

preprint arXiv:2404.14294, 2024.163

5


	Introduction
	Query-Adaptive Quantization
	Experiments
	Discussion & Limitation

