
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GUIRILLA: A SCALABLE FRAMEWORK FOR AUTO-
MATED DESKTOP UI EXPLORATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Autonomous agents capable of operating complex graphical user interfaces (GUIs)
have the potential to transform desktop automation. While recent advances in large
language models (LLMs) have significantly improved UI understanding, navigating
full-window, multi-application desktop environments remains a major challenge.
Data availability is limited by costly manual annotation, closed-source datasets and
surface-level synthetic pipelines. We introduce GUIRILLA 1, an automated scalable
framework that systematically explores applications via native accessibility APIs
to address the critical data collection challenge in GUI automation. Our frame-
work focuses on macOS – an ecosystem with limited representation in current UI
datasets – though many of its components are designed for broader cross-platform
applicability. GUIRILLA organizes discovered interface elements and crawler
actions into hierarchical GUI graphs and employs specialized interaction handlers
to achieve comprehensive application coverage. Using the application graphs
from GUIRILLA crawler, we construct and release GUIRILLA-TASK, a large-scale
dataset of 27,171 functionally grounded tasks across 1,108 macOS applications,
each annotated with full-desktop and window-level screenshots, accessibility meta-
data, and semantic action traces. Empirical results show that tuning LLM-based
agents on GUIRILLA-TASK significantly improves performance on downstream UI
tasks, outperforming synthetic baselines on the ScreenSpot Pro benchmark while
using 97% less data. We also release MACAPPTREE 2, an open-source library for
reproducible collection of structured accessibility metadata, along with the full
GUIRILLA-TASK dataset, the manually verified GUIRILLA-GOLD benchmark,
and the framework code to support open research in desktop autonomy.

1 INTRODUCTION

Understanding user interfaces (UI) through machine learning has emerged as a critical challenge
in human–computer interaction. Recent advances in large language models (LLMs) have driven
progress in multimodal agents for UI automation Kapoor et al. (2024); Qin et al. (2025); Cheng
et al. (2024); Pawlowski et al. (2024). While training agents to navigate mobile UIs has been
extensively studied Wen et al. (2024); Lee et al. (2024) thanks to abundant datasets in this domain
Deka et al. (2017); Rawles et al. (2023); Wen et al. (2023), desktop automation remains constrained.
Unlike mobile, desktop environments are cluttered and dynamic: small icon-based controls often
encode critical meaning for task execution. Moreover, often users face overlapping windows, popups,
dialogs, and system widgets. Among others, the macOS GUI presents particular challenges due to
different coordinate systems and UI standards compared to other operating systems. As a result,
existing multimodal benchmarks expose three structural flaws that currently set the upper bound on
performance for autonomous GUI agents:

1. Manual annotation does not scale. Recent benchmarks Xie et al. (2024); Kapoor et al. (2024); Li
et al. (2025) rely on human-designed pipelines where every task must be demonstrated, recorded,
and verified by annotators. While it is important to have high-quality data in training pipelines, the
process is labor-intensive and costly, limiting the scalability needed for broad, cross-domain coverage.

1https://anonymous.4open.science/r/GUIrilla-2B0F/README.md
2https://anonymous.4open.science/r/GUIrilla-2B0F/macapptree/README.md

1

https://anonymous.4open.science/r/GUIrilla-2B0F/README.md
https://anonymous.4open.science/r/GUIrilla-2B0F/macapptree/README.md


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2. Single-window UIs misrepresent real usage. Most public corpora capture only a clean snapshot
of a single application window, whereas real users manage overlapped windows, transient dialogs,
and system widgets. Prior studies Cheng et al. (2024) report that agents trained on such simplified
views reach success rates near 83%, yet the same architectures collapse to ≈ 38% when evaluated
on full-desktop scenes containing multiple windows Li et al. (2025).

3. Automated collection requires platform-specific design. Creating diverse, high-quality datasets
for GUI agents demands OS-specific expertise to navigate varying UI conventions, event handlers,
and permission models. Effective automation also requires tailored engineering to reliably parse
each platform’s GUI. For instance, macOS lacks robust virtualization support, significantly limiting
automated crawling compared to platforms like Android. As a result, it remains significantly
underrepresented in large-scale datasets, e.g., macOS UIs comprise only 0.06% of all interfaces in
OS-ATLAS Wu et al. (2024), and just 2.45% among all automatically collected desktop samples.

Figure 1: Parsed hierarchical tree structure from the Session application. Each node represents a UI
state, containing the full accessibility tree along with a screenshot of the interface, and the edges
denote GUIRILLA crawler actions. The hierarchy reflects a sequence of interactions as the agent
interacts with application UI, forming the application-specific graph.

Training data has emerged as the critical bottleneck for robust desktop automation. While recent
systems Gou et al. (2025) Qin et al. (2025) achieve strong benchmark performance, they do so by
relying on large, closed datasets that are manually curated and not openly available. As a result,
progress in the field remains gated by limited access to diverse, realistic desktop data.

To address these gaps, we introduce GUIRILLA, a fully automated framework that explores macOS
GUIs at scale and summarizes them in hierarchical graph format (Figure 1). Built on macOS’
accessibility API, GUIRILLA crawler systematically explores applications through simulated user
interactions, supported by three GPT-4-based agents that handle meaningful element ordering,
context-aware input generation, and notification of parsing obstacles.

In this work we make the following key contributions:

• GUIRILLA framework. The first open-source, automated framework tailored for macOS
that constructs detailed full-desktop application graphs from Accessibility API snapshots
and generates function-centric tasks. Application exploration utilizes specialized interaction
handlers and can operate both deterministically and with LLM assistance.

• GUIRILLA-TASK dataset. A macOS, full-desktop corpus of 27,171 tasks across 1,108
applications and 6.8K unique screens. We also release GUIRILLA-GOLD (1,283 human-
verified tasks) with a 90.26% human baseline.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• GUIRILLA-SEE vision–language models. We release three models: GUIRILLA-SEE
(0.7B), GUIRILLA-SEE (3B), and GUIRILLA-SEE (7B). With only 6.8K images in the
dataset, they exceed synthetic baselines on ScreenSpot-Pro, which were trained on vast,
multi-OS datasets, showing data efficiency.

• Open-source reproducible toolkit. Complete end-to-end implementation including data
generation pipeline, model training code, evaluation framework, and the macapptree library
for collecting accessibility metadata and screenshots, facilitating reproducible automated
data collection efforts on macOS.

2 RELATED WORK

While UI understanding has made significant progress on mobile Rawles et al. (2023; 2024) and
web Liu et al. (2024b;a) platforms, largely due to the structured nature of HTML/XML and the
availability of large-scale datasets (e.g., RICO) that capture visual, textual, and interactive properties
across thousands of Android apps, the desktop setting presents unique challenges. Unlike mobile
and web UIs, desktop interfaces lack a unified DOM representation and often require per-application
permissions or system-level configurations for interaction and inspection. In macOS environments
in particular, virtualization support is limited, making safe and scalable data collection especially
difficult. As a result, automated exploration and dataset construction for desktop GUIs remains both
technically challenging and relatively underexplored.

Recent progress in desktop UI grounding has been driven by the release of large-scale datasets
and benchmarks. ScreenSpot Cheng et al. (2024) and its extension ScreenSpot-v2 Li et al. (2025)
collected diverse task datasets paired with application screenshots across various desktop applications.
ScreenSpotPro Li et al. (2025) further raised the bar by introducing high-resolution tasks in full-screen
desktop environments, significantly increasing grounding difficulty. This is reflected in performance
metrics: while agents reach up to 83.3% success on constrained, single-window tasks Cheng et al.
(2024), performance drops sharply to 38.1% on full-screen, multi-domain tasks Li et al. (2025).

OmniACT Kapoor et al. (2024) introduced a multi-platform dataset spanning macOS, Linux, and
Windows, but its scope is limited to 60 applications and websites, collected manually. OS-Atlas Wu
et al. (2024) automates macOS data collection via the Accessibility API, producing a dataset of single-
step question–answer pairs. However, exploration strategies remain shallow (e.g., random/depth-first
search), raw accessibility label is used, and, to the best of our knowledge, the end-to-end macOS
crawler code is not publicly released, which limits reproducibility of the collection process.

Also, as far as we know, existing approaches do not construct structured interaction graphs where
edges represent functional tasks between interface states. Furthermore, no current OS-level crawler
produces graph representations of this kind or integrates safe, agentic exploration specifically aimed
at function-focused task synthesis. In contrast, our GUIRILLA framework introduces a scalable, safe,
and open-source approach for dataset construction. It employs three collaborative GPT-4 agents to
drive task synthesis, interface exploration, and grounded action execution. The resulting dataset,
GUIRILLA-TASK, covers over 1,100 macOS applications across domains and includes more than
27,000 grounding tasks. It supports full-screen resolution and multi-window scenarios, features both
screenshots and accessibility trees, and includes functionality-focused agentic task formulations. A
detailed comparison with existing datasets is provided in Table 1.

Dataset #Apps #Tasks #Unique UIs Collection Desktop macOS Fullscreen Grounding Agentic
OSWorldXie et al. (2024) 10 369 - Manual ✓ × ✓ × ✓
OmniACTKapoor et al. (2024) 60 9802 - Manual ✓ ✓ ✓ × ×
ScreenSpot-V2Wu et al. (2024) 6 324 187 Manual ✓ × × ✓ ×
ScreenSpotProLi et al. (2025) 23 1581 (511) - Manual ✓ ✓ ✓ ✓ ×
Mind2WebDeng et al. (2023) × 2350 2350 Manual × × × ✓ ✓
OSAtlasWu et al. (2024) - - 2.2M (1339) Automated ✓ ✓ ✓ ✓ ×
Web-HybridGou et al. (2025) × - 773K Automated × × × ✓ ×
GUIrilla-Task 1108 27171 6835 Automated ✓ ✓ ✓ ✓ ✓

The number in brackets denotes the reported quantity for macOS.

Table 1: Comparison of Existing Datasets for Task Automation

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 METHODOLOGY

GUIRILLA introduces a graph-centric, fullscreen exploration pipeline for macOS GUIs. Our frame-
work builds on macOS Accessibility API 3, while integrating three specialized agents that interpret
accessibility metadata, prioritize interface elements, and generate contextually appropriate actions.

3.1 CRAWLER

The single-app processing pipeline 2 has the following stages. First, the input bundle undergoes a
standard installation routine, and together with user-specified set of parameters (such as maximal
desired graph depth, and duration of parsing, the full list is available in Appendix A.2), crawler
manages each of the windows of the installed app. Upon installation, the crawler attempts to extract an
application’s accessibility tree according to macOS accessibility framework. This framework enables
simpler interaction with UI elements on the screen grouping them into a hierarchical tree structure,
where each element contains essential properties such as name, role, description, position, and size.
However, application developers must manually annotate or update accessibility metadata. This
manual annotation process often results in error-prone accessibility trees with significant limitations:
some trees contain UI elements that remain in the tree after disappearing from view, others include
components with incorrect role classifications, and inaccurate positioning information.

Figure 2: Architecture of the GUIRILLA framework. The GUIRILLA crawler, equipped with various
UI handlers, processes an application bundle using input parameters and installer routines. It interacts
with autonomous GPT-4 agents (Input, Order, and Login Agents) to navigate the application. The
resulting output graph is refined by a Task Postprocessing Agent (GPT-4), which handles uninstallation
and graph cleanup, ultimately producing a structured task list. The dashed line denotes the optional
usage of LLMs for app exploration.

To handle these edge cases, our GUIRILLA crawler incorporates multiple specialized handlers, as
shown in Figure 2. Within the crawler’s core (highlighted in blue), multiple handlers address the
common parsing challenges: Pop-up handler manages transient modal content, Invisible elements
handler filters off-screen components present in accessibility, Unrolling menu items handler processes
dynamically generated navigation elements, and Empty elements handler resolves placeholder
elements with missing metadata. This multi-handler approach enables robust extraction of actionable
interface information despite the underlying data quality issues.

3https://developer.apple.com/documentation/accessibility/
accessibility-api

4

https://developer.apple.com/documentation/accessibility/accessibility-api
https://developer.apple.com/documentation/accessibility/accessibility-api


216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The GUIRILLA crawler performs three types of interactions to explore an application: click, cursor
move, type, and press Enter key using pyautogui Sweigart (2015) library. To enable meaningful
interaction with applications, the parsing is supported by three GPT4-based agents (the prompts are
available in Appendix A.3):

1. The Input Agent: This agent generates contextually appropriate input strings based on the
accessibility tree, ensuring relevant text is entered into form fields and search boxes.

2. The Order and Login Agent: Given a hierarchical list of on-screen elements, the agent determines
an safest interaction sequence starting with elements that cause minimal UI changes and progressing
to those with potentially significant effects (e.g., "Delete" buttons). Login pages are treated as a
special case, requiring human input. This agent enhances the security and safety of the exploration
process by avoiding random or destructive actions.

3. The Task Agents: After the uninstallation phase, these agents refine the resulting output graph,
cleaning up duplicates, and transforming the structured data into a readable list of natural language
tasks. Their inclusion enables both refinement and generation of more complex and natural language
task descriptions.

While our framework leverages GPT-based agents to enable robust and secure interaction, both the
application graphs and task data can also be collected deterministically without GPT-4 requests
by following a fixed element processing order and using default input string values. However,
incorporating GPT-based reasoning significantly improves the safety and contextual relevance of
interactions. A detailed comparison between deterministic and GPT-guided exploration is provided
in Appendix A.7.2.

3.2 GRAPH STRUCTURE

The application graph collected with GUIRILLA crawler consists of nodes and edges that represent
application states and actions, respectively (see Figure 1). All interaction graphs are automatically
annotated and visualized as accompanying SVG files. Across applications, the graphs have an average
depth of 3.5, with the deepest graph reaching a depth of 101. Each node corresponds to a specific UI
state of an application and contains the following fields:

• Element: The accessibility tree of the application window at a state.

• Image name: The filename of the full desktop screenshot associated with a state.

• Actions: A list of actions that can be executed without causing significant changes to the
UI. We define a significant change as the addition or removal of more than 10 UI elements
following an interaction.

Each edge captures a possible interaction and includes:

• Action: Information about the UI element that triggered the interaction, along with a human-
readable action description and a structured dictionary representation that has a 1-to-1 map
to pyautogui commands.

• Out vertex: The resulting UI state after the interaction of the crawler with the GUI.

3.3 TASK GENERATION

We constructed a comprehensive task dataset from the collected application graphs using a multi-
stage pipeline. First, we removed redundant screenshots by filtering out actions that did not produce
observable changes in the UI state. Then, we refined the initial deterministic task descriptions
using our GPT-4–based Task Agent, which rewrote raw strings into more natural, function-oriented
language suitable for grounding and instruction following.

To further expand the dataset, we incorporated screenshot-based task generation into the postpro-
cessing pipeline. The Task Agent evaluates each task by considering both the target element’s
representation in the accessibility tree and its visual appearance in the corresponding UI screenshot.
Our generative pipeline operates in two phases: (i) Click-based task generation, which focuses on user
interactions with visible UI elements, (ii) Text-input task generation, which creates tasks involving
keyboard input in appropriate text areas or input fields.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4 RESULTS

4.1 GUIRILLA-TASK STATISTICS AND COLLECTION PIPELINE

To construct the GUIRILLA-TASK dataset, we deployed our automated crawler on 12,298 macOS
applications using an open dataset of MacAppStore apps by Sergii Kryvoblotskyi (2025). Out of
these, 1,108 applications were installed, supported the macOS Accessibility framework and yielded
interaction graphs. The resulting dataset spans a wide range of domains including productivity,
creative tools, system utilities, and developer software, which ensure diverse coverage across common
UI paradigms. The final dataset contains 27,171 tasks across 23 app genres (see Figure 4). Each
task pairs a full-desktop screenshot with the corresponding accessibility tree and specifies a concrete
interaction (mouse click or keyboard input). Tasks range from simple actions such as “open settings”
to function-level instructions like “change your working hours to end at 18:00”. Each task is classified
into task type (e.g., navigation, settings) and element category (e.g., button, menu, input field).

The detailed statistics of the collected dataset, along with a representative sample and details on
entry attributes are listed in Appendix A.1. We ran the crawler pipeline on a cluster of four 16 GB
RAM M1 Mac Mini machines running macOS 14.7.5 Sonoma, as well as two MacBook Pros. Each
machine supported parallel exploration environments per host.

4.2 SYNTHETIC DATA QUALITY: GUIRILLA-GOLD

To assess the reliability of macOS accessibility (AX) metadata and the quality of GPT-generated
task strings, we hired 5 annotators, who were given the test split data. Annotators with accessibility
expertise reviewed each data entry along five dimensions: (1) task feasibility; (2) task instruction
clarity and editing for ambiguity; (3) manual task execution; (4) accessibility tree quality rating
(Good/Medium/Bad scale); and (5) element-level verification of semantic properties (role, description,
value) and bounding-box accuracy. Detailed annotation guidelines are provided in Appendix A.8.

Task Quality. From the 1319 original English language-based tasks, 84.3% of tasks were marked
as DOABLE after manual verification. Comparing GPT strings to human edits, 91% required no
change. The 109 edited cases showed 97% similarity to originals (Ratcliff/Obershelp), confirming
minor edits. We release manully edited dataset as GUIRILLA-GOLD 4.

AX Quality. Accessibility metadata quality varies significantly: 64% of screens received GOOD
ratings, 24% MEDIUM, and 12% BAD. At the element level, only 40% have correct role and
description pairs, while 49% contain role information only, and 11% are mislabeled. Bounding boxes
are accurate for 80% of elements, though 10% extend outside the visible window. This metadata
sparsity and noise make accessibility-only task generation unreliable. We therefore recommend
combining accessibility trees with screenshots and applying vision-based semantic adjustment to
generate more precise, function-oriented, visually grounded tasks.

4.3 EVALUATION: GROUNDING

We fine-tune and release three GUIRILLA-SEE agents of varying parameter scales on our GUIRILLA-
TASK dataset: GUIRILLA-SEE (0.7B) (based on Florence-2-large Xiao et al. (2024)), GUIRILLA-SEE
(3B) and GUIRILLA-SEe (7B) (based on Qwen-2.5-VL-Instruct Bai et al. (2025)). All models are
trained exclusively on GUIRILLA-TASK dataset. For training details, see Appendix A.4.

macOS Grounding Evaluation. We evaluate grounding by functional category on the GUIrilla-Task
test set and compare against multi-OS baselines (UI-TARS, OS-Atlas, UGround). We find that
across functional categories GUIrilla models achieve strong performance, with particularly large
gains in Settings (+8.7), Connectivity (+26.3), Files (+7.5), Input (+8.7), as can be seen in Table
2. These categories are representative of realistic core macOS desktop tasks, that are not usually
covered in web datasets that can show specific value we can bring to desktop automation. Importantly,
improvements are spread across element types as well (buttons, input fields, dialogs), the full table
can be found in Appendix, Table 7.

4https://huggingface.co/datasets/GUIrilla/GUIrilla-Gold/

6

https://huggingface.co/datasets/GUIrilla/GUIrilla-Gold/


324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Model Communication Files Navigation Search & Information E-commerce Accounts Input Apps Media Settings Connectivity Total
UI-TARS 2B 27.6% 45.6% 53.3% 49.5% 52.2% 61.9% 31.3% 50.0% 35.3% 50.3% 42.1% 47.53%
UI-TARS 1.5 7B 48.3% 67.0% 63.9% 74.7% 72.6% 81.0% 56.5% 68.8% 54.9% 80.9% 68.4% 69.07%
OS-Atlas 7B 48.3% 64.9% 59.9% 68.3% 70.8% 81.0% 53.9% 66.7% 60.8% 66.5% 63.2% 64.86%
UGround 2B 51.7% 63.0% 60.8% 70.0% 69.0% 81.0% 45.2% 62.5% 56.9% 67.6% 68.4% 64.03%
UGround 7B 62.1% 67.4% 68.7% 75.4% 69.0% 81.0% 54.8% 70.8% 52.9% 78.6% 52.6% 69.46%
GUIrilla-See 3B 51.7% 74.7% 68.7% 77.8% 76.1% 81.0% 57.4% 72.9% 60.8% 82.7% 73.7% 73.48%
GUIrilla-See 7B 65.5% 74.9% 70.5% 79.2% 78.8% 81.0% 65.2% 70.8% 60.8% 87.3% 78.9% 75.59%

Table 2: Performance breakdown across task categories on GUIrilla-Task test set. Best performance
per category shown in bold.

ScreenSpot Evaluation. Table 3 compares grounding accuracy on ScreenSpot-v2 Li et al. (2025)
and ScreenSpot-Pro. ScreenSpot-v2 evaluates grounding on application screenshot and ScreenSpot-
Pro contains challenging grounding tasks on full-screen desktop. While absolute comparisons are
limited by differences in model architectures, training pipelines, and closed-source datasets, the table
provides perspective on how dataset scale and composition affect performance. GUIRILLA-SEE (7B),
trained on just 6.8K synthetic macOS screenshots, matches UI-TARS 1.5 (7B) on macOS-specific
grounding (27.81% vs. 27.7%), while substantially outperforming other synthetic baselines like
OS-Atlas (7B) and OS-Atlas (4B), despite using 300× less data. Furthermore, the results on the
ScreenSpot-v2 benchmark validate GUIrilla-See effectiveness. Our best model achieves a remarkable
90.33% grounding accuracy, surpassing OS-Atlas (7B), also trained on synthetic data. Compared to
UGround (7B), which is trained on real web and Android UIs, GUIRILLA-SEE generalizes better
across all settings, including multi-platform benchmarks. This suggests that synthetic training can
compete with or exceed real-world data when structured UI diversity is high. To ensure fairness in
evaluation, we made sure that there is no data leakage, details can be found in Appendix A.5.1.

Model Platform Data # Images ScreenSpotv2 ScreenSpotPro ScreenSpotPro(macOS)
UI-TARS (7B) Multi-OS Real + Synthetic ∼20M (est.) 91.6% 35.7% 27.7%
GUIrilla-See (7B) macOS Synthetic 6.8K 90.33% 23.66% 27.81%
UI-TARS (72B) Multi-OS Real + Synthetic ∼20M (est.) 90.3% 38.1% 40.0%
GUIrilla-See (3B) macOS Synthetic 6.8K 85.2% 19.17% 22.02%
UI-TARS (2B) Multi-OS Real + Synthetic ∼20M (est.) 84.7% 27.7% 15.4%
OS-Atlas (7B) Multi-OS Synthetic 2.2M 83.3% 18.9% 20.0%
ShowUI (2B) Real Synthetic 256K 77.3% 7.7% 10.8%
UGround (7B) Web + Android Real 1.3M 76.3% 16.5% 12.3%
OS-Atlas (4B) Multi-OS Synthetic 2.2M 68.5% 3.7% 0.0%
GUIrilla-See (0.7B) macOS Synthetic 6.8K 53.55% 7.34% 7.95%
CogAgent (18B) Multi-OS Real + Synthetic 40M 52.8% 7.7% 4.6%

Table 3: Grounding Accuracy Comparison on ScreenSpotPro (Full) and macOS Subset

Additionally, we see that full-screen supervision (compared to Gou et al. (2025)) as well as task
formulation on a function level (compared to description-only as in Wu et al. (2024)) can enable
better contextual grounding in realistic GUI settings. Additional analysis of model robustness across
different decoding strategies and confidence intervals are provided in Appendix A.9.

Cross-OS transfer. Despite macOS-only training, GUIRILLA-SEE (7B) reaches 21.7% on Windows
(ScreenSpot-Pro) and 27.8% on macOS, exceeding OS-Atlas 7B (12.3% / 20%) and UGround 7B
(14.9% Windows). Thus, single-platform, function-level supervision does not preclude transfer and
can outperform larger mixed-OS synthetic sets on challenging full-desktop scenes.

4.4 QUALITATIVE ANALYSIS

Analysis of 1,565 tasks across 227 applications reveals that macOS-specific training yields consistent
improvements across fundamental UI interaction patterns. We identified 79 tasks where GUIrilla
succeeds while all baselines fail, demonstrating strong understanding of macOS-specific paradigms:
Finder-style dialogs ("Browse for movie destination folder"), System Preferences ("Edit advanced
output settings"), and window management ("Close the Chat-with-Erix panel"). These success
patterns validate our function-oriented approach, showing models learn what UI elements do rather
than where they appear or their visual description.

Failure Mode Analysis. ScreenSpot-Pro evaluation reveals two key weaknesses: (1) icon-dense
engineering tools such as Vivado, where tasks like “click group by repository button” or “open TCL
console” fail due to limited representation of compact, icon-heavy UIs in the dataset; and (2) creative

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

software like Illustrator and DaVinci Resolve, where canvas-focused actions such as “draw a circle” or
“select brush tool” expose insufficient coverage of creative workflows(Table 6). The model performs
well on office applications and system-level tasks, suggesting macOS-focused training generalizes
across typical desktop environments but requires targeted data collection for specialized professional
domains. This can be mitigated by extending crawling to more creative apps and using accounts with
pre-filled user-generated content in the future work, that allow for more content manipulation.

4.5 EVALUATION: AGENTS

Models. We evaluate a range of vision-language models (VLMs) varying in size, architecture, and
specialization on the GUIRILLA-TASK (agentic). These include proprietary systems like OpenAI
Computer Use OpenAI (2025) and Claude Computer Use Anthropic (2024) as well as open-source
models: UI-TARS 1.5 (7B), UI-TARS (2B) Qin et al. (2025), Qwen 2.5 VL (7B, 3B)Bai et al. (2025),
CogAgent 9B Hong et al. (2023), and OS-Atlas Pro 7B Wu et al. (2024).

Metrics. We report task success rates based on action accuracy. For click tasks, success requires
the predicted coordinates to fall within the target element’s bounding box. Input tasks additionally
require exact text matches.

Results. Without fine-tuning, all models struggled with input tasks (max 12.5% success), high-
lighting the difficulty of grounded text generation in desktop environments. OpenAI Computer Use
outperformed others, achieving the highest overall success rate at 64.41%. Full results are available
in Appendix A.6.2.

4.6 ABLATION STUDY

Impact of Accessibility Handlers on Exploration Coverage. Native accessibility annotations
vary inconsistently across applications, creating barriers to systematic exploration. The accessibility
handlers anticipate UI changes and execute meaningful interactions beyond basic clicking. Testing on
three macOS applications (Stocks, Maps, Weather) across graph depth, duplicate rate, task diversity,
and process time shows handlers increase task discovery by 5× in Stocks and 3× in Maps while
reducing duplicates and processing time (Appendix A.7.1). These handlers target platform-agnostic
problems: inconsistent element labeling, hidden components, and dynamic content. The logic
transfers to other operating systems facing similar accessibility inconsistencies.

Generative Task Agents. We compare two training approaches: (1) deterministic accessibility
metadata (name, role, role_description, value), and (2) GPT-4 task descriptions from
screenshots and element crops (Table 10). Accessibility metadata often reduces to generic labels like
"button" or "text" without capturing functional intent. In contrast, GPT-generated descriptions under-
stand visual context and explicit purpose. When UI screens contain similar elements, accessibility
labels create ambiguous supervision signals that hinder target identification. Florence-0.7B achieved
53.55% accuracy on GPT-generated tasks versus 40.35% on accessibility-based tasks—a 13-point
gap demonstrating that functional supervision outperforms surface-level properties for training UI
agents.

Impact of backbone model. We further examined how the choice of backbone model influences
performance. When trained on our dataset, a Qwen2-VL 7B backbone already surpasses OS-Atlas,
despite both using the same underlying model. Notably, OS-Atlas was trained on nearly 300× more
data, yet our model achieves higher accuracy: +1.34% in average and +2.02% on the macOS subset
of ScreenSpotPro. These results highlight the data efficiency of our approach.

5 IMPACT, LIMITATIONS, AND ETHICS

Broader Impact. This work has significant potential to advance accessibility technology develop-
ment, directly benefiting users with disabilities who rely on assistive technologies. By systematically
collecting UI interaction data, our framework can improve screen readers, voice-controlled interfaces,
and other adaptive technologies that help users navigate complex desktop environments.

Technical Limitations. Our approach is primarily constrained by dependence on developer-provided
accessibility metadata, which exhibits considerable variation in quality across applications. While

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

currently implemented for macOS, the methodology can be adapted to other platforms such as
Windows5, Linux6, and Android7 by leveraging their existing accessibility infrastructures, though
this requires platform-specific engineering. Additionally, solutions like OmniParser Lu et al. (2024)
or Screen2AX Muryn et al. (2025) can be used to remove full reliance on accessibility metadata.

5.1 ETHICAL CONSIDERATIONS

We acknowledge potential risks including privacy violations, security circumvention, and malicious
automation. To mitigate these concerns, we implement technical safeguards:

• Sandboxed Environments: We strongly recommend conducting data collection in dedicated
environments with anonymized profiles to prevent accidental data leakage

• Local-Only Operation: All collection, replay, and annotation occur entirely locally without
requiring data transmission to third parties

• Deterministic Handlers: Rule-based handlers enable fully offline, privacy-preserving
automation without external API dependencies

• Limited API Access: Framework operates strictly via public macOS Accessibility APIs
with no privileged system calls

• Security-Critical Exclusion: We explicitly avoid interaction with authentication, payment,
or CAPTCHA-related interfaces

Responsible Use Guidelines: We explicitly discourage malicious use through clear documentation
and recommend: (1) running crawlers only in controlled environments with synthetic inputs, (2)
applying data filtering to remove sensitive content, and (3) using deterministic handlers for regulated
data. Acceptable use cases include academic Human-Computer-Interaction research, accessibility
technology development, and educational applications in controlled environments. Prohibited uses
include automation of financial/healthcare systems, security circumvention, unauthorized personal
data collection, and creation of tools for harassment or illegal activities. We remain committed to
community oversight and transparent release practices, maintaining openness to policy revisions
based on feedback to ensure responsible deployment of UI automation capabilities.

Use of Large Language Models. Portions of this manuscript were refined with the assistance of
large language models (LLMs) for grammar and style.

6 CONCLUSIONS AND FUTURE DIRECTIONS

We introduce GUIRILLA, a fully automated framework that addresses the critical data scarcity
challenge in desktop GUI automation. By combining accessibility-based crawling with agent-guided
reasoning, our approach reduces costly manual annotation while systematically exploring full-window,
multi-application environments. This directly addresses the limitations of prior work, which often
focuses on narrow sets of applications or relies on manual annotation pipelines. Beyond the dataset,
GUIRILLA’s broader impact lies in its extensibility to other operating systems and continuous
automated collection pipeline, enabling agents to adapt to evolving UI standards while significantly
reducing annotation bottlenecks. Our framework lays the groundwork for developing general-purpose
desktop agents by standardizing scalable task collection across diverse application domains.

Future Work. While GUIRILLA currently leverages built-in accessibility APIs, future extensions
could integrate image-to-accessibility generation techniques to enable crawling in environments
where native accessibility is limited or unavailable. Another promising direction is the development
of local vision–language model (VLM) agents that actively explore applications, using reinforcement
learning or related approaches to improve coverage and discover novel interaction patterns. These
directions would further broaden the applicability of our framework and support more autonomous,
adaptive, and scalable data collection pipelines.

5https://learn.microsoft.com/en-us/dotnet/framework/ui-automation/
6https://gnome.pages.gitlab.gnome.org/at-spi2-core/libatspi/
7https://developer.android.com/reference/android/view/accessibility/

AccessibilityNodeInfo

9

https://learn.microsoft.com/en-us/dotnet/framework/ui-automation/
https://gnome.pages.gitlab.gnome.org/at-spi2-core/libatspi/
https://developer.android.com/reference/android/view/accessibility/AccessibilityNodeInfo
https://developer.android.com/reference/android/view/accessibility/AccessibilityNodeInfo


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Anthropic. Introducing computer use, a new claude 3.5 sonnet, and claude 3.5 haiku. https:
//docs.anthropic.com/en/docs/agents-and-tools/computer-use, October
2024. Accessed: 2025-05-14.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiyong Wu.
Seeclick: Harnessing GUI Grounding for Advanced Visual GUI Agents. 2024. doi: 10.48550/
ARXIV.2401.10935. URL https://arxiv.org/abs/2401.10935.

Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan, Yang Li, Jeffrey
Nichols, and Ranjitha Kumar. Rico: A mobile app dataset for building data-driven design
applications. In Proceedings of the 30th Annual ACM Symposium on User Interface Software
and Technology, UIST ’17, pp. 845–854, New York, NY, USA, 2017. Association for Computing
Machinery. ISBN 9781450349819. doi: 10.1145/3126594.3126651. URL https://doi.org/
10.1145/3126594.3126651.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a Generalist Agent for the Web. 2023. doi: 10.48550/ARXIV.2306.06070.
URL https://arxiv.org/abs/2306.06070.

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and
Yu Su. Navigating the digital world as humans do: Universal visual grounding for gui agents, 2025.
URL https://arxiv.org/abs/2410.05243.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxuan Zhang, Juanzi Li, Bin Xu, Yuxiao Dong, Ming Ding, and Jie Tang. Cogagent:
A Visual Language Model for GUI Agents. 2023. doi: 10.48550/ARXIV.2312.08914. URL
https://arxiv.org/abs/2312.08914.

Raghav Kapoor, Yash Parag Butala, Melisa Russak, Jing Yu Koh, Kiran Kamble, Waseem Alshikh,
and Ruslan Salakhutdinov. Omniact: A Dataset and Benchmark for Enabling Multimodal General-
ist Autonomous Agents for Desktop and Web. 2024. doi: 10.48550/ARXIV.2402.17553. URL
https://arxiv.org/abs/2402.17553.

Sunjae Lee, Junyoung Choi, Jungjae Lee, Munim Hasan Wasi, Hojun Choi, Steven Y. Ko, Sangeun
Oh, and Insik Shin. Explore, select, derive, and recall: Augmenting llm with human-like memory
for mobile task automation, 2024. URL https://arxiv.org/abs/2312.03003.

Kaixin Li, Ziyang Meng, Hongzhan Lin, Ziyang Luo, Yuchen Tian, Jing Ma, Zhiyong Huang, and
Tat-Seng Chua. Screenspot-Pro: Gui Grounding for Professional High-Resolution Computer Use.
2025. doi: 10.48550/ARXIV.2504.07981. URL https://arxiv.org/abs/2504.07981.

Junpeng Liu, Tianyue Ou, Yifan Song, Yuxiao Qu, Wai Lam, Chenyan Xiong, Wenhu Chen, Graham
Neubig, and Xiang Yue. Harnessing webpage uis for text-rich visual understanding, 2024a. URL
https://arxiv.org/abs/2410.13824.

Junpeng Liu, Yifan Song, Bill Yuchen Lin, Wai Lam, Graham Neubig, Yuanzhi Li, and Xiang
Yue. Visualwebbench: How far have multimodal llms evolved in web page understanding and
grounding?, 2024b. URL https://arxiv.org/abs/2404.05955.

Yadong Lu, Jianwei Yang, Yelong Shen, and Ahmed Awadallah. Omniparser for pure vision based
gui agent, 2024. URL https://arxiv.org/abs/2408.00203.

Viktor Muryn, Marta Sumyk, Mariya Hirna, Sofiya Garkot, and Maksym Shamrai. Screen2ax: Vision-
based approach for automatic macos accessibility generation. arXiv preprint arXiv:2507.16704,
2025.

OpenAI. Computer-using agent, January 2025. URL https://openai.com/index/
computer-using-agent/. Accessed: 2025-05-15.

10

https://docs.anthropic.com/en/docs/agents-and-tools/computer-use
https://docs.anthropic.com/en/docs/agents-and-tools/computer-use
https://arxiv.org/abs/2401.10935
https://doi.org/10.1145/3126594.3126651
https://doi.org/10.1145/3126594.3126651
https://arxiv.org/abs/2306.06070
https://arxiv.org/abs/2410.05243
https://arxiv.org/abs/2312.08914
https://arxiv.org/abs/2402.17553
https://arxiv.org/abs/2312.03003
https://arxiv.org/abs/2504.07981
https://arxiv.org/abs/2410.13824
https://arxiv.org/abs/2404.05955
https://arxiv.org/abs/2408.00203
https://openai.com/index/computer-using-agent/
https://openai.com/index/computer-using-agent/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Pawel Pawlowski, Krystian Zawistowski, Wojciech Lapacz, Marcin Skorupa, Adam Wiacek, Se-
bastien Postansque, and Jakub Hoscilowicz. Tinyclick: Single-turn agent for empowering gui
automation, 2024. URL https://arxiv.org/abs/2410.11871.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang,
Jiahao Li, Yunxin Li, Shijue Huang, Wanjun Zhong, Kuanye Li, Jiale Yang, Yu Miao, Woyu Lin,
Longxiang Liu, Xu Jiang, Qianli Ma, Jingyu Li, Xiaojun Xiao, Kai Cai, Chuang Li, Yaowei Zheng,
Chaolin Jin, Chen Li, Xiao Zhou, Minchao Wang, Haoli Chen, Zhaojian Li, Haihua Yang, Haifeng
Liu, Feng Lin, Tao Peng, Xin Liu, and Guang Shi. Ui-tars: Pioneering automated gui interaction
with native agents, 2025. URL https://arxiv.org/abs/2501.12326.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. Android in the
Wild: A Large-Scale Dataset for Android Device Control. 2023. doi: 10.48550/ARXIV.2307.10088.
URL https://arxiv.org/abs/2307.10088.

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth
Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, Daniel Toyama, Robert Berry,
Divya Tyamagundlu, Timothy Lillicrap, and Oriana Riva. Androidworld: A Dynamic Bench-
marking Environment for Autonomous Agents. 2024. doi: 10.48550/ARXIV.2405.14573. URL
https://arxiv.org/abs/2405.14573.

Nataliia Stulova Sergii Kryvoblotskyi. Collecting a Dataset of macOS Apps: Pains, Gains, Lessons
Learned. Part 1, May 2025. URL https://research.macpaw.com/publications/
macos-app-dataset. [Online; accessed 16. May 2025].

Al Sweigart. Pyautogui: A cross-platform gui automation python module for human beings. https:
//github.com/asweigart/pyautogui, 2015. Accessed: 2025-05-15.

Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao, Tao Yu, Toby Jia-Jun Li, Shiqi Jiang, Yunhao
Liu, Yaqin Zhang, and Yunxin Liu. Autodroid: Llm-powered Task Automation in Android.
Proceedings of the 30th Annual International Conference on Mobile Computing and Networking,
pp. 543–557, 2023. doi: 10.48550/ARXIV.2308.15272. URL https://arxiv.org/abs/
2308.15272.

Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao, Tao Yu, Toby Jia-Jun Li, Shiqi Jiang, Yunhao
Liu, Yaqin Zhang, and Yunxin Liu. Autodroid: Llm-powered task automation in android, 2024.
URL https://arxiv.org/abs/2308.15272.

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng,
Zichen Ding, Liheng Chen, Paul Pu Liang, and Yu Qiao. Os-atlas: A foundation action model for
generalist gui agents, 2024. URL https://arxiv.org/abs/2410.23218.

Bin Xiao, Haiping Wu, Weijian Xu, Xiyang Dai, Houdong Hu, Yumao Lu, Michael Zeng, Ce Liu,
and Lu Yuan. Florence-2: Advancing a unified representation for a variety of vision tasks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
4818–4829, 2024.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio
Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking multimodal agents
for open-ended tasks in real computer environments, 2024. URL https://arxiv.org/abs/
2404.07972.

11

https://arxiv.org/abs/2410.11871
https://arxiv.org/abs/2501.12326
https://arxiv.org/abs/2307.10088
https://arxiv.org/abs/2405.14573
https://research.macpaw.com/publications/macos-app-dataset
https://research.macpaw.com/publications/macos-app-dataset
https://github.com/asweigart/pyautogui
https://github.com/asweigart/pyautogui
https://arxiv.org/abs/2308.15272
https://arxiv.org/abs/2308.15272
https://arxiv.org/abs/2308.15272
https://arxiv.org/abs/2410.23218
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2404.07972


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 DATASET STATISTICS

The collected tasks were split into train and test subsets, such that the applications in test did not
appear in train, and test applications contained larger, more complicated accessibility trees. There are
881 applications with 25, 606 entries in train and 227 applications with 1, 565 task entries in test.

A.1.1 REPRESENTATIVE SAMPLE FROM THE DATASET

Each sample in the dataset includes the following structured fields:

• Screen ID: Unique identifier for the UI screen.

• App Name: Bundle identifier of the application.

• Task: Natural language description of the agent’s objective.

• Raw Action: Deterministic textual representation of the user action.

• Action: Structured action format, e.g., "left click, (x, y)".

• Element Data: JSON metadata of the target UI element extracted from the accessibility
tree.

• Scaling Factor: Display scaling factor for the specific screen.

• Original Task: Boolean indicating whether the task was derived directly from the original
interaction graph.

• A11y Path: Full accessibility tree before the action was taken.

• Image: Full-screen desktop screenshot, stored as a binary image.

• Cropped Image: Subregion of the full screenshot containing the target application (variable
dimensions).

• Segmented Image: Screenshot of the application window with segmented UI regions.

• Task Category: One of 22 predefined task categories (e.g., Search & Information, Files).

• Element Category: One of 16 UI element types (e.g., Slider, Button).

Figure 3: Example sample from our dataset. Left: screenshot of the macOS desktop interface. Upper
right: target element cropped. Lower right: a segment of the accessibility tree.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A.1.2 COLLECTION STATISTICS

Othe
r

Prod
uc

tiv
ity

Pho
to 

& Vide
o

Edu
ca

tio
n

Bus
ine

ss

Utili
tie

s

Dev
elo

pe
r T

oo
ls

Grap
hic

s &
 D

es
ign

Mus
ic

Application Genre

0

1000

2000

3000

4000

5000

C
ou

nt

203 188 127 62 68
244

88 66 61

4418

3859
4022

1704
1445

5131

1293

2590

1463

Number of Apps
Number of Tasks

Figure 4: Number of apps and associated tasks per genre. For each genre, the left bar shows the
number of apps, and the right bar shows the number of tasks. Colors distinguish between the
two quantities. The figure highlights disparities between app availability and task density across
categories.

Butt
on

Inp
ut 

fie
ld

Othe
r

Men
u i

tem

Che
ck

bo
x/C

on
tro

l

Element Genre

0

5000

10000

15000

20000

N
um

be
r o

f T
as

ks

(a) Distribution of tasks per element type. The most
prevalent category is buttons.

Sea
rch

 &
 In

for
mati

on
File

s

Nav
iga

tio
n

App
s

Sett
ing

s
Othe

r
Inp

ut

Med
ia

Task Genre

0

2000

4000

6000

N
um

be
r o

f T
as

ks

(b) Distribution of tasks per task type.

Figure 5: Distributions of tasks across element types (left) and task types (right).

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

0 200 400 600 800 1000 1200 1400 1600
X Coordinate (pixels)

0

100

200

300

400

500

600

700

800

900

Y 
C

oo
rd

in
at

e 
(p

ix
el

s)

0 500 1000 1500
Element Width (pixels)

0

2500

5000

7500

Fr
eq

ue
nc

y

0 4000 8000 12000
Frequency

0

250

500

750

E
le

m
en

t h
ei

gh
t (

pi
xe

ls
)

Figure 6: Top-left: Distribution of target element widths. Bottom-left: Distribution of target element
center locations, showing that most target elements are positioned near the bottom of the desktop
interface. Bottom-right: Distribution of target element heights.

Many interaction targets are located in peripheral regions (e.g., toolbars, corners), and a large
proportion are visually small, with limited surface area (Figure 6).

A.2 PARAMETERS

Parameter Description
Maximum parsing duration Specified in minutes, default is 2 hours
Deterministic text input Default string is ’DEFAULT’
Maximum parsing tree depth Default is 25
Cursor move before click Defaults to False
Agent usage Set to True by default. Can be enabled if an OpenAI API key is

provided in a separate file
Task collection Defaults to True. If set to False, graphs can be collected

without their associated tasks

Table 4: Configuration Parameters for the Crawler

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.3 PROMPTS

Input Agent Instructions

Analyze the given macOS application accessibility screen information and follow these steps:

1. Determine the type and purpose of the application based on the provided elements
and descriptions.

2. Identify all AXTextField elements present in the structure.
3. For each AXTextField:

(a) Infer its specific purpose within the application context.
(b) Consider what a user would input in this field based on accessibility cues and

typical behavior.
(c) Generate an example input relevant to the field’s likely function and the app’s

overall purpose.

Output: A JSON object where:
• Keys = integer IDs of the AXTextField elements
• Values = realistic example inputs, based on screen context

Only return the JSON object—no additional explanations.
Examples:

• {7: "Yellow Submarine"} // Music app search
• {12: "John", 15: "Smith", 21: "07580198241"} // Contacts

app
• {8: "main"} // IDE project file search

Note: Ensure that inputs are app-appropriate and reflect common human interactions.

Order Agent Instructions

Given accessibility screen info, organize UI elements in logical interaction order. Consider
irreversible actions and screen transitions.
Output: JSON with nested groups (max 8), each containing element IDs:

• Prioritize elements in popovers, content switches, and window controls.
• Derive element type from description if needed.
• Include ALL element IDs from input.

Grouping Rules:
• dynamic_TYPE — dynamic lists (emails, notes, etc.)
• repeated_TYPE — options where only one is needed (date, category, etc.)
• Avoid grouping unrelated or static UI items together.

Flags to include when relevant:
• "login_page": true

• "system_access_required": true

Example 1 — Complex App:
{

"action_order": [
{"menu_buttons": [1, 2, 3]},
{"dynamic_emails": [4, 5, 6, 7]},
{"repeated_time_selection": [8, ..., 31]},
{"popover_buttons": [32, 33]}

],

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

"login_page": false,
"system_access_required": false

}

Example 2 — Login Page:
{

"action_order": [
{"login_elements": [1, 2, 3]},
{"account_settings": [4]}

],
"login_page": true,
"system_access_required": false

}

Click Task Prompt

You are given a UI screenshot, an image of the clicked UI element. The clicked element is highlighted
in red. Your task is to describe the action needed to click this element.
Guidelines:
0. If the element is not perfectly selected (ex. partially), the box is strangely located, or no human would
do this task - return empty string.
1. The task must describe the function, not the appearance of the element. For example, prefer "Create a
new document" over "Click the grey + button." Repeating the element’s text is acceptable.
2. The task must be unique to this screen. For example, if there are two buttons labeled "Open," you
must specify which "Open" button is meant.
3. The task must consider the app context, but not imagine extra information. For example, if the app
is an image editor and the button is "Delete," the better task is "Delete an image", not just a generic
"delete."
4. Use the fewest words possible without sacrificing clarity.
5. Write the task in straightforward English only.
6. Select a category for each task. Must be one of Navigation (go back), Settings (adjust volume), Files
(save file), Apps (open edge), Search & Information (check weather), Media (play music), Accounts
(sign in), Communication (share file), Input (enlarge font), Connectivity (connect wifi), Modes (dark
mode), E-commerce (add to cart)
7. Select a category for each element. Must be one of Image, Text, Checkbox/Control, Menu item, Input
field, Button, Group, Link.
Important notes:
The click is based on accessibility information. Metadata may be incorrect or the element may not exist.
Rely primarily on the images.
The element image should show a single element with a unique function. If the element is obstructed,
covered by a window or pop-up, or if multiple cropped elements are shown — return an empty string.
Inspect the red box carefully: if the element is not visible, return an empty string.
If there is no red box - return empty string. Return your answer in JSON format, with no extra text.
Example:

{
"task": "Open the menu to see tutorials",
"task_category": "Search & Information",
"element_category": "Button"}

Input Task Prompt

You are given:
• An original task description for a UI interaction: {task_string}

• A screenshot showing the full interface with a red-highlighted element

• A cropped view focusing on just the highlighted element

Your goal: Change the task into a natural-language instruction fully in English that involves only
inputting text. Output an action as "type" + the exact text to input. If not clearly solvable from the
task, revise it.
Key Principles:

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

• Make it sound like a real instruction a person would give

• Use exact input (no placeholders); don’t interpret content—be explicit

• Focus on real-world intent and what a user is likely trying to do

Requirements:
• Instruction must be clear, natural, and concise

• Action must start with type and include exact text

• Both fields must be fully in English

• No placeholders like “your name” or “email”

• Avoid click/press/select – only typing

• Must be obvious what to type from the instruction

• Never add phrases like “by typing it”

Output Format (JSON):
{"task": "Use john.doe@example.com as your login email",
"action": "type john.doe@example.com"}

Bad vs Good Examples:
• “Enter coded message” → “Enter 1234 as your coded message”

• “Save your converted files. . . ” → “Use /Users/yourname/Desktop as your destination folder”

• “Check the box labeled. . . ” → “Select Include borders and shadings as your option”

Avoid These Mistakes:
• Placeholder text: “your name” → “Maria Garcia”

• Mechanical: “password in field” → “Use TrustNo1 as your password”

• UI-only focus: “Fill search box” → “Find information about electric cars”

• Vague: “Type the code” → “Enter 8294 as your verification code”

• Impersonal: “Input required” → “Add your birthday as 03/15/1988”

A.4 TRAINING SETUP

We training 3 GUI agents on the collected dataset.

A.4.1 GUIRILLA-SEE-0.7B

GUIrilla-See-0.7B is built on FLORENCE 2-LARGE (≈ 0.7 B parameters) and fine-tuned via su-
pervised fine-tuning for open-vocabulary detection in GUI screenshots. Given an image and a
free-form textual query, the model predicts either a bounding box or a polygon mask that encloses
the best-matching UI element.

LoRA configuration. Fine-tuning uses Low-Rank Adaptation with RSLoRA initialisation:

• rank r = 8

• scaling α = 16

• dropout = 0.05

• bias = none

• target modules = {q_proj,o_proj,k_proj,v_proj,linear,Conv2d,lm_head,fc2}
• weight init Gaussian

Training setup.

• Hardware: 1 × NVIDIA A100 40 GB.

• Batch size: 8, mixed precision.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

• Optimiser: AdamW, learning rate 2 × 10−5. Cosine decay schedule with a 5% warm-up
fraction.

• Epochs: 4; total wall-clock time ≈ 10 hours.

A.4.2 GUIRILLA-SEE-3B

GUIrilla-See-3B starts from QWEN-2.5-VL-3B-INSTRUCT (3 B parameters) and is fine-tuned with
supervised fine-tuning (SFT) to localise macOS GUI elements. Given a full-desktop screenshot and a
natural-language instruction, the model outputs a single coordinate (x, y) that lies at (or very close
to) the centre of the referenced region.

LoRA configuration. Fine-tuning uses Low-Rank Adaptation (LoRA) in bfloat16 mixed preci-
sion:

• rank r = 32

• scaling α = 16

• dropout = 0.1

• bias = none
• target modules = {down_proj,o_proj,k_proj,q_proj,gate_proj,up_proj,v_proj}
• weight init Gaussian

Training setup.

• Hardware: 2 × NVIDIA H100 80 GB.
• Global batch size: 16
• Optimiser: AdamW with β1 = 0.9, β2 = 0.95.
• Learning rate: 2× 10−5, cosine decay schedule, warm-up ratio 0.05.
• Attention kernel: FlashAttention-2 for memory-efficient training.
• Epochs: 2; total wall-clock time ≈ 5 hours.

A.4.3 FINE-TUNING IMPROVEMENT ON BASE MODELS.

Model Base Acc. (%) Tuned Acc (%)

Florence Large (0.7B) 8.31 53.55
Qwen 2.5 VL (3B) 18.40 73.48
Qwen 2.5 VL (7B) 35.78 75.59

Table 5: Accuracy improvements after fine-tuning on GUIRILLA-TASK.

A.4.4 GUIRILLA-SEE-7B

We also train a larger model that starts from QWEN-2.5-VL-7B-INSTRUCT (7B parameters). All
LoRA, optimiser, and scheduler settings are kept identical to the 3B run. Using the same 2 × H100
80 GB configuration with FlashAttention-2, training finishes in roughly 6–7 hours.

A.5 SCREENSPOT DETAILS

A.5.1 DATA LEAKAGE ANALYSIS ON SCREENSPOT

We manually screened overlaps by bundle IDs and application names to ensure no data leakage
happened during training for both ScreenSpot v2 and ScreenSpot-Pro benchmarks. As ScreenSpot-v2
doesn’t provide this information, we manually labeled the apps there.

We discovered the following overlaps out of 881 applications in our train dataset and ScreenSpot
test sets: OneNote appears in train data (macOS app) and in ScreenSpot-v2 (Windows). This app

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

has 1 task in the benchmark, and the login screen looks identical, so the leakage may have affected
the result. We adjusted the score to account for it from 90.41% -> 90.33%. This doesn’t influence
the ranking, yet we adjusted the score for fairness. Microsoft Excel appears in the train dataset and
in ScreenSpot-Pro. Here we manually looked at every screen (screen ids 4650-4659) and found
that our data only includes a login flow and never actually opens the main app and its functionality.
In ScreenSpot-Pro on the other hand, all tasks focus on Excel functions as part of the multi screen
window. So, we assume that no major leakage was done here.

(a) GUIrilla: Excel login page. (b) ScreenSpotPro: Main app with table manipulation.

Figure 7: Side-by-side comparison of Excel app data across datasets.

Model Development Creative CAD Scientific Office Overall Acc
UI-TARS-72B 40.8 39.6 17.2 45.7 54.8 38.1
UI-TARS-7B 36.1 32.8 18.0 50.0 53.5 35.7
UI-TARS-2B 26.4 27.6 14.6 39.8 42.6 27.7
GUIrilla-See-7B 23.08 14.37 16.09 35.83 37.39 23.66
GUIrilla-See-3B 19.40 10.56 14.94 29.13 30.00 19.17
OS-Atlas-7B 17.7 17.9 10.3 24.4 27.4 18.9
UGround-7B 14.7 17.0 11.1 19.3 27.0 16.5
CogAgent (18B) 8.0 5.6 6.1 13.4 10.0 7.7
ShowUI (2B) 9.4 5.3 1.9 10.6 13.5 7.7
GUIrilla-See-0.7B 6.69 6.45 3.83 12.20 8.26 7.34
OS-Atlas-4B 3.7 2.3 1.5 7.5 4.8 3.7

Table 6: Task category performance per app category on ScreenSpot-Pro.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A.6 ADDITIONAL EVALUATION DETAILS

A.6.1 GROUNDING

In grounding evaluations (Table 7), GUIRILLA-SEE (7B) achieved the highest overall accuracy at
75.59%. GUIRILLA-SEE (7B) showed particularly strong results on buttons, input fields, and "Other"
elements such as icons and links, demonstrating robust performance across varied UI components.
Interestingly, UGround shows marginal advantages in menu-heavy tasks, and we found their data to
contain 400× more menu samples, reflecting the limits of scale without functional task diversity.

Grounding Accuracy (%)
Model Button Input Menu Checkbox Other Overall

Qwen 2.5 3B 8.0 0.0 0.0 - – -
Qwen 2.5 7B 36.49 30.36 46.0 44.68 24.74 35.78
UI TARS 2B 50.56 25.0 52.67 59.57 36.84 47.53
UGround v1 2B 64.26 48.21 79.33 68.09 58.95 64.03
OS-Atlas-Base-7B 65.76 53.57 72.67 57.45 62.11 64.86
UI TARS 1.5 7B 68.57 64.29 86.67 78.72 58.42 69.07
UGround v1 7B 68.67 56.25 88.67 78.72 64.21 69.46
GUIrilla-See (3B) 74.48 61.61 81.33 78.72 66.84 73.48
GUIrilla-See (7B) 76.55 66.07 86.67 76.6 66.84 75.59

Table 7: Grounding accuracy across models and element categories on GUIRILLA-TASK.

Figure 8: Comparative Performance on GUIrilla-Task (Grounding) of Vision Language Models
Across Application Domains. Larger models (7B) generally outperform smaller ones, with the
biggest gains in Developer Tools, Productivity, and Graphics & Design. GUIrilla-See 3B shows
strong performance relative to 7B models, indicating effective domain specialization.

A.6.2 AGENTIC

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Success Rate (%)
Model Input Click Overall

OpenAI Computer Use 8.04 68.75 64.41
Claude Computer Use 8.93 65.59 61.53
OS-Atlas-Pro-7B 7.14 62.84 58.85
UI TARS 1.5 7B 1.79 54.65 50.86
UI TARS 2B 7.14 50.24 47.16
Qwen 2.5 VL 3B 12.5 42.95 40.77
Qwen 2.5 VL 7B 2.68 39.16 36.55
CogAgent 9B 3.57 15.83 14.95

Table 8: Success rate across models and interaction categories on GUIRILLA-TASK (agentic)

A.7 ABLATION DETAILS

A.7.1 INFLUENCE OF HANDLERS

Application Metric Handler-Supported Crawler Random Crawler

Stocks
Graph Depth 14 16
Number of Tasks 162 32
Duplicate rate 0.08 0.14
Parse Time (hh:mm:ss) 00:20:51 00:29:35

Maps
Graph Depth 6 9
Number of Tasks 107 36
Duplicate rate 0.1 0.2
Parse Time (hh:mm:ss) 00:21:00 00:25:35

Weather
Graph Depth 6 7
Number of Tasks 73 73
Duplicate rate 0.0 0.01
Parse Time (hh:mm:ss) 00:10:56 01:05:48

Table 9: Comparison of Handler-Supported Crawler vs Random Crawler Across Applications

A.7.2 COMPARING DETERMINISTIC AND GPT-REFINED TASK DESCRIPTIONS

Table 10: Examples of Task Agent and Deterministic Instructions by App

App Task Agent Deterministic

Prayer Notes Access Prayer Notes support page button

GoProPlayer Open a media file button Open_Media. . .

Fax Add files or images to the fax ADD FILES OR IMAGES button

A.8 GUIRILLA-GOLD DATASET ANNOTATION GUIDELINES

A.8.1 OVERVIEW

This document provides instructions for annotators to evaluate and improve UI task datasets, with
focus on accessibility principles.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

A.8.2 TASK STRING FEASIBILITY EVALUATION

Evaluation Steps:

• Step 1: Evaluate clarity and readability of the task string. Edit if ambiguous or poorly
phrased.

• Step 2: Assess executability. Mark as DOABLE if the task is clear and the required element
is visible. Mark as NOT DOABLE if the element is not visible or does not exist.

DOABLE Examples: “Click the Submit button”, “Type ‘hello world’ in the search field”
NOT DOABLE Examples: “Click the button” (when multiple buttons present), “Enter your pass-
word” (if no password input visible)

A.8.3 TASK EXECUTION GUIDELINES

Attempt to execute the task exactly once to verify correctness:

• Click Actions: Locate the correct element and click once within its bounding box

• Type Actions: Find the input field and type the exact text provided (case-sensitive)

• Multi-step Tasks: Mark as NOT DOABLE if requiring multiple distinct actions

Constraints: Attempt only once, no retries. Do not fabricate actions not in the task string.

A.8.4 ACCESSIBILITY QUALITY RATING (1–3 SCALE)

Score 1 – BAD: Critical issues severely impact assistive technology—missing labels, incorrect roles,
invisible elements, broken grouping, no logical structure.

Score 2 – MEDIUM: Moderate issues present—incomplete/generic labels, occasional role mis-
matches, partial grouping, minor positioning issues.

Score 3 – GOOD: Accessibility tree accurately represents visual UI—descriptive labels, accurate
roles, proper grouping, logical structure, complete state information.

A.8.5 LABEL AND ROLE VERIFICATION

Review each element’s semantic description and role. Uncheck “Semantic” if the meaning or AX
role is incorrect. Uncheck “BBox” if the bounding box doesn’t match the visible element.

A.8.6 QUALITY ASSURANCE CHECKLIST

□ Task string evaluated and edited for clarity

□ NOT DOABLE marked for invisible elements

□ Task execution attempted once

□ Accessibility score reflects usability

□ Labels and roles verified

□ Checkboxes unchecked for mismatches

A.9 CONFIDENCE INTERVALS AND SENSITIVITY TO DECODING STRATEGIES

To provide uncertainty estimates and strengthen the reliability of model comparisons, we conducted
additional experiments examining performance variability across different decoding strategies.

A.9.1 EXPERIMENTAL SETUP

Our primary results were obtained using greedy decoding with the following generation parameters:
num_beams=3, do_sample=False, temperature=None, top_p=None, top_k=None.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

To assess performance variability, we re-evaluated all models using stochastic decoding with parame-
ters: num_beams=3, do_sample=True, temperature=0.3. For each model, we conducted
three independent runs and computed mean ± standard deviation of success rates.

A.9.2 RESULTS

Table 11 presents results for both decoding strategies on the GUIrilla-Task test set.

Model Greedy (%) Sampled (T=0.3) (%)
Florence Base 10.73 10.64 ± 0.10
Florence Large 8.31 8.08 ± 0.10
Qwen 2.5 VL 3B 17.96 18.06 ± 0.22
Qwen 2.5 VL 7B 35.78 35.40 ± 0.45
UI-TARS 2B 47.54 18.43 ± 0.22
UI-TARS 1.5 7B 69.07 52.17 ± 0.42
UGround v1 2B 64.03 64.41 ± 0.00
UGround v1 7B 69.46 69.84 ± 0.06
OS-Atlas-Base-7B 64.86 61.82 ± 0.10

GUIrilla-See-0.7B 53.55 53.48 ± 0.32
GUIrilla-See-3B 73.48 73.90 ± 0.03
GUIrilla-See-7B 75.59 75.85 ± 0.06

Table 11: Performance comparison between greedy and stochastic decoding strategies. Models
fine-tuned on GUIrilla-Task (bottom section) show consistent performance with minimal variance,
while some pretrained models exhibit notable degradation under stochastic decoding.

The results reveal distinct patterns in decoding sensitivity. Fine-tuned GUIrilla-See models demon-
strate remarkable consistency across decoding strategies, with standard deviations below 0.32% in all
cases. This stability suggests robust learning of UI interaction patterns.

In contrast, several pretrained models show significant performance degradation under stochastic
decoding, most notably UI-TARS models which experience drops of 16-29 percentage points. This
sensitivity highlights the importance of decoding strategy selection and suggests that some models
may be overfitting to specific generation patterns during pretraining.

The minimal variance observed in our fine-tuned models provides confidence in the reported per-
formance gains and demonstrates the robustness of the GUIrilla training approach across different
inference conditions.

23


	Introduction
	Related work
	Methodology
	Crawler
	Graph Structure
	Task Generation

	Results
	GUIrilla-Task Statistics and Collection Pipeline
	Synthetic Data Quality: GUIrilla-Gold
	Evaluation: Grounding
	Qualitative Analysis
	Evaluation: Agents
	Ablation study

	Impact, Limitations, and Ethics
	Ethical Considerations

	Conclusions and Future Directions
	Appendix
	Dataset statistics
	Representative sample from the dataset
	Collection statistics

	Parameters
	Prompts
	Training Setup
	GUIrilla-See-0.7B
	GUIrilla-See-3B
	Fine-tuning improvement on base models.
	GUIrilla-See-7B

	ScreenSpot Details
	Data Leakage Analysis on ScreenSpot

	Additional Evaluation Details
	Grounding
	Agentic

	Ablation Details
	Influence of Handlers
	Comparing Deterministic and GPT-Refined Task Descriptions

	GUIrilla-Gold Dataset Annotation Guidelines
	Overview
	Task String Feasibility Evaluation
	Task Execution Guidelines
	Accessibility Quality Rating (1–3 Scale)
	Label and Role Verification
	Quality Assurance Checklist

	Confidence Intervals and Sensitivity to Decoding Strategies
	Experimental Setup
	Results



