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ABSTRACT

Transformers have been established as the most popular backbones in sequence
modeling, mainly due to their effectiveness in in-context retrieval tasks and the
ability to learn at scale. Their quadratic memory and time complexity, however,
bound their applicability in longer sequences and so has motivated researchers
to explore effective alternative architectures such as modern recurrent neural net-
works (a.k.a long-term recurrent memory module). Despite their recent success in
diverse downstream tasks, they struggle in tasks that requires long context under-
standing and extrapolation to longer sequences. We observe that these shortcom-
ings come from three disjoint aspects in their design: (1) limited memory capacity
that is bounded by the architecture of memory and feature mapping of the input;
(2) online nature of update, i.e., optimizing the memory only with respect to the
last input; and (3) less expressive management of their fixed-size memory. To
enhance all these three aspects, we present ATLAS, a long-term memory module
with high capacity that learns to memorize the context by optimizing the memory
based on the current and past tokens, overcoming the online nature of long-term
memory models. Our experimental results on language modeling, common-sense
reasoning, recall-intensive, and long-context understanding tasks support the ef-
fectiveness of ATLAS compared to other modern recurrent neural networks.

1 INTRODUCTION

The attention module (Bahdanau et al., 2014) is a critical building block in modern deep architec-
tures (Vaswani et al., 2017; Achiam et al., 2023; Behrouz et al., 2024; Kamath et al., 2025), excelling
due to its scalability and performance in in-context retrieval tasks. In principle, attention functions as
an associative memory, computing direct pairwise token dependencies to store key-value mappings
and retrieve them via query-key similarities. Computing this pairwise dependencies, however, while
accurate, causes quadratic space and time complexity, limiting their applicability in long context
understanding, memorization, or modeling (Liu et al., 2024b; Li et al., 2024a; Dalal et al., 2025).

Recent research efforts aim to overcome the limitations of Transformers—i.e., pure attention-based
architectures—in long-context modeling by designing more efficient yet effective recurrent neural
networks (Schlag et al., 2021; Behrouz et al., 2024; Peng et al., 2025). These modern recurrent
architectures can be unified as associative memory modules optimizing an internal objective termed
’attentional bias’ (Behrouz et al., 2025). Unlike Transformers’ growing KV cache, these models
use fixed-size memory, necessitating improved memory management. Consequently, there’s grow-
ing interest in enhancing RNN memory management through more effective: (i) Learning rules,
from additive learning (Katharopoulos et al., 2020) to DeltaNet’s Delta rule (Schlag et al., 2021);
(ii) Forget (Retention) Gates, from RetNet’s input-independent gating (Sun et al., 2023) to adaptive
gating in Titans (Behrouz et al., 2024) and RWKV-7 (Peng et al., 2025); and (iii) Memory Archi-
tectures, from vector-valued memory (Sun et al., 2023; Peng et al., 2023) to neural deep memory
modules (Behrouz et al., 2024; Sun et al., 2024).

Despite the success of these improved models in a diverse set of downstream benchmarks, they
often struggle with long context understanding, in-context retrieval, and extrapolation to longer se-
quences (Wen et al., 2024; Behrouz et al., 2024; Arora et al., 2024; Yang et al., 2024a). We observe
these shortcomings arise from three design aspects: (1) The online nature of their memory update,
where memory is optimized based on the current token while retaining past memory state, leading
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to memorization of individual tokens without considering broader context; (2) The limited capac-
ity of memory, where architecture and key-value feature mappings restrict the number of perfectly
mappable key-value pairs; and (3) The expressiveness of memory management (i.e., the internal
objective’s optimizer), as most recent models use gradient descent that relies on the first-order in-
formation about the dynamics of tokens, causing the memory to converge to spurious local minima
and learn less effective key-value mappings.

In this paper, we aim to improve the abovementioned limitations—i.e., (1) online nature, (2) limited
memory capacity, and (3) less expressive memory management—by designing a long-term neural
memory module with high capacity and the ability to memorize the context, instead of tokens. More
specifically:

Better Understanding of Memory Capacity and its Bottleneck. To improve the limited memory
capacity, we suggest using higher-order feature mappings (e.g., polynomial feature kernels) on input
tokens. While such kernels often have been used to approximate the sortmax attention, we provide
a new theoretical justifications on why deeper memory modules and/or higher-order feature map-
ping can enhance memory capacity—i.e., the maximum number of linearly independent key-value
associations the memory can perfectly map.

New Expressive Learning Rule. To improve the online nature of recent recurrent models, this
work presents a sliding window update rule, called Omega rule, that optimizes and updates memory
based on all past tokens in a given context window, not just the last. This allows the model to better
manage its fixed-size memory and memorize a local context instead of individual tokens.

New Memory Modules with Better Memory Management. Building upon the above improve-
ments, we present OMEGANET, a new architecture using polynomial features on its keys and
queries, while updating its memory based on Omega rule and gradient descent. To further enhance
memory management, we introduce ATLAS, which leverages the Muon optimizer (Jordan et al.,
2024) as the inner optimization process of the internal memory. We show that both OMEGANET and
ATLAS can take advantage of parallelizable training algorithms, resulting in fast training without
substantial overhead compared to the online version (i.e., context window = 1). To the best of our
knowledge, ATLAS is the first parallelizable recurrent architecture that optimizes the memory using
the (approximation) of second-order information (i.e., has locally optimal memory module).

Improvement on Diverse Downstream Tasks. Extensive experiments support our model designs:
We evaluate OMEGANET, and ATLAS on diverse benchmarks—language modeling, common-sense
reasoning, recall-intensive, and needle-in-haystack tasks—where they achieve higher accuracy com-
pared to modern linear RNNs and memory bounded local attention. Furthermore, we studied the ef-
fects of memory architecture, feature mapping, memory management algorithm (internal optimizer),
and Omega rule on memory module capacity and performance in long-context understanding tasks.

Proofs, additional experimental results, discussions on related work, and the details of experiments
are in Appendix.

2 PRELIMINARIES

In this section, we first discuss the notation that we use through the paper and then review the back-
ground concepts and related work. Additional discussion on related studies are in Appendix B. The
extended discussion on background concepts such as attention and linear RNNs are in Appendix C.

Notations. We let x ∈ RN×din be the input,Mt be the state of memoryM at time t, K be the keys,
V be the values, and Q be the query matrices. We use bold lowercase letters with subscript t to
refer to vectors correspond to time t (i.e., kt,vt, and qt). Following Behrouz et al. (2025), we use
ℓ(Mt;kt,vt) to refer to the attentional bias (i.e., the internal memory objective). Through the paper,
we use simple MLPs with LM ≥ 1 layers and residual connection as the architecture of the memory
module M(·). Notably, despite this choice, all of our model formulations are simply adaptable
to other memory architecture choices; e.g., linear matrix-valued memory (LM = 1). When it is
needed, we parameterized the memory module with θM := {W1, . . . ,WLM , . . . }, which at least
includes the parameters of linear layers in the MLP.
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Figure 1: Comparison of learning to memorize (Left) individual tokens, and (Right) the context.

Deep Memory Module. To overcome the limited expressivity of memory and to enhance the effec-
tive context length of recurrent models, recent studies focus on a new line of architectures with deep
memory modules (Irie et al., 2021; Sun et al., 2024; Behrouz et al., 2024; 2025; Wang et al., 2025).
These architectures are built on the meta-learning perspective, where the memory is a deep MLP ar-
chitecture updated by gradient descent (with momentum). Recently, Behrouz et al. (2025) present a
framework to accurately unifies popular sequence models as the instances of test time memorization.
That is, sequence models are associative memory modules that aim to learn the underlying mapping
between given keys and values by optimizing an internal memory objective, called attentional bias.
This optimization is based on an iterative optimization algorithms such as gradient descent. More
formally, associative memory is defined as:

Definition 1 (Behrouz et al. (2025)). Given a set of keys K ⊆ Rdk and values V ⊆ Rdv , associative
memory is an mappingM : K → V . Learning the associative memory is based on an objective L,
called Attentional Bias, that determines the type of memory and its priorities:

M∗ = argmin
M

L(M(K);V). (1)

Optimizing this objective using an iterative algorithm (e.g., gradient descent) results in the memory
update rule. Thus, the sequence model is a meta in-context learner with two optimization levels:

1. Inner Loop: Where parameters of the memory module are optimized (i.e., θM =
{W1,W2, . . . ,WLM,...}). In the inner optimization loop, all other parameters from the
model are considered hyperparameters and are fixed and not optimized.

2. Outer Loop: Where all other parameters of the model are optimized, such as linear projec-
tions, MLP layers, convolutions, etc.

Our terminology builds on this framework. Therefore, instead of full recurrent formulations, we
describe models by their: (1) memory architecture, (2) internal objective (i.e., attentional bias), and
(3) memory learning algorithm (optimizer). In most cases, models use matrix-valued memory with
online gradient descent; for brevity in such instances, we refer to an architecture solely by its internal
memory objective. For additional discussions and examples, see Appendix D.

3 LEARNING TO MEMORIZE THE CONTEXT AT TEST TIME

Long-term associative memory, crucial for human learning (Terry, 2017), has inspired many arti-
ficial neural architectures (He et al., 2024; Krotov & Hopfield, 2016; Schmidhuber & Hochreiter,
1997; Ramsauer et al., 2021; Hopfield, 1982; Behrouz et al., 2024; 2025). While many such models
use matrix- or vector-valued memory to compress past data (Von Oswald et al., 2023; Yang et al.,
2024a; Schlag et al., 2021), recent studies advocate for deep non-linear neural memory that encodes
past abstractions into its parameters (Sun et al., 2024; Behrouz et al., 2024; 2025; Dalal et al., 2025).
For long-context reasoning/understanding, however, these long-term neural memory modules still
require: (1) High capacity—the maximum (key, value) pairs storable in parameters (see §3.1); (2)
A powerful internal memory objective (i.e., attentional bias) to learn complex mapping between
keys and values (see §3.2); (3) Powerful memory management for better fixed-size memory man-
agement (see §3.2); and (4) An efficient parallel training process for large-scale training on modern
accelerators (see §H).
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This section further discusses these challenges and presents Omega rule: an expressive memory
update rule with direct access to tokens in a local context window, which memorizes context rather
than individual tokens.

3.1 ASSOCIATIVE MEMORY WITH SUPER LINEAR CAPACITY

As previously discussed, an effective long-term memory module should store past data abstractions
in its parameters. However, with a fixed number of memory parameters, a key unanswered ques-
tion remains: “what is the maximum number of uncorrelated (key, value) pairs that a model can
store?” To answer this, we start with the simplest case: matrix memory, an ℓ2 regression loss as the
attentional bias (i.e., ℓ(Mt;kt,vt) = ∥Mt(kt)− vt∥22), optimized by gradient descent:
Proposition 1 (Capacity of ℓ2 Attentional Bias). LetM be a matrix-valued memory with dv × dk
parameters that optimizes the internal objective of ℓ(Mt;kt,vt) = ∥Mtkt − vt∥22 with gradient
descent. M can store the mapping of at most O (dk) pairs of (ki,vi) with linearly independent
keys.

The above proposition indicates that matrix-valued memory with delta update rule has sub-linear
capacity with respect to its number of parameters. This means that the number of independent
patterns that can be stored in a fixed-size memory with size M is strictly less than c×M , for some
c ∈ R+. Recent recurrent models suggest using deep memory modules to store the abstraction of
the past into the parameters of a deep neural network (Irie et al., 2021; Sun et al., 2024; Behrouz
et al., 2024; 2025). While these deep memory architectures can intuitively enhance the expressive
power in modeling complex underlying mapping patterns between keys and values, it is still unclear
that if they enhance the memory capacity.
Theorem 1 (Effect of Deep Memory). LetM(·) be an MLP with LM ≥ 2 layers, dk input dimen-
sion, and dh hidden dimension. Then,M(·) can store the mapping of at least O (dkdv) and at most

O
(
dkdv

∑LM
i=1 min{d(j)h }j≥id

(j+1)
h

)
pairs of (ki,vi) with linearly independent keys.

This theorem indicates that deep memory not only improves representational power but also further
boosts network capacity, with advantages growing with depth. However, the upper bound remains
subquadratic in key and value dimensions, raising the question if a long-term memory module can
achieve super-linear capacity.

As stated earlier, the dimension of kts is crucial for increasing memory capacity. Simply increasing
all key and value dimensions, however, significantly increase the number of parameters (O(din)
per each extra dimension) and memory usage, particularly with long contexts. To address this,
building on methods from Kacham et al. (2024a); Krotov & Hopfield (2016), we suggest using
separable kernels σ(x, y) = ϕ(x)⊤ϕ(y) for keys and queries. As an example of such kernels, we
focus on polynomial kernels of degree at most p to increase input dimensionality and thus network
capacity. Given p ∈ N, let ϕp(x) = [xβ ]|β|≤p be a polynomial mapping of x with degree at most
p. We redefine the associative memory module in Definition 1 by replacing the inner objective of
L(M(K);V) with L(M (ϕ (K)) ;V). This polynomial mapping enhances representational power
by increasing the effective dimensionality of keys without additional parameter overhead for the
input projections. Next, we discuss their effect on memory capacity:
Proposition 2 (Memory Capacity with Polynomial Mapping). Let ϕp(·) be a polynomial mapping
with degree at most p, andM be a matrix-valued memory that optimizes the internal objective of
ℓ(Mt;ϕp(kt),vt) = ∥Mtϕp(kt) − vt∥22 with gradient descent. M can store the mapping of at
most O (dk

p) pairs of (ki,vi) with linearly independent keys, where dk is the dimension of keys ki.

Beyond the above intuition, polynomial kernels are further motivated by two perspectives: (1) Ap-
proximating Softmax using Taylor series; and (2) Input feature gating. For the sake of clarity, we
continue with linear memory and two popular attentional biases i.e., ℓ(1)(Mt;kt,vt) = ⟨Mtkt,vt⟩
and ℓ(2)(Mt;kt,vt) = ∥Mtϕ(kt) − vt∥22. The same process can be applied on other attentional
objectives and deep memory modules. Optimizing these objectives using gradient descent in the
inner loop results in the following recurrent formulas:

ℓ(1)(Mt;kt,vt) : Mt =Mt−1 + ηtvtϕ(kt)
⊤, (Hebbian Rule)

ℓ(2)(Mt;kt,vt) : Mt =
(
I− ηtϕ(kt)ϕ(kt)

⊤)Mt−1 + ηtvtϕ(kt)
⊤. (Delta Rule)
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Kernel Attention Perspective for the Special Case of Hebbian Rule. The formulation for (Heb-
bian Rule) is equivalent to kernel linear attentions (Kacham et al., 2024b; Wang et al., 2025; Hua
et al., 2022; Kasai et al., 2021; Katharopoulos et al., 2020; Arora et al., 2024). In this viewpoint, the
role of ϕ(.) is to approximate Softmax or more accurately the exponential kernel. Since exponen-
tial kernel with normalization (i.e., Softmax) is not separable, it results in Transformers’ quadratic
time and memory complexity. However, Transformers’ exponential feature map kernel (exp(q⊤

i kj))

can be approximated using its Taylor series as: exp
(
q⊤
i kj

)
≈ 1+q⊤

i kj+
(q⊤

i kj)
2

2! +
(q⊤

i kj)
3

3! + · · · .
Our polynomial feature map extends this approximation to a more general case of:

exp
(
q⊤
i kj

)
≈ ϕp(q)ϕ(k)

⊤= a0 + a1qik
⊤
j + a2(q

⊤
i kj)

2 + a3(q
⊤
i kj)

3 + · · ·+ ap(q
⊤
i kj)

p, (2)

with learnable parameters ai ∈ R initialized at ai = 1
i! , the polynomial kernel can be viewed as

an expressive approximator of Softmax attention. This provides theoretical motivation for using
polynomial kernels, especially when memory capacity is limited; i.e., with (i) linear memory and (ii)
Hebbian learning rule. This intuition, however, further generalizes to more expressive cases using
deep memory modules and more complex attentional biases (i.e., Eq. Delta Rule). That is, exp(·)
feature mapping has infinite dimension and provides a more powerful similarity measure of keys
and queries (i.e., q⊤

i kj); however, its computation with normalization can cause additional memory
and time complexity to the model. Using polynomial kernels in architectures with deep memory
and complex attentional bias can further enhance performance by approximating more powerful
representations for keys-queries similarities (i.e., q⊤

i kj).

3.2 LONG-TERM MEMORY WITH CONTEXT MEMORIZATION

As discussed earlier, one of the critical drawback of most existing recurrent models is their online
nature, in which they optimize the inner objective (attentional bias) with respect to only the current
input while retaining the previous state of the memory (Behrouz et al., 2025; Liu et al., 2024a), i.e.,

min
M

ℓ(M;kt,vt) + Rett(M,Mt−1), (3)

where Ret(·, ·) is the retention gate. This online nature while making the optimization of the mem-
ory simpler and faster, can cause sub-optimal memorization of the context as memory is greedily
memorize individual tokens. In a more general case, however, one can optimize the memory at each
time stamp with respect to the entire context (input sequence), i.e.,

min
M

t∑
i=1

ℓ(M;ki;vi). (4)

This strict global formulation generally presents two critical limitations: (1) Efficiency: One of the
important advantages of recurrent architectures is their efficiency at longer context in both training
and inference. Optimizing the memory with respect to all the past tokens (entire context), however,
(i) causes additional optimization constraints at each memory update step, resulting in inefficiency
at extremely large sequences, and (ii) requires caching the past keys and values at the test time,
increasing the memory consumption; (2) Context Pruning: In large context tasks optimizing with all
past tokens can cause sub-optimal performance mainly due to the context change (or irrelevant con-
text) in the middle of the input sequence. This observation has resulted to design architectures with
retention (forget) gate, enabling models to erase memory when past context is no longer needed (Sun
et al., 2023; Peng et al., 2025; Behrouz et al., 2024; 2025; Yang et al., 2024b).

To address these limitations, we present a sliding window recurrent model that optimizes its atten-
tional bias w.r.t. a window of past tokens. For a memory moduleM(·) and window length c ≥ 1,
we optimize the memory internal objective as:

min
M

t∑
i=t−c+1

γ
(t)
i ℓ(M;ki,vi), (5)

where ℓ(M;ki,vi) measures the predicted mapping for (ki,vi) pair and γ
(t)
i is the decay term

for the effect of i-th token in the optimization process. Building upon this formulation, we present
Omega rule, which is strictly more powerful than the popular Delta learning rule (Widrow & Hoff,
1988; Schlag et al., 2021):
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Omega Rule: Let ki ∈ Rdk and vi ∈ Rdv be the input keys and values, andM(·) be a neural
architecture that serves as the memory module. Given a local context length of c ∈ N≥1, the up-
dating the memory moduleM using Omega learning rule is defined as optimizing the following
loss function with gradient descent:

min
M

t∑
i=t−c+1

γ
(t)
i ∥M (ki)− vi∥22 (6)

Following Behrouz et al. (2025), this update rule can be extended to q-Omega rule (or other variants)
by replacing ℓ2(·) with ℓq(·). In the extreme cases of (1) c = 1: the update rule becomes online
(Delta rule); and (2) c =∞ or context length: the update becomes global optimization w.r.t. all past
tokens. In this formulation, parameters γ

(t)
i ∈ [0, 1] act as hard (direct) gates for the past tokens.

That is, γ(t)
i → 0 means that the model directly prunes the optimization of i-th token in the local

context, while γ
(t)
i → 1 means fully incorporating the optimization of memory for i-th token in

the local context. In our design, we use input-dependent parameters for γ(t)
i , providing in-context

pruning ability. Note that, the design of sliding window recurrence allows such flexibility as for
each token we need a constant number of gates; i.e., {γ(t)

i }ci=1. Using input-dependent gates for the
global optimization (Equation 4), however, can result in significant parameter increase and memory
usage, diminishing the advantages of recurrent models.

OMEGANET. We now present OMEGANET, a novel sequence model that updates its memory using
Omega rule. To enhance the memory capacity of OMEGANET, we use polynomial kernels on ks and
qs. Accordingly, optimizing the objective in Equation 6, results in an update rule of OMEGANET
as:

Mt = αtMt−1 −∇
t∑

i=t−c+1

γ
(t)
i ∥M (ϕ(ki))− vi∥22︸ ︷︷ ︸

Surprise of the context

, (7)

or in the spacial case of linear memory:

Mt =

(
diag(αt)−

t∑
i=t−c+1

γ
(t)
i ϕ(ki)ϕ(ki)

⊤

)
Mt−1 −

t∑
i=t−c+1

γ
(t)
i viϕ(ki)

⊤. (8)

From the memory perspective, Omega rule (OMEGANET) does not measure the surprise of a token,
but the surprise of a local context based on the context-aware combination of individual tokens
within the context.

Connection to Sliding Window Attention. Softmax attention block can also be reformulated as
a non-parametric solution to the ℓ2(·) regression with Nadaraya-Watson estimators (Zhang et al.,
2022; Fan, 2018):

M∗ = argmin
M

L∑
i=1

s(ki, q)∥vi −M∥22 =

L∑
i=1

s(ki, q)∑L
j=1 s(kj , q)

vi, (9)

where L is the sequence length. While this formulation optimizes the memoryM with respect to
the entire sequence length, one can limit the optimization process to the past c tokens, resulting in:

M∗ = argmin
M

t∑
i=t−c+1

s(ki, qi)∥vi −M∥22 =

t∑
i=t−c+1

s(ki, q)∑t
j=t−c+1 s(kj , q)

vi, (10)

which is equivalent to the sliding window attention (SWA). This connection provides an important
insight on the difference of attention and recurrent models: Not only attention is a non-parametric
solution (contrary to the parametric nature of recurrent models), it globally optimizes its internal
objective (attentional bias), while all recent modern recurrent models are online learners (Sun et al.,
2024; Yang et al., 2024a; Behrouz et al., 2024; 2025; Peng et al., 2025). Our formulations of sliding

6
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window RNN and Omega rule close this gap by optimizing the memory with respect to a context
window of past tokens based on parametric methods, effectively memorizing the context instead of
individual tokens.

Deep Linear Attention. As a novel baseline, we present Deep (Gated) Linear Attention (DLA)
that replaces a matrix-valued memory in (gated) linear attention (Katharopoulos et al., 2020; Yang
et al., 2024b) with a deep neural network (e.g., k-layer MLP). As discussed earlier in (Hebbian
Rule), using dot product similarity as the internal attentional bias results in linear attention. Thus,
leveraging recent deep memory modules (Sun et al., 2024; Behrouz et al., 2024; 2025), we optimize
the memory using gradient descent with dot product attentional bias:

Mt = αtMt−1 − ηt∇ℓ(Mt−1;ϕ(kt),vt), (11)

where ℓ(Mt−1;ϕ(kt),vt) = ⟨Mt−1(ϕ(kt)),vt⟩ and ϕ(·) is a polynomial kernel. The training of
DLA can simply be parallelized using the hybrid of linear and non-linear chunk-wise training, the
same as Sun et al. (2024); Behrouz et al. (2024) and our discussion in Appendix H.

Sliding Window Linear Attention. Building upon the above intuition and the connection of our
formulation to SWA, we present Sliding Window Linear Attention (SWLA) block. Following the
formulation of linear attention in associative memory perspective (Behrouz et al., 2025), we use dot
product similarity (i.e., ℓ(Mt;ki,vi) = ⟨Mt(ki),vi⟩) as the attentional bias and optimize the loss
function using gradient descent. For the sake of clarity, we use a linear memory here to derive the
closed form:

Mt = αtMt−1 − ηt∇
t∑

i=t−c+1

ℓ(Mt−1;ϕ(ki),vi) =Mt−1 +

t∑
i=t−c+1

γ
(t)
i viϕ(ki)

⊤ (12)

In the online case (c = 1) and ϕ(·) = (·), this recurrence is the same as linear attention (Katharopou-
los et al., 2020).

4 ATLAS: A LOCALLY OPTIMAL MEMORY WITH HIGH CAPACITY

Although the design of Omega rule allows the model to memorize the context instead of individual
tokens and also the use of polynomial (or exponential) feature mapping increases memory capacity,
the memory management (i.e., optimization of mappings between keys and values) is still limited
to a simple gradient descent. This choice of optimizer can lead the model to a low-quality solution
at a local optima, damaging the performance of the model in longer contexts. To overcome this
issue, we suggest using Muon optimizer (Jordan et al., 2024) (with weight decay) that not only ap-
proximates second-order information, but it also mostly leverages matrix multiplication and can be
parallelized across the sequence. Accordingly, the use of Muon for optimizing the internal objective
in Equation 6, results in the following update rule:

Mt = αtMt−1 − ηt NewtonShulz-k(St), (13)

St = θtSt−1 +∇
t∑

i=t−c+1

γ
(t)
i ∥M (ϕ∗(ki))− vi∥22 , (14)

where c is the local context length and k is the number steps for NewtonShulz operations.
For the additional discussion on the algorithm and this operation we refer the reader to Jordan
et al. (2024). Following the literature on Muon optimizer, we know that when k → ∞, then
NewtonShulz-k(St) converges to the nearest semi-orthogonal matrix to the momentum term St
and so approximate second-order information with a lower error. Therefore, interestingly, parameter
k can be considered as an internal test-time compute parameter in ATLAS, where using more steps
can potentially result in better memorization. In Appendix H we show that ATLAS and Omega rule
are parallelizable without any significant computational overhead.

Architectural Backbone. As for the architectural backbone, we follow the recent modern recurrent
models (Behrouz et al., 2024; Arora et al., 2024; Yang et al., 2024c; Allen-Zhu, 2025) and use linear
layers to project keys, values, and queries, followed by short convolution layers with size 4. We
apply normalization on keys and queries to stabilize the training. We also follow Behrouz et al.
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Table 1: Performance of ATLAS and baselines on language modeling and common-sense reasoning
tasks. Hybrid models are marked with ∗. The best results are highlighted highlighted .

Model Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c SIQA BoolQ Avg.
ppl ↓ ppl ↓ acc ↑ acc ↑ acc n ↑ acc ↑ acc ↑ acc n ↑ acc ↑ acc ↑ ↑

760M params / 30B tokens

Transformer++ 25.21 27.64 35.8 66.9 42.2 51.9 60.4 32.5 39.5 60.4 48.69

RetNet 26.08 24.45 34.5 67.2 41.6 52.1 63.2 32.8 38.4 57.9 48.46
DeltaNet 24.37 24.60 37.1 66.9 42.0 50.7 64.9 31.4 39.9 59.0 48.97
Gated DeltaNet 21.18 22.09 35.5 68.0 44.9 50.7 66.9 33.1 39.2 59.1 49.69
Samba∗ 20.63 22.71 39.7 69.2 47.4 52.0 66.9 33.2 39.0 61.2 51.08
Gated DeltaNet-H2∗ 19.88 20.83 39.2 69.0 48.2 52.6 67.0 35.5 39.4 61.1 51.49
Titans (LMM) 20.04 21.96 37.4 69.3 48.5 52.3 66.3 35.8 40.1 62.8 51.56
MEMORA 22.28 22.31 38.2 67.8 49.3 53.3 63.6 36.1 40.9 63.0 51.52

SWDT (ours) 19.89 21.52 36.2 68.3 45.2 53.0 65.4 34.2 39.5 59.5 50.1
DLA (ours) 23.12 22.09 36.1 68.0 47.9 52.7 65.8 34.6 39.1 59.6 50.46

OMEGANET (ours) 19.16 20.14 38.7 69.8 50.0 53.3 67.8 36.8 39.6 64.4 52.56
ATLAS (ours) 18.92 21.01 39.1 69.7 50.2 53.5 67.5 37.1 40.7 64.3 52.77
ATLAS++ (ours) 19.04 20.03 39.7 69.7 51.1 53.2 68.2 37.4 40.9 64.4 53.09

ATLAS (MAG) 18.62 21.18 40.0 70.3 50.5 53.0 68.1 36.5 41.2 65.0 53.08
ATLAS (MAL) 19.07 21.46 38.8 69.2 50.5 53.6 67.3 36.1 41.0 64.5 52.63

1.3B params / 100B tokens

Transformer++ 18.53 18.32 42.6 70.0 50.2 53.5 68.8 35.1 40.7 57.1 52.25

RetNet 19.08 17.27 40.5 70.1 49.2 54.1 67.3 33.8 40.8 60.4 52.02
DeltaNet 17.71 16.88 42.5 70.7 50.9 53.3 68.5 35.7 40.2 55.3 52.14
Gated DeltaNet 16.42 12.17 46.6 72.2 55.8 57.4 71.2 38.4 40.6 60.2 55.32
Samba∗ 16.13 13.29 44.9 70.9 53.4 55.6 68.8 36.2 40.0 62.1 54.00
Gated DeltaNet-H2∗ 15.91 12.55 48.8 72.2 56.9 57.8 71.4 39.1 41.2 61.6 56.18
Titans (LMM) 15.60 11.41 49.1 73.1 56.3 59.8 72.4 40.8 42.1 61.0 56.82
MEMORA 15.90 12.04 48.7 73.1 56.0 57.4 71.5 37.9 40.2 61.3 55.87

OMEGANET (ours) 14.91 11.26 49.7 73.4 57.6 59.7 72.6 40.3 42.4 62.1 57.23
ATLAS (ours) 14.97 10.98 50.1 73.9 57.3 60.2 72.8 41.0 42.9 62.8 57.62
ATLAS++ (ours) 14.40 10.72 50.8 73.5 59.4 61.1 71.3 43.7 42.5 61.9 58.03

(2024) and use two hybrid variants of MAL and MAG for our ATLAS model. The architectures
are illustrated in Figure 3. For models with deep memory architectures we use 2-layer MLP with
residual connectionsM(·) = (·)+W1σ(W2(·)). We further extend this memory architecture, which
is commonly used in recent studies (Behrouz et al., 2024; Irie et al., 2021; Behrouz et al., 2025), to
gated MLP layer asM(·) = (·)+W1 (σ (W2(·))⊗W3(·)) , where W1,W2,W3 are linear learnable
matrices. We refer to ATLAS with the above memory architecture as ATLAS++.

5 EXPERIMENTS

Next, we evaluate the performance of ATLAS, and OMEGANET in language modeling, common-
sense reasoning, needle in haystack, and in-context recall tasks. Additional experimental results are
in Appendix J.

Setup. We train our models with training context window of size 4K using FineWeb dataset (Penedo
et al., 2024). We use model size of 340M, 400M, 790M, and 1.3B parameters and train them on 15B,
15B, 30B, and 100B tokens sampled from the dataset. Baseline results are reported by Yang et al.
(2024a); Behrouz et al. (2024; 2025). Perplexity is measured on held-out validation data. As for
the downstream tasks, we evaluate trained models on Wikitext (Merity et al., 2017), LMB (Paperno
et al., 2016), PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi
et al., 2021), ARC-easy (ARC-e) and ARC-challenge (ARC-c) (Clark et al., 2018), SIQA (Sap et al.,
2019), and BoolQ (Clark et al., 2019). Additional details about the experimental setups and other
used datasets are in Appendix I.

5.1 LANGUAGE MODELING AND COMMON-SENSE REASONING

The results for ATLAS, and OMEGANET as well as their corresponding baselines of SWDT and
DLA with the size of 760M and 1.3B are reported in Table 1. (see Appendix J for the full results).
Among non-hybrid models, including Transformer++, our ATLAS, and OMEGANET achieve the
best performance in both perplexity and accuracy measures. We attribute this performance to their
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ability to memorize the context rather than individual tokens. Comparing OMEGANET with Titans,
that also uses the same momentary objective (i.e., ℓ2 loss), but with context window of 1, we can
observe the effectiveness of having non-online learning rule. On the other hand, our models, alone
without any attention, can outperform hybrid models, while their hybrid variant of MAG further
improve their performance. This performance gain is also related to the use of polynomial kernels
that enhance the memory capacity of the model. See Figure 2 for a more controlled study on the
effect of different components.

5.2 LONG CONTEXT: NEEDLE IN A HAYSTACK

Table 2: Performance of ATLAS and baselines on S-NIAH
task from RULER benchmark. The best results among
simple and hybrid models are highlighted.

Model S-NIAH-PK S-NIAH-N S-NIAH-W
2K 4K 8K 16K 2K 4K 8K 16K 2K 4K 8K

TTT 98.4 98.8 98.0 88.4 60.2 36.6 10.2 4.4 78.8 28.0 4.4
DeltaNet 96.8 98.8 98.6 71.4 47.2 15.4 12.8 5.4 46.2 20.0 1.6
Titans (LMM) 99.8 98.4 98.2 96.2 100.0 99.8 93.4 80.2 90.4 89.4 85.8
ATLAS 100 99.2 98.0 97.0 100.0 100.0 93.0 84.0 93.2 90.6 86.2

Samba 98.8 98.0 97.4 97.2 98.8 98.6 96.2 95.6 96.8 90.0 84.0
Gated DeltaNet-H2∗ 99.2 97.8 97.4 98.4 98.0 97.8 96.2 95.8 97.4 96.8 88.4
ATLAS (MAG) 100 100 99.4 98.6 100 99.2 97.4 97.0 99.4 98.2 92.4
ATLAS (MAL) 99.8 99.6 98.4 96.8 99.8 98.0 97.2 96.8 98.0 98.4 92.6

One of our main motivations to de-
sign ATLAS is to enhance the perfor-
mance of long-term neural memory
module in long context tasks. Ac-
cordingly, to evaluate the effective-
ness of our designs for improving
the effective context length and mem-
ory capacity, we perform an experi-
ment on needle-in-haystack tasks of
RULER (Hsieh et al., 2024) bench-
mark. The performance of AT-
LAS and its hybrid variants, as well
as our Transformer-like architectures
and baselines are reported in Table 2.
ATLAS shows very good performance compared to the recurrent baselines, outperforming modern
recurrent neural networks such as Titans and DeltaNet. Its hybrid variants further improve its effec-
tive context length, effectively extrapolating to sequences with ×4 of their training context size. We
attribute this performance to the proposed enhancements for the capacity of the memory. We further
perform ablation studies to validate this claim. Also, our Transformer-like architectures outperforms
the baselines, even our hybrid variants of ATLAS in longer contexts. This shows the importance of
exponential feature mapping in longer sequences.

5.3 ABLATION STUDY
Figure 2: Ablation Study on ATLAS. All compo-
nents of ATLAS are positively contributing to its
performance.

Model Language Modeling C.S. Reasoning
ppl ↓ acc ↑

ATLAS 19.97 52.77

+Gated MLP Memory 19.53 53.09

+Attn (MAG) 19.90 53.08
+Attn (MAL) 20.26 52.63

Linear Memory 21.03 49.74
w/o Muon 19.65 52.56
c = 1 21.98 49.26
w/o Polynomial Mapping 22.14 50.57

In this section, we perform an ablation study
on the different components of ATLAS. The
results for ablation study are reported in Fig-
ure 2. The results show that: (1) more powerful
memory architectures such as gated MLP can
further enhance the performance of ATLAS; (2)
The hybrid variants further improve the perfor-
mance, where MAG shows better improvement
compared to MAL architecture; (3) Polynomial
mappings as well as deep memory are particu-
larly important when we use context memoriza-
tion (i.e., Omega rule).

6 CONCLUSION

We introduced ATLAS, a new long-term memory module designed to address the core limitations
of modern recurrent models in long-context understanding: limited memory capacity, online-only
updates, and weak memory management. Our proposed sliding window learning rule, higher-order
feature mappings, and advanced memory optimizers offer a principled and scalable approach to
overcoming these challenges. Empirically, our models—OMEGANET, and ATLAS—achieve con-
sistent improvements over modern RNN variants across diverse benchmarks, and also closer the gap
with Transformers in in-context retrieval tasks. Theoretically, we provided insight into memory ca-
pacity and optimization dynamics, offering explanations for the context length limitations observed
in prior works.
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Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner, Philipp Seidl, Michael Widrich, Lukas Gru-
ber, Markus Holzleitner, Thomas Adler, David Kreil, Michael K Kopp, Günter Klambauer, Jo-
hannes Brandstetter, and Sepp Hochreiter. Hopfield networks is all you need. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=tL89RnzIiCd.

Liliang Ren, Yang Liu, Yadong Lu, Yelong Shen, Chen Liang, and Weizhu Chen. Samba: Sim-
ple hybrid state space models for efficient unlimited context language modeling. arXiv preprint
arXiv:2406.07522, 2024.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Social IQa: Com-
monsense reasoning about social interactions. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xi-
aojun Wan (eds.), Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pp. 4463–4473, Hong Kong, China, November 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/D19-1454. URL https://aclanthology.org/
D19-1454/.

Siddhartha Satpathi and Rayadurgam Srikant. The dynamics of gradient descent for over-
parametrized neural networks. In Learning for Dynamics and Control, pp. 373–384. PMLR,
2021.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight
programmers. In International Conference on Machine Learning, pp. 9355–9366. PMLR, 2021.

JH Schmidhuber. Learning to control fast-weight memories: An alternative to recurrent nets. ac-
cepted for publication in. Neural Computation, 1992.

Jürgen Schmidhuber. Reducing the ratio between learning complexity and number of time varying
variables in fully recurrent nets. In ICANN’93: Proceedings of the International Conference on
Artificial Neural Networks Amsterdam, The Netherlands 13–16 September 1993 3, pp. 460–463.
Springer, 1993.

Jürgen Schmidhuber and Sepp Hochreiter. Long short-term memory. Neural Computation MIT-
Press, 1997.
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Table 3: A summary of the recent modern recurrent neural networks. We compare these architec-
tures based on five characteristics: (1) Dynamic decay; (2) Deep neural memory; (3) non-linear
memory capacity; (4) Locally optimal: managing memory by (approximating) the second-order in-
formation about tokens; (5) Flexible context: the ability to flexibly memorize the context. ϕ(·) and
ϕ∗(·) represent polynomial and infinite-dimensional feature mappings (see Equation 36).

Model Attentional Bias ℓ(·; ·) Optimizer Dynamic Deep Non-linear Locally Flexible Memory Write Operation
Decay Memory Capacity† Optimal Context

Attention
∑L

t=1 at∥Mkt − vt∥22 NP‡ ✗ ✗ ✓ ✓ ✗ Mt =Mt−1 ∪ {(kt,vt)}
SWA

∑L
t=c at∥Mkt − vt∥22 NP ✗ ✗ ✓ ✓ ✓ Mt = (Mt−1 \ {(kc,vc)}) ∪ {(kt,vt)}

Linear Attention ⟨Mtkt,vt⟩ GD ✗ ✗ ✗ ✗ ✗ Mt =Mt−1 + vtk
⊤
t

RetNet ⟨Mtkt,vt⟩ GD ✗ ✗ ✗ ✗ ✗ Mt = αMt−1 + vtk
⊤
t

GLA ⟨Mtkt,vt⟩ GD ✓ ✗ ✗ ✗ ✗ Mt = Diag(αt)Mt−1 + vtk
⊤
t

PolySketchFor. ⟨Mtk
p
t ,vt⟩ GD ✗ ✗ ✓ ✗ ✗ Mt =Mt−1 + vt(k

⊤
t )

p

TTT ∥Mt(kt)− vt∥22 GD ✗ ✓ ✗ ✗ ✗ Mt =Mt−1 − η∇ℓ(Mt−1;kt,vt)
DeltaNet ∥Mtkt − vt∥22 GD ✗ ✗ ✗ ✗ ✗ Mt = (I− βtktk

⊤
t )Mt−1 + βtvtk

⊤
t

Longhorn ∥Mtkt − vt∥22 Implicit GD ✗ ✗ ✗ ✗ ✗ Mt =
(
I− δtktk

⊤)Mt−1 + (δt ⊙ vt)kt
§

Gated DeltaNet ∥Mtkt − vt∥22 GD ✓ ✗ ✗ ✗ ✗ Mt = αt(I− βtktk
⊤
t )Mt−1 + βtvtk

⊤
t

RWKV-7 ∥Mtkt − vt∥22 GD ✓ ✗ ✗ ✗ ✗ Mt = (diag(αt)− βtktk
⊤
t )Mt−1+ βtvtk

⊤
t

Titans ∥Mt(kt)− vt∥22 GD w/ M.∗ ✓ ✓ ✗ ✗ ✗
Mt = αtMt−1 + St
St = ηtSt−1 − θt∇ℓ(Mt−1;kt,vt)

Titans– ∥Mt(kt)− vt∥22 GD ✓ ✓ ✗ ✗ ✗ Mt = αtMt−1 − ηt∇ℓ(Mt−1;kt,vt)
MONETA ∥Mt(kt)− vt∥pp GD ✓ ✓ ✓ ✗ ✗ Mt = αtMt−1 − ηt∇ℓ(Mi−1;kt,vt)

Our Models
DLA ⟨Mt(ϕ(kt)),vt⟩ GD ✓ ✓ ✗ ✗ ✗ Mt = αtMt−1 − ηt∇ℓ(Mt−1;kt,vt)

SWDT
∑L

i=c⟨Mt(ϕ
∗(ki)),vi⟩ GD ✓ ✓ ✓ ✗ ✓ Mt = αtMt−1 − ηt∇ℓ(Mt−1;kt,vt)

OmegaNet
∑L

i=c γi ∥Mt(ϕ(ki))− vi∥22 GD ✓ ✓ ✓ ✗ ✓ Mt = αtMt−1 − ηt∇ℓ(Mt−1;kt,vt)

ATLAS
∑L

i=c γi ∥Mt(ϕ(ki))− vi∥22 Muon ✓ ✓ ✓ ✓ ✓
Mt = αtMt−1 − ηt NS-5(St)
St = θtSt−1 −∇ℓ(Mt−1;kt,vt)

† The matrix-valued memory version is considered. ‡ NP: Nonparametric § δt =
βt

1+βtk⊤
t kt

. ∗ Gradient Descent with Momentum.

A MOTIVATION: MEMORY PERSPECTIVE

Associative memory—the ability to map different entities or events—is an inseparable component
of learning in humans (Terry, 2017) and so has motivated several recent studies to understand the
state-of-the-art deep learning architectures through its lens (Ramsauer et al., 2021; Behrouz et al.,
2024; 2025; Wang et al., 2025). In this perspective, memory is defined as a neural update caused
by an input; the more surprising the input is, the more it affects the memory and so is memorable.
Therefore, finding an effective “surprise metric” is a critical step towards designing such memory
modules. As earlier discussed by Behrouz et al. (2025; 2024), almost all existing architectures use
a surprise metric that updates the memory based on the current input. An event (as a sequence of
tokens), however, might not consistently be surprising through a long-period of time although it is
memorable. To overcome this issue, Behrouz et al. (2024) suggest breaking the surprise metric into
two parts of “momentary” and “past” surprise, incorporating the cumulative surprise of past inputs
when updating the memory with respect to the current input. This design, however, can miss the
context by memorizing individual tokens. To this end, in this work, we present a long-term neural
memory module that measures the surprise of a local (or global) context window, meaning that it
learns how to memorize the (token) context at test time.

Through the paper, we use the terminology “Test Time Memorization” because the process involves
storing and retrieving information strictly within the global context, without updating the model’s
core learned parameters (i.e., outer-loop) or initial states from pre-training. Typically, no persistent
learning or skill acquisition carries over to new, independent global context once the memory is
cleared. Thus, we prefer the use of ”test time memorization” over using ”test time training”.

B ADDITIONAL RELATED WORK

Modern Linear Recurrent Neural Networks1. Recent research endeavors have concentrated on
mitigating the quadratic computational complexity and inherent limitations of Transformer mod-

1Note that here the term “linear” refers to their fast training and inference procedures. This does not re-
fer to their recurrence formula as some models like Titans (Behrouz et al., 2024), YAAD, MONETA, MEM-
ORA (Behrouz et al., 2025), and TTT (Sun et al., 2024) are based on non-linear recurrence but fast at training
and inference.
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Figure 3: Visualization of the ATLAS’s (and our other variants’) architecture, and its hybrid coun-
terpart with SWA.

Figure 4: The illustration of tokens dependencies in SWA and ATLAS or OMEGANET with different
context length.

els in processing long-context sequences. This has led to the development of efficient recurrent
alternatives, primarily motivated by their rapid inference and training capabilities (Tiezzi et al.,
2024). Initial advancements in this domain, exemplified by models such as RetNet (Sun et al.,
2023), RWKV (Peng et al., 2023), and S5 (Smith et al., 2023), employed data-independent transi-
tion matrices coupled with Hebbian-like update mechanisms. Subsequently, a second generation of
models emerged, incorporating input-dependent parameters within these linear architectures (e.g.,
linear RNNs (Hasani et al., 2023; Smith et al., 2023), RWKV6 (Peng et al., 2024)). These models
also explored more expressive memory updating rules, notably those based on the delta rule (Peng
et al., 2025; Schlag et al., 2021; Yang et al., 2024c;a; Liu et al., 2024a). Further evolution in this line
of research has extended these memory architectures to deeper models, while concurrently utilizing
delta-rule-like update mechanisms (Sun et al., 2024) or data-dependent momentum-based update
rules with forget gating (Behrouz et al., 2024). More recently, to augment the performance of delta-
rule-based sequential models, Siems et al. (2025) have proposed the application of multiple gradient
descent updates per token, thereby yielding more expressive sequence models, particularly in state
tracking tasks. In addition to the above fast linear recurrent sequence models, several studies have
focused on RNNs with non-linear recurrence (Behrouz et al., 2025; Csordás et al., 2024; Merrill
et al., 2024; Lim et al., 2024; Schöne et al., 2025; Karami & Mirrokni, 2025; Von Oswald et al.,
2023; Gonzalez et al., 2024), and how their training can be faster (Gonzalez et al., 2024; Lim et al.,
2024; Schöne et al., 2025).

Fast Weight Programs. The conceptualization of linear layers as key-value associative memory
systems can be traced back to Hopfield networks (Hopfield, 1982). This concept was subsequently
developed in the context of fast weight programmers, wherein dynamic fast programs are integrated
into recurrent neural networks to serve as writable memory stores (Schlag et al., 2021; Schmidhuber,
1992; 1993). Among the learning paradigms for such systems, Hebbian learning (Hebb, 2005) and
the delta rule (Prados & Kak, 1989) have emerged as the most prominent. Both learning rules
have been the subject of extensive investigation within the existing literature (Munkhdalai & Yu,
2017; Schmidhuber, 1992; Munkhdalai et al., 2019; Schlag et al., 2021; Irie et al., 2021; Yang et al.,
2024c;a).
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Hopfield Networks. Our formulation is architecturally founded upon the broad concept of asso-
ciative memory, wherein the primary objective is to learn an underlying mapping between keys and
values. Seminal work by Hopfield (1982) on Hopfield Networks introduced one of the earliest neu-
ral architectures explicitly based on associative memory, defining it through the minimization of an
energy function for storing key-value pairs. Although traditional Hopfield networks have seen di-
minished applicability in recent years, primarily due to constraints in vector-valued memory capac-
ity and the nature of their energy function, several contemporary studies have focused on enhancing
their capacity through various methodologies. These include efforts by Krotov (2021), Li et al.
(2024b), and Krotov & Hopfield (2016). Notably, extensions to the energy function of these models,
often incorporating exponential kernels, have been explored (Krotov & Hopfield, 2016; Lucibello
& Mézard, 2024). Furthermore, the relationship between these modernized Hopfield networks and
Transformer architectures has been a subject of recent investigation (Ramsauer et al., 2021; Hu et al.,
2024).

C BACKGROUNDS

Attention. Attention is a critical component of Transformers that acts as their associative mem-
ory (Bietti et al., 2023; Sun et al., 2024; Behrouz et al., 2025). Given input x ∈ RN×din , causal
attention computes output y ∈ RN×din over input dependent key, value, and query matrices
Q = xWQ,K = xWK, and V = xWV as:

yi =

i∑
j=1

exp
(
q⊤
i kj/

√
din
)
vj∑i

ℓ=1 exp
(
q⊤
i kℓ/

√
din
) =

1

Zi

i∑
j=1

exp
(
q⊤
i kj/

√
din

)
vj , (15)

where WQ,WK, and WV ∈ Rdin×din are learnable parameters, and Zi =
∑i

ℓ=1 exp
(
q⊤
i kℓ/

√
din
)

is the normalization term. Despite Transformers’ simple parallelizable training and effectiveness
in recall-intensive tasks (Arora et al., 2024), their generation process and long-context scaling are
significant drawbacks, as attention requires at least N×d operations per token to calculate the output
(see Equation 15). Therefore, in recent years, there have been an extensive research effort to design
alternative architectures. We divide and review these studies into two groups: (1) Linear shallow
memory recurrent models, (2) Deep memory modules:

(Linear) Recurrent Models. Linear RNNs have recently gained attention as efficient Transformer
alternatives due to their parallelizable, linear-time training and comparable performance (Sun et al.,
2023; Peng et al., 2023). Early modern RNN variants, often based on Hebbian (Hebb, 2005) or
Delta (Widrow & Hoff, 1988) learning rules, compress data into vector-valued or matrix-valued
memory (Katharopoulos et al., 2020; Sun et al., 2023; Kacham et al., 2024b; Liu et al., 2024a;
Schlag et al., 2021; Lim et al., 2024). LetMt ∈ Rd×n be the memory (where n = 1 yields vector-
valued memory), and k,v ∈ Rd be the keys and values (projections of input xt ∈ Rd)). A simple
general formulation for such linear RNNs is:

Mt = At ∗Mt−1 + vtk
⊤
t , (16)

where ∗ is an arbitrary associative operator and At is a data-(in)dependent diagonal or low-rank plus
identity matrix (Yang et al., 2024c). Despite the efficient linear recurrent nature of these models,
their memory can overflow, particularly with increasing context length. Although forget gates have
recently significantly improved memory management in these architectures (Sun et al., 2023; Peng
et al., 2025), their memory’s expressivity remains bounded by its linear structure.

D MIRAS FRAMEWORK

As discussed earlier, Behrouz et al. (2025) formalized the concept of associative memory as:
Definition 2 (Behrouz et al. (2025)). Given a set of keys K ⊆ Rdk and values V ⊆ Rdv , associative
memory is an mappingM : K → V . Learning the associative memory is based on an objective L,
called Attentional Bias, that determines the type of memory and its priorities:

M∗ = argmin
M

L(M(K);V). (17)
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Optimizing this objective using an iterative algorithm (e.g., gradient descent) results in the memory
update rule. Thus, the sequence model is a meta in-context learner with two optimization levels:

1. Inner Loop: Where parameters of the memory module are optimized (i.e., θM =
{W1,W2, . . . ,WLM,...}). In the inner optimization loop, all other parameters from the
model are considered hyperparameters and are fixed and not optimized.

2. Outer Loop: Where all other parameters of the model are optimized, such as linear projec-
tions, MLP layers, convolutions, etc.

D.1 EXAMPLES

As an example, one can define the linear attention as the optimization of dot-product similarity with
gradient descent: i.e., ℓ̃t := ⟨Mt−1kt,vt⟩. That is,

Mt =Mt−1 − ηt∇ℓ̃t(Mt−1;kt,vt) =Mt−1 − ηt∇⟨Mt−1kt,vt⟩ (18)

=Mt−1 + ηtvtk
⊤
t . (19)

As an another example, if we use regression loss, instead of the dot-product similarity, we can obtain
the DeltaNet (Schlag et al., 2021):

Mt =Mt−1 − ηt∇∥Mtkt − vt∥22 = I− ηtktk
⊤
t Mt−1 + vtk

⊤
t . (20)

E SUPPORTING PROOFS

Proposition 1 (Capacity of ℓ2 Attentional Bias). LetM be a matrix-valued memory with dv × dk
parameters that optimizes the internal objective of ℓ(Mt;kt,vt) = ∥Mtkt − vt∥22 with gradient
descent. M can store the mapping of at most O (dk) pairs of (ki,vi) with linearly independent
keys.

Proof. Let K = [k1 · · ·km] ∈ Rdk×m and V = [v1 · · ·vm] ∈ Rdv×m. The optimization problem
becomes minimizing the Frobenius norm ∥MK − V ∥22. Exact memorization requires solving the
linear systemMK = V .

Vectorizing the expression yields the system (K⊤ ⊗ Idv
)vec(M) = vec(V ), which has mdv scalar

equations in dkdv unknowns. When the keys are linearly independent, rank(K) = m, and hence
the system matrix has full row rank mdv . Solvability thus requires mdv ≤ dkdv , or equivalently
m ≤ dk. This matches classic results on the storage capacity of linear associative memories such as
the Willshaw model and Hopfield networks, where capacity is tied to the rank of the input embedding
(Willshaw et al., 1969; Hopfield, 1982).

When m ≤ dk and K has full column rank, one can construct an exact interpolating solution via
the Moore–Penrose pseudoinverse: M∗ = V K⊤. Then M∗K = V K⊤K = V , achieving zero
training error. Thus the upper bound is tight.

Moreover, full-batch gradient descent on this objective with step size 0 < η < 2/λmax(KK⊤)
yields iteratesMt+1 =Mt−η(MtK−V )K⊤, which converge to the minimum-norm interpolating
solution M† = V K⊤ when m ≤ dk. This is a well-known implicit bias of gradient descent in
overparameterized linear models (Satpathi & Srikant, 2021).

Finally, the same rank-based constraint governs the capacity of linear or multi-head attention mod-
ules. In such architectures, the output context matrix has rank at most rank(K) ≤ dk, which directly
limits their expressivity. Recent analyses identify this “low-rank bottleneck” as a capacity-limiting
effect in Transformers (Bhojanapalli et al., 2020).

Theorem 1 (Effect of Deep Memory). LetM(·) be an MLP with LM ≥ 2 layers, dk input dimen-
sion, and dh hidden dimension. Then,M(·) can store the mapping of at least O (dkdv) and at most

O
(
dkdv

∑LM
i=1 min{d(j)h }j≥id

(j+1)
h

)
pairs of (ki,vi) with linearly independent keys.

Early theoretical works established that even simple network architectures can memorize a sig-
nificant number of input-output mappings, with capacity often related to the number of network
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parameters (e.g., weights and biases) and the input dimensionality Cover (1965); Baum (1988);
Huang (2003). For instance, Baum (1988) demonstrated that

⌈
N
d

⌉
neurons are sufficient for a

single-hidden-layer network with threshold units to memorize N input-label pairs from Rd.

Networks employing Rectified Linear Units (ReLUs), exhibit a piecewise affine behavior. The input
space is partitioned into numerous linear regions, and within each region, the network computes a
distinct affine transformation Montufar et al. (2014); Pascanu et al. (2014). This structure is pivotal
for analyzing their expressive power and storage capacity. The precise relationship between depth,
width, the number of linear regions, and the ultimate capacity to store specific key-value associa-
tions, especially with constraints like linearly independent keys, remains an active area of research.

Proof. Let m denote the number of (ki,vi) pairs memorized exactly byM, and assume the keys
{ki}mi=1 ⊂ Rdk are linearly independent. Let d(0)h := dk, d(LM)

h := dv , and for each layer 1 ≤ ℓ ≤
LM, define W (ℓ) ∈ Rd

(ℓ)
h ×d

(ℓ−1)
h . Biases are omitted for simplicity.

Since σ(x) = max(0, x) is piecewise linear, the composition of linear maps and ReLU activations
yields a piecewise affine function. For any fixed activation pattern (i.e., fixed sign of pre-activations),
the MLP acts as:

M(·) = A ·+B, where A = W (LM)D(LM−1)W (LM−1) · · ·D(1)W (1),

and each D(ℓ) is a diagonal {0, 1} matrix selecting the active units. Therefore, when all keys fall
into the same linear region (which occurs generically after a small perturbation),M is a single affine
transformation.

Let K := [k1 · · · km] ∈ Rdk×m and V := [v1 · · · vm] ∈ Rdv×m. Exact memorization implies
AK = V, so:

rank(V) ≤ rank(A), m = rank(K) ≤ min{rank(A), dk}.

Now observe:

A = W (LM) D(LM−1)W (LM−1)︸ ︷︷ ︸
RLM−1

· · ·D(1)W (1)︸ ︷︷ ︸
R1

,

and thus the rank of A is bounded by the minimal width encountered along each path times the
immediate input dimension:

rank(A) ≤
LM∑
i=1

(
min
j≥i

d
(j)
h

)
d
(i)
h = O

(
dkdv

LM∑
i=1

min
j≥i

d
(j)
h d

(i+1)
h

)
.

Hence,

m ≤ O

(
dkdv

LM∑
i=1

min
j≥i

d
(j)
h d

(i+1)
h

)

Proposition 2 (Memory Capacity with Polynomial Mapping). Let ϕp(·) be a polynomial mapping
with degree at most p, andM be a matrix-valued memory that optimizes the internal objective of
ℓ(Mt;ϕp(kt),vt) = ∥Mtϕp(kt) − vt∥22 with gradient descent. M can store the mapping of at
most O (dk

p) pairs of (ki,vi) with linearly independent keys, where dk is the dimension of keys ki.

Proof. Let us begin by analyzing the dimension of the lifted feature space induced by ϕp. A mono-
mial in dk variables of total degree exactly ℓ has the form kα =

∏dk

j=1 k
αj

j , where α ∈ Ndk and
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|α| :=
∑dk

j=1 αj = ℓ. The number of such monomials is given by the classical stars-and-bars
formula, which counts the number of integer solutions to α1 + · · ·+ αdk

= ℓ, yielding(
dk + ℓ− 1

ℓ

)
.

Summing over all degrees ℓ = 0 to p gives the total number of monomials (i.e., the output dimension
of ϕp),

D =

p∑
ℓ=0

(
dk + ℓ− 1

ℓ

)
=

(
dk + p

p

)
,

where the final identity follows from the hockey-stick identity in combinatorics.

To characterize the memorization capacity, we reformulate the loss in matrix notation. Let Φ :=
[ϕp(k1) · · · ϕp(km)] ∈ RD×m and V := [v1 · · · vm] ∈ Rdv×m. Then the objective becomes

L(M) = 1
2∥MΦ− V ∥22.

Exact memorization corresponds to the existence of a matrix M such that MΦ = V . This is a
linear system in whichM acts on the columns of Φ, so the rank of Φ necessarily limits the number
of independent targets vi that can be fitted exactly.

By the sub-multiplicativity of rank, for any matrices A and B, we have

rank(AB) ≤ min{rank(A), rank(B)}.

Applying this toMΦ yields

rank(MΦ) ≤ rank(Φ) ≤ D.

Now consider a case where the targets v1, . . . ,vm are linearly independent; for instance, take V =
[e1, . . . , em], the first m standard basis vectors. Then rank(V ) = m. If m > D, we necessarily have
rank(MΦ) < rank(V ) for every choice ofM, implying that the systemMΦ = V is unsolvable.
Hence, the loss remains strictly positive, and exact memorization is impossible.

This establishes that no method, regardless of optimization procedure, can memorize more than
D =

(
dk+p

p

)
independent input-output pairs under a degree-≤ p polynomial lifting. Since

(
dk+p

p

)
=

Θ(dpk) for fixed p, the result follows: the memorization capacity is bounded above by O(dpk).

F DETAILED FORMULATIONS OF ALL ARCHITECTURES

In this section, for the sake of clarity, we discuss the details of all architectures that we discuss
through the paper:

F.1 DEEP LINEAR ATTENTION (DLA)

We design Deep Linear Attention (DLA)—linear attention module that uses a deep MLP as the
memory (KV cache)—as one of the baselines of this study. Given input x ∈ RN×din , we project the
input into matrices of keys, values and queries:

Q =

q1
...

qN

 = xWQ, K =

k1

...
kN

 = xWK , V =

v1

...
vN

 = xWV , (21)

where WQ,WK , and WV are learnable linear layers. We then define memory as a learning module
that optimizes the inner-dot product similarity using gradient descent: i.e.,

min
M
⟨M(kt),vt⟩︸ ︷︷ ︸
ℓ(Mt−1;kt,vt)

. (22)
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The above optimization using gradient descent results in the following recurrence (we also add
weight decay with input-dependent parameter αt):

Mt = αtMt−1 − ηt∇ℓ(Mt−1;kt,vt) (23)

which in the case of linear memory (i.e.,Mt = Wt ∈ Rd×d) it becomes:

Wt = αtWt−1 + vtk
⊤
t , (24)

which is the formulation of gated linear attention. We use the same training process as other models
(see Appendix H).

F.2 SLIDING WINDOW LINEAR ATTENTION (SWLA)

The design of SWLA is the same as the design of DLA, but with the use of sliding window objective.
That is, given keys, values, and queries:

Q =

q1
...

qN

 = xWQ, K =

k1

...
kN

 = xWK , V =

v1

...
vN

 = xWV , (25)

we optimize the internal objective of:

min
M

t∑
i=t−c+1

⟨Mt−1(ki),vi⟩︸ ︷︷ ︸
ℓ(Mt−1;kt,vt)

. (26)

The above formulation, results in:

Mt = αtMt−1 −∇ℓ(Mt−1;kt,vt) = αtMt−1 −
t∑

i=t−c+1

η
(t)
i ∇⟨Mt−1(ki),vi⟩, (27)

which in the case of linear memory (i.e.,Mt = Wt ∈ Rd×d) it becomes:

Mt = αtMt−1 −
t∑

i=t−c+1

η
(t)
i vik

⊤
i . (28)

F.3 OMEGANET

In the design of OMEGANET, we use replace the dot-prodcut similarity objective with
ℓ(Mt−1;kt,vt) =

∑t
i=t−c+1 ∥Mt−1(ϕ(ki))− vi∥22 ,which results in the recurrence of:

Mt = αtMt−1 −∇ℓ(Mt−1;kt,vt) = αtMt−1 −
t∑

i=t−c+1

η
(t)
i ∇∥Mt−1(ϕ(ki))− vi∥22. (29)

In the above formulation, ϕ(.) is the polynomial feature mapping function.

F.4 ATLAS

In the ATLAS, we use the same internal objective as OMEGANET but we optimize it using Muon
optimizer (Jordan et al., 2024) with weight decay. That is,

Mt = αtMt−1 + Newton-schulz5(St) (30)

St = θtSt−1 −
t∑

i=t−c+1

η
(t)
i ∇∥Mt−1(ϕ(ki))− vi∥22. (31)
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G ADDITIONAL DISCUSSIONS ON THE OMEGA RULE’S VARIANTS

Beyond Gradient Descent. The concept of Omega rule and “test time memorization of context”
can simply be extended to optimizing the objective in Equation 6 with any arbitrary optimizer, even
beyond simple gradient descent. We use two extreme cases for c as the illustrations. In the first case,
we let c = 1, γ(t)

i = 1, and use gradient descent with momentum as the optimizers, resulting in the
following update rule:

Mt = αtMt−1 + St (32)
St = θtSt−1 − ηt∇ℓ(Mt−1;kt,vt). (33)

This update rule is equivalent to the long-term neural memory in Titans (Behrouz et al., 2024). In
the second case, using a linear memoryM, letting γ

(t)
i = 1, and c be equal to the context length,

the memory update process is equivalent to optimizing the (regularized) least-squares problem:

Mt = min
M

t∑
i=1

∥Mki − vi∥22 . (34)

Von Oswald et al. (2023) suggest directly optimizing the above objective and use Sherman-Morrison
formula (Sherman & Morrison, 1950) to recursively calculate the inverse term in the optimal so-
lution. Despite the optimality of memory, such direct solutions comes with the cost of non-
parallelizable training and also are limited to only the linear matrix-valued memory setup. Fur-
thermore, as discussed earlier, the global nature without any direct hard gating terms (i.e., γ(t)

i s) can
force the model to not prune the context, damaging the performance in longer sequences.

G.1 MEMORY CAPACITY AND EXPONENTIAL KERNELS

We first recall the formulation of softmax attention in Transformers (i.e., Equation 15):

yi =
1∑i

ℓ=1 exp
(
q⊤
i kℓ/

√
din
) i∑

j=1

exp
(
q⊤
i kj/

√
din

)
vj , (35)

which its exp(·) kernel is not separable and so cannot be written as a recurrence. Following the
discussion in Kacham et al. (2024b), one can see exp(·) kernel (compared to polynomial kernel
ϕp(·)) as a feature map that maps the input into an infinite dimension. That is, we define:

ϕ∗(x) =



1
x√
1

x⊗2
√
2!

x⊗3
√
3!
...

 , ϕp(x) = x⊗p, (36)

where x⊗p = x ⊗ x⊗(p−1) is a “self-tensoring” operator with Kronecker product (Kacham et al.,
2024b) and so:

exp(q⊤
t kt) = ϕ∗(qt)

⊤ϕ∗(kt). (37)

Based on the above kernel, we can reformulate the attention (see Equation 35) as: (we remove
1/
√
din term for the sake of simplicity)

yi =
1∑i

ℓ=1 exp
(
q⊤
i kℓ/

√
din
) i∑

j=1

vjϕ
∗(kj)

⊤ϕ∗(qi) (38)

=
1∑i

ℓ=1 exp
(
q⊤
i kℓ/

√
din
)
 i∑

j=1

ϕ∗(vjkj)
⊤

ϕ∗(qi) =Miϕ
∗(qi), (39)
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This formulation, provides another important insight on the differences of attention and (kernel)
recurrent models: Softmax attention as an associative memory has an unbounded memory and
so can better memorize larger context into its parameters. Building upon this insight, we present
DEEPTRANSFORMERS by replacing polynomial kernel with ϕ∗(·) kernel in Deep Linear Attention
formulation (Equation 11), resulting in unnormalized formulation of:

Mt =Mt−1 −∇⟨Mt−1(ϕ
∗(kt)),vt⟩. (40)

In the special case of linear memory, we can derive the closed form for the above formulation as:

Mt =Mt−1 −∇⟨Mt−1ϕ
∗(kt),vt⟩ =Mt−1 + vtϕ

∗(kt)
⊤ =

t∑
i=1

viϕ
∗(ki)

⊤ (41)

⇒ yt =Mtϕ
∗(qt) =

t∑
i=1

vi exp(q
⊤
i ki), (42)

which matches the output of the unnormalized Transformers. Therefore, DEEPTRANSFORMERS are
strict generalizations of Transformers with softmax attention (Vaswani et al., 2017).

G.2 DEEP OMEGA TRANSFORMER (DOT): TRANSFORMERS WITH OMEGA LEARNING RULE

Our above formulation of DEEPTRANSFORMERS is based on the (Hebbian Rule), which is also used
in original Transformers. However, as discussed earlier, using more powerful memory management
and learning rules in associative memory modules can further enhance their performance. To this
end, we extend the above formulation by replacing the Hebbian rule with our Omega learning rule,
resulting in an unnormalized formulation of Deep Omega Transformers (DOT):

Mt =Mt−1 −∇
t∑

i=t−c+1

γ
(t)
i ∥M (ϕ∗(ki))− vi∥22. (43)

We now discuss special instances of DOT to provide further intuition on its generalized formulation.

Linear Memory. This setup results in the following unnormalized formulation:

Mt =

(
I−

t∑
i=t−c+1

γ
(t)
i ϕ∗(ki)ϕ

∗(ki)
⊤

)
Mt−1 −

t∑
i=t−c+1

γ
(t)
i viϕ

∗(ki)
⊤ (44)

⇒ yt =Mtϕ
∗(qt) =

(
I−

t∑
i=t−c+1

γ
(t)
i ϕ∗(ki)ϕ

∗(ki)
⊤

)
Mt−1ϕ

∗(qt) −
t∑

i=t−c+1

γ
(t)
i vi exp(q

⊤
t ki).

(45)

Online Case with c = 1. We now let c = 1:

Mt =
(
I− ηtϕ

∗(kt)ϕ
∗(kt)

⊤)Mt−1 − ηtvtϕ
∗(kt)

⊤ (46)

⇒ yt =Mtϕ
∗(qt) =

(
I− ηtϕ

∗(kt) exp(q
⊤
t kt)

)
Mt−1 − ηtvt exp(q

⊤
t kt). (47)

The above (unnormalized) formulation can be seen as the generalization of Transformers with Delta
Rule. Therefore, due to the unbounded memory, DOT not only appends the new keys and values
(similar to original Transformers), but it also replaces the new value with its predicted value from
the previous state.

H PARALLELIZING OMEGA RULE

While Omega rule provides a more general and expressive formulation for the design of memory
modules than Hebbian or Delta learning rules, its applicability to large-scale models relies on its
efficiency in training. To this end, we discuss a fast parallelizable training algorithms that does not
add any significant computational overhead with the online counterpart version (i.e., c = 1). A naive
implementation requires materializing c gradients ∇ℓ ∈ Rdin×din , which can result in a significantly
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higher memory footprint and I/O cost when din is large. Also, to fully utilize hardware accelerators
such as TPUs and GPUs, it is important to tensorize computations and maximize the use of matmul
operations. Motivated by recent work (Behrouz et al., 2024; Sun et al., 2024), we propose a simple
sliding window masking strategy that supports efficient parallel training while avoiding substantial
memory overhead. Specifically, we partition the input sequence with length L into chunks of size
b ≥ 1, each of which is represented by Si = {x(i−1)b+1, . . . ,xib}. Then for each chunk, we
calculate the gradients with respect to the last state of the previous chunk. For the sake of clarity, we
first assume γ

(t)
i = ηt for all positions in the sequence. When the chunk size is b = 1, the update

rule is:

Mt = αtMt−1 − ηt

t∑
i=t−c+1

∇ℓ(Mt−1;ki,vi), (48)

whereMt is the model state at step t, αt and ηt are the weight decay and learning rate parameters
respectively, and (ki,vi) denote the input pair at position i. In practice, we strike a balance between
the fully recurrent form and the fully parallel form by dividing the sequence into smaller chunks.
Within each chunk (intra-chunk), we apply parallel computation, while across chunks (inter-chunk),
we adopt a recurrent computation scheme. We now define t′ = t−mod(t, b). That is, for time steps
t such that t′ ≤ t < t′ + b, the update rule within each chunk becomes:

Mt = αt...αt′Mt′ −
t∑

n=t′

αt...αt′

αn...αt′
ηn

n∑
i=n−c+1

∇ℓ(Mt′ ;ki,vi)︸ ︷︷ ︸
Gt

(49)

In our implementation, for Gt, we follow the same gradient computation approach as described in
Titans (Behrouz et al., 2024) but additionally apply a sliding window mask Ms during the broad-
casting operation (e.g., using einsum). When c = 1, the sliding window mask Ms reduces to the
identity matrix. For c > 1, Ms is an identity matrix except that the c − 1 positions immediately
preceding each diagonal entry are also set to 1. This allows gradient contributions from a window
of size c, enabling efficient computation without materializing all gradients inside the chunk.

H.1 PARALLEL TRAINING

In this section, we discussed how the training process of ATLAS can be parallelized. For the sake of
clarity, we assume c = 1. Generalizing the process to arbitrary value for c follows the procedure in
Appendix H. We use the same process as we discussed in Appendix H and so chunk the sequence
and compute all the gradients with respect to the last state of the previous chunk. Accordingly, using
the recurrence of ATLAS with momentum but without , we have:

Mt = αtMt−1 + St (50)
St = θtSt−1 − ηt∇ℓ(Mt′ ;kt,vt). (51)

Since t′ is the last state of the previous chunk, we can calculate all the gradients before hand and so
we let ut = ∇ℓ(Mt′ ;kt,vt). Therefore, we have:

Mt = αtMt−1 + St (52)
St = θtSt−1 − ηtut. (53)

Now by expanding the second recurrence, we have:

St = θtSt−1 − ηt∇ℓ(Mt′ ;kt,vt)︸ ︷︷ ︸
ut

, (54)

⇒ St = θt...θ1︸ ︷︷ ︸
βt

S0 −
t∑

i=1

θt...θ1
θi...θ1

ηiui = βtS0 −Θ⊙ E ⊙G, (55)

where G is the gradient matrix, E and Θ are diagonal matrices with value θ and η, and ⊙ is
broadcasting.
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Table 4: Architectural Details.

Model Block Dim Head Peak LR Token

170M 12 768 16 3e-3 15B
340M 24 1024 16 1.5e-3 15B
760M 24 1536 16 1.25e-3 30B
1.3B 18 2048 8 7e-4 100B

The main advantage of the above formulation (chunk wise recurrence) is that the recurrence of
momentum is independent of the state of memory. That is, we can calculate all the momentum
terms in the beginning of the chunk using the above formulation. Now in the Muon case, we want
to use Newton-Schulz algorithm on the momentum terms, which results in:

S ′t ← Newton-Schulz5(St), (56)

Mt =Mt−1 + S ′t. (57)

Since the calculation of all Sts can be done in parallel, the calculation of Newton-Schulz5(·)
can also be done in parallel.

I EXPERIMENTAL DETAILS

In our experimental setup we follow recent studies on linear recurrent models (Yang et al., 2024a;
Behrouz et al., 2024; 2025), we use Wikitext (Merity et al., 2017), LMB (Paperno et al., 2016),
PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021),
ARC-easy (ARC-e) and ARC-challenge (ARC-c) (Clark et al., 2018), SIQA (Sap et al., 2019), and
BoolQ (Clark et al., 2019). Also, the baselines results are from Behrouz et al. (2025; 2024). In the
training, we use a vocabulary size of 32K and use training length of 4K tokens (2K for SWA). We
employ AdamW optimizer with learning rate of 4e-4 with cosine annealing schedule with batch size
of 0.5M tokens, and weight decay of 0.1. The architectural details are also reported in Table 4. The
baseline results for 1.3B are from Yang et al. (2024a) and for 760M are from Behrouz et al. (2024;
2025).

For the memory architecture, unless state otherwise, we use an MLP with 2 layers with expan-
sion factor of 4 and GELU activation function (Hendrycks & Gimpel, 2016). We also use residual
connections and layer norm at the end of each chunk:M(x) = x+W1σ(W2x).

J ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide additional experimental results to support the design of our models,
understand the effect of different components and also evaluate their performance in long context,
in-context recall and MAD tasks.

J.1 LANGUAGE MODELING AND COMMON-SENSE REASONING (FULL RESULTS)

In Section 5 we presented a subset of results on language modeling and common-sense reasoning
tasks. In this section, we further report the results for all scales of models. The results are in Table 5.

State-of-the-art Results. Looking at the performance of ATLAS and OMEGANET, both architec-
tures perform favorably compared to modern linear recurrent models and Transformers, achieving
lower perplexity and better accuracy in downstream tasks. Even the fully recurrent version of these
models outperform hybrid models such as Samba (Ren et al., 2024) and Gated DeltaNet-H2 (Yang
et al., 2024a). Using the hybrid variants of MAG and MAL further improve the performance of
ATLAS, which shows the complementary role of recurrent long-term memory and attention.

The Effect of Design. Comparing the performance of ATLAS, OMEGANET, and baselines SWLA
and DLA, we can see the role of ℓ2 regression loss as the attentional bias. Also, the better perfor-
mance of SWLA compared to GLA and RetNet indicates the importance of memorizing the context,
instead of memorizing individual tokens.
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Table 5: Performance of ATLAS and baselines on language modeling and common-sense reasoning
tasks. Hybrid models are marked with ∗. The best results are highlighted highlighted .

Model Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c SIQA BoolQ Avg.
ppl ↓ ppl ↓ acc ↑ acc ↑ acc n ↑ acc ↑ acc ↑ acc n ↑ acc ↑ acc ↑ ↑

340M params / 15B tokens

Transformer++ 31.52 41.08 30.76 62.98 34.76 50.53 45.21 24.05 36.81 58.24 42.92
RetNet 32.50 49.73 28.24 62.61 34.15 50.91 44.27 23.62 36.79 59.72 42.54
GLA 28.51 43.02 28.73 64.05 35.96 50.00 54.19 24.29 37.13 58.39 44.09
Mamba 30.83 40.21 29.94 63.79 35.88 49.82 49.24 24.56 35.41 60.07 43.59
DeltaNet 28.65 47.30 28.43 63.52 35.95 49.63 52.68 25.37 37.96 58.79 44.04
TTT 27.44 34.19 30.06 63.97 35.71 50.08 53.01 26.11 37.32 59.83 44.51
Gated DeltaNet 27.01 30.94 34.11 63.08 38.12 51.60 55.28 26.77 34.89 59.54 45.42
MONETA 26.19 29.31 35.70 63.99 39.23 52.04 55.96 27.15 37.29 60.22 46.44
YAAD 26.61 29.11 34.09 64.93 39.86 51.12 54.75 28.64 33.82 60.29 45.93
MEMORA 27.16 30.44 33.68 65.21 39.17 51.23 53.40 27.99 34.1 59.29 45.51

DLA (ours) 27.93 35.09 30.8 62.9 36.2 50.4 53.5 26.7 37.1 59.7 44.76
SWDT (ours) 26.98 33.95 32.4 63.1 38.2 50.9 54.9 25.9 37.5 59.6 45.31

OMEGANET (ours) 26.03 28.76 35.6 65.3 39.7 52.0 56.1 28.6 37.7 60.4 46.93
ATLAS (ours) 25.88 28.54 36.1 64.9 40.1 52.7 56.4 28.8 38.1 61.2 47.28

760M params / 30B tokens

Transformer++ 25.21 27.64 35.8 66.9 42.2 51.9 60.4 32.5 39.5 60.4 48.69
DEEPTRANSFORMERS (ours) 20.32 20.67 36.9 68.4 49.8 52.8 65.7 34.9 40.2 61.8 51.31
DOT (ours) 19.96 20.15 39.0 69.1 50.7 53.1 66.2 37.0 40.3 63.7 52.39

RetNet 26.08 24.45 34.5 67.2 41.6 52.1 63.2 32.8 38.4 57.9 48.46
DeltaNet 24.37 24.60 37.1 66.9 42.0 50.7 64.9 31.4 39.9 59.0 48.97
TTT 24.17 23.51 34.7 67.3 43.9 51.0 64.5 33.8 40.2 59.6 47.32
Gated DeltaNet 21.18 22.09 35.5 68.0 44.9 50.7 66.9 33.1 39.2 59.1 49.69
Samba∗ 20.63 22.71 39.7 69.2 47.4 52.0 66.9 33.2 39.0 61.2 51.08
Gated DeltaNet-H2∗ 19.88 20.83 39.2 69.0 48.2 52.6 67.0 35.5 39.4 61.1 51.49
Titans (LMM) 20.04 21.96 37.4 69.3 48.5 52.3 66.3 35.8 40.1 62.8 51.56
MONETA 21.18 21.94 38.02 69.55 49.16 53.01 67.47 36.09 40.53 63.18 52.12
MEMORA 22.28 22.31 38.2 67.8 49.3 53.3 63.6 36.1 40.9 63.0 51.52

SWDT (ours) 19.89 21.52 36.2 68.3 45.2 53.0 65.4 34.2 39.5 59.5 50.1
DLA (ours) 23.12 22.09 36.1 68.0 47.9 52.7 65.8 34.6 39.1 59.6 50.46

OMEGANET (ours) 19.16 20.14 38.7 69.8 50.0 53.3 67.8 36.8 39.6 64.4 52.56
ATLAS (ours) 18.92 21.01 39.1 69.7 50.2 53.5 67.5 37.1 40.7 64.3 52.77
ATLAS++ (ours) 19.04 20.03 39.7 69.7 51.1 53.2 68.2 37.4 40.9 64.4 53.09

ATLAS (MAG) 18.62 21.18 40.0 70.3 50.5 53.0 68.1 36.5 41.2 65.0 53.08
ATLAS (MAL) 19.07 21.46 38.8 69.2 50.5 53.6 67.3 36.1 41.0 64.5 52.63

1.3B params / 100B tokens

Transformer++ 18.53 18.32 42.6 70.0 50.2 53.5 68.8 35.1 40.7 57.1 52.25
DEEPTRANSFORMERS (ours) 15.67 12.63 49.4 72.6 57.0 58.8 71.1 37.5 41.6 61.5 56.19
DOT (ours) 15.28 11.96 50.1 73.3 57.5 60.4 72.2 41.2 42.7 61.4 57.35

RetNet 19.08 17.27 40.5 70.1 49.2 54.1 67.3 33.8 40.8 60.4 52.02
Mamba2 16.56 12.56 45.7 71.9 55.7 55.2 72.5 37.9 40.2 60.1 54.89
DeltaNet 17.71 16.88 42.5 70.7 50.9 53.3 68.5 35.7 40.2 55.3 52.14
Gated DeltaNet 16.42 12.17 46.6 72.2 55.8 57.4 71.2 38.4 40.6 60.2 55.32
Samba∗ 16.13 13.29 44.9 70.9 53.4 55.6 68.8 36.2 40.0 62.1 54.00
Gated DeltaNet-H2∗ 15.91 12.55 48.8 72.2 56.9 57.8 71.4 39.1 41.2 61.6 56.18
MONETA 15.52 11.47 47.88 73.16 56.14 59.09 72.53 40.32 41.91 61.18 56.52
YAAD 15.18 11.89 47.23 72.81 56.46 59.02 72.14 40.05 40.73 61.86 56.39
Titans (LMM) 15.60 11.41 49.1 73.1 56.3 59.8 72.4 40.8 42.1 61.0 56.82
MEMORA 15.90 12.04 48.7 73.1 56.0 57.4 71.5 37.9 40.2 61.3 55.87

OMEGANET (ours) 14.91 11.26 49.7 73.4 57.6 59.7 72.6 40.3 42.4 62.1 57.23
ATLAS (ours) 14.97 10.98 50.1 73.9 57.3 60.2 72.8 41.0 42.9 62.8 57.62
ATLAS++ (ours) 14.40 10.72 50.8 73.5 59.4 61.1 71.3 43.7 42.5 61.9 58.03

Comparing Transformer++ with our more generalized Transformers (i.e., DEEPTRANSFORMERs,
and DOT) we observe a consistent performance improvement. We attribute this performance to their
deep memory, which makes them more powerful to model the dependencies of tokens. Comparing
DOT with DEEPTRANSFORMERs, we can see the advantage of Omega rule, which helps the model
to better manage its memory.

J.2 LEARNABILITY EXPERIMENTS

We have also performed some small-scale experiments to analyze the function-learning capability
of small MLPs in an online fashion. In this setting, we have a sequence of tuples (i1, o1), . . . (it, ot)
with both ij , oj ∈ Rd for all j. We train an MLP M in an online fashion to minimize lossj =
∥ij − oj∥22/∥oj∥22 – specifically, we compute the gradient at time step j as ∇M.paramslossj and use
standard optimizers such as Adam, Rmsprop and SGD to update the parameters. Such experiments
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(a) M with 2 hidden layers and no expan-
sion.

(b) M with 3 hidden layers and no expan-
sion.

(c) M with 2 hidden layers and 4x expan-
sion.

(d) M with 3 hidden layers and 4x expan-
sion.

Figure 5: Loss curves for different setting with various hyperparameters

help us understand the representation power of the models we use to represent memory and the
power of optimization algorithms to quickly learn the underlying sequence mapping.

We study five different sequence to sequence functions:

1. Low Rank Mappings: We sample a random low rank matrix W = XY with X ∈ Rd×k

and Y ∈ Rk×d. We then sample i1, . . . , it randomly from a Gaussian distribution and set
oj = WT · ij for all j ∈ [t].

2. MLP Mappings: We sample an MLPM with 1 input, 1 hidden and 1 output layer which
uses GELU non-linearity. We set the hidden dimension to d so that there is no expansion.
We then sample i1, . . . , it randomly from a Gaussian distribution and then set oj =M(ij)
for all j ∈ [t].

3. Attention+MLP Mapping: We sample (i1, . . . , it) from a Gaussian distribution and an
MLP M as above. We additionally sample three d × d matrices WQ, WK and WV

and compute qj = WQ
T · ij , kj = WK

T · ij and vj = WK
T · ij for all j ∈ [t]. We

then compute o′1, . . . , o
′
t as outputs of the causal masked attention mechanism applied on

{qj}j∈[t], {kj}j∈[t], {vj}j∈[t] and finally compute oj =M(oj).

4. Attention Outputs as Inputs: We do the same as above except that we output o′j as the
input sequence and oj as the output sequence.

5. Sliding Window Attention + MLP Mapping: We do the same as in Attention + MLP
Mapping setting except that we use a sliding window attention instead of full attention.
We use a sliding window of 512 in our experiments.

Note that the settings 3 and 5 are much harder to learn since they require (partially) memorizing the
previous inputs and outputs to be able to learn the function that maps ij to oj , whereas the settings 1,
2 and 4 do not need to memorize the previous input-output pairs and just need to learn the underlying
low-rank matrix or the MLP that maps the inputs to outputs.
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The setting 4 is slightly different to setting 2 in that the inputs are not-independent at each time step
and are correlated by the attention mechanism we use to compute the inputs. Thus a strong learning
algorithm maybe able to utilize the underlying correlations to learn the mapping faster in setting 4
versus setting 2.

We set d = 256 and show the loss curves vs sequence position for all the five settings with function
learning MLP M being defined and trained with different settings in Figure 5. We can see that
in all the settings, the model learns non-trivial mappings from inputs to outputs with the lossj =
∥ij − oj∥22/∥oj∥22 being smaller than 1 eventually. Most notably, the correlations in inputs in setting
4 induced by the attention mechanism makes the model quickly learn the mapping compared to in
setting 2 and the models usually learn the best in setting 1 which is the least complex function.

The models do the worst in settings 3 and 5 which require the models to (partially) memorize the
inputs and outputs to learn the attention mechanism outputs. Surprisingly, the models learn to do
better in setting 3 vs setting 5, when we would expect that capacity requirement for setting 3 to
be higher than setting 5. We hypothesize that the learning algorithm is unable to make the model
‘forget’ old inputs which makes the loss worse in sliding window setting when compared to global
attention setting. A caveat of our analysis is that, the attention computation is done on randomly
initialized vectors and hence the attention matrix is usually not spiky, unlike in the attention matrix
for trained set of query, key and value vectors in LLMs. This leads to attention outputs being close
to the mean of value vectors in the context.

Figure 6: Performance of ATLAS and baselines
on BABILong benchmark. ATLAS surpasses Ti-
tans performance and effectively scale to 10M
context length in this task.

Figure 7: The effect of local context length (i.e.
c) on the performance of OMEGANET with dif-
ferent global context length.

J.3 LONG CONTEXT: BABILONG BENCHMARK

To compare the effectiveness of ATLAS with Titans (Behrouz et al., 2024) in ultra-large sequences,
we further evaluate ATLAS’s performance on BABILong benchmark (Kuratov et al., 2024). In
this experiment, we follow Behrouz et al. (2024) and use MAC architecture but without persistent
memory tokens. We also follow the original setup in the benchmark and fine-tune our model. The
results are reported in Figure 6. While ATLAS shows competitive and on par performance with Titans
until 1M context length, the performance of Titans drops in 10M. ATLAS, however, maintains its
performance and achieve +80% accuracy in 10M context length. We attribute this to more powerful
memory; in terms of (1) memory management (i.e., the use of Muon), (2) better memory capacity
due to polynomial kernels, and (3) its nature to memorize the context, instead of individual tokens.

In previous sections, we show the effectiveness of our Transformer-like architectures (i.e., DEEP-
TRANSFORMERs and DOT) in both language modeling and long-context needle-in-haystack tasks.
From now on, we focus on our recurrent architectures (i.e., ATLAS, and OMEGANET) to show the
importance of presented improvements.
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Table 6: Performance of ATLAS, OMEGANET, and baselines on the synthetic benchmark of
MAD (Poli et al., 2024). ATLAS outperforms all the baselines, including Transformers.

Compression (Noisy) ICR Fuzzy ICR Selective Memorization AverageCopying

Transformers 49.4 100 48.2 95.9 83.8 75.46
Gated DeltaNet 44.8 100 32.5 96.2 81.7 71.04
Titans 49.6 100 49.7 99.4 83.5 76.44

OMEGANET (ours) 50.9 100 54.2 99.6 90.2 78.98
ATLAS (ours) 51.6 100 54.9 99.6 91.4 79.50

Table 7: The performance of our models (ATLAS, and
OMEGANET) compared to baselines. While still Transform-
ers achieve the best results in in-context recall tasks, our de-
sign of context memorization and polynomial feature maps
can close the gap with Transformers.

SWDE NQ DROP FDA SQUAD TQA Average

Transformers 84.9 23.0 28.4 72.5 48.1 64.4 53.55
Gated DeltaNet 63.2 19.1 26.7 33.4 39.6 59.7 40.28
Titans 65.1 20.7 27.2 37.3 42.6 61.0 42.31

OMEGANET (ours) 67.4 21.1 27.2 39.0 43.2 60.9 43.13
ATLAS (ours) 66.8 21.9 27.4 40.7 44.1 61.3 43.70

Table 8: Ablation Study on ATLAS.
All components of ATLAS are positively
contributing to its performance.

Model Language Modeling C.S. Reasoning
ppl ↓ acc ↑

ATLAS 19.97 52.77

+Gated MLP Memory 19.53 53.09

+Attn (MAG) 19.90 53.08
+Attn (MAL) 20.26 52.63

Linear Memory 21.03 49.74
w/o Muon 19.65 52.56
c = 1 21.98 49.26
w/o Polynomial Mapping 22.14 50.57

J.4 ADDITIONAL EXPERIMENTS: IN-CONTEXT RECALL, MAD SYNTHETIC BENCHMARK,
AND ASSOCIATIVE RECALL

In this section, we first evaluate the performance of our models on MAD benchmark, a synthetic
benchmark that evaluate the performance of models in recall, memorization, compression, and copy-
ing tasks (Poli et al., 2024). The results are reported in Table 6. ATLAS achieves the best results in all
aspects, particularly in memorization, which shows the importance of its components for enhancing
the memory capacity.

In-context recall tasks is one of the most challenging benchmarks for recurrent neural networks. In
this section, we follow Arora et al. (2024) and perform experiments on SWDE (Lockard et al., 2019),
NQ (Kwiatkowski et al., 2019), DROP (Dua et al., 2019), FDA (Arora et al., 2023b), SQUAD (Ra-
jpurkar et al., 2016), and TQA (Kembhavi et al., 2017) to evaluate and compare the performance of
ATLAS with baselines and Transformers. The results are reported in Table 7. While Transformers
still achieve the best results in in-context recall tasks, ATLAS and OMEGANET shows competitive
performance and performs better than state-of-the-art recurrent models. We again attribute this per-
formance to better memory management and capacity.

Figure 8: The results for associa-
tive memory recall.

Figure 9: Scaling patterns of ATLAS, and OMEGANET with re-
spect to (Left) training context length, and (Right) FLOPs.

Finally, following Yang et al. (2024c) and Arora et al. (2023a) we evaluate the performance of
ATLAS and DOT in Multi-Query Associative Recall (MQAR) task (Arora et al., 2023a). The re-
sults are reported in Figure 8. Both models show good performance compared to baselines and
ATLAS achieve the best performance per memory size compared to state-of-the-art models such as
DeltaNet (Yang et al., 2024c).

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

J.5 ABLATION STUDY AND SCALING PATTERNS

In this section, we perform an ablation study on the differernt components of ATLAS, and also
evaluate its scaling patterns with respect to the number of parameters and also the context length of
the training. The results for ablation study are reported in Figure 2. The results show that: (1) more
powerful memory architectures such as gated MLP can further enhance the performance of ATLAS;
(2) The hybrid variants further improve the performance, where MAG shows better improvement
compared to MAL architecture; (3) Polynomial mappings as well as deep memory are particularly
important when we use context memorization (i.e., Omega rule). Figure 7 also shows the effect of
local context length (i.e., c) on the performance of the model. With the increase of c we can achieve
better performance, mainly due to the gating parameters of γ that can prune the context, whenever
it is needed.

Model Size. Figure 9 shows the scaling pattern of ATLAS, and OMEGANET, with respect to number
of parameters and compared to baseline. Both models achieve a good scaling pattern with increasing
the model size, achieving lower perplexity in all scales compared to baselines.

Context Length. Figure 9 shows the scaling pattern of ATLAS, and OMEGANET, with respect to
the context length and compared to baseline. Both models due to high memory capacity can scale
well, when increasing the context length.

The Effect of p. We first, evaluate the effect of p on the training throughput and perplexity of the
model. We consider the context length of 2K, 4K, 8K. The results are in Figures 10 and 11 .

We further evaluate the memory usage. If we consider the case p = 1 as the base, p = 2, p = 3, and
p = 4 requires ×1.2, ×2.5, and ×3.3, respectively.

Figure 10 Figure 11
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