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Abstract

Gradient flows are a powerful tool for optimizing functionals in general metric spaces,
including the space of probabilities endowed with the Wasserstein metric. A typical approach
to solving this optimization problem relies on its connection to the dynamic formulation of
optimal transport and the celebrated Jordan-Kinderlehrer-Otto (JKO) scheme. However, this
formulation involves optimization over convex functions, which is challenging, especially in
high dimensions. In this work, we propose an approach that relies on the recently introduced
input-convex neural networks (ICNN) to parametrize the space of convex functions in
order to approximate the JKO scheme, as well as in designing functionals over measures
that enjoy convergence guarantees. We derive a computationally efficient implementation
of this JKO-ICNN framework and experimentally demonstrate its feasibility and validity
in approximating solutions of low-dimensional partial differential equations with known
solutions. We also demonstrate its viability in high-dimensional applications through an
experiment in controlled generation for molecular discovery.

1 Introduction
Numerous problems in machine learning and statistics can be formulated as finding a probability distribution
that minimizes some objective function of interest. One recent example of this formulation is generative
modeling, where one seeks to model a data-generating distribution ρdata by finding, among a parametric family
ρθ, the distribution that minimizes some notion of discrepancy to ρdata, i.e., minθ D(ρθ, ρdata). Different
choices of discrepancies give rise to various training paradigms, such as generative adversarial networks
(Goodfellow et al., 2014) (Jensen-Shannon divergence), Wasserstein GAN (Arjovsky et al., 2017) (1-Wasserstein
distance) and maximum likelihood estimation (KL divergence) (Murphy, 2012; Rezende & Mohamed, 2015;
Kingma & Welling, 2013). In general, such problems can be cast as finding ρ∗ =argminρ F (ρ), for a functional
F on distributions.

Beyond machine learning and statistics, optimization on the space of probability distributions is prominent
in applied mathematics, particularly in the study of partial differential equations (PDE). The seminal work
of Jordan et al. (1998), and later Otto (2001), Ambrosio et al. (2005), and several others, showed that
many classic PDEs can be understood as minimizing certain functionals defined on distributions. Central to
these works is the notion of gradient flows on the probability space endowed with the Wasserstein metric.
Jordan, Kinderlehrer, and Otto (1998) set the foundations of a theory establishing connections between
optimal transport, gradient flows, and differential equations. In addition, they proposed a general iterative
method, popularly referred to as the JKO scheme, to solve PDEs of the Fokker-Planck type. This method
was later extended to more general PDEs and in turn to more general functionals over probability space
(Ambrosio et al., 2005). The JKO scheme can be seen as a generalization of the implicit Euler method on the
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probability space endowed with the Wasserstein metric. This approach has various appealing theoretical
convergence properties owing to a notion of convexity of probability functionals, known as geodesic convexity
(see Santambrogio (2017) for more details).

Several computational approaches to JKO have been proposed, among them an elegant method introduced
in Benamou et al. (2014) that reformulates the JKO variational problem on probability measures as an
optimization problem on the space of convex functions. This reformulation is made possible thanks to
Brenier’s Theorem (Brenier, 1991). However, the appeal of this computational scheme comes at a price:
computing updates involves solving an optimization over convex functions at each step, which is challenging
in general. The practical implementations in Benamou et al. (2014) make use of space discretization to solve
this optimization problem, which limits their applicability beyond two dimensions.

In this work, we propose a computational approach to the JKO scheme that is scalable in high-dimensions. At
the core of our approach are Input-Convex Neural Networks (ICNN) (Amos et al., 2017), a recently proposed
class of deep models that are convex with respect to their inputs. We use ICNNs to find parametric solutions
to the reformulation of the JKO problem as optimization on the space of convex functions by Benamou
et al. (2014). This leads to an approximation of the JKO scheme that we call JKO-ICNN. In practice, we
implement JKO-ICNN with finite samples from distributions and optimize the parameters of ICNNs with
adaptive gradient descent using automatic differentiation.

To evaluate the soundness of our approach, we first conduct experiments on well-known PDEs in low
dimensions that have exact analytic solutions, allowing us to quantify the approximation quality of the
gradient flows evolved with our method. We then use our approach in a high-dimensional setting, where
we optimize a dataset of molecules to satisfy certain properties, such as drug-likeness (QED). The results
show that our JKO-ICNN approach is successful at approximating solutions of PDEs and has the unique
advantage of scalability in terms of optimizing generic probability functionals on the probability space in high
dimensions. When compared to direct optimization methods or particle gradient flows methods, JKO-ICNN
has the advantage of computational stability and amortization of computational cost, since the maps found
while training JKO-ICNN on one sample from a distribution ρ0 generalize at transporting a new sample
unseen during the training at no additional cost.

2 Background
Notation Let X be a Polish space equipped with metric d and P(X ) be the set of non-negative Borel
measures with finite second-order moment on that space. The space P(X ) contains both continuous and
discrete measures, the latter represented as an empirical distribution:

∑N
i=1 piδxi

, where δx is a Dirac at
position x ∈ X . For a measure ρ and measurable map T : X → X , we use T♯ρ to denote the push-forward
measure, and JT the Jacobian of T . For a function u : X → R, ∇u is the gradient and Hu(x) is the Hessian.
∇· denotes the divergence operator. For a matrix A, |A| denotes its determinant. When clear from the
context, we use ρ interchangeably to denote a measure and its density.

Gradient flows in Wasserstein space Consider first a functional F : X →R and a point x0 ∈ X . A
gradient flow is an absolutely continuous curve x(t) that evolves from x0 in the direction of steepest descent
of F . When X is Hilbertian and F is sufficiently smooth, its gradient flow can be expressed as the solution of
a differential equation x′(t) = −∇F (x(t)), with initial condition x(0) = x0.

Gradient flows can be defined in probability space too, as long as a suitable notion of distance between
probability distributions is chosen. Formally, let us consider P(X ) equipped with the p-Wasserstein distance,
which for measures α, β∈ P(X ) is defined as:

Wp(α, β) ≜ min
π∈Π(α,β)

∫
∥x− y∥2

2 dπ(x, y). (1)

Here Π(α, β) is the set of couplings (transportation plans) between α and β, formally: Π(α, β) ≜ {π ∈
P(X×X ) | P1♯π = α, P2♯π = β}. Endowed with this metric, the Wasserstein space Wp(X ) = (P(X ), Wp) is a
complete and separable metric space. In this case, given a functional in probability space F : P(X ) → R,
its gradient flow in Wp(X ) is a curve ρ(t) : R+ → P(X ) that satisfies ∂tρ(t) = −∇W2F (ρ(t)). Here ∇W2 is a
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natural notion of gradient in Wp(X ) given by: ∇W2F (ρ) = −∇ ·
(
ρ∇ δF

δρ

)
where δF

δρ is the first variation of
the functional F . Therefore, the gradient flow of F solves the following PDE:

∂tρ(t)−∇ ·
(

ρ(t)∇
(

δF
δρ (ρ(t))

))
= 0 (2)

also known as a continuity equation.

3 Gradient flows via JKO-ICNN
In this section we introduce the JKO scheme for solving gradient flows, show how to cast it as optimization
over convex functions, and propose a method to solve the resulting problem via ICNN parametrization.

3.1 JKO scheme on measures
Throughout this work we consider problems of the form minρ∈P(X ) F (ρ), where F : P(X )→ R is a functional
over probability measures encoding some objective of interest. Following the gradient flow literature (e.g.,
Santambrogio (2015; 2017)), we focus on three quite general families of functionals:

F(ρ) =
∫

f(ρ(x)) dx, V(ρ) =
∫

V (x) dρ, W(ρ) = 1
2

∫∫
W (x− x′) dρ(x) dρ(x′), (3)

where f : R → R is convex and superlinear and V, W : X → R are convex and sufficiently smooth. These
functionals are appealing for various reasons. First, their gradient flows enjoy desirable convergence
properties, as we discuss below. Second, they have a physical interpretation as internal, potential, and
interaction energies, respectively. Finally, their corresponding continuity equations (2) turn out to recover
various classic PDEs (see Table 1 for equivalences). Thus, in this work, we focus on objectives that can
be written as linear combinations of these three types of functionals.

Table 1: Equivalence between gradient flows and PDEs. In each case, the gradient flow of the
functional F (ρ) in Wasserstein space in the rightmost column satisfies the PDE in the middle column.

Class PDE ∂tρ = Flow Functional F (ρ) =
Heat Equation ∆ρ

∫
ρ(x) log ρ(x) dx

Advection ∇ · (ρ∇V )
∫

V (x) dρ(x)
Fokker-Planck ∆ρ +∇ · (ρ∇V )

∫
ρ(x) log ρ(x) dx +

∫
V (x) dρ(x)

Porous Media ∆(ρm) +∇ · (ρ∇V ) 1
m−1

∫
ρ(x)m dx +

∫
V (x) dρ(x)

Adv.+Diff.+Inter. ∇ ·
[
ρ(∇f ′(ρ) +∇V + (∇W )∗ρ)

] ∫
V (x) dρ(x) +

∫
f(ρ(x)) dx + 1

2
∫∫

W (x−x′) dρ(x) dρ(x′)

For a functional F of this form, it can be shown that the corresponding gradient flow defined in Section 2 con-
verges exponentially fast to a unique minimizer (Santambrogio, 2017). This suggests solving the optimization
problem minρ F (ρ) by following the gradient flow, starting from some initial configuration ρ0. A convenient
method to study this PDE is through the time discretization provided by the Jordan–Kinderlehrer–Otto
(JKO) iterated movement minimization scheme (Jordan et al., 1998):

ρτ
t+1 ∈ argmin

ρ∈W2(X )
F (ρ) + 1

2τ
W2

2(ρ, ρτ
t ), (4)

where τ > 0 is a time step parameter. This scheme will form the backbone of our approach.

3.2 From measures to convex functions
The general JKO scheme (4) discretizes the gradient flow (and therefore, the corresponding PDE) in time, but
it is still formulated on —potentially infinite-dimensional, and therefore intractable— probability space P(X ).
Obtaining an implementable algorithm requires recasting this optimization problem in terms of a space that
is easier to handle than that of probability measures. As a first step, we do so using convex functions.

A cornerstone of optimal transport theory states that for absolutely continuous measures and suitable
cost functions, the solution of the Kantorovich problem concentrates around a deterministic map T (the
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Monge map). Furthermore, for the quadratic cost, Brenier’s theorem (Brenier, 1991) states that this map is
given by the gradient of a convex function u, i.e., T (x) = ∇u(x). Hence given a measure α, the mapping
u ∈ cvx(X ) 7→ (∇u)♯α ∈ P(X ) can be seen as a parametrization, which depends on α, of the space of
probabilities (McCann, 1997). We furthermore have for any u ∈ cvx(X ):

W2
2
(
α, (∇u)♯α

)
=
∫

X
∥∇u(x)− x∥2

2 dα. (5)

Using this expression and the parametrization ρ = (∇u)♯ρ
τ
t in Problem (4), we obtain a reformulation of

Wasserstein gradient flows as optimization over convex functions (Benamou et al., 2014):

uτ
t+1∈ argmin

u∈cvx(X )
F ((∇u)♯ρ

τ
t ) + 1

2τ

∫
X
∥∇u(x)− x∥2

2 dρτ
t , (6)

which implicitly defines a sequence of measures via ρτ
t+1 = (∇uτ

t+1)#(ρτ
t ). For potential and interaction

functionals, Lemma 3.1 shows that the first term in this scheme can be written in a form amenable to
optimization on u.

Lemma 3.1 (Potential and Interaction Energies). For the pushforward measure ρ = (∇u)♯ρt, the functionals
V and W can be written as:

V(ρ) =
∫

(V ◦ ∇u)(x) dρt(x)

W(ρ) = 1
2

∫∫
W (∇u(x)−∇u(y)) dρt(y) dρt(x).

(7)

Crucially, ρt appears here only as the integrating measure. We will exploit this property for finite-sample
computation in the next section. In the case of internal energies F , however, the integrand itself depends on
ρt, which poses difficulties for computation. To address this, we start in Lemma 3.2 by tackling the change
of density when using strictly convex potential pushforward maps:

Lemma 3.2 (Change of variable). Given a strictly convex u∈cvx(X ), ∇u is invertible, and (∇u)−1 =∇u∗,
where u∗ is the convex conjugate of u, u∗(y)=supx∈dom(u)⟨x, y⟩ − u(x). Given a measure α with density ρα,
the density ρβ of the measure β = (∇u)♯α is given by:

ρβ(y) = ρα

|Hu|
◦ (∇u)−1(y) = ρα

|Hu|
◦ ∇u∗(y).

In other words log
(
ρβ(y)

)
= log

(
ρα(∇u∗(y))

)
− log(|Hu(∇u∗(y))|). Iterating Lemma 3.2 across time in the

JKO steps we obtain:

Corollary 3.3 (Iterated Change of Variables in JKO). Assume ρ0 has a density. Let T τ
1:t = ∇uτ

t · · · ◦ ∇uτ
1 ,

where uτ
t are optimal convex potentials in the JKO sequence that we assume are strictly convex. We use the

convention T τ
1:0(x) = x. We have (T τ

1:t)−1 = ∇(uτ
1)∗ ◦ · · · ◦ ∇(uτ

t )∗ where (uτ
t )∗ is the convex conjugate of uτ

t .
At time t of the JKO iterations we have: ρt(x) = T τ

1:tρ0(x), and therefore:

log (ρτ
t ) =

(
log (ρ0)−

t∑
s=1

log(|Huτ
s
(T τ

1:s−1)|)
)
◦ (T τ

1:t)−1.

From Corollary 3.3, we see that the iterates in the JKO scheme imply a change of densities that shares
similarities with normalizing flows (Rezende & Mohamed, 2015; Huang et al., 2021), where the depth of the
flow network corresponds to the time in JKO. Whereas the normalizing flows of Rezende & Mohamed (2015)
draw connections to the Fokker-Planck equation in the generative modeling context, JKO is more general
and allows for rigorous optimization of generic functionals on the probability space.

Armed with this expression of ρτ
t , we can now write F in terms of the convex potential u:
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Lemma 3.4 (Internal Energy). Let ρt be the measure at time t of the JKO iterations. In the notation of
Corollary 3.3, for the measure ρ = (∇u)♯ρt = (∇u ◦ T1:t)♯ρ0, we have:

F
(
ρ
)

=
∫

f(ξ(x))|Hu(T1:t(x))| |JT1:t(x)|dx, (8)

where ξ(x) = ρ0(x)/(|Hu(T1:t(x))||JT1:t(x)|). Assuming ρ0 > 0, we have: F
(
ρ
)

= Ex∼ρ0f ◦ ξ(x)/ξ(x).

3.3 From convex functions to finite parameters
Solving Problem (6) requires: (i) a tractable parametrization of cvx(X ), the space of convex functions, (ii) a
method to evaluate and compute gradients of the Wasserstein distance term, and (iii) a method to evaluate
and compute gradients of the functionals as expressed in Lemmas 3.1 and 3.4.

For (i), we rely on the recently proposed Input Convex Neural Networks (Amos et al., 2017). See Appendix
B.1 for a background on ICNN. Given ρ0 = 1

n

∑n
i=1 δxi

we solve for t = 1 . . . T :

θτ
t+1 ∈ argmin

θ: uθ∈ICNN(X )
L(θ), (9)

L(θ) ≜ F ((∇xuθ(x))♯ρ
τ
t ) + 1

2τ

∫
X
∥∇xuθ(x)− x∥2

2 dρτ
t

where ICNN(X ) is the space of Input Convex Neural Networks, and the θ denotes parameters of the ICNN.
Problem (9) defines a JKO sequence of measures via ρτ

t+1 = (∇xuθτ
t+1

)#(ρτ
t ). We call this iterative process

JKO-ICNN, where each optimization problem can be solved with gradient descent on the parameter space of
the ICNN, using backpropagation and automatic differentiation.

For (ii), we note that this term can be interpreted as an expectation, namely, 1
2τ Ex∼ρτ

t
∥∇xuθ(x)− x∥2

2, so
we can approximate it with finite samples (particles) of ρτ

t obtained via the pushforward map of previous
point clouds in the JKO sequence, i.e., using 1

2τn

∑n
i=1 ∥∇xuθ(xi)− xi∥2

2, {xi}n
i=1 ∼ ρτ

t . Finally, for (iii) we
first note that the V and W functionals can also be written as expectations over ρτ

t :

V
(
(∇xuθ)♯ρ

τ
t

)
= E

x∼ρτ
t

V (∇xuθ(x)), (10)

W
(
(∇xuθ)♯ρ

τ
t

)
= 1

2 E
x,y∼ρτ

t

W (∇xuθ(x)−∇xuθ(y)).

Thus, as long as we can parametrize the functions V and W in a differentiable manner, we can estimate the
value and gradients of these two functionals through finite samples too. In many cases V and W will be
simple analytic functions, such as in the PDEs considered in Section 5. To model more complex optimization
objectives with these functionals we can leverage ICNNs once more to parametrize the functions V and W
as neural networks in a way that enforces their convexity. This is what we do in the molecular discovery
experiments in Section 6.

Particular cases of internal energies Equation (8) simplifies for some choices of f , e.g., for f(t) = t log t
(which yields the heat equation) and strictly convex u we get:

F
(
(∇xuθ)♯ρt

)
=
∫

ρt(x)
|Huθ

(x)| log ρt(x)
|Huθ

(x)| |Huθ(x)
∣∣dx = F(ρt)−

∫
log |Huθ

(x)|ρt(x) dx (11)

where we drop τ from the notation for simplicity. This expression has a notable interpretation: pushing
forward measure ρt by ∇uθ increases its entropy by a log-determinant barrier term on uθ’s Hessian. Note
that only the second term in equation (11) depends on uθ, hence ∇θF

(
(∇xuθ)♯ρt

)
= −∇θ Ex∼ρt log |Huθ

(x)|.
Since the latter can be approximated —as before— by an empirical expectation, it can be used as a surrogate
objective for optimization.

Another notable case is given by f(t) = 1
m−1 tm, m > 1, which yields a nonlinear diffusion term as in the

porous medium equation (Table 1). In this case, equation (8) becomes F
(
ρ
)

= 1
m−1Ex∼ρ0ξ(x)m−1, whose

gradient with respect to θ is:

− E
x∼ρ0

exp{(m−1) log ξ(x)}∇θ log |Huθ
(T1:t(x))| (12)

Table 3 in the Appendix collects all the surrogate objectives described in this section.
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Algorithm 1: JKO-ICNN: JKO variational scheme using input convex neural networks

Inputs:
• Functional to optimize: F (ρ)
• Outer loop (JKO scheme) parameters: step size τ > 0 and number of steps T ∈ N
• Inner loop (ICNN fitting) parameters: learning rate η > 0 and number of iterations nu ∈ N
• warmstart boolean: whether to initialize ICNN weights from prior iteration’s solution
Initialize uθ ∈ ICNN, θ parameters of ICNN, ρτ

0 = 1
N

∑N
i=1 δxi

.
for t = 0 to T − 1 do

if not warmstart: θ ← InitializeWeights()
for i = 1 to nu do

{JKO inner loop: Updating ICNN }
L(θ) = F ((∇xuθ)#ρτ

t ) + 1
2τ Eρτ

t
||x−∇xuθ(x)||2

θ ← Adam(θ, η,∇θLθ)
end for
{JKO outer loop: Updating point cloud (measures) }
ρτ

t+1 = ∇x(uθ)#ρτ
t

end for
Output: ρτ

T

Implementation and practical considerations We implement Algorithm 1 in PyTorch (Paszke et al.,
2019), relying on automatic differentiation to solve the inner optimization loop. The finite-sample approxima-
tions of V and W (equation (10)) can be used directly, but the computation of the surrogate objectives for
internal energies F (equations (11) and (12)) require computing Hessian log-determinants—prohibitive in
high dimensions. Thus, we use a stochastic log-trace estimator based on the Hutchinson method (Hutchinson,
1989), as used by Huang et al. (2021) (see Appendix B.4 for details on implementation and complexity of this
method). To enforce strong convexity on the ICNN, we clip its weights away from 0 after each update. When
needed (e.g., for evaluation), we estimate the true internal energy functional F by using Corollary 3.3 to
compute densities. Appendix B.5 provides full implementation details.

Remark 3.5 (Approximation of Brenier Potential). As pointed in Benamou et al. (2014), the Brenier
potential can be non smooth and not strictly convex. Thus, JKO-ICNN can be understood as effectively
optimizing not on the full space of convex functions, but rather on a smooth subset of it (if we use a smooth
activation). As a consequence, JKO-ICNN does not seek ‘the’ Brenier potential, but instead a family of
smooth Brenier potentials, which may be distinct from the former. Note that this argument is similar to the
one used in (Paty et al., 2020).

4 Related Work
Optimization over Probability Measures and Connections to Convex Optimization The general
problem of optimization over the space of measures has been studied extensively, particularly in the functional
analysis and applied mathematics literature (Jordan et al., 1998; Carlen & Gangbo, 2003; Léonard, 2008).
Despite its unique challenges, optimization over measures exhibits various similarities to classic (finite-
dimensional) optimization. For example, Chizat (2021) recently studied the convergence of Bregman proximal
gradient methods for convex objectives over measures — extensions of their classical counterparts (Nesterov,
2004). Similarly, Wibisono (2018) studies sampling as an optimization over measures, revealing deep
connections between these two problems.

Computational gradient flows A common general approach for solving optimization problems involving
distributions relies on gradient flows, which have been implemented through various computational methods.
Benamou et al. (2016) propose an augmented Lagrangian approach for convex functionals based on the
dynamical optimal transport implementation of Benamou & Brenier (2000). Another approach relying on
the dynamic formulation of JKO and an Eulerian discretization of measures (i.e. via histograms) is the
recent primal dual algorithm of Carrillo et al. (2021). Closer to our work is the formulation of Benamou

6



Published in Transactions on Machine Learning Research (07/2022)

et al. (2014) that casts the problem as an optimization over convex functions. This work relies on a
Lagrangian discretization of measures, via cloud points, and on a representation of convex functions and
their corresponding subgradients via their evaluation at these points. This method does not scale well in
high dimensions since it computes Laguerre cells in order to find the subgradients. A different approach
by Peyré (2015) defines entropic gradient flows using Eulerian discretization of measures and Sinkhorn-like
algorithms that leverage an entropic regularization of the Wasserstein distance. Caluya & Halder (2019)
propose a method that combines entropic regularization and particle methods to solve gradient flows for
the Fokker-Planck equation. Frogner & Poggio (2020) propose kernel approximations to compute gradient
flows. On a different line of work, Salim et al. (2020) propose a forward-backward discretization scheme
for Wasserstein gradient flows, and show that it enjoys convergences guarantees akin to those of proximal
gradient methods in usual Euclidean spaces. Finally, blob methods have been considered in Craig & Bertozzi
(2014) and Carrillo et al. (2019) for the aggregation and diffusion equations. Blob methods regularize velocity
fields with mollifiers (convolution with a kernel) and –unlike many other alternative methods– allow for the
approximation of internal energies.

Forward and particle descent methods In addition, particle descent methods were explored for defining
gradient flows for various geometries, e.g., for Sliced Wasserstein distance (Bonet et al., 2021; Liutkus et al.,
2019), MMD (Mroueh et al., 2019; Mroueh & Rigotti, 2020; Mroueh & Nguyen, 2021; Arbel et al., 2019), Stein
discrepancy (Liu & Wang, 2016; Liu, 2017; Duncan et al., 2019; Korba et al., 2021), and Kullback–Leibler
divergence (Glaser et al., 2021; Feng et al., 2021; di Langosco et al., 2021). Wang et al. (2021) proposes a
projected Wasserstein gradient descent that exploits the manifold assumption.

ICNN, optimal transport, and generative modeling ICNN architectures were originally proposed
by Amos et al. (2017) to allow for efficient inference in settings like structured prediction, data imputation,
and reinforcement learning. Since their introduction, they have been exploited in various other settings
that require parametrizing convex functions, including optimal transport. For example, Makkuva et al.
(2020) propose using them to learn an explicit optimal transport map between distributions, which under
suitable assumptions, can be shown to be the gradient of a convex function (Brenier, 1991). The ICNN
parametrization has been also exploited in order to learn continuous Wasserstein barycenters by Korotin et al.
(2021). Using this same characterization, Huang et al. (2021) recently proposed to use ICNNs to parametrize
flow-based invertible probabilistic models, an approach they call convex potential flows. These are instances
of normalizing flows (not to be confused with gradient flows), and are useful for learning generative models
when samples from the target (i.e., optimal) distributions are available and the goal is to learn a parametric
generative model. Our use of ICNNs differs from these prior works and other approaches to generative
modeling in two important ways. First, unlike those, our approach can be used even if the target distribution
is available only up to a constant, or even if it cannot be sampled from and is only implicitly characterized as
the minimizer of an optimization problem over distributions. Indeed, any functional defined over distributions
can be used as a plug-in objective in our framework, making it far more general than traditional generative
modeling. Additionally, compared to other works that use ICNNs for optimal transport, we leverage these
networks not only for solving a single optimal transport problem, but rather for a sequence of JKO step
optimization problems that involve various terms in addition to the Wasserstein distance.

Neural networks methods for JKO In concurrent work, Mokrov et al. (2021) and Bunne et al. (2021)
adopt a similar approach for approximating JKO with ICNNs. While the former is concerned exclusively
with the Fokker-Planck equation, here we consider additional classes of PDEs. Bunne et al. (2021) tackle a
different problem: learning dynamics with JKO, i.e., the inverse problem of learning the functional whose
JKO flow follows empirical observations, which they also approach in its stochastic version using an SDE
approach (Bunne et al., 2022). Other subsequent works have built upon these initial set of parallel works. For
example, Hwang et al. (2021) provide non-asymptotic approximation guarantees and an empirical validation
for a method similar to the one proposed here. Nodozi & Halder (2022), on the other hand, introduce a
variant of the JKO-ICNN approach that relies on the alternating direction method of multipliers (ADMM).
On a different line of work, a min-max formulation of the JKO scheme was explored by Fan et al. (2021) and
a link between proximal training methods of GANs with Wasserstein gradient flows was proposed by Lin
et al. (2021).
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(a) Porous medium equation with pure diffusion §5.1.

(b) Fokker-Planck with nonlinear diffusion §5.2. (c) Aggregation equation §5.3.

Figure 1: Flows on PDEs with known solution. We use KDE on the flowed particles for the density
plots, and the iterated push-forward density method (Corollary 3.3) to evaluate F in (a) and (b).

5 PDEs with known solutions
We first evaluate our method on gradient flows whose corresponding PDEs have known solutions. We focus on
three examples from Carrillo et al. (2021) that combine the three types of functionals introduced in Section
3: porous medium, non-linear Fokker-Planck, and aggregation equations. We tackle 1D versions of these
equations in this section, and consider a higher-dimensional (R20) Fokker-Planck equation in Appendix D,
where we show that the JKO-ICNN dynamics closely follow Langevin dynamics in recovering the Wasserstein
gradient flow corresponding of this PDE (Fig. 3). Throughout this section, we use τ =η =10−3 in the notation
of Algorithm 1, and use the ICNN weights from step t to warm-start those of step t + 1.

5.1 Porous medium equation
The porous medium equation is a classic non-linear diffusion PDE. We consider a diffusion-only system:
∂tρ = ∆ρm, m > 1, corresponding to a gradient flow of the internal energy F(ρ) = 1

m−1
∫

ρm(x) dx, which we
implement using our JKO-ICNN with objective (12). A known family of exact solutions of this PDE is given
by the Barenblatt-Pattle profiles (Zel’dovich & Kompaneetz, 1950; Barenblatt., 1952; Pattle, 1959):

ρ(x, t) = t−α
(
C − k∥x∥2t−2β

) 1
m−1
+ , x ∈ Rd, t > 0,

where C >0 is a constant and α = d/(d(m− 1) + 2), β = α/d, and k = α(m− 1)/(2md).

This exact solution provides a trajectory of densities to compare our JKO-ICNN approach against.
Specifically, starting from particles sampled from ρ(x, 0), we can compare the trajectory ρ̂t(x) estimated with
our method to the exact density ρ(x, t). Although this system has no steady-state solution, its asymptotic
behavior can be expressed analytically too. For the case d = 1, m = 2, C = (3/16)1/3, Figure 1a shows that
our method reproduces the dynamics of the exact solution (here the flow density is estimated from particles
via KDE and aggregated over 10 repetitions with random initialization) and that the objective value F(ρ̂)
has the correct asymptotic behavior.

5.2 Nonlinear Fokker-Planck equation
Next, we consider a Fokker-Planck equation with a non-linear diffusion term as before:

∂tρ = ∇ · (ρ∇V ) + ∆ρm, V : Rd → R, m > 1. (13)
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This PDE corresponds to a gradient flow of the objective F (ρ) = 1
m−1

∫
ρm(x) dx +

∫
V (x) dρ(x). For some

V ’s its solutions approach a unique steady state (Carrillo & Toscani, 2000):

ρ∞(x) =
(
C − m−1

m V (x)
) 1

m−1
+ , (14)

where the constant C depends on the initial mass of the data. For d=1, m=2, and V (x)=x2, we solve this
PDE using JKO-ICNN with Objectives (10) and (12), using initial data drawn from a Normal distribution
with parameters (µ, σ2) = (0, 0.2). Unlike the previous example, in this case we do not have a full solution
ρ(x, t) to compare against, but we can instead evaluate convergence of the flow to ρ∞(x). Figure 1b shows
that the density ρ̂t(x) derived from the JKO-ICNN flow converges to the steady state ρ∞(x), and so does the
value of the objective, i.e., F (ρ̂t)→ F (ρ∞).

5.3 Aggregation equation
Next, we consider an aggregation equation: ∂tρ = ∇ · (ρ∇W ∗ ρ), W : Rd → R, which corresponds to a
gradient flow on an interaction functional W(ρ) = 1

2
∫∫

W (x− x′) dρ(x) dρ(x′). We consider the same setting
as Carrillo et al. (2021): d=1, ρ0 ∼ N (0, 1), and the kernel W (x) = 1

2 |x|
2− log(|x|), which enforces repulsion

at short length scales and attraction at longer scales. This choice of W has the advantage of yielding a unique
steady-state equilibrium (Carrillo et al., 2012), given by ρ∞(x) = 1

π

√
(2− x2)+. Our JKO-ICNN encodes W

using Objective (10). As in the previous section, we investigate the convergence of this flow to this steady
state distribution. Figure 1c shows that in this case too we observe convergence of densities ρ̂t(x)→ ρ∞(x)
and objective values F (ρ̂t)→ F (ρ∞).

6 Molecular discovery
To demonstrate the flexibility and efficacy of our approach, we apply it in an important high dimensional
setting: controlled generation in molecular discovery. In our experiments, the goal is to increase the drug-
likeness of a given distribution of molecules while staying close to the original distribution, an important task
in drug discovery and drug re-purposing. Formally, given an initial distributions of molecules ρ0, a convex
potential energy function V that models the property of interest, and a divergence D, we solve:

min
ρ∈P(X )

F (ρ) := λ1EρV (x) + λ2D(ρ, ρ0), (15)

We use our JKO-ICNN scheme to optimize this functional on the space of probability measures, given an
initial distribution ρ0(x) = 1

N

∑N
i=1 δxi

(x) where xi is a molecular embedding.

In what follows, we show how we model each component of this functional via: (i) training a molecular
embedding using a Variational Auto-encoder (VAE), (ii) training a surrogate potential V to model drug-
likeness, (iii) using automatic differentiation via the divergence D.

Choice of divergence term D For the divergence D in Equation (15), we use the 2-Wasserstein distance
with entropic regularization (Cuturi, 2013).

JKO-ICNN for the functional we optimize in (15) is given for t ≥ 0 for ρτ
0 = ρ0:

θτ
t+1 ∈ argmin

θ: uθ∈ICNN(X )
λ1

∫
V (∇xuθ(x))dρτ

t + λ2D((∇xuθ(x))♯ρ
τ
t , ρ0) + 1

2τ

∫
X
∥∇xuθ(x)− x∥2

2 dρτ
t

ρτ
t+1 = (∇xuθτ

t+1
)#(ρτ

t ). (16)

We use the Sinkhorn algorithm (Cuturi, 2013) to compute D and backpropagate through this objective
as proposed by Genevay et al. (2018), using the geomloss toolbox for efficiency (Feydy et al., 2019) (see
Appendix E.2 and E.3 for a discussion of alternative forms of divergence and ablation studies).

Embedding of molecules using VAEs We start by training a VAE on string representation of molecules
(Polykovskiy et al., 2020; Chenthamarakshan et al., 2020) known as SMILES (Weininger, 1988) to reconstruct
these strings with a regularization term that ensures smoothness of the encoder’s latent space (Kingma &
Welling, 2013; Higgins et al., 2016). We train the VAE on a molecular dataset known as MOSES (Polykovskiy

9
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Table 2: Comparison between JKO-ICNN and the direct optimization baseline. For each setup,
we report validity, uniqueness, median QED for the final point cloud of embeddings, and Sinkhorn divergence
between the initial and final point clouds (Final SD). Each measurement value cell contains mean values ±
one standard deviation for 5 repeated runs with different random initialization seeds, and ρ0 corresponds to
the initial point cloud.

λ2 LR Validity Uniqueness QED Median Final SD
ρ0
N/A N/A 100.000 ± 0.000 99.980 ± 0.045 0.630 ± 0.001 N/A

JKO-ICNN
1e4 1e−4 93.940 ± 0.336 100.000 ± 0.000 0.750 ± 0.001 0.620 ± 0.010

Baseline - sgd
0 5e−1 43.440 ± 1.092 100.000 ± 0.000 0.772 ± 0.004 9792.93 ± 76.913
1 5e−1 49.440 ± 1.128 100.000 ± 0.000 0.768 ± 0.006 8881.38 ± 69.736
1e3 5e−1 87.240 ± 0.777 100.000 ± 0.000 0.767 ± 0.002 2515.08 ± 49.870
Baseline - adam
0 1e−1 92.080 ± 0.973 100.000 ± 0.000 0.793 ± 0.005 18.261 ± 0.134
0 1e−2 93.900 ± 0.781 99.979 ± 0.048 0.758 ± 0.006 1.650 ± 0.006
1 1e−1 91.200 ± 0.539 99.978 ± 0.049 0.792 ± 0.005 17.170 ± 0.097
1e3 1e−1 99.980 ± 0.045 99.980 ± 0.045 0.630 ± 0.001 0.077 ± 0.003
1e4 1e−1 99.900 ± 0.122 99.980 ± 0.045 0.630 ± 0.001 0.240 ± 0.019

et al., 2020), which is a subset of the ZINC database (Sterling & Irwin, 2015), released under the MIT
license. This dataset contains about 1.6M training and 176k test molecules (see Appendix F, for results of
this experiment run on a different dataset, QM9 (Ramakrishnan et al., 2014; Ruddigkeit et al., 2012)). Given
a molecule, we embed it using the VAE encoder to represent it with a vector xi ∈ R128.

Training a convex surrogate for the desired property (high QED) The quantitative estimate of
drug-likeness (QED) (Bickerton et al., 2012) can be computed with the RDKit library (Landrum, 2013a)
but is not differentiable nor convex. Hence, we propose to learn a convex surrogate using Residual ICNNs
(Amos et al., 2017; Huang et al., 2021). This ensures that it can be used as convex potential functional V , as
described in Section 3. To do so, we process the MOSES dataset via RDKit and obtain a labeled set with
QED values. We set a QED threshold of 0.85 and give a lower value label for all QED values above that
threshold and a higher value label for all QED values below it so that minimizing the potential functional
with this convex surrogate will lead to higher QED values. Given VAE embeddings of the molecules, we train
a ICNN classifier on this dataset. See Appendix E.1 for experimental details.

Optimization with JKO With the molecule embeddings coming from the VAE serving as the point cloud
to be transported and the potential functional defined by the convex QED classifier, we run Algorithm 1 to
move an initial point cloud of molecule embeddings ρ0 with low drug-likeness (QED < 0.7) to a region of the
latent space that decodes to molecules with distribution ρT

τ with higher drug-likeness. We use the following
hyperparameters for JKO-ICNN: N , number of original embeddings, was 1,000. The JKO rate τ was set to
1e−4 and the outer loop steps T was set to 100. For the inner loop, the number of iterations nu was set to
500, and the inner loop learning rate η was set to 1e−3. For JKO-ICNN, we used a fully-connected ICNN
with two hidden layers, each of dimension 100. Finally, we ran the JKO-ICNN flow without warm starts
between steps, as we observed empirically that it resulted in better performance. The full pipeline for this
experiment setting is displayed in Figure 4 in Appendix E. All computations were done with 1 CPU and 1
V100 GPU.

Evaluation We set λ1 = 1 and λ2 = 10,000 (see Table 4 in Appendix E.3 for details on hyperparameter
search). We start JKO with an initial cloud point ρ0 of embeddings that have QED < 0.7 randomly sampled
from the MOSES test set. In the second row of Table 2, we see that JKO-ICNN is able to optimize the
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functional objective and leads to molecules that satisfy low energy potential, i.e., improved drug-likeness,
while staying close to the original point cloud, as measured by Sinkhorn divergence (Final SD).

Comparison with direct optimization We also compare the JKO-ICNN flow to a baseline approach that
optimizes the same functional objective via direct gradient descent on the molecule embeddings. Formally,
this baseline approach is described by the process: dXi

t = −∇V (Xi
t)dt− λ2∇D( 1

N

∑N
i=1 δXi

t
, ρ0), i = 1 . . . N ,

which we discretize using either vanilla gradient descent or adam updates. For the baseline, we run a grid
search over various hyperparameters and reproduce a selection of configurations in Table 2 where we report
validity, uniqueness, median QED (which corresponds to the first term in Equation (15)) of the final point
cloud and Sinkhorn divergence between the initial and final point clouds (Final SD, corresponding to the
second term in (15)). For the full grid search, see Tables 6 and 7 in Appendix E.6. We note that the only
baseline configurations that are able to meaningfully increase median QED are those where λ2 is orders of
magnitude smaller than in the JKO-ICNN flow. Direct optimization therefore cannot accomplish the joint
goals of the objective function. This is consistent with findings by Bunne et al. (2021) with regards to the
superiority of JKO over forward methods (direct optimization). This is significant because in many setting it
is often crucial to stay close to the original set, e.g., drug re-purposing.

Benefit of computational amortization We show that the maps calculated at each step of the JKO-
ICNN flow can be re-used to transport a new set of embeddings with similar gains in QED distribution,
without having to retrain the flow (Table 8 in Appendix E.7). We perform this comparison for various sample
sizes of initial point clouds and observe linear scaling of the speedup of using the JKO-ICNN map relative to
direct optimization. This is a key advantage of JKO-ICNN relative to direct optimization, which needs to be
re-optimized for each new set of embeddings.

7 Discussion
In this paper, we proposed JKO-ICNN, a scalable method for computing Wasserstein gradient flows. Key to
our approach is the parameterization of the space of convex functions with Input Convex Neural Networks.
We showed that JKO-ICNN succeeds at optimizing functionals on the space of probability distributions in
low-dimensional settings involving known PDES as well as in large-scale and high-dimensional experiments
on molecular discovery via controlled generation. Studying the convergence of solutions of JKO-ICNN is an
interesting open question that we leave for future work. To mitigate potential risks in biochemical discoveries,
generated molecules should be verified in the laboratory, in vitro and in vivo, before being deployed.
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A Proofs
A.1 Proof of Lemma 3.1
Starting from the original form of the potential energy functional V in Equation (3), and using the expression
ρ = (∇u)♯ρt we have:

V(ρ) = V
(
(∇u)♯ρt

)
=
∫

V (x) d[(∇u)♯ρt] =
∫

(V ◦ ∇u) dρt (17)

On the other hand, for an interaction functional W we first note that it can be written as

W(ρ) = 1
2

∫∫
W (x− x′) dρ(x′) dρ(x) = 1

2

∫
(W ∗ ρ)(x) dρ(x). (18)

In addition, we will need the fact that

W ∗ [(∇u)♯ρ] =
∫

W (x− y) d[(∇u)♯ρ(y)] =
∫

W (x−∇u(y)) dρ(y). (19)

Hence, combining the two equations above we have:

W
(
(∇u)♯ρt

)
= 1

2

∫
(W ∗ (∇u)♯ρt)(x) d[(∇u)♯ρt(x)]

= 1
2

∫ (∫
W (x−∇u(y)) dρt(y)

)
d[(∇u)♯ρt(x)]

= 1
2

∫∫
W (∇u(x)−∇u(y)) dρt(y) dρt(x),

as stated.

A.2 Proof of Lemma 3.2
Following Santambrogio (2017), we note that whenever u is convex and ν is absolutely continuous, then
ρ = T♯ν is absolutely continuous too, with a density given by

ρ = ν

|JT |
◦ T −1 (20)

where JT is the Jacobian matrix of T . In our case ρ = (∇u)♯ρt , so that

ρ(y) =
[

ρt

|Hu|
◦ (∇u)−1

]
(y) =

ρt

(
(∇u)−1(y)

)∣∣∣Hu

(
(∇u)−1(y)

)∣∣∣ (21)

where H is the Hessian of u. When u is strictly convex it is known that it is invertible and that (∇u)−1 = ∇u∗,
where u∗ is the convex conjugate of u (see e.g. Rockafellar (1970)).

A.3 Proof of Corollary 3.3
In this proof, we drop the index τ . As before, we use the change of variables ρt = (∇ut)♯ρt−1. Thus, by
induction,

ρt = (∇ut ◦ ∇ut · · · ◦ ∇u1)♯ρ0 (22)

Let T1:t = (∇ut ◦ ∇ut · · · ◦ ∇u1), so that ρt = (T1:t)♯ρ0 = (∇ut ◦ T1:t−1)♯ρ0. The Jacobian of this map is
given by the chain rule as:

JT1:t

(
x
)

= Hut
(T1:t−1(x))JT1:t−1(x) (23)

Hence by induction we have:
JT1:t

(
x
)

= Πt
s=1Hus

(T1:s−1(x)) (24)
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On the other hand, as long as the inverses exist, we have:

T −1
1:t = (∇ut)−1 ◦ · · · ◦ (∇u1)−1 = ∇u∗

t ◦ · · · ◦ ∇u∗
1

Hence,

ρt(y) =
(

ρ0

|JT1:t |
◦ T −1

1:t

)
(y) =

(
ρ0

Πt
s=1|Hus(T1:s−1)| ◦ T −1

1:t

)
(y)

=
ρ0

(
T −1

1:t (y)
)

Πt
s=1|Hus(T1:s−1 ◦ T −1

1:t (y))|
,

and finally taking the log we obtain:

log (ρt) =

log (ρ0)−
t∑

s=1
log(|Hus

(T1:s−1)|)

 ◦ (T1:t)−1. (25)

A.4 Proof of Lemma 3.4
As before, let ρt+1 = (∇ut+1)♯ρt. Thus, by induction,

ρt+1 = (∇ut+1 ◦ ∇ut · · · ◦ ∇u1)♯ρ0 (26)

Let T1:t = (∇ut ◦∇ut · · · ◦ ∇u1), so that ρt+1 = (T1:t+1)♯ρ0 = (∇ut+1 ◦ T1:t)♯ρ0. The Jacobian of this map is
given by the chain rule as:

JT1:t+1

(
x
)

= Hut+1(T1:t(x))JT1:t(x) (27)
On the other hand, using the fact that (whenever the inverses exist) (f ◦ g)−1 = g−1 ◦ f−1, in our case we
have

T −1
1:t+1 = T −1

1:t ◦ ∇u−1
t+1, (28)

Using Equations (20) and (26), we can write the density of ρt+1 as

ρt+1(y) =
(

ρ0

|JT1:t+1 |
◦ T −1

1:t+1

)
(y) (29)

=
ρ0
(
T −1

1:t+1(y)
)

|JT1:t+1

(
T −1

1:t+1(y)
)
|

=
ρ0

(
T −1

1:t ◦ ∇u−1
t+1(y)

)
|Hut+1(∇u−1

t+1(y))||JT1:t(T −1
1:t ◦ ∇−1ut+1(y))|

(30)

Finally, using the change of variables y = ∇ut+1 ◦T1:t(x), x = T −1
1:t ◦∇u−1

t+1(y), in the integral in the definition
of F , we get

F
(
ρt+1

)
=
∫

f

(
ρ0(x)

|Hut+1(T1:t(x))||JT1:t(x)|

)
|Hut+1(T1:t(x))||JT1:t(x)|dx

= Ex∼ρ0

f

(
ρ0(x)

|Hut+1(T1:t(x))||JT1:t(x)|

)
|Hut+1(T1:t(x))||JT1:t(x)|

ρ0(x)

 .

B Practical Considerations
B.1 Input Convex Neural Networks
Input Convex Neural Networks were introduced by Amos et al. (2017). A k-layer fully input convex neural
network (FICNN) is one in which each layer has the form:

zi+1 = gi

(
W

(z)
i zi + W

(y)
i y + bi

)
i = 0, . . . , k − 1 (31)
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where gi are activation functions. Amos et al. (2017) showed that the function f : x 7→ zk is convex
with respect to x if all the W

(z)
i:k−1 are non-negative, and all the activation functions gi are convex and

non-decreasing. Residual skip connections from the input with linear weights are also allowed and preserve
convexity (Amos et al., 2017; Huang et al., 2021).

In our experiments, we parametrize the Brenier potential uθ as a FICNN with two hidden layers, with
(100, 20) hidden units for the simple PDE experiments in Section 5 and (100, 100) for the molecule generation
experiments in Section 6. In order to preserve the convexity of the network, we clip the weights of W

(z)
i:k−1

after every gradient update using wij ← max{wij , 10−8}. Alternatively, one can add a small term +λ∥x∥2
2 to

enforce strong convexity. In all our simple PDE experiments in Section 5, we use the adam optimizer with
10−3 initial learning rate, and a JKO step-size τ = 10−3. Optimization details for the molecular experiments
are provided in that section (Section 6).

B.2 Surrogate loss for entropy
For the choice f(t) = t log t in the internal energy functional F , we do not use Lemma 3.4 but rather derive
the expression from first principles:

F
(
(∇xuθ)♯ρt

)
=
∫

ρt(x)
|Huθ

(x)| log ρt(x)
|Huθ

(x)| |Huθ
(x)
∣∣dx

=
∫

log ρt(x)
|Huθ

(x)|ρt(x) dx

=
∫

ρt(x) log ρt(x) dx−
∫

log |Huθ
(x)|ρt(x) dx = F(ρt)− E

x∼ρt

[log |Huθ
(x)|]

As mentioned earlier, this expression has an interesting interpretation as reducing negative entropy (increasing
entropy) of ρt by an amount given by a log-determinant barrier term on u’s Hessian. We see that the only
term depending on θ is −Ex∼ρt [log |Huθ

(x)|]. We discuss how to estimate this quantity and backpropagate
through Huθ

in Appendix B.4.

B.3 Surrogate losses for internal energies
Let

rx(uθ) = log(ξ(x)) = log(ρ0(x))− log |Huθ
(T1:t(x))| − log(|J1:T (x)|)

From Lemma 3.4, our point-wise loss is :

L(uθ) = f ◦ exp(rx(uθ))
exp(rx(uθ))

Computing gradient w.r.t θi parameters of uθ:

∂

∂θi
L(u) =

f ′(exp(rx(uθ)))[exp(rx(uθ))]2 ∂
∂θi

rx(uθ)− exp(rx(uθ)) ∂
∂θi

rx(uθ)f ◦ exp(rx(uθ))
[exp(rx(uθ)]2

=
(

f ′(exp(rx(uθ))) exp(rx(uθ))− f(exp(rx(uθ)))
exp(rx(uθ))

)
∂

∂θi
rx(uθ)

Also,
∂

∂θi
rx(u) = − ∂

∂θi
log |Huθ

(T1:t(x))|

Hence the Surrogate loss that has same gradient can be evaluated as follows:

L(uθ) = −
(

f ′(exp(rx(uθ))) exp(rx(uθ))− f(exp(rx(uθ)))
exp(rx(uθ))

)
︸ ︷︷ ︸

no grad

log |Huθ
(T1:t(x))|
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For the particular case of porous medium internal energy, let a = exp(r). For f(a) = 1
m−1 am =

1
m−1 exp(m log(a)) = 1

m−1 exp(mr)), we have f ′(a) = m
m−1 am−1 = m

m−1 exp((m − 1) log(a)) f ′(a) =
m

m−1 exp((m− 1)r).

f ′(a)− f(a)
a

= m

m− 1 exp((m− 1)r)− 1
m− 1 exp((m− 1)r) = exp((m− 1)r)

Hence we have finally the surrogate loss:
L(uθ) = − exp((m− 1)rx(uθ))︸ ︷︷ ︸

no grad

log |Huθ
(T1:t(x))|,

for which we discuss estimation in Appendix B.4. Table 3 summarizes surrogates losses for common energies
in gradient flows.

Table 3: Surrogate optimization objectives used for computation. Here Ê denotes an empirical
expectation, ξ(x) is defined in Lemma 3.4, and sg denotes the StopGrad operator.

Functional Type Exact Form F (ρ) Surrogate Objective F̂ (uθ)

Potential energy
∫

V (x) dρ(x) Êx∼ρtV (∇xuθ(x))
Interaction energy

∫∫
W (x− x′) dρ(x) dρ(x′) 1

2 Êx,y∼ρt
W (∇xuθ(x)−∇xuθ(y))

Neg-Entropy
∫

ρ(x) log ρ(x) dx −Êx∼ρt
log |Huθ

(x)|
Nonlinear diffusion

∫ 1
m−1 ρ(x)m dx −Êx∼ρ0e(m−1)sg(log ξ(x)) log |Huθ

(T1:t(x))|

B.4 Stochastic log determinant estimators
For numerical reasons, we use different methods to evaluate and compute gradients of Hessian log-
determinants.
Evaluating log-determinants Following Huang et al. (2021), we use Stochastic Lanczos Quadrature (SLQ)
(Ubaru et al., 2017) to estimate the log determinants. We refer to this step as LogdetEstimator.
Estimating gradients of log-determinants The SLQ procedure involves an eigendecomposition, which
is unstable to back-propagate through. Thus, to compute gradients, Huang et al. (2021), inspired by Chen
et al. (2019), instead use the following expression of the Hessian log-determinant:

∂
∂θ log |H| = 1

|H|
∂

∂θ |H| =
1

|H| tr(adj(H) ∂H
∂θ ) = tr(H−1 ∂H

∂θ ) = E
v

[
v⊤H−1 ∂H

∂θ v
]
, (32)

Algorithm 2: Density estimation for JKO-ICNN

1: Input: Query point x, sequence of Brenier
potentials {ui}T

i=0 obtained with JKO-ICNN, initial
density evaluation function ρ0(·).

2: Initialize yt ← x
3: for t = T to 1 do
4: yt−1 ← argmaxy⟨yt, y⟩ − ut(y)
5: {yt−1 satisfies (∇ut)(yt−1) = yt}
6: end for
7: x0 ← y0
8: for t = 0 to T − 1 do
9: xt+1 ← ∇ut(xt)

10: end for
11: {Compute δ ≜ log |JT1:t(x0)|}
12: δ ←LogdetEstimator(x0, xT )
13: p← log ρ0(y0)− δ
14: Output: p satisfying p = log ρt(x)

Here v is a random Rademacher vector. This last
step is the Hutchinson trace estimator (Hutchinson,
1989).

As in Huang et al. (2021), we avoid constructing
and inverting the Hessian in this expression by
instead solving a problem that requires computing
only Hessian-vector products:

argmin
z

1
2 z⊤Hz − v⊤z (33)

Since H is symmetric positive definite, this strictly
convex problem has a unique minimizer, z∗, that
satisfies z∗ = H−1v. This problem can be solved
using the conjugate gradient method with a fixed
number of iterations or a error stopping condi-
tion. Thus, computing the last expression in Equa-
tion (32) can be done with automatic differentia-
tion by: (i) sampling a Rademacher vector v, (ii)
running conjugate gradient for m iterations on
Problem (33) to obtain zm, (iii) computing ∂

∂θ [(zm)⊤Hv] with automatic differentiation.
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Complexity of the Hutchinson method The Hutchinson estimator needs O(1/ϵ2) random projections
to give an 1 ± ϵ guarantee for trace approximation. A newer version, Hutch++ proposed by Meyer et al.
(2021), reduces the number of random projections needed to O(1/ϵ).

B.5 Implementation Details
Apart from the stochastic log-determinant estimation (Appendix B.4) needed for computing internal energy
functionals, the other main procedure that requires discussion is the density estimation. This is needed, for
example, to obtain exact evaluation of the internal energy functionals F and requires having access to the
exact density (or an estimate thereof, e.g., via KDE) from which the initial set of particles were sampled. For
this, we rely on Lemma 3.2 and Corollary 3.3, which combined provide a way to estimate the density ρT (x)
using ρ0(x), the sequence of Brenier potentials {ui}T

i=1, and their combined Hessian log-determinant. This
procedure is summarized in Algorithm 2.
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C Additional qualitative results on 2D datasets

(a) Heat equation corresponding to internal energy functional F(ρ) =∫
ρ(x) log ρ(t) dx (see Table 1).

(b) Potential-only flow using functional V(ρ) =
∫

∥x − x0∥2
2 dρ(x).

(c) Fokker-Planck with linear diffusion: same potential as 2b, plus F(ρ) =∫
ρ(x) log ρ(x) dx .

(d) Fokker-Planck with nonlinear diffusion: same potential as 2b, plus
F(ρ) =

∫
ρ2(x) dx .

(e) Aggregation equation (same functional as in §5.3).

Figure 2: JKO-ICNN flows of a 2D point cloud with density estimated via KDE.
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C.1 Experimental details: PDEs with known solutions
In all the experiments in Section 6, we use the same JKO step-size τ = 10−3 for the outer loop and an adam
optimizer with initial learning rate η = 10−3 for the inner loop. We run the inner optimization loop for
400 iterations. In the plots in Figure 1, we show snap-shots at different intervals to facilitate visualization.
For these experiments, we parametrize uθ as an 2-hidden-layer ICNN with layer width: (100, 20). For the
non-linear diffusion term needed for the PDEs in Sections 5.1 and 5.2, we use the surrogate Objective (12).
In all cases, we impose strict positivity on the weight matrices W (z) (Equation (31)) with minimum value
δ = 10−18 to enforce strong convexity.

D Comparing high dimensional PDEs to Wasserstein gradient flow
To confirm that JKO-ICNN recovers the Wasserstein gradient flow in high dimension at all time steps, we
considered the Fokker-Planck equation and ran the following experiment on the Langevin dynamics in high
dimension considering a convex potential: V (x) = (x− µ)⊤A(x− µ), where x, µ ∈ Rd, A is positive-definite
matrix, F (ρ) =

∫
V (x)ρ(x) + H(ρ), and H(ρ) =

∫
ρ log(ρ)dx is the negative entropy.

We chose this functional since Langevin dynamics can be implemented using particles thanks to the Unadjusted
Langevin Algorithm (ULA). ULA with learning rate η is given by:

Xk+1 = Xk − η∇V (Xk) +
√

2ηβ−1ξk,

where ξk ∼ N (0, Id), β is a temperature term, and X0 is sampled form N (0, Σ0). This initial distribution is
used for ULA and JKO-ICNN.

Figure 3: Wasserstein Gradient Flow Recovery in high dimension: comparison between the JKO-ICNN flow
and direct gradient descent on the objective (GD), evaluated against the ‘true’ flow obtained by following
dynamics using the Unadjusted Langevin Algorithm (ULA) to simulate the Fokker-Planck equation in 20D.

It is known that ULA implements the minimization of F (ρ) using particles, and at the limit of an infinite
number of particles and as η → 0, the intermediate distribution of Xk of ULA corresponds to the Wasserstein
Gradient Flow (WGF) dynamics ρt. Hence, we compare the distance between the JKO-ICNN intermediate
cloud point to ULA’s at all times, showing that the JKO-ICNN recovers the Wasserstein gradient flows at
all steps (i.e., the MMD of JKO-ICNN’s intermediate clouds to ULA’s remains small at all time steps, see
Figure 3, for d = 20).
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In order to put these results in context, we also provide the MMD distance of intermediate clouds of ULA
versus direct optimization (gradient descent, GD). We see that JKO-ICNN faithfully tracks ULA, relative to
GD.

When trying to go beyond d = 20, we run into issues with ULA, which is known to become unstable in high
dimensions. Although this can be addressed via annealing rates or temperatures, this would make it deviate
from the true WGF, defeating the purpose of the comparison, and is out of the scope for this work.

E Experimental details: molecular discovery with JKO-ICNN (MOSES dataset)
In what follows, we present the experimental details of the experiments in Section 6, on the MOSES dataset.
The MOSES dataset (Polykovskiy et al., 2020) is is a subset of the ZINC database (Sterling & Irwin, 2015).
MOSES dataset is available for download at https://github.com/molecularsets/moses, released under the
MIT license.

All Molecular discovery JKO-ICNN experiments were run in a compute environment with 1 CPU and 1 V100
GPU submitted as resource-restricted jobs to a cluster. This applies to both convex QED surrogate classifier
training and evaluation runs and to the JKO-ICNN flows for each configuration of hyperparameters and
random seed initialization. The full pipeline for this experiment is detailed in Figure 4.

NC1=CC2=C(O1)C=CC2 

VAE 
encoder

Molecule SMILES 
Strings

Molecule 
embeddings

QED annotation

(Convex) 
QED 

classifier
(Distribution 

distance)+

JKO-ICNNVAE 
decoder

Figure 4: JKO-ICNN for molecular discovery. We apply our method to generate molecules whose
drug-likeness and closeness to ρ0 are maximized in latent VAE space.

E.1 Convex QED surrogate classifier
We first describe the hyperparameters and results of the convex surrogate that was trained to predict high
(> 0.85) and low (< 0.85) QED values from molecule embeddings coming from a pre-trained VAE. Molecules
with high QED were given lower value labels compared to the low QED molecules so that when this model
would be used as potential, minimizing this functional would lead to higher QED values. For this convex
surrogate, we trained a Residual ICNN (Amos et al., 2017; Huang et al., 2021) model with four hidden layers,
each with dimension 128, which was the dimensionality of the input molecule embeddings as well. We trained
the model with binary cross-entropy loss. To maintain convexity in the potential functional however, we used
the last layer before the sigmoid activation for V . The model was trained with an initial learning rate of
0.01, batch sizes of 1,024, adam optimizer, and a learning rate scheduler that decreased learning rate on
validation set loss plateau. The model was trained for 100 epochs, and the weights from the final epoch were
used to initialize the convex surrogate in the potential functional. For this epoch, the model achieved 85%
accuracy on the test set. In Figure 5, we display the test set confusion matrix for this final epoch.

E.2 Automatic differentiation via D
For the divergence D in Equation (15), we use either the 2-Wasserstein distance with entropic regularization
(Cuturi, 2013) or the Maximum Mean Discrepancy (Gretton et al., 2012) with a Gaussian kernel (MMD).
When D is the entropy-regularized Wasserstein distance, we use the Sinkhorn algorithm (Cuturi, 2013) to
compute D (henceforth denoted as Sinkhorn). We backpropagate through this objective as proposed by
Genevay et al. (2018), using the geomloss toolbox for efficiency (Feydy et al., 2019). We also use geomloss
for evaluation and backpropagation when D is chosen to be MMD.
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Figure 5: Confusion matrix for the convex surrogate trained to predict QED labels from molecule embeddings
for MOSES.

E.3 D ablation study and λ2 hyperparameter search
We fixed λ1 = 1 for all experiments and used either Sinkhorn or MMD for D. The weight λ2 on D was
set to either 1,000 or 10,000. We start JKO with an initial cloud point ρ0 of embedding that have QED
< 0.7 randomly sampled from the MOSES test set. In the Table 4, we report several measurements. First is
validity, which is the proportion of the decoded embeddings that have valid SMILES strings according to
RDKit. Of the valid strings, we calculate the percent that are unique. Finally, we use RDKit to get the QED
annotation of the decoded embeddings and report median values for the point cloud. We re-ran experiments
five times with different random seed initializations and report means and standard deviations. In the first
row of Table 4, we report the initial values for the point cloud at time t = 0. In the last four rows of the
table, we report the measurements for different hyperparameter configurations at the end of the JKO scheme
for t = T = 100. The results are stable across different runs as can be seen from the reported standard
deviations from the different random initializations. We notice that Sinkhorn divergence with λ2 =10,000
prevents mode collapse and preserves uniqueness of the transported embedding via JKO-ICNN. While MMD
yields higher drug-likeness, it leads to a deterioration in uniqueness. Using Sinkhorn allows for a matching
between the transformed point cloud and the original one, which preserves better uniqueness than MMD,
which merely matches mean embeddings of the distributions. The JKO-ICNN experiment reported in Table
2 in Section 6 and in Table 8 uses Sinkhorn as the divergence term.

E.4 τ hyperparameter search
Our search of optimal τ was done under the following setup: learning rate for training the ICNN was fixed at
η = 0.001. λ2 set to 10,000, the JKO outer loop was run for 100 steps, and inner loop optimization was set
to 500 steps. The results are presented in Table 5. We notice that unlike direct optimization (see Tables 6
and 7), JKO-ICNN is robust across learning rates τ .

E.5 JKO-ICNN QED histograms
In Figure 6, we present several time steps of the histograms of the QED values for the decoded SMILES
strings corresponding to the point clouds for the experiment that used Sinkhorn as the distribution distance
with weight 10,000.

E.6 Direct optimization baseline hyperparameter grid search
The full grid search over hyperparameters for the direct optimization baseline discussed in Section 6 is
available in Tables 6 and 7. In order to ensure a ‘fair shot’ at competing with our JKO-ICNN approach, we
performed a grid search over the following hyperparameters:

25



Published in Transactions on Machine Learning Research (07/2022)

Table 4: Molecular discovery with JKO-ICNN experiment results Measures of validity, uniqueness,
and median, average, and standard deviation QED are reported in each row for the corresponding point
cloud of embeddings. For each point cloud, we decode the embeddings to get SMILES strings and use RDKit
to determine whether the corresponding string is valid and get the associated QED value. In the first row,
we display the point cloud at time step zero of JKO-ICNN. In the subsequent rows, we display the values
for each measurement at the final time step T of JKO-ICNN for different hyperparameter configurations of
distribution distance D (either Sinkhorn or MMD) and weight on this distance λ2 (either 1,000 or 10,000).
Each measurement value cell contains mean values ± one standard deviation for five repeated runs of the
experiment with different random initialization seeds. We find that the setup that uses Sinkhorn with weight
10,000 yields the best results in terms of moving the point cloud towards regions with higher QED without
sacrificing validity and uniqueness of the decoded SMILES strings. This table contains results for the MOSES
dataset.

Measure D λ2 Validity Uniqueness QED Median QED Avg. QED Std.

ρ0 N/A N/A 100.000 ± 0.000 99.980 ± 0.045 0.630 ± 0.001 0.621 ± 0.000 0.063 ± 0.002

ρτ
T Sinkhorn 1,000 92.460 ± 2.096 69.919 ± 4.906 0.746 ± 0.016 0.735 ± 0.009 0.110 ± 0.003

ρτ
T Sinkhorn 10,000 93.020 ± 1.001 99.245 ± 0.439 0.769 ± 0.002 0.754 ± 0.003 0.112 ± 0.002

ρτ
T MMD 1,000 94.560 ± 1.372 51.668 ± 2.205 0.780 ± 0.009 0.767 ± 0.013 0.107 ± 0.012

ρτ
T MMD 10,000 92.020 ± 3.535 53.774 ± 3.013 0.776 ± 0.014 0.767 ± 0.009 0.102 ± 0.011

Table 5: Molecular discovery with JKO-ICNN experiment τ hyperparameter search. Measures
of validity, uniqueness, and median QED of final point cloud of embeddings are presented for each τ . Each
measurement value cell contains mean values ± one standard deviation for five repeated runs of the experiment
with different random initialization seeds. For this search, we fix the other hyperparameters: η = 0.001, λ2 =
10,000, the JKO outer loop was run for 100 steps, and inner loop optimization was set to 500 steps. This
table contains results for the MOSES dataset.

τ Validity Uniqueness QED Median
0.01 94.600 ± 0.620 99.979 ± 0.047 0.708 ± 0.007
0.001 94.620 ± 0.907 99.979 ± 0.047 0.716 ± 0.005
0.0001 93.320 ± 0.687 99.957 ± 0.059 0.751 ± 0.007

• Optimizer: {sgd, adam}

• Learning rate (LR): {5e−1, 1e−1, 1e−2, 1e−3, 1e−4}

• λ2: {0, 1, 10, 100, 1,000, 10,000}

and report validity, uniqueness, median QED of the final point cloud and Sinkhorn divergence between the
initial and final point clouds (Final SD).

E.7 Computation amortization results
In Table 8, we compare the results and computation time for the the best direct optimization hyperparameter
configuration found during the grid search (Optimizer: adam, LR: 0.1, λ2: 1) vs. re-using the maps found
during the JKO-ICNN flow applied to a new set of embeddings. We observe linear scaling speed-up when
reusing the JKO-ICNN maps vs. re-optimizing the baseline on a new set of points.

F Molecule JKO-ICNN experimental setup and results for QM9 dataset
In this section, we repeat the results and analysis presentation of Appendix E but for the experiments that
used the QM9 dataset (Ramakrishnan et al., 2014; Ruddigkeit et al., 2012). The QM9 dataset contains on
average smaller molecules than MOSES. The MOSES dataset is larger in size than QM9 (Training: 1.6M
molecules in MOSES vs. 121k in QM9; Test: 176k in MOSES molecules vs. 13k in QM9). For these
experiments a separate VAE model and convex surrogate classifier were trained using the QM9 dataset.
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Figure 6: Histograms of QED values for the decoded SMILES strings corresponding to the point clouds at
time step t = 0, 10, 20...100 for the JKO-ICNN experiment that uses Sinkhorn as the distribution distance
with weight 10,000. We observe a clear shift to the right in the distribution, which corresponds to increased
drug-likeness of the decoded molecule strings. This figure displays results for the MOSES dataset experiment.

F.1 Convex QED surrogate classifier (QM9)
For QM9, the convex surrogate was trained to predict high (> 0.5) and low (< 0.5) QED values from molecule
embeddings coming from a pre-trained VAE. The threshold for QM9 molecules was set to a lower value
compared to that for the MOSES dataset because the underlying QED distribution of train and test data
for QM9 molecules has significantly lower values compared to MOSES. As above, molecules with high QED
were given lower value labels compared to the low QED molecules so that when this model would be used
as potential, minimizing this functional would lead to higher QED values. Similar to the MOSES dataset
pipeline, for this convex surrogate, we trained a Residual ICNN (Amos et al., 2017; Huang et al., 2021)
model with four hidden layers, each with dimension 128, which was the dimensionality of the input molecule
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Table 6: Molecular discovery with direct optimization of functional objective using the SGD optimizer:
Measures of validity, uniqueness, and median QED are reported in each row for the corresponding final point
cloud of embeddings in each configuration. We also report the final Sinkhorn divergence between the initial
cloud point and that from the final time step (Final SD). Each measurement value cell contains mean values
± one standard deviation for five repeated runs of the experiment with different random initialization seeds.
This table contains results for the MOSES dataset. † For the SGD optimizer, the only configurations that
meaningfully increase the QED distribution of the given point cloud are those with relatively large learning
rate, 0.5. However, this leads the point cloud to regions that decode to invalid molecule strings and Final SD
being several orders of magnitude higher compared to the JKO-ICNN approach.

Grid search for SGD optimizer
λ2 LR Validity Uniqueness QED Median Final SD

0 0.5† 43.440 ± 1.092 100.000 ± 0.000 0.772 ± 0.004 9792.929 ± 76.913
0 0.1 99.960 ± 0.055 99.980 ± 0.045 0.630 ± 0.002 4.584 ± 1.182
0 0.01 99.960 ± 0.055 99.980 ± 0.045 0.630 ± 0.001 0.022 ± 0.000
0 0.001 99.980 ± 0.045 99.980 ± 0.045 0.630 ± 0.001 0.017 ± 0.000
0 0.0001 100.000 ± 0.000 99.980 ± 0.045 0.630 ± 0.001 0.017 ± 0.000
1 0.5† 49.440 ± 1.128 100.000 ± 0.000 0.768 ± 0.006 8881.378 ± 69.736
1 0.1 99.960 ± 0.055 99.980 ± 0.045 0.630 ± 0.002 4.496 ± 1.156
1 0.01 99.960 ± 0.055 99.980 ± 0.045 0.630 ± 0.001 0.022 ± 0.000
1 0.001 99.980 ± 0.045 99.980 ± 0.045 0.630 ± 0.001 0.017 ± 0.000
1 0.0001 100.000 ± 0.000 99.980 ± 0.045 0.630 ± 0.001 0.017 ± 0.000
10 0.5† 83.660 ± 0.918 100.000 ± 0.000 0.771 ± 0.007 3696.657 ± 28.212
10 0.1 99.960 ± 0.055 99.980 ± 0.045 0.630 ± 0.002 3.832 ± 0.917
10 0.01 99.960 ± 0.055 99.980 ± 0.045 0.630 ± 0.001 0.021 ± 0.000
10 0.001 99.980 ± 0.045 99.980 ± 0.045 0.630 ± 0.001 0.017 ± 0.000
10 0.0001 100.000 ± 0.000 99.980 ± 0.045 0.630 ± 0.001 0.017 ± 0.000
100 0.5† 96.920 ± 0.576 98.885 ± 0.308 0.635 ± 0.002 547.310 ± 36.557
100 0.1 99.960 ± 0.055 99.980 ± 0.045 0.630 ± 0.002 0.822 ± 0.125
100 0.01 99.960 ± 0.055 99.980 ± 0.045 0.630 ± 0.001 0.021 ± 0.000
100 0.001 99.980 ± 0.045 99.980 ± 0.045 0.630 ± 0.001 0.017 ± 0.000
100 0.0001 100.000 ± 0.000 99.980 ± 0.045 0.630 ± 0.001 0.017 ± 0.000
1,000 0.5† 87.240 ± 0.777 100.000 ± 0.000 0.767 ± 0.002 2515.075 ± 49.870
1,000 0.1 99.960 ± 0.055 99.980 ± 0.045 0.630 ± 0.002 1.833 ± 0.611
1,000 0.01 99.960 ± 0.055 99.980 ± 0.045 0.630 ± 0.001 0.019 ± 0.000
1,000 0.001 99.980 ± 0.045 99.980 ± 0.045 0.630 ± 0.001 0.017 ± 0.000
1,000 0.0001 100.000 ± 0.000 99.980 ± 0.045 0.630 ± 0.001 0.017 ± 0.000
10,000 0.5 nan ± nan nan ± nan nan ± nan nan ± nan
10,000 0.1 98.500 ± 0.235 99.980 ± 0.045 0.641 ± 0.003 296.809 ± 9.344
10,000 0.01 99.980 ± 0.045 99.980 ± 0.045 0.630 ± 0.001 0.017 ± 0.000
10,000 0.001 99.980 ± 0.045 99.980 ± 0.045 0.630 ± 0.001 0.017 ± 0.000
10,000 0.0001 100.000 ± 0.000 99.980 ± 0.045 0.630 ± 0.001 0.017 ± 0.000

embeddings as well. We trained the model with binary cross-entropy loss. To maintain convexity in the
potential functional, we used the last layer before the sigmoid activation for V . The model was trained with
an initial learning rate of 0.01, batch sizes of 1,024, adam optimizer, and a learning rate scheduler that
decreased learning rate on validation set loss plateau. The model was trained for 100 epochs, and the weights
from the final epoch were used to initialize the convex surrogate in the potential functional. For this epoch,
the model achieved 88.6% accuracy on the test set. In Figure 7, we display the test set confusion matrix for
this final epoch.

F.2 JKO-ICNN QED histograms (QM9)
In Table 9, we present the same results as in Appendix E.5. For the JKO-ICNN flow on the QM9 dataset,
we started with an initial distribution of embeddings ρ0 that had corresponding QED value of < 0.35. This
initial point cloud was taken from the QM9 train set since the test set is quite small and does not contain
enough data points below the starting QED threshold.

As seen with the experiment on MOSES, all four combinations are able to increase QED values. However,
the setups that use MMD or λ2 = 1,000 lead to mode collapse, see the discussion in Appendix E.3.

In Figure 8, we present several time steps of the histograms of the QED values for the decoded SMILES
strings corresponding to the point clouds for the experiment that used Sinkhorn as the distribution distance
with weight 10,000.
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Table 7: Molecular discovery with direct optimization of functional objective using the ADAM optimizer:
Measures of validity, uniqueness, and median QED are reported in each row for the corresponding final
point cloud of embeddings in each configuration. We also report the final Sinkhorn divergence between the
initial cloud point and that from the final time step (Final SD). Each measurement value cell contains mean
values ± one standard deviation for five repeated runs of the experiment with different random initialization
seeds. This table contains results for the MOSES dataset. † For the ADAM optimizer, although there are
some hyperparameter configurations that are able to meaningfully increase QED of the point cloud without
sacrificing the validity of the decoded molecule strings, these configurations require λ2 to either be 0 or several
orders of magnitude lower compared to in the JKO-ICNN approach. This direct optimization approach is
therefore unable to successfully meet both goals of the objective, higher QED with small distance from the
original point cloud, as seen by the larger Final SD values.

Grid search for ADAM optimizer
λ2 LR Validity Uniqueness QED Median Final SD

0 0.5 7.420 ± 0.729 98.479 ± 1.595 0.654 ± 0.016 444.779 ± 1.168
0 0.1† 92.080 ± 0.973 100.000 ± 0.000 0.793 ± 0.005 18.261 ± 0.134
0 0.01† 93.900 ± 0.781 99.979 ± 0.048 0.758 ± 0.006 1.650 ± 0.006
0 0.001 99.320 ± 0.164 99.980 ± 0.045 0.632 ± 0.001 0.073 ± 0.000
0 0.0001 99.900 ± 0.100 99.980 ± 0.045 0.630 ± 0.002 0.018 ± 0.000
1 0.5 46.240 ± 1.553 100.000 ± 0.000 0.740 ± 0.005 394.993 ± 1.093
1 0.1† 91.200 ± 0.539 99.978 ± 0.049 0.792 ± 0.005 17.170 ± 0.097
1 0.01† 95.100 ± 0.505 99.979 ± 0.047 0.702 ± 0.004 1.551 ± 0.009
1 0.001 99.340 ± 0.167 99.980 ± 0.045 0.632 ± 0.001 0.072 ± 0.000
1 0.0001 99.900 ± 0.100 99.980 ± 0.045 0.630 ± 0.002 0.018 ± 0.000
10 0.5 96.940 ± 0.182 92.635 ± 0.496 0.656 ± 0.003 241.505 ± 1.616
10 0.1 95.380 ± 0.618 99.937 ± 0.057 0.701 ± 0.005 13.360 ± 0.030
10 0.01 98.900 ± 0.464 99.980 ± 0.045 0.637 ± 0.002 1.253 ± 0.005
10 0.001 99.680 ± 0.164 99.980 ± 0.045 0.631 ± 0.001 0.068 ± 0.000
10 0.0001 99.900 ± 0.100 99.980 ± 0.045 0.630 ± 0.001 0.018 ± 0.000
100 0.5 99.680 ± 0.084 90.610 ± 0.783 0.631 ± 0.002 18.000 ± 0.605
100 0.1 99.840 ± 0.182 99.960 ± 0.055 0.630 ± 0.001 4.528 ± 0.068
100 0.01 99.920 ± 0.084 99.980 ± 0.045 0.630 ± 0.001 0.246 ± 0.000
100 0.001 99.980 ± 0.045 99.980 ± 0.045 0.630 ± 0.001 0.054 ± 0.000
100 0.0001 99.980 ± 0.045 99.980 ± 0.045 0.630 ± 0.002 0.018 ± 0.000
1,000 0.5 96.140 ± 0.279 99.105 ± 0.262 0.662 ± 0.006 12.146 ± 0.547
1,000 0.1 99.980 ± 0.045 99.980 ± 0.045 0.630 ± 0.001 0.077 ± 0.003
1,000 0.01 99.940 ± 0.055 99.980 ± 0.045 0.630 ± 0.001 0.023 ± 0.000
1,000 0.001 99.980 ± 0.045 99.980 ± 0.045 0.630 ± 0.001 0.021 ± 0.000
1,000 0.0001 99.980 ± 0.045 99.980 ± 0.045 0.630 ± 0.001 0.018 ± 0.000
10,000 0.5 99.020 ± 0.295 97.697 ± 0.221 0.635 ± 0.002 2.646 ± 0.062
10,000 0.1 99.900 ± 0.122 99.980 ± 0.045 0.630 ± 0.001 0.240 ± 0.019
10,000 0.01 99.980 ± 0.045 99.980 ± 0.045 0.630 ± 0.001 0.018 ± 0.000
10,000 0.001 99.980 ± 0.045 99.980 ± 0.045 0.630 ± 0.001 0.017 ± 0.000
10,000 0.0001 99.980 ± 0.045 99.980 ± 0.045 0.630 ± 0.001 0.017 ± 0.000

G Assets
Software Our implementation of JKO-ICNN relies on various open-source libraries, including pytorch
(Paszke et al., 2019) (license: BSD), pytorch-lightning (Falcon et al., 2019) (Apache 2.0), POT (Flamary
et al., 2021) (MIT), geomloss (Feydy et al., 2019) (MIT), rdkit (Landrum, 2013a;b) (BSD 3-Clause).

Data All data used in Section 5 is synthetic. The MOSES dataset is released under the MIT license. The
QM9 dataset does not explicitly provide a license in their website nor data files.
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Table 8: Computational amortization gains. Comparison between re-use of maps calculated from
JKO-ICNN flow and the direct optimization baseline applied to various sizes of embedding point clouds. For
each setup, we report median QED for the final point cloud of embeddings from the respective flows and
the Sinkhorn divergence between the initial and final point clouds (Final SD). We observe a linear trend in
speed-up when re-using JKO-ICNN maps. This table contains results for the MOSES dataset experiment.

Size QED Median Final SD Time (s) Speedup
Baseline
1,000 0.789 17.134 1.416 —
2,000 0.795 17.333 1.550 —
3,000 0.791 17.255 2.300 —
4,000 0.790 17.238 3.433 —
5,000 0.792 17.212 4.696 —
JKO-ICNN maps
1,000 0.778 1.739 0.086 1.330
2,000 0.773 1.440 0.086 1.464
3,000 0.771 1.363 0.086 2.213
4,000 0.767 1.373 0.086 3.347
5,000 0.764 1.384 0.088 4.608

Figure 7: Confusion matrix for the convex surrogate trained to predict QED labels from molecule embeddings
for QM9.
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Table 9: Molecular discovery with JKO-ICNN experiment results (QM9) Measures of validity,
uniqueness, and median, average, and standard deviation QED are reported in each row for the corresponding
point cloud of embeddings. For each point cloud, we decode the embeddings to get SMILES strings and use
RDKit to determine whether the corresponding string is valid and get the associated QED value. In the first
row, we display the point cloud at time step zero of JKO-ICNN. In the subsequent rows, we display the values
for each measurement at the final time step T of JKO-ICNN for different hyperparameter configurations of
distribution distance D (either Sinkhorn or MMD) and weight on this distance λ2 (either 1,000 or 10,000).
Each measurement value cell contains mean values ± one standard deviation for five repeated runs of the
experiment with different random initialization seeds. This table contains results for the QM9 dataset
experiment.

Measure D λ2 Validity Uniqueness QED Median QED Avg. QED Std.

ρ0 N/A N/A 100.000 ± 0.000 99.840 ± 0.134 0.315 ± 0.001 0.303 ± 0.001 0.041 ± 0.001

ρτ
T Sinkhorn 1,000 90.840 ± 1.457 33.367 ± 2.491 0.381 ± 0.024 0.373 ± 0.016 0.096 ± 0.005

ρτ
T Sinkhorn 10,000 92.700 ± 0.828 81.925 ± 1.982 0.419 ± 0.005 0.404 ± 0.005 0.096 ± 0.004

ρτ
T MMD 1,000 91.680 ± 4.463 22.424 ± 1.185 0.452 ± 0.024 0.434 ± 0.019 0.094 ± 0.005

ρτ
T MMD 10,000. 88.800 ± 4.661 28.664 ± 1.500 0.448 ± 0.013 0.432 ± 0.010 0.093 ± 0.005
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Figure 8: Histograms of QED values for the decoded SMILES strings corresponding to the point clouds at
time step t = 0, 10, 20...100 for the JKO-ICNN experiment that uses Sinkhorn as the distribution distance
with weight 10,000. We observe a clear shift to the right in the distribution, which corresponds to increased
drug-likeness of the decoded molecule strings. This figure displays results for the QM9 dataset experiment.
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