Under review as a conference paper at ICLR 2026

GUIRILLA: A SCALABLE FRAMEWORK FOR AUTO-
MATED DESKTOP UI EXPLORATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Autonomous agents capable of operating complex graphical user interfaces (GUIs)
have the potential to transform desktop automation. While recent advances in large
language models (LLMs) have significantly improved Ul understanding, navigating
full-window, multi-application desktop environments remains a major challenge.
Data availability is limited by costly manual annotation, closed-source datasets and
surface-level synthetic pipelines. We introduce GUIRILLA [H an automated scalable
framework that systematically explores applications via native accessibility APIs
to address the critical data collection challenge in GUI automation. Our frame-
work focuses on macOS — an ecosystem with limited representation in current Ul
datasets — though many of its components are designed for broader cross-platform
applicability. GUIRILLA organizes discovered interface elements and crawler
actions into hierarchical GUI graphs and employs specialized interaction handlers
to achieve comprehensive application coverage. Using the application graphs
from GUIRILLA crawler, we construct and release GUIRILLA-TASK, a large-scale
dataset of 27,171 functionally grounded tasks across 1,108 macOS applications,
each annotated with full-desktop and window-level screenshots, accessibility meta-
data, and semantic action traces. Empirical results show that tuning LLM-based
agents on GUIRILLA-TASK significantly improves performance on downstream Ul
tasks, outperforming synthetic baselines on the ScreenSpot Pro benchmark while
using 97% less data. We also release MACAPPTREE an open-source library for
reproducible collection of structured accessibility metadata, along with the full
GUIRILLA-TASK dataset, the manually verified GUIRILLA-GOLD benchmark,
and the framework code to support open research in desktop autonomy.

1 INTRODUCTION

Understanding user interfaces (UI) through machine learning has emerged as a critical challenge
in human—computer interaction. Recent advances in large language models (LLMs) have driven
progress in multimodal agents for Ul automation |[Kapoor et al.| (2024); |Qin et al.| (2025); |Cheng
et al.| (2024); [Pawlowski et al.| (2024). While training agents to navigate mobile Uls has been
extensively studied Wen et al.| (2024); [Lee et al.|(2024)) thanks to abundant datasets in this domain
Deka et al.|(2017); Rawles et al.|(2023)); Wen et al.| (2023)), desktop automation remains constrained.
Unlike mobile, desktop environments are cluttered and dynamic: small icon-based controls often
encode critical meaning for task execution. Moreover, often users face overlapping windows, popups,
dialogs, and system widgets. Among others, the macOS GUI presents particular challenges due to
different coordinate systems and UI standards compared to other operating systems. As a result,
existing multimodal benchmarks expose three structural flaws that currently set the upper bound on
performance for autonomous GUI agents:

1. Manual annotation does not scale. Recent benchmarks|Xie et al.| (2024); [Kapoor et al.| (2024); |L1
et al.[(2025)) rely on human-designed pipelines where every task must be demonstrated, recorded,
and verified by annotators. While it is important to have high-quality data in training pipelines, the
process is labor-intensive and costly, limiting the scalability needed for broad, cross-domain coverage.

lhttps ://anonymous.4open.science/r/GUIrilla-2B0F/README .md
https://anonymous.4open.science/r/GUIrilla-2B0F/macapptree/README . md

https://anonymous.4open.science/r/GUIrilla-2B0F/README.md
https://anonymous.4open.science/r/GUIrilla-2B0F/macapptree/README.md

Under review as a conference paper at ICLR 2026

2. Single-window UIs misrepresent real usage. Most public corpora capture only a clean snapshot
of a single application window, whereas real users manage overlapped windows, transient dialogs,
and system widgets. Prior studies|Cheng et al.| (2024) report that agents trained on such simplified
views reach success rates near 83 %, yet the same architectures collapse to = 38 % when evaluated

on full-desktop scenes containing multiple windows|Li et al.| (2025).

3. Automated collection requires platform-specific design. Creating diverse, high-quality datasets
for GUI agents demands OS-specific expertise to navigate varying Ul conventions, event handlers,
and permission models. Effective automation also requires tailored engineering to reliably parse
each platform’s GUI. For instance, macOS lacks robust virtualization support, significantly limiting
automated crawling compared to platforms like Android. As a result, it remains significantly
underrepresented in large-scale datasets, e.g., macOS Uls comprise only 0.06% of all interfaces in
OS-ATLAS (2024), and just 2.45% among all automatically collected desktop samples.

Root Level 2
.] LX)
o &
What's your focus?
1,
am
Level 1
-
o B
a
What's your focus?
© =] o 8 v @ .
Click on text input field I
Intention Press on button
“Deep Work Session” @ W
o 8 ! B v @
o E] n 8 LR

Figure 1: Parsed hierarchical tree structure from the Session application. Each node represents a Ul
state, containing the full accessibility tree along with a screenshot of the interface, and the edges
denote GUIRILLA crawler actions. The hierarchy reflects a sequence of interactions as the agent
interacts with application UI, forming the application-specific graph.

Training data has emerged as the critical bottleneck for robust desktop automation. While recent
systems |Gou et al.| (2025) |Qin et al.|(2025)) achieve strong benchmark performance, they do so by
relying on large, closed datasets that are manually curated and not openly available. As a result,
progress in the field remains gated by limited access to diverse, realistic desktop data.

To address these gaps, we introduce GUIRILLA, a fully automated framework that explores macOS
GUIs at scale and summarizes them in hierarchical graph format (Figure [T). Built on macOS’
accessibility API, GUIRILLA crawler systematically explores applications through simulated user
interactions, supported by three GPT-4-based agents that handle meaningful element ordering,
context-aware input generation, and notification of parsing obstacles.

In this work we make the following key contributions:

e GUIRILLA framework. The first open-source, automated framework tailored for macOS
that constructs detailed full-desktop application graphs from Accessibility API snapshots
and generates function-centric tasks. Application exploration utilizes specialized interaction
handlers and can operate both deterministically and with LLM assistance.

e GUIRILLA-TASK dataset. A macOS, full-desktop corpus of 27,171 tasks across 1,108
applications and 6.8K unique screens. We also release GUIRILLA-GOLD (1,283 human-
verified tasks) with a 90.26% human baseline.

Under review as a conference paper at ICLR 2026

¢ GUIRILLA-SEE vision—language models. We release three models: GUIRILLA-SEE
(0.7B), GUIRILLA-SEE (3B), and GUIRILLA-SEE (7B). With only 6.8K images in the
dataset, they exceed synthetic baselines on ScreenSpot-Pro, which were trained on vast,
multi-OS datasets, showing data efficiency.

* Open-source reproducible toolkit. Complete end-to-end implementation including data
generation pipeline, model training code, evaluation framework, and the macapptree library
for collecting accessibility metadata and screenshots, facilitating reproducible automated
data collection efforts on macOS.

2 RELATED WORK

While UI understanding has made significant progress on mobile Rawles et al.| (2023}, 12024} and
web |L1u et al.| (2024bja)) platforms, largely due to the structured nature of HTML/XML and the
availability of large-scale datasets (e.g., RICO) that capture visual, textual, and interactive properties
across thousands of Android apps, the desktop setting presents unique challenges. Unlike mobile
and web Uls, desktop interfaces lack a unified DOM representation and often require per-application
permissions or system-level configurations for interaction and inspection. In macOS environments
in particular, virtualization support is limited, making safe and scalable data collection especially
difficult. As a result, automated exploration and dataset construction for desktop GUIs remains both
technically challenging and relatively underexplored.

Recent progress in desktop UI grounding has been driven by the release of large-scale datasets
and benchmarks. ScreenSpot|Cheng et al.|(2024)) and its extension ScreenSpot-v2 [Li et al.| (2025))
collected diverse task datasets paired with application screenshots across various desktop applications.
ScreenSpotPro Li et al.[(2025) further raised the bar by introducing high-resolution tasks in full-screen
desktop environments, significantly increasing grounding difficulty. This is reflected in performance
metrics: while agents reach up to 83.3% success on constrained, single-window tasks|Cheng et al.
(2024), performance drops sharply to 38.1% on full-screen, multi-domain tasks |Li et al.[(2025)).

OmniACT Kapoor et al.|(2024) introduced a multi-platform dataset spanning macOS, Linux, and
Windows, but its scope is limited to 60 applications and websites, collected manually. OS-Atlas Wu
et al.|(2024) automates macOS data collection via the Accessibility API, producing a dataset of single-
step question—answer pairs. However, exploration strategies remain shallow (e.g., random/depth-first
search), raw accessibility label is used, and, to the best of our knowledge, the end-to-end macOS
crawler code is not publicly released, which limits reproducibility of the collection process.

Also, as far as we know, existing approaches do not construct structured interaction graphs where
edges represent functional tasks between interface states. Furthermore, no current OS-level crawler
produces graph representations of this kind or integrates safe, agentic exploration specifically aimed
at function-focused task synthesis. In contrast, our GUIRILLA framework introduces a scalable, safe,
and open-source approach for dataset construction. It employs three collaborative GPT-4 agents to
drive task synthesis, interface exploration, and grounded action execution. The resulting dataset,
GUIRILLA-TASK, covers over 1,100 macOS applications across domains and includes more than
27,000 grounding tasks. It supports full-screen resolution and multi-window scenarios, features both
screenshots and accessibility trees, and includes functionality-focused agentic task formulations. A
detailed comparison with existing datasets is provided in Table[I]

Dataset #Apps #Tasks #Unique UIs Collection Desktop macOS Fullscreen Grounding Agentic
OSWorldXie et al. |(2024) 10 369 - Manual v X v X v
OmniACT|Kapoor et al.|(2024) 60 9802 - Manual v v v X X
ScreenSpot-V2Wu et al.|(2024) 6 324 187 Manual v X X v X
ScreenSpotPrdLi et al.|[(2025) 23 1581 (511) - Manual v v v v X
Mind2WebDeng et al.|(2023) X 2350 2350 Manual X X X v v
OSAtlasWu et al.|(2024) - - 2.2M (1339) Automated v v v v X
‘Web-HybridGou et al.|(2025) X - 773K Automated X X X v X
GUIrilla-Task 1108 27171 6835 Automated v v v v v

The number in brackets denotes the reported quantity for macOS.

Table 1: Comparison of Existing Datasets for Task Automation

Under review as a conference paper at ICLR 2026

3 METHODOLOGY

GUIRILLA introduces a graph-centric, fullscreen exploration pipeline for macOS GUIs. Our frame-
work builds on macOS Accessibility API El, while integrating three specialized agents that interpret
accessibility metadata, prioritize interface elements, and generate contextually appropriate actions.

3.1 CRAWLER

The single-app processing pipeline [2] has the following stages. First, the input bundle undergoes a
standard installation routine, and together with user-specified set of parameters (such as maximal
desired graph depth, and duration of parsing, the full list is available in Appendix [A.2), crawler
manages each of the windows of the installed app. Upon installation, the crawler attempts to extract an
application’s accessibility tree according to macOS accessibility framework. This framework enables
simpler interaction with UI elements on the screen grouping them into a hierarchical tree structure,
where each element contains essential properties such as name, role, description, position, and size.
However, application developers must manually annotate or update accessibility metadata. This
manual annotation process often results in error-prone accessibility trees with significant limitations:
some trees contain Ul elements that remain in the tree after disappearing from view, others include
components with incorrect role classifications, and inaccurate positioning information.

Application bundle Installer Input parameters

l l

GUIrilla Crawler Task list

o o
Input Agent (GPT4) J Pop-up handler eIemI:r‘:tI:I:Endler

Graph cleanup

>
ordering Postprocessing

Agent (GPT4)
l 4
Output Graph Un-installer m---

Figure 2: Architecture of the GUIRILLA framework. The GUIRILLA crawler, equipped with various
UI handlers, processes an application bundle using input parameters and installer routines. It interacts
with autonomous GPT-4 agents (Input, Order, and Login Agents) to navigate the application. The
resulting output graph is refined by a Task Postprocessing Agent (GPT-4), which handles uninstallation
and graph cleanup, ultimately producing a structured task list. The dashed line denotes the optional
usage of LLMs for app exploration.

Order and Login
Agent (GPT4) " ~°°°777°

To handle these edge cases, our GUIRILLA crawler incorporates multiple specialized handlers, as
shown in Figure 2] Within the crawler’s core (highlighted in blue), multiple handlers address the
common parsing challenges: Pop-up handler manages transient modal content, Invisible elements
handler filters off-screen components present in accessibility, Unrolling menu items handler processes
dynamically generated navigation elements, and Empty elements handler resolves placeholder
elements with missing metadata. This multi-handler approach enables robust extraction of actionable
interface information despite the underlying data quality issues.

3https ://developer.apple.com/documentation/accessibility/
accessibility-api

https://developer.apple.com/documentation/accessibility/accessibility-api
https://developer.apple.com/documentation/accessibility/accessibility-api

Under review as a conference paper at ICLR 2026

The GUIRILLA crawler performs three types of interactions to explore an application: click, cursor
move, type, and press Enter key using pyautogui Sweigart (2015)) library. To enable meaningful
interaction with applications, the parsing is supported by three GPT4-based agents (the prompts are
available in Appendix [A.3):

1. The Input Agent: This agent generates contextually appropriate input strings based on the
accessibility tree, ensuring relevant text is entered into form fields and search boxes.

2. The Order and Login Agent: Given a hierarchical list of on-screen elements, the agent determines
an safest interaction sequence starting with elements that cause minimal UI changes and progressing
to those with potentially significant effects (e.g., "Delete" buttons). Login pages are treated as a
special case, requiring human input. This agent enhances the security and safety of the exploration
process by avoiding random or destructive actions.

3. The Task Agents: After the uninstallation phase, these agents refine the resulting output graph,
cleaning up duplicates, and transforming the structured data into a readable list of natural language
tasks. Their inclusion enables both refinement and generation of more complex and natural language
task descriptions.

While our framework leverages GPT-based agents to enable robust and secure interaction, both the
application graphs and task data can also be collected deterministically without GPT-4 requests
by following a fixed element processing order and using default input string values. However,
incorporating GPT-based reasoning significantly improves the safety and contextual relevance of
interactions. A detailed comparison between deterministic and GPT-guided exploration is provided

in Appendix[A.7.2]
3.2 GRAPH STRUCTURE

The application graph collected with GUIRILLA crawler consists of nodes and edges that represent
application states and actions, respectively (see Figure[T). All interaction graphs are automatically
annotated and visualized as accompanying SVG files. Across applications, the graphs have an average
depth of 3.5, with the deepest graph reaching a depth of 101. Each node corresponds to a specific Ul
state of an application and contains the following fields:

» Element: The accessibility tree of the application window at a state.
* Image name: The filename of the full desktop screenshot associated with a state.

* Actions: A list of actions that can be executed without causing significant changes to the
UL We define a significant change as the addition or removal of more than 10 UI elements
following an interaction.

Each edge captures a possible interaction and includes:

* Action: Information about the UI element that triggered the interaction, along with a human-
readable action description and a structured dictionary representation that has a 1-to-1 map
to pyautogui commands.

* Out vertex: The resulting Ul state after the interaction of the crawler with the GUIL

3.3 TASK GENERATION

We constructed a comprehensive task dataset from the collected application graphs using a multi-
stage pipeline. First, we removed redundant screenshots by filtering out actions that did not produce
observable changes in the Ul state. Then, we refined the initial deterministic task descriptions
using our GPT-4-based Task Agent, which rewrote raw strings into more natural, function-oriented
language suitable for grounding and instruction following.

To further expand the dataset, we incorporated screenshot-based task generation into the postpro-
cessing pipeline. The Task Agent evaluates each task by considering both the target element’s
representation in the accessibility tree and its visual appearance in the corresponding UI screenshot.
Our generative pipeline operates in two phases: (i) Click-based task generation, which focuses on user
interactions with visible UI elements, (ii) Text-input task generation, which creates tasks involving
keyboard input in appropriate text areas or input fields.

Under review as a conference paper at ICLR 2026

4 RESULTS

4.1 GUIRILLA-TASK STATISTICS AND COLLECTION PIPELINE

To construct the GUIRILLA-TASK dataset, we deployed our automated crawler on 12,298 macOS
applications using an open dataset of MacAppStore apps by [Sergii Kryvoblotskyi| (2025). Out of
these, 1,108 applications were installed, supported the macOS Accessibility framework and yielded
interaction graphs. The resulting dataset spans a wide range of domains including productivity,
creative tools, system utilities, and developer software, which ensure diverse coverage across common
UI paradigms. The final dataset contains 27,171 tasks across 23 app genres (see Figure f). Each
task pairs a full-desktop screenshot with the corresponding accessibility tree and specifies a concrete
interaction (mouse click or keyboard input). Tasks range from simple actions such as “open settings”
to function-level instructions like “change your working hours to end at 18:00”. Each task is classified
into task type (e.g., navigation, settings) and element category (e.g., button, menu, input field).

The detailed statistics of the collected dataset, along with a representative sample and details on
entry attributes are listed in Appendix We ran the crawler pipeline on a cluster of four 16 GB
RAM M1 Mac Mini machines running macOS 14.7.5 Sonoma, as well as two MacBook Pros. Each
machine supported parallel exploration environments per host.

4.2 SYNTHETIC DATA QUALITY: GUIRILLA-GOLD

To assess the reliability of macOS accessibility (AX) metadata and the quality of GPT-generated
task strings, we hired 5 annotators, who were given the test split data. Annotators with accessibility
expertise reviewed each data entry along five dimensions: (1) task feasibility; (2) task instruction
clarity and editing for ambiguity; (3) manual task execution; (4) accessibility tree quality rating
(Good/Medium/Bad scale); and (5) element-level verification of semantic properties (role, description,
value) and bounding-box accuracy. Detailed annotation guidelines are provided in Appendix[A.§]

Task Quality. From the 1319 original English language-based tasks, 84.3% of tasks were marked
as DOABLE after manual verification. Comparing GPT strings to human edits, 91% required no
change. The 109 edited cases showed 97% similarity to originals (Ratcliff/Obershelp), confirming
minor edits. We release manully edited dataset as GUIRILLA-GOLD

AX Quality. Accessibility metadata quality varies significantly: 64% of screens received GOOD
ratings, 24% MEDIUM, and 12% BAD. At the element level, only 40% have correct role and
description pairs, while 49% contain role information only, and 11% are mislabeled. Bounding boxes
are accurate for 80% of elements, though 10% extend outside the visible window. This metadata
sparsity and noise make accessibility-only task generation unreliable. We therefore recommend
combining accessibility trees with screenshots and applying vision-based semantic adjustment to
generate more precise, function-oriented, visually grounded tasks.

4.3 EVALUATION: GROUNDING

We fine-tune and release three GUIRILLA-SEE agents of varying parameter scales on our GUIRILLA-
TASK dataset: GUIRILLA-SEE (0.7B) (based on Florence-2-large|Xiao et al.|(2024))), GUIRILLA-SEE
(3B) and GUIRILLA-SEe (7B) (based on Qwen-2.5-VL-InstructBai et al.| (2025)). All models are
trained exclusively on GUIRILLA-TASK dataset. For training details, see Appendix [A.4]

macOS Grounding Evaluation. We evaluate grounding by functional category on the GUIrilla-Task
test set and compare against multi-OS baselines (UI-TARS, OS-Atlas, UGround). We find that
across functional categories GUIrilla models achieve strong performance, with particularly large
gains in Settings (+8.7), Connectivity (+26.3), Files (+7.5), Input (+8.7), as can be seen in Table
[2l These categories are representative of realistic core macOS desktop tasks, that are not usually
covered in web datasets that can show specific value we can bring to desktop automation. Importantly,
improvements are spread across element types as well (buttons, input fields, dialogs), the full table
can be found in Appendix, Table[7}

*nttps://huggingface.co/datasets/GUIrilla/GUIrilla-Gold/

https://huggingface.co/datasets/GUIrilla/GUIrilla-Gold/

Under review as a conference paper at ICLR 2026

Model Communication Files Navigation Search & Information E-commerce Accounts Input Apps Media Settings Connectivity Total

UI-TARS 2B 27.6% 45.6% 53.3% 49.5% 522% 61.9% 313% 50.0% 353% 50.3% 42.1% 47.53%
UI-TARS 1.5 7B 48.3% 67.0% 63.9% 74.7% 72.6% 81.0% 56.5% 688% 549% 80.9% 68.4% 69.07%
OS-Atlas 7B 48.3% 64.9% 59.9% 68.3% 70.8% 81.0% 53.9% 66.7% 60.8% 66.5% 63.2% 64.86%
UGround 2B 51.7% 63.0% 60.8% 70.0% 69.0% 81.0% 452% 62.5% 56.9% 67.6% 68.4% 64.03%
UGround 7B 62.1% 67.4% 68.7% 75.4% 69.0% 81.0% 54.8% 70.8% 52.9% 78.6% 52.6% 69.46%
GUlIrilla-See 3B 51.7% 74.7% 68.7% 77.8% 76.1% 81.0% 574% 729% 60.8% 82.7% 73.7% 73.48%
GUlIrilla-See 7B 65.5% 74.9% 70.5% 79.2% 78.8% 81.0% 652% 708% 60.8% 87.3% 78.9% 75.59%

Table 2: Performance breakdown across task categories on GUIrilla-Task test set. Best performance
per category shown in bold.

ScreenSpot Evaluation. Table 3] compares grounding accuracy on ScreenSpot-v2 [Li et al.| (2025)
and ScreenSpot-Pro. ScreenSpot-v2 evaluates grounding on application screenshot and ScreenSpot-
Pro contains challenging grounding tasks on full-screen desktop. While absolute comparisons are
limited by differences in model architectures, training pipelines, and closed-source datasets, the table
provides perspective on how dataset scale and composition affect performance. GUIRILLA-SEE (7B),
trained on just 6.8K synthetic macOS screenshots, matches UI-TARS 1.5 (7B) on macOS-specific
grounding (27.81% vs. 27.7%), while substantially outperforming other synthetic baselines like
OS-Atlas (7B) and OS-Atlas (4B), despite using 300x less data. Furthermore, the results on the
ScreenSpot-v2 benchmark validate GUIrilla-See effectiveness. Our best model achieves a remarkable
90.33% grounding accuracy, surpassing OS-Atlas (7B), also trained on synthetic data. Compared to
UGround (7B), which is trained on real web and Android Uls, GUIRILLA-SEE generalizes better
across all settings, including multi-platform benchmarks. This suggests that synthetic training can
compete with or exceed real-world data when structured UI diversity is high. To ensure fairness in
evaluation, we made sure that there is no data leakage, details can be found in Appendix

Model Platform Data # Images ScreenSpotv2 ScreenSpotPro ScreenSpotPro(macOS)
UI-TARS (7B) Multi-OS Real + Synthetic ~20M (est.) 91.6% 35.7% 27.7%
GUIrilla-See (7B) macOS Synthetic 6.8K 90.33% 23.66% 27.81%
UI-TARS (72B) Multi-OS Real + Synthetic ~20M (est.) 90.3% 38.1% 40.0%
GUIrilla-See (3B) macOS Synthetic 6.8K 85.2% 19.17% 22.02%
UI-TARS (2B) Multi-OS Real + Synthetic ~20M (est.) 84.7% 27.7% 15.4%
OS-Atlas (7B) Multi-OS Synthetic 22M 83.3% 18.9% 20.0%
ShowUI (2B) Real Synthetic 256K 77.3% 7.7% 10.8%
UGround (7B) Web + Android Real 1.3M 76.3% 16.5% 12.3%
OS-Atlas (4B) Multi-OS Synthetic 22M 68.5% 3.7% 0.0%
GUIrilla-See (0.7B) macOS Synthetic 6.8K 53.55% 7.34% 7.95%
CogAgent (18B) Multi-OS Real + Synthetic 40M 52.8% 7.7% 4.6%

Table 3: Grounding Accuracy Comparison on ScreenSpotPro (Full) and macOS Subset

Additionally, we see that full-screen supervision (compared to |Gou et al.| (2025))) as well as task
formulation on a function level (compared to description-only as in |Wu et al.| (2024)) can enable
better contextual grounding in realistic GUI settings. Additional analysis of model robustness across
different decoding strategies and confidence intervals are provided in Appendix[A.9]

Cross-OS transfer. Despite macOS-only training, GUIRILLA-SEE (7B) reaches 21.7% on Windows
(ScreenSpot-Pro) and 27.8% on macOS, exceeding OS-Atlas 7B (12.3% / 20%) and UGround 7B
(14.9% Windows). Thus, single-platform, function-level supervision does not preclude transfer and
can outperform larger mixed-OS synthetic sets on challenging full-desktop scenes.

4.4 QUALITATIVE ANALYSIS

Analysis of 1,565 tasks across 227 applications reveals that macOS-specific training yields consistent
improvements across fundamental Ul interaction patterns. We identified 79 tasks where GUlIrilla
succeeds while all baselines fail, demonstrating strong understanding of macOS-specific paradigms:
Finder-style dialogs ("Browse for movie destination folder"), System Preferences ("Edit advanced
output settings"), and window management ("Close the Chat-with-Erix panel"). These success
patterns validate our function-oriented approach, showing models learn what Ul elements do rather
than where they appear or their visual description.

Failure Mode Analysis. ScreenSpot-Pro evaluation reveals two key weaknesses: (1) icon-dense
engineering tools such as Vivado, where tasks like “click group by repository button” or “open TCL
console” fail due to limited representation of compact, icon-heavy Uls in the dataset; and (2) creative

Under review as a conference paper at ICLR 2026

software like Illustrator and DaVinci Resolve, where canvas-focused actions such as “draw a circle” or
“select brush tool” expose insufficient coverage of creative workflows(Table [6). The model performs
well on office applications and system-level tasks, suggesting macOS-focused training generalizes
across typical desktop environments but requires targeted data collection for specialized professional
domains. This can be mitigated by extending crawling to more creative apps and using accounts with
pre-filled user-generated content in the future work, that allow for more content manipulation.

4.5 EVALUATION: AGENTS

Models. We evaluate a range of vision-language models (VLMs) varying in size, architecture, and
specialization on the GUIRILLA-TASK (agentic). These include proprietary systems like OpenAl
Computer Use |OpenAl| (2025) and Claude Computer Use |Anthropic|(2024) as well as open-source
models: UI-TARS 1.5 (7B), UI-TARS (2B)|Qin et al.| (2025), Qwen 2.5 VL (7B, 3B)Bai et al.| (2025),
CogAgent 9B Hong et al.| (2023)), and OS-Atlas Pro 7B |Wu et al.|(2024).

Metrics. We report task success rates based on action accuracy. For click tasks, success requires
the predicted coordinates to fall within the target element’s bounding box. Input tasks additionally
require exact text matches.

Results. Without fine-tuning, all models struggled with input tasks (max 12.5% success), high-
lighting the difficulty of grounded text generation in desktop environments. OpenAl Computer Use
outperformed others, achieving the highest overall success rate at 64.41%. Full results are available

in Appendix[A.6.7]

4.6 ABLATION STUDY

Impact of Accessibility Handlers on Exploration Coverage. Native accessibility annotations
vary inconsistently across applications, creating barriers to systematic exploration. The accessibility
handlers anticipate UI changes and execute meaningful interactions beyond basic clicking. Testing on
three macOS applications (Stocks, Maps, Weather) across graph depth, duplicate rate, task diversity,
and process time shows handlers increase task discovery by 5x in Stocks and 3x in Maps while
reducing duplicates and processing time (Appendix [A.7.1). These handlers target platform-agnostic
problems: inconsistent element labeling, hidden components, and dynamic content. The logic
transfers to other operating systems facing similar accessibility inconsistencies.

Generative Task Agents. We compare two training approaches: (1) deterministic accessibility
metadata (name, role, role_description, value), and (2) GPT-4 task descriptions from
screenshots and element crops (Table [I0). Accessibility metadata often reduces to generic labels like
"button” or "text" without capturing functional intent. In contrast, GPT-generated descriptions under-
stand visual context and explicit purpose. When UI screens contain similar elements, accessibility
labels create ambiguous supervision signals that hinder target identification. Florence-0.7B achieved
53.55% accuracy on GPT-generated tasks versus 40.35% on accessibility-based tasks—a 13-point
gap demonstrating that functional supervision outperforms surface-level properties for training Ul
agents.

Impact of backbone model. We further examined how the choice of backbone model influences
performance. When trained on our dataset, a Qwen2-VL 7B backbone already surpasses OS-Atlas,
despite both using the same underlying model. Notably, OS-Atlas was trained on nearly 300x more
data, yet our model achieves higher accuracy: +1.34% in average and +2.02% on the macOS subset
of ScreenSpotPro. These results highlight the data efficiency of our approach.

5 IMPACT, LIMITATIONS, AND ETHICS

Broader Impact. This work has significant potential to advance accessibility technology develop-
ment, directly benefiting users with disabilities who rely on assistive technologies. By systematically
collecting Ul interaction data, our framework can improve screen readers, voice-controlled interfaces,
and other adaptive technologies that help users navigate complex desktop environments.

Technical Limitations. Our approach is primarily constrained by dependence on developer-provided
accessibility metadata, which exhibits considerable variation in quality across applications. While

Under review as a conference paper at ICLR 2026

currently implemented for macOS, the methodology can be adapted to other platforms such as
Windowﬂ Linuxﬂ and Androi by leveraging their existing accessibility infrastructures, though
this requires platform-specific engineering. Additionally, solutions like OmniParser|Lu et al.| (2024)
or Screen2AX Muryn et al.[(2025) can be used to remove full reliance on accessibility metadata.

5.1 ETHICAL CONSIDERATIONS

We acknowledge potential risks including privacy violations, security circumvention, and malicious
automation. To mitigate these concerns, we implement technical safeguards:

* Sandboxed Environments: We strongly recommend conducting data collection in dedicated
environments with anonymized profiles to prevent accidental data leakage

* Local-Only Operation: All collection, replay, and annotation occur entirely locally without
requiring data transmission to third parties

* Deterministic Handlers: Rule-based handlers enable fully offline, privacy-preserving
automation without external API dependencies

* Limited API Access: Framework operates strictly via public macOS Accessibility APIs
with no privileged system calls

* Security-Critical Exclusion: We explicitly avoid interaction with authentication, payment,
or CAPTCHA-related interfaces

Responsible Use Guidelines: We explicitly discourage malicious use through clear documentation
and recommend: (1) running crawlers only in controlled environments with synthetic inputs, (2)
applying data filtering to remove sensitive content, and (3) using deterministic handlers for regulated
data. Acceptable use cases include academic Human-Computer-Interaction research, accessibility
technology development, and educational applications in controlled environments. Prohibited uses
include automation of financial/healthcare systems, security circumvention, unauthorized personal
data collection, and creation of tools for harassment or illegal activities. We remain committed to
community oversight and transparent release practices, maintaining openness to policy revisions
based on feedback to ensure responsible deployment of Ul automation capabilities.

Use of Large Language Models. Portions of this manuscript were refined with the assistance of
large language models (LLMs) for grammar and style.

6 CONCLUSIONS AND FUTURE DIRECTIONS

We introduce GUIRILLA, a fully automated framework that addresses the critical data scarcity
challenge in desktop GUI automation. By combining accessibility-based crawling with agent-guided
reasoning, our approach reduces costly manual annotation while systematically exploring full-window,
multi-application environments. This directly addresses the limitations of prior work, which often
focuses on narrow sets of applications or relies on manual annotation pipelines. Beyond the dataset,
GUIRILLA’s broader impact lies in its extensibility to other operating systems and continuous
automated collection pipeline, enabling agents to adapt to evolving Ul standards while significantly
reducing annotation bottlenecks. Our framework lays the groundwork for developing general-purpose
desktop agents by standardizing scalable task collection across diverse application domains.

Future Work. While GUIRILLA currently leverages built-in accessibility APIs, future extensions
could integrate image-to-accessibility generation techniques to enable crawling in environments
where native accessibility is limited or unavailable. Another promising direction is the development
of local vision—language model (VLM) agents that actively explore applications, using reinforcement
learning or related approaches to improve coverage and discover novel interaction patterns. These
directions would further broaden the applicability of our framework and support more autonomous,
adaptive, and scalable data collection pipelines.

Shttps://learn.microsoft.com/en-us/dotnet/framework/ui-automation/

®https://gnome.pages.gitlab.gnome.org/at-spi2-core/libatspi/

7https ://developer.android.com/reference/android/view/accessibility/
AccessibilityNodeInfo

https://learn.microsoft.com/en-us/dotnet/framework/ui-automation/
https://gnome.pages.gitlab.gnome.org/at-spi2-core/libatspi/
https://developer.android.com/reference/android/view/accessibility/AccessibilityNodeInfo
https://developer.android.com/reference/android/view/accessibility/AccessibilityNodeInfo

Under review as a conference paper at ICLR 2026

REFERENCES

Anthropic. Introducing computer use, a new claude 3.5 sonnet, and claude 3.5 haiku. https:
//docs.anthropic.com/en/docs/agents—and-tools/computer—use), October
2024. Accessed: 2025-05-14.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiyong Wu.
Seeclick: Harnessing GUI Grounding for Advanced Visual GUI Agents. 2024. doi: 10.48550/
ARXIV.2401.10935. URL https://arxiv.org/abs/2401.10935,

Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan, Yang Li, Jeffrey
Nichols, and Ranjitha Kumar. Rico: A mobile app dataset for building data-driven design
applications. In Proceedings of the 30th Annual ACM Symposium on User Interface Software
and Technology, UIST ’17, pp. 845-854, New York, NY, USA, 2017. Association for Computing
Machinery. ISBN 9781450349819. doi: 10.1145/3126594.3126651. URL|https://doi.org/
10.1145/3126594.3126651.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a Generalist Agent for the Web. 2023. doi: 10.48550/ARXIV.2306.06070.
URLhttps://arxiv.org/abs/2306.06070.

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and
Yu Su. Navigating the digital world as humans do: Universal visual grounding for gui agents, 2025.
URLhttps://arxiv.org/abs/2410.05243.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxuan Zhang, Juanzi Li, Bin Xu, Yuxiao Dong, Ming Ding, and Jie Tang. Cogagent:
A Visual Language Model for GUI Agents. 2023. doi: 10.48550/ARXIV.2312.08914. URL
https://arxiv.org/abs/2312.08914.

Raghav Kapoor, Yash Parag Butala, Melisa Russak, Jing Yu Koh, Kiran Kamble, Waseem Alshikh,
and Ruslan Salakhutdinov. Omniact: A Dataset and Benchmark for Enabling Multimodal General-
ist Autonomous Agents for Desktop and Web. 2024. doi: 10.48550/ARXIV.2402.17553. URL
https://arxiv.org/abs/2402.17553.

Sunjae Lee, Junyoung Choi, Jungjae Lee, Munim Hasan Wasi, Hojun Choi, Steven Y. Ko, Sangeun
Oh, and Insik Shin. Explore, select, derive, and recall: Augmenting 1lm with human-like memory
for mobile task automation, 2024. URL https://arxiv.org/abs/2312.03003.

Kaixin Li, Ziyang Meng, Hongzhan Lin, Ziyang Luo, Yuchen Tian, Jing Ma, Zhiyong Huang, and
Tat-Seng Chua. Screenspot-Pro: Gui Grounding for Professional High-Resolution Computer Use.
2025. doi: 10.48550/ARXIV.2504.07981. URL https://arxiv.org/abs/2504.07981.

Junpeng Liu, Tianyue Ou, Yifan Song, Yuxiao Qu, Wai Lam, Chenyan Xiong, Wenhu Chen, Graham
Neubig, and Xiang Yue. Harnessing webpage uis for text-rich visual understanding, 2024a. URL
https://arxiv.org/abs/2410.13824l

Junpeng Liu, Yifan Song, Bill Yuchen Lin, Wai Lam, Graham Neubig, Yuanzhi Li, and Xiang
Yue. Visualwebbench: How far have multimodal llms evolved in web page understanding and
grounding?, 2024b. URL https://arxiv.org/abs/2404.05955,

Yadong Lu, Jianwei Yang, Yelong Shen, and Ahmed Awadallah. Omniparser for pure vision based
gui agent, 2024. URL https://arxiv.org/abs/2408.00203/

Viktor Muryn, Marta Sumyk, Mariya Hirna, Sofiya Garkot, and Maksym Shamrai. Screen2ax: Vision-
based approach for automatic macos accessibility generation. arXiv preprint arXiv:2507.16704,
2025.

OpenAl. Computer-using agent, January 2025. URL https://openai.com/index/
computer—using-agent /. Accessed: 2025-05-15.

10

https://docs.anthropic.com/en/docs/agents-and-tools/computer-use
https://docs.anthropic.com/en/docs/agents-and-tools/computer-use
https://arxiv.org/abs/2401.10935
https://doi.org/10.1145/3126594.3126651
https://doi.org/10.1145/3126594.3126651
https://arxiv.org/abs/2306.06070
https://arxiv.org/abs/2410.05243
https://arxiv.org/abs/2312.08914
https://arxiv.org/abs/2402.17553
https://arxiv.org/abs/2312.03003
https://arxiv.org/abs/2504.07981
https://arxiv.org/abs/2410.13824
https://arxiv.org/abs/2404.05955
https://arxiv.org/abs/2408.00203
https://openai.com/index/computer-using-agent/
https://openai.com/index/computer-using-agent/

Under review as a conference paper at ICLR 2026

Pawel Pawlowski, Krystian Zawistowski, Wojciech Lapacz, Marcin Skorupa, Adam Wiacek, Se-
bastien Postansque, and Jakub Hoscilowicz. Tinyclick: Single-turn agent for empowering gui
automation, 2024. URL https://arxiv.org/abs/2410.11871.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang,
Jiahao Li, Yunxin Li, Shijue Huang, Wanjun Zhong, Kuanye Li, Jiale Yang, Yu Miao, Woyu Lin,
Longxiang Liu, Xu Jiang, Qianli Ma, Jingyu Li, Xiaojun Xiao, Kai Cai, Chuang Li, Yaowei Zheng,
Chaolin Jin, Chen Li, Xiao Zhou, Minchao Wang, Haoli Chen, Zhaojian Li, Haihua Yang, Haifeng
Liu, Feng Lin, Tao Peng, Xin Liu, and Guang Shi. Ui-tars: Pioneering automated gui interaction
with native agents, 2025. URL https://arxiv.org/abs/2501.12326.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. Android in the
Wild: A Large-Scale Dataset for Android Device Control. 2023. doi: 10.48550/ARXIV.2307.10088.
URLhttps://arxiv.org/abs/2307.10088.

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth
Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, Daniel Toyama, Robert Berry,
Divya Tyamagundlu, Timothy Lillicrap, and Oriana Riva. Androidworld: A Dynamic Bench-
marking Environment for Autonomous Agents. 2024. doi: 10.48550/ARXIV.2405.14573. URL
https://arxiv.org/abs/2405.14573l

Nataliia Stulova Sergii Kryvoblotskyi. Collecting a Dataset of macOS Apps: Pains, Gains, Lessons
Learned. Part 1, May 2025. URL https://research.macpaw.com/publications/
macos-app-dataset! [Online; accessed 16. May 2025].

Al Sweigart. Pyautogui: A cross-platform gui automation python module for human beings. https:
//github.com/asweigart/pyautoqgui, 2015. Accessed: 2025-05-15.

Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao, Tao Yu, Toby Jia-Jun Li, Shiqi Jiang, Yunhao
Liu, Yaqin Zhang, and Yunxin Liu. Autodroid: Llm-powered Task Automation in Android.
Proceedings of the 30th Annual International Conference on Mobile Computing and Networking,
pp. 543-557, 2023. doi: 10.48550/ARXIV.2308.15272. URL |https://arxiv.org/abs/
2308.15272.

Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao, Tao Yu, Toby Jia-Jun Li, Shiqi Jiang, Yunhao
Liu, Yaqin Zhang, and Yunxin Liu. Autodroid: Llm-powered task automation in android, 2024.
URL https://arxiv.org/abs/2308.15272.

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng,
Zichen Ding, Liheng Chen, Paul Pu Liang, and Yu Qiao. Os-atlas: A foundation action model for
generalist gui agents, 2024. URL https://arxiv.org/abs/2410.23218,

Bin Xiao, Haiping Wu, Weijian Xu, Xiyang Dai, Houdong Hu, Yumao Lu, Michael Zeng, Ce Liu,
and Lu Yuan. Florence-2: Advancing a unified representation for a variety of vision tasks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
48184829, 2024.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio
Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking multimodal agents
for open-ended tasks in real computer environments, 2024. URL https://arxiv.org/abs/
2404.07972.

11

https://arxiv.org/abs/2410.11871
https://arxiv.org/abs/2501.12326
https://arxiv.org/abs/2307.10088
https://arxiv.org/abs/2405.14573
https://research.macpaw.com/publications/macos-app-dataset
https://research.macpaw.com/publications/macos-app-dataset
https://github.com/asweigart/pyautogui
https://github.com/asweigart/pyautogui
https://arxiv.org/abs/2308.15272
https://arxiv.org/abs/2308.15272
https://arxiv.org/abs/2308.15272
https://arxiv.org/abs/2410.23218
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2404.07972

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 DATASET STATISTICS

The collected tasks were split into train and test subsets, such that the applications in test did not
appear in train, and test applications contained larger, more complicated accessibility trees. There are
881 applications with 25, 606 entries in train and 227 applications with 1, 565 task entries in test.

A.l.1

REPRESENTATIVE SAMPLE FROM THE DATASET

Each sample in the dataset includes the following structured fields:

@ iton aker Window © B 0 O ¢ 0 Qg fAoes

Screen ID: Unique identifier for the Ul screen.

App Name: Bundle identifier of the application.

Task: Natural language description of the agent’s objective.

Raw Action: Deterministic textual representation of the user action.
Action: Structured action format, e.g., "left click, (x, y)".

Element Data: JSON metadata of the target UI element extracted from the accessibility
tree.

Scaling Factor: Display scaling factor for the specific screen.

Original Task: Boolean indicating whether the task was derived directly from the original
interaction graph.

Ally Path: Full accessibility tree before the action was taken.
Image: Full-screen desktop screenshot, stored as a binary image.

Cropped Image: Subregion of the full screenshot containing the target application (variable
dimensions).

Segmented Image: Screenshot of the application window with segmented UI regions.
Task Category: One of 22 predefined task categories (e.g., Search & Information, Files).
Element Category: One of 16 Ul element types (e.g., Slider, Button).

Invitation Maker [0

Why You Should Upgrade To Pro:

Start For Free

Figure 3: Example sample from our dataset. Left: screenshot of the macOS desktop interface. Upper
right: target element cropped. Lower right: a segment of the accessibility tree.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A.1.2 COLLECTION STATISTICS

5131
5000 B Number of Apps
4418 . Number of Tasks
4022
4000 3859
£ 3000
S 2590
o
o
2000 1704
1463
1445 1093
1000
203 188 127 244
0 , : 62 68 = 88 66 61
2) K O & o @ & 5
o o‘§\\ & 5 o N < e(g\q Qo‘b
D Y S 5 N & Q’Q
O © <& K o
4 Q‘°° Q'QQ} o
Q R
&

Application Genre

Figure 4: Number of apps and associated tasks per genre. For each genre, the left bar shows the
number of apps, and the right bar shows the number of tasks. Colors distinguish between the
two quantities. The figure highlights disparities between app availability and task density across
categories.

6000

20000
15000
10000
2000
0 s BN B 0
o

N
o
S
S

Number of Tasks
Number of Tasks

o
o
S
S

NS & & <
Q’&D oQé& & e“s@ 4300(\(
N W QSP
&
Element Genre Task Genre
(a) Distribution of tasks per element type. The most (b) Distribution of tasks per task type.

prevalent category is buttons.

Figure 5: Distributions of tasks across element types (left) and task types (right).

13

Under review as a conference paper at ICLR 2026

& 7500
C
8 5000
o
© 2500
[V
0
0 500
0
100
200
.-
2 300
Q
X
2400 o
i)
@
€ 500
o
2
8
& 600
>
700 =
800
900 — 'b
0 200 400

1000 1500
Element Width (pixels)

N
a
o

)
9]
X
£
=
2
2500
c
(0]
€
o
w
750
‘o .
| — -
e —
600 800 1000 1200 1400 1600 0

X Coordinate (pixels)

Figure 6: Top-left: Distribution of target element widths. Bottom-left: Distribution of target element
center locations, showing that most target elements are positioned near the bottom of the desktop
interface. Bottom-right: Distribution of target element heights.

Many interaction targets are located in peripheral regions (e.g., toolbars, corners), and a large
proportion are visually small, with limited surface area (Figure [6).

A.2 PARAMETERS

Parameter

Description

Maximum parsing duration
Deterministic text input
Maximum parsing tree depth
Cursor move before click
Agent usage

Task collection

Specified in minutes, default is 2 hours

Default string is * DEFAULT’

Default is 25

Defaults to False

Set to True by default. Can be enabled if an OpenAl API key is
provided in a separate file

Defaults to True. If set to False, graphs can be collected
without their associated tasks

Table 4:

Configuration Parameters for the Crawler

14

4000 8000 12000
Frequency

Under review as a conference paper at ICLR 2026

A.3 PROMPTS

Input Agent Instructions

Analyze the given macOS application accessibility screen information and follow these steps:

1. Determine the type and purpose of the application based on the provided elements
and descriptions.

2. Identify all AXTextField elements present in the structure.
3. For each AXTextField:

(a) Infer its specific purpose within the application context.

(b) Consider what a user would input in this field based on accessibility cues and
typical behavior.

(c) Generate an example input relevant to the field’s likely function and the app’s
overall purpose.

Output: A JSON object where:
* Keys = integer IDs of the AXTextField elements
* Values = realistic example inputs, based on screen context

Only return the JSON object—no additional explanations.

Examples:
e {7: "Yellow Submarine"} /I Music app search
e {12: "John", 15: "Smith", 21: "07580198241"} // Contacts
app
e {8: M"main"} /I IDE project file search

Note: Ensure that inputs are app-appropriate and reflect common human interactions.

Given accessibility screen info, organize Ul elements in logical interaction order. Consider
irreversible actions and screen transitions.
Output: JSON with nested groups (max 8), each containing element IDs:

* Prioritize elements in popovers, content switches, and window controls.
* Derive element type from description if needed.
* Include ALL element IDs from input.
Grouping Rules:
* dynamic_TYPE — dynamic lists (emails, notes, etc.)
* repeated_TYPE — options where only one is needed (date, category, etc.)
* Avoid grouping unrelated or static Ul items together.
Flags to include when relevant:
* "login_page": true

* "system_access_required": true

Example 1 — Complex App:
{

"action_order": [
{"menu_buttons": [1, 2, 31},
{"dynamic_emails": [4, 5, 6, 7]},
{"repeated_time_selection": [8, ..., 311},

{"popover_buttons": [32, 331}
1,

15

Under review as a conference paper at ICLR 2026

"login_page": false,

"system_access_required": false
}
Example 2 — Login Page:
{

"action_order": [
{"login_elements": [1, 2, 31},
{"account_settings": [4]}

1y

"login_page": true,

"system_access_required": false

}

Click Task Prompt

You are given a Ul screenshot, an image of the clicked UI element. The clicked element is highlighted
in red. Your task is to describe the action needed to click this element.

Guidelines:

0. If the element is not perfectly selected (ex. partially), the box is strangely located, or no human would
do this task - return empty string.

1. The task must describe the function, not the appearance of the element. For example, prefer "Create a
new document" over "Click the grey + button." Repeating the element’s text is acceptable.

2. The task must be unique to this screen. For example, if there are two buttons labeled "Open," you
must specify which "Open" button is meant.

3. The task must consider the app context, but not imagine extra information. For example, if the app
is an image editor and the button is "Delete," the better task is "Delete an image", not just a generic
"delete."

4. Use the fewest words possible without sacrificing clarity.

5. Write the task in straightforward English only.

6. Select a category for each task. Must be one of Navigation (go back), Settings (adjust volume), Files
(save file), Apps (open edge), Search & Information (check weather), Media (play music), Accounts
(sign in), Communication (share file), Input (enlarge font), Connectivity (connect wifi), Modes (dark
mode), E-commerce (add to cart)

7. Select a category for each element. Must be one of Image, Text, Checkbox/Control, Menu item, Input
field, Button, Group, Link.

Important notes:

The click is based on accessibility information. Metadata may be incorrect or the element may not exist.
Rely primarily on the images.

The element image should show a single element with a unique function. If the element is obstructed,
covered by a window or pop-up, or if multiple cropped elements are shown — return an empty string.
Inspect the red box carefully: if the element is not visible, return an empty string.

If there is no red box - return empty string. Return your answer in JSON format, with no extra text.
Example:

{
"task": "Open the menu to see tutorials",
"task_category": "Search & Information",
"element_category": "Button"}

\ J

Input Task Prompt

You are given:

* An original task description for a Ul interaction: {task_string}
* A screenshot showing the full interface with a red-highlighted element
* A cropped view focusing on just the highlighted element

Your goal: Change the task into a natural-language instruction fully in English that involves only
inputting text. Output an action as "type" + the exact text to input. If not clearly solvable from the
task, revise it.

Key Principles:

16

Under review as a conference paper at ICLR 2026

* Make it sound like a real instruction a person would give

» Use exact input (no placeholders); don’t interpret content—be explicit

» Focus on real-world intent and what a user is likely trying to do
Requirements:

¢ Instruction must be clear, natural, and concise

¢ Action must start with t ype and include exact text

* Both fields must be fully in English

* No placeholders like “your name” or “email”

* Avoid click/press/select — only typing

¢ Must be obvious what to type from the instruction

* Never add phrases like “by typing it”

Output Format (JSON):

{"task": "Use john.doe@example.com as your login email",
"action": "type john.doel@example.com"}

Bad vs Good Examples:

* “Enter coded message” — “Enter 1234 as your coded message”
* “Save your converted files...” — “Use /Users/yourname/Desktop as your destination folder”
* “Check the box labeled...” — “Select Include borders and shadings as your option”
Avoid These Mistakes:
* Placeholder text: “your name” — “Maria Garcia”
¢ Mechanical: “password in field” — “Use TrustNol as your password”
» Ul-only focus: “Fill search box” — “Find information about electric cars”
¢ Vague: “Type the code” — “Enter 8294 as your verification code”
* Impersonal: “Input required” — “Add your birthday as 03/15/1988”

A.4 TRAINING SETUP

We training 3 GUI agents on the collected dataset.

A.4.1 GUIRILLA-SEE-0.7B

GUlrilla-See-0.7B is built on FLORENCE 2-LARGE (= 0.7 B parameters) and fine-tuned via su-
pervised fine-tuning for open-vocabulary detection in GUI screenshots. Given an image and a
free-form textual query, the model predicts either a bounding box or a polygon mask that encloses
the best-matching Ul element.

LoRA configuration. Fine-tuning uses Low-Rank Adaptation with RSLoRA initialisation:

e rankr =8

* scaling o = 16

* dropout = 0.05

* bias = none

* target modules = {g_proj,o_proj,k_proj,v_proj,linear,Conv2d,lm_head, fc2}

* weight init Gaussian

Training setup.

* Hardware: 1 x NVIDIA A100 40 GB.

* Batch size: 8, mixed precision.

17

Under review as a conference paper at ICLR 2026

Optimiser: AdamW, learning rate 2 x 10~°. Cosine decay schedule with a 5% warm-up
fraction.

Epochs: 4; total wall-clock time ~ 10 hours.

A.4.2 GUIRILLA-SEE-3B

GUlrilla-See-3B starts from QWEN-2.5-VL-3B-INSTRUCT (3 B parameters) and is fine-tuned with
supervised fine-tuning (SFT) to localise macOS GUI elements. Given a full-desktop screenshot and a
natural-language instruction, the model outputs a single coordinate (x, y) that lies at (or very close
to) the centre of the referenced region.

LoRA configuration. Fine-tuning uses Low-Rank Adaptation (LoRA) in bf 1oat 16 mixed preci-

sion:

rank r = 32

scaling o = 16

dropout = 0.1

bias = none

target modules = {down_proj, o_proj,k_proj,q _proj,gate_proj,up_proj, v_proj}

weight init Gaussian

Training setup.

A43

A44

Hardware: 2 x NVIDIA H100 80 GB.

Global batch size: 16

Optimiser: AdamW with 5; = 0.9, 8 = 0.95.

Learning rate: 2 x 1075, cosine decay schedule, warm-up ratio 0.05.
Attention kernel: FlashAttention-2 for memory-efficient training.
Epochs: 2; total wall-clock time ~ 5 hours.

FINE-TUNING IMPROVEMENT ON BASE MODELS.

Model Base Acc. (%) Tuned Acc (%)
Florence Large (0.7B) 8.31 53.55
Qwen 2.5 VL (3B) 18.40 73.48
Qwen 2.5 VL (7B) 35.78 75.59

Table 5: Accuracy improvements after fine-tuning on GUIRILLA-TASK.

GUIRILLA-SEE-7B

We also train a larger model that starts from QWEN-2.5-VL-7B-INSTRUCT (7B parameters). All
LoRA, optimiser, and scheduler settings are kept identical to the 3B run. Using the same 2 x H100
80 GB configuration with FlashAttention-2, training finishes in roughly 67 hours.

A.5 SCREENSPOT DETAILS

AS5.1

DATA LEAKAGE ANALYSIS ON SCREENSPOT

We manually screened overlaps by bundle IDs and application names to ensure no data leakage
happened during training for both ScreenSpot v2 and ScreenSpot-Pro benchmarks. As ScreenSpot-v2
doesn’t provide this information, we manually labeled the apps there.

We discovered the following overlaps out of 881 applications in our train dataset and ScreenSpot
test sets: OneNote appears in train data (macOS app) and in ScreenSpot-v2 (Windows). This app

18

Under review as a conference paper at ICLR 2026

has 1 task in the benchmark, and the login screen looks identical, so the leakage may have affected
the result. We adjusted the score to account for it from 90.41% -> 90.33%. This doesn’t influence
the ranking, yet we adjusted the score for fairness. Microsoft Excel appears in the train dataset and
in ScreenSpot-Pro. Here we manually looked at every screen (screen ids 4650-4659) and found
that our data only includes a login flow and never actually opens the main app and its functionality.
In ScreenSpot-Pro on the other hand, all tasks focus on Excel functions as part of the multi screen
window. So, we assume that no major leakage was done here.

your person

PBOP=LBGOAC (BG5S 'EO AW 9EYON0 NSRsOli=m =y

(a) GUlIrilla: Excel login page. (b) ScreenSpotPro: Main app with table manipulation.

Figure 7: Side-by-side comparison of Excel app data across datasets.

Model Development Creative CAD Scientific Office Overall Acc
UI-TARS-72B 40.8 39.6 17.2 45.7 54.8 38.1
UI-TARS-7B 36.1 32.8 18.0 50.0 535 35.7
UI-TARS-2B 26.4 27.6 14.6 39.8 42.6 27.7
GUlIrilla-See-7B 23.08 14.37 16.09 35.83 37.39 23.66
GUIrilla-See-3B 19.40 10.56 14.94 29.13 30.00 19.17
0OS-Atlas-7B 17.7 17.9 10.3 24.4 27.4 18.9
UGround-7B 14.7 17.0 11.1 19.3 27.0 16.5
CogAgent (18B) 8.0 5.6 6.1 13.4 10.0 7.7
ShowUI (2B) 9.4 53 1.9 10.6 13.5 7.7
GUlIrilla-See-0.7B 6.69 6.45 3.83 12.20 8.26 7.34
OS-Atlas-4B 3.7 23 1.5 7.5 4.8 3.7

Table 6: Task category performance per app category on ScreenSpot-Pro.

19

Under review as a conference paper at ICLR 2026

1223 A.6 ADDITIONAL EVALUATION DETAILS
1028 A.6.1 GROUNDING
1029

1030 In grounding evaluations (Table |’Z|), GUIRILLA-SEE (7B) achieved the highest overall accuracy at
1031 75.59%. GUIRILLA-SEE (7B) showed particularly strong results on buttons, input fields, and "Other"
1032 elements such as icons and links, demonstrating robust performance across varied UI components.
Interestingly, UGround shows marginal advantages in menu-heavy tasks, and we found their data to
1222 contain 400x more menu samples, reflecting the limits of scale without functional task diversity.

1035 Grounding Accuracy (%)
1036 Model Button Input Menu Checkbox Other Overall

1037 Qwen 2.5 3B 8.0 00 00 . - .
1038 Qwen 2.5 7B 3649 3036 460 4468 2474 3578
1039 UI TARS 2B 5056 250 5267 5957 3684 4753
UGround v1 2B 6426 4821 7933 6809 5895 64.03
1040 0S-Atlas-Base-7B 6576 53.57 7267 5745 6211 64.86
1041 UITARS 1.5 7B 6857 6429 8667 7872 5842 69.07
1042 UGround v1 7B 6867 5625 8867 7872 6421 6946
GUIrilla-See 3B) 7448 6161 8133 7872 6684 7348
1043 GUIrilla-See (7B) 7655 66.07 86.67 76.6 66.84 7559

1044
1045
1046
1047
1048 Lifestyle
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063 Graphics & Design
1064

1065

1066

1067 Figure 8: Comparative Performance on GUTIrilla-Task (Grounding) of Vision Language Models
1068 Across Application Domains. Larger models (7B) generally outperform smaller ones, with the
1069 biggest gains in Developer Tools, Productivity, and Graphics & Design. GUIrilla-See 3B shows
1070 strong performance relative to 7B models, indicating effective domain specialization.

1071

1072

1073

1074

1075

1076

1077

1078

1079

Table 7: Grounding accuracy across models and element categories on GUIRILLA-TASK.

—— GUIrilla-See 7E
—— GUIrilla-See 3E
—— Qwen 2.5 3B
—— Qwen 2.57B
= UI-TARS 1.5 7E
—— UGround 7B

Utilities Photo & Video

Education Procductivity

Sports

A.6.2 AGENTIC

20

Under review as a conference paper at ICLR 2026

Success Rate (%)
Model Input Click Overall

OpenAl Computer Use 8.04 68.75 64.41
Claude Computer Use 893 6559 61.53

OS-Atlas-Pro-7B 7.14 6284 58.85
UITARS 1.5 7B 1.79 54.65 50.86
UI TARS 2B 7.14 5024 47.16
Qwen 2.5 VL 3B 125 4295 40.77
Qwen 2.5 VL 7B 268 39.16 36.55
CogAgent 9B 3.57 15.83 1495

Table 8: Success rate across models and interaction categories on GUIRILLA-TASK (agentic)

A.7 ABLATION DETAILS

A.7.1 INFLUENCE OF HANDLERS

Application Metric Handler-Supported Crawler Random Crawler
Graph Depth 14 16
Stocks Number of Tasks 162 32
Duplicate rate 0.08 0.14
Parse Time (hh:mm:ss) 00:20:51 00:29:35
Graph Depth 6 9
Maps Number of Tasks 107 36
Duplicate rate 0.1 0.2
Parse Time (hh:mm:ss) 00:21:00 00:25:35
Graph Depth 6 7
Weather Number of Tasks 73 73
Duplicate rate 0.0 0.01
Parse Time (hh:mm:ss) 00:10:56 01:05:48

Table 9: Comparison of Handler-Supported Crawler vs Random Crawler Across Applications

A.7.2 COMPARING DETERMINISTIC AND GPT-REFINED TASK DESCRIPTIONS

Table 10: Examples of Task Agent and Deterministic Instructions by App

App Task Agent Deterministic

Prayer Notes Access Prayer Notes support page button

GoProPlayer Open a media file button Open_Media. . .

Fax Add files or images to the fax ADD FILES OR IMAGES button

A.8 GUIRILLA-GOLD DATASET ANNOTATION GUIDELINES

A.8.1 OVERVIEW

This document provides instructions for annotators to evaluate and improve Ul task datasets, with
focus on accessibility principles.

21

Under review as a conference paper at ICLR 2026

A.8.2 TASK STRING FEASIBILITY EVALUATION

Evaluation Steps:

» Step 1: Evaluate clarity and readability of the task string. Edit if ambiguous or poorly
phrased.

» Step 2: Assess executability. Mark as DOABLE if the task is clear and the required element
is visible. Mark as NOT DOABLE if the element is not visible or does not exist.

DOABLE Examples: “Click the Submit button”, “Type ‘hello world’ in the search field”
NOT DOABLE Examples: “Click the button” (when multiple buttons present), “Enter your pass-
word” (if no password input visible)

A.8.3 TASK EXECUTION GUIDELINES

Attempt to execute the task exactly once to verify correctness:

* Click Actions: Locate the correct element and click once within its bounding box
» Type Actions: Find the input field and type the exact text provided (case-sensitive)
* Multi-step Tasks: Mark as NOT DOABLE if requiring multiple distinct actions

Constraints: Attempt only once, no retries. Do not fabricate actions not in the task string.

A.8.4 ACCESSIBILITY QUALITY RATING (1-3 SCALE)

Score 1 — BAD: Critical issues severely impact assistive technology—missing labels, incorrect roles,
invisible elements, broken grouping, no logical structure.

Score 2 — MEDIUM: Moderate issues present—incomplete/generic labels, occasional role mis-
matches, partial grouping, minor positioning issues.

Score 3 — GOOD: Accessibility tree accurately represents visual Ul—descriptive labels, accurate
roles, proper grouping, logical structure, complete state information.

A.8.5 LABEL AND ROLE VERIFICATION

Review each element’s semantic description and role. Uncheck “Semantic” if the meaning or AX
role is incorrect. Uncheck “BBox” if the bounding box doesn’t match the visible element.
A.8.6 QUALITY ASSURANCE CHECKLIST

O Task string evaluated and edited for clarity

0 NOT DOABLE marked for invisible elements
(] Task execution attempted once

O Accessibility score reflects usability

[J Labels and roles verified

[0 Checkboxes unchecked for mismatches

A.9 CONFIDENCE INTERVALS AND SENSITIVITY TO DECODING STRATEGIES

To provide uncertainty estimates and strengthen the reliability of model comparisons, we conducted
additional experiments examining performance variability across different decoding strategies.

A.9.1 EXPERIMENTAL SETUP

Our primary results were obtained using greedy decoding with the following generation parameters:
num_beams=3, do_sample=False, temperature=None, top_p=None, top_k=None.

22

Under review as a conference paper at ICLR 2026

To assess performance variability, we re-evaluated all models using stochastic decoding with parame-
ters: num_beams=3, do_sample=True, temperature=0. 3. For each model, we conducted
three independent runs and computed mean + standard deviation of success rates.

A.9.2 RESULTS

Table [T1] presents results for both decoding strategies on the GUIrilla-Task test set.

Model Greedy (%) Sampled (T=0.3) (%)
Florence Base 10.73 10.64 £ 0.10
Florence Large 8.31 8.08 £0.10
Qwen 2.5 VL 3B 17.96 18.06 = 0.22
Qwen 2.5 VL 7B 35.78 35.40+0.45
UI-TARS 2B 47.54 18.43 £0.22
UI-TARS 1.5 7B 69.07 52.17 £ 0.42
UGround v1 2B 64.03 64.41 +£0.00
UGround vl 7B 69.46 69.84 £ 0.06
OS-Atlas-Base-7B 64.86 61.82 +0.10
GUlrilla-See-0.7B 53.55 53.48 £0.32
GUIrilla-See-3B 73.48 73.90 £ 0.03
GUlIrilla-See-7B 75.59 75.85 £0.06

Table 11: Performance comparison between greedy and stochastic decoding strategies. Models
fine-tuned on GUIrilla-Task (bottom section) show consistent performance with minimal variance,
while some pretrained models exhibit notable degradation under stochastic decoding.

The results reveal distinct patterns in decoding sensitivity. Fine-tuned GUIrilla-See models demon-
strate remarkable consistency across decoding strategies, with standard deviations below 0.32% in all
cases. This stability suggests robust learning of Ul interaction patterns.

In contrast, several pretrained models show significant performance degradation under stochastic
decoding, most notably UI-TARS models which experience drops of 16-29 percentage points. This
sensitivity highlights the importance of decoding strategy selection and suggests that some models
may be overfitting to specific generation patterns during pretraining.

The minimal variance observed in our fine-tuned models provides confidence in the reported per-
formance gains and demonstrates the robustness of the GUIrilla training approach across different
inference conditions.

23

	Introduction
	Related work
	Methodology
	Crawler
	Graph Structure
	Task Generation

	Results
	GUIrilla-Task Statistics and Collection Pipeline
	Synthetic Data Quality: GUIrilla-Gold
	Evaluation: Grounding
	Qualitative Analysis
	Evaluation: Agents
	Ablation study

	Impact, Limitations, and Ethics
	Ethical Considerations

	Conclusions and Future Directions
	Appendix
	Dataset statistics
	Representative sample from the dataset
	Collection statistics

	Parameters
	Prompts
	Training Setup
	GUIrilla-See-0.7B
	GUIrilla-See-3B
	Fine-tuning improvement on base models.
	GUIrilla-See-7B

	ScreenSpot Details
	Data Leakage Analysis on ScreenSpot

	Additional Evaluation Details
	Grounding
	Agentic

	Ablation Details
	Influence of Handlers
	Comparing Deterministic and GPT-Refined Task Descriptions

	GUIrilla-Gold Dataset Annotation Guidelines
	Overview
	Task String Feasibility Evaluation
	Task Execution Guidelines
	Accessibility Quality Rating (1–3 Scale)
	Label and Role Verification
	Quality Assurance Checklist

	Confidence Intervals and Sensitivity to Decoding Strategies
	Experimental Setup
	Results

