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Abstract

Randomized experiments are often performed to study the causal effects of interest. Blocking
is a technique to precisely estimate the causal effects when the experimental material is
not homogeneous. It involves stratifying the available experimental material based on the
covariates causing non-homogeneity and then randomizing the treatment within those strata
(known as blocks). This eliminates the unwanted effect of the covariates on the causal effects
of interest. We investigate the problem of finding a stable set of covariates to be used to form
blocks, that minimizes the variance of the causal effect estimates. Using the underlying causal
graph, we provide an efficient algorithm to obtain such a set for a general semi-Markovian
causal model.

1 Introduction

1.1 Motivation

Studying the causal effect of some variable(s) on the other variable(s) is of common interest in social sciences,
computer science, and statistics. However, a mistake that people usually make is, confusing the causal effect
with an associational effect. For instance, if high levels of bad cholesterol and the presence of heart disease
are observed at the same time, it does not mean that the heart disease is caused by the high levels of bad
cholesterol. The question is then how do we get to know if at all a variable causes the other? If the answer is
yes, then what is the direction (positive or negative) and what is the magnitude, of the causal effect? Fisher
(1992) provided the framework of randomized experiments to study the causal effect, where the variable whose
causal effect is to be studied (known as treatment or cause), is randomized over the available experimental
material (like humans, rats, agricultural plots, etc.) and changes in the variable on which the causal effect is
to be studied (known as response or effect), are recorded. A statistical comparison of values of the response
with or without the treatment can therefore be done to study the existence, direction, and magnitude of the
cause-effect relationship of interest.

Randomized experiments work on three basic principles, viz., randomization, replication, and local control.
Randomization states that the assignment of the treatment has to be random, replication states the treatment
should be given to multiple but homogeneous units, i.e., there are multiple observations of the effect variable for
both with and without the treatment. Therefore, as long as the entire experimental material is homogeneous
(for instance, the fertility of all the agricultural plots is the same, the responsiveness of all the humans is
the same for the drug, etc.), then a ‘good’ randomized experiment can be carried out using the first two
principles, viz., randomization and replication, which gives rise to completely randomized design (CRD).
However, when the entire experimental material is not homogeneous, i.e., some attributes of experimental
units (known as covariates) differ from each other, then the causal effect may get influenced by the covariates
causing non-homogeneity (like fertility, responsiveness, etc). The remedy to this problem is the third
principle of randomized experiments, i.e., local control (also known as blocking), which states to stratify the
entire experimental material based on that covariate(s) causing non-homogeneity, and then randomize the
treatment within those strata to eliminate the effect of the covariates. These strata are called blocks, and
this third principle along with the first two give rise to randomized block design (RBD). Blocking tries to
control/eliminate the variability in the response attributed through the covariates and leads to a more precise
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estimation of the causal effect of interest. Precision is defined as the inverse of the variance of the estimate of
the causal effect of interest.

In this paper, we focus on the problem of deciding which covariates to be used for forming the blocks while
performing a randomized experiment. We consider a non-parametric setting and assume that we have access
to the underlying causal structure (Pearl, 2009). We provide an efficient algorithm to obtain a stable set of
covariates to be used to form blocks for a general semi-Markovian causal model.

1.2 Literature Review

Statistics literature (Yates, 1935), (Kempthorne, 1952), (Kempthorne, 1955), (Cochran & Cox, 1948) presents
profound discussions on relative efficiency (ratio of the variances of causal effects) of RBD over CRD. It can
be seen that in general, RBD is always more or at least as efficient as CRD. Therefore, the natural question
is how do we do blocking in an intelligent manner such that maximum gain in precision can be attained?
More specifically, we are interested in answering the following question. Can we decide which covariates to be
used for forming blocks using the causal structure (diagram) of all the variables, viz., treatment, response,
and covariates (observed and unobserved) provided the causal structure is given?

Cinelli et al. (2020) provides a good discussion on good and bad controls for different causal graphs. However,
they do not provide a general algorithm to address the problem for a general causal graph. In contrast,
we provide an efficient algorithm to obtain the set of covariates to be used for forming blocks for a general
semi-Markovian causal model.

In this paper, we focus on deciding what covariates should form the basis of forming blocks. However, a
problem that follows our problem is, how to efficiently form blocks by grouping the experimental units which
are close to each other based on the chosen covariates. Moore (2012); Higgins et al. (2016) focus on the latter
problem.

1.3 Contribution

In this paper, we formalize the problem of finding a stable set of covariates to be used to form blocks, that
minimizes the variance of the causal effect estimates. We leverage the underlying causal graph and provide
an efficient algorithm to obtain such a set for a general semi-Markovian causal model.

1.4 Organization

The rest of the paper is organized as follows. Section 2 provides some background and formulates the
problem of interest. Section 3 discusses our methodology that includes motivating examples, key observations,
important lemmas, main results, and final algorithm. Section 4 concludes the paper and provides future
directions.

2 Background and Problem Formulation

In this section, we provide some background and formulate the problem of interest in this paper.

Let V be the set of observed/endogenous random variables and U be the set of unobserved/exogenous random
variables. Let G be a directed acyclic graph that depicts the causal relationships among the random variables
in U and V. We are interested in studying the causal effect of X ∈ V (treatment) on Y ∈ V (response).
Studying the causal effect of X on Y means learning the (interventional) probability distribution, P(Y |do(X))
(Pearl, 2009).
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2.1 Gain in Precision due to Blocking

Consider a simple setting where X is an indicator random variable defined as

X =
{

1, if the treatment is applied,

0, otherwise,
(1)

and Y is real-valued random variable.

Let there be n experimental units available to study the causal effect of X on Y by performing a randomized
experiment. Let Z denote the set of covariates that vary across the experimental units.

We want to demonstrate the gain in precision due to blocking. Thus, we first ignore these covariates and
perform a CRD as follows. We randomize X over the available experimental units, i.e., randomly assign a
unit to either have the treatment (X = 1) or not (X = 0) and then observe the response. Let (Xi, Yi) denote
the treatment and response pair for the ith experimental unit. Define Ix := {i : Xi = x} and nx := |Ix|.

For demonstrating the gain in precision due to blocking, we focus on estimating E(Y |do(X)). For simplicity,
define Y (x) := Y |do(X = x). For our simple setting, we have only two possibilities of the that conditional
expectation, viz. E(Y (1)) and E(Y (0)). Similar to Heckman (1992), Clements et al. (1994), and Heckman &
Smith (1995), we define the effect of treatment (ET) in the population as

β := E (Y (1))− E (Y (0)). (2)

A natural non-parametric estimator of E (Y (x)) is the corresponding sample average, given as

Ȳ (x) := 1
nx

∑
i∈Ix

Yi. (3)

Therefore, we can estimate β as

β̂ = Ȳ (1)− Ȳ (0) (4)

It can be shown that E(β̂) = β, i.e., β̂ is unbiased for β. The variance of β̂ is given as follows.

Var (β̂) = EZ

(
Var (Y (1)|Z)

n1,z
+ Var (Y (0)|Z)

n0,z

)
+ EZ(β(Z)− β)2, (5)

where β(Z) := E (Y (1)|Z)−E (Y (0)|Z) is the Z-specific causal effect. For proofs of unbaisedness and variance
of β̂, see Appendix A.1.

We now perform an RBD as follows. We first stratify the experimental units such that units with each stratum
(known as a block) are identical, i.e., the covariates in Z remain the same with a block. We next randomize
X over the experimental units within each block and then observe the response. Let (Xi, Yi,Zi) denote the
treatment, response, and covariates triplet for the ith experimental unit. Define Ix,z := {i : Xi = x,Zi = z}
and nx,z := |Ix,z|.

Note that ET defined in equation 2 can be re-written as (Petersen et al., 2006)

β = EZ (E (Y (1)|Z)− EZ (E (Y (0)|Z) , (6)
= EZ (E (Y (1)|Z)− E (Y (0)|Z)) , (7)

=
∑

Z
(E (Y (1)|Z)− E (Y (0)|Z))P (Z) (8)

A natural non-parametric estimator of E (Y (x)|Z) is the corresponding sample average, given as

Ȳ (x)|Z := 1
nx,z

∑
i∈Ix,z

Yi (9)
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Define nz := n1,z + n0,z. P (Z) can be estimated as

P̂ (Z) := nz

n
(10)

Therefore, we can estimate β as

β̂Z = 1
n

∑
Z

nz

(
Ȳ (1)|Z − Ȳ (0)|Z

)
(11)

It can be shown that E(β̂Z) = β, i.e., β̂Z is unbiased for β. The variance of β̂Z is given as follows.

Var (β̂Z) = EZ

(
Var (Y (1)|Z)

n1,z
+ Var (Y (0)|Z)

n0,z

)
+ EZ

(∑
Z

β(Z)P̂ (Z)− β

)2

, (12)

For proofs of unbiasedness and variance of β̂Z , see Appendix A.2.

If P̂(Z) is as good as P(Z) then
∑

Z β(Z)P̂ (Z) = EZ(β(Z)) = β then the second term on the right in
equation 12 is zero, and by comparing equation 5 and equation 12, we observe that Var (β̂Z) ≤ Var (β̂), i.e.,
blocking improves the precision of the estimate of the population average causal effect, β.

2.2 Challenges with Blocking

We observed that in experimental studies under non-homogeneity of the experimental units, blocking improves
the precision of causal effect estimation. However, the practical difficulty with blocking is that depending on
the number of covariates and the number of distinct values (denoted as v(·)) of each covariate, the number
of blocks can be very large. For covariates in the set Z, we need to form

∏
Z∈Z v(Z) different blocks. For

example, if we want to study the effect of a drug on curing some heart disease where the subjects under
consideration have the following attributes (which can potentially affect the effect of the drug).

1. Gender: Male and Female, i.e., v(Gender) = 2,

2. Age: <25, 25-45, 45-65, >65, i.e., v(Age) = 4,

3. Weight: Underweight, Normal, Overweight, Obese I, Obese II, i.e., v(Weight) = 5,

4. Blood Pressure: Normal, Prehypertension, Hypertension I, Hypertension II, Hypertensive Crisis, i.e.,
v(Blood Pressure) = 5, and

5. Bad Cholesterol: Optimal, Above Optimal, Borderline High, High, Very High, i.e.,
v(Bad Cholesterol) = 5.

Thus, we need to form 2× 4× 5× 5× 5 = 1000 blocks. Performing a randomized experiment with a large
number of blocks can be very costly. Sometimes, it may not be feasible as the number of blocks can be larger
than the number of subjects. This would cause some of the blocks to be empty. For instance, there may
not be any male subjects under the age of 25 who are Obese II with a Hypertensive Crisis and Optimal
Cholesterol level.

Other than the economic aspects and some blocks being empty, there are reasons why some variables should
never be used for forming blocks. See Section 3.4 for details.

2.3 Problem Statement

So far we observed that blocking improves the precision of causal effect estimation. However, in situations
when the number of blocks to be formed is very large, blocking becomes costly and/or infeasible. One possible
way to reduce the number of blocks is to form blocks using some but not all covariates. But the question
is which covariates should be preferred over others while forming blocks? One possible way is to select the
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(smallest) set of covariates that leads to a maximum precision in causal effect estimation. In the context of
estimating the effect of treatment in the population, β, (discussed in Section 2.1), it means finding a smallest
set, Z, that minimizes Var (β̂Z).

We next formalize the problem of interest in this paper as follows. We are given a directed acyclic causal
graph, G, that depicts the causal relationships among some observed variables, V, and unobserved variables,
U . We are interested in studying the causal effect of X ∈ V (treatment) on Y ∈ V (response) by performing
a randomized block experiment. The set of observed covariates is C := V\{X, Y }.

Studying the causal effect of X on Y means learning the (interventional) probability distribution, P(Y |do(X)).
We can write P(Y = y|do(X = x)) as

P(Y = y|do(X = x)) = P (Y = y ∩ do(X = x))
P (do(X = x)) (13)

For estimating the above probability, we perform an RBD by forming blocks using covariates in Z ⊆ V\{X, Y },
and similar to the estimation of E (Y |do(X)), we define an estimate of P(Y = y|do(X = x)) as

P̂Z(Y = y|do(X = x)) :=
∑
Z=z

P̂ (Y = y ∩ do(X = x) ∩ Z = z)
P̂ (do(X = x) ∩ Z = z))

P̂ (Z = z) (14)

where P̂ (·) are the sample relative frequencies.

It is desirable to select the Z such that Var (P̂Z(Y = y|do(X = x))) is minimized, i.e., maximum gain in
precision. For ease of notations, we define Var (P̂Z(Y |do(X))) := Var (P̂Z(Y = y|do(X = x))).
Problem 1. Given a directed acyclic graph, G, that depicts the causal relationships among some observed
variables, V, and unobserved variables, U ; treatment, X ∈ V, and response, Y ∈ V, obtain a smallest subset,
Z∗, of the set of observed covariates, C := V\{X, Y }, such that

Z∗ ∈ arg min
Z

Var (P̂Z(Y |do(X))). (15)

Note. In Section 3.4, we discuss the idea of stability of the solution to Problem 1 where we talk about some
covariates that should never be used while forming the blocks. We provide a method to obtain the set of such
variables.

3 Methodology

In this section, we develop a methodology to find a solution to Problem 1. We first examine Var (P̂Z(Y |do(X)))
as a function of Z to obviate some edges and nodes from the causal graph, G. We next discuss some motivating
examples and make key observations that lead to several lemmas for our main result. In the end, we provide
our main result and develop an efficient algorithm for solving Problem 1.

3.1 Examining Var (P̂Z(Y |do(X))) as a function of Z

In Problem 1, our interest is to minimize Var (P̂Z(Y |do(X))) as a function of Z ⊆ C. Z can affect
Var (P̂Z(Y |do(X))) through the causal relationships from Z to Y , and from Z to X. Note that, X is the
treatment on which we are performing the intervention, i.e., we set the levels/values of X. This is equivalent
to saying that X is no longer affected by the rest of the variables. Therefore, Z also cannot affect X when
an intervention is performed on X. Therefore, Z can affect Var (P̂Z(Y |do(X))) only through the causal
relationships from Z to Y . Therefore, a smallest subset of C that blocks all causal paths from C to Y gives a
solution to 1.

Denote the subgraph of G where all edges coming into X were deleted as G
X̃

.
Lemma 1. For finding a solution to Problem 1, it is sufficient to work with the subgraph G

X̃
.
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Proof. The proof follows from the fact that when an intervention is performed on X then it is no longer
affected by the rest of the variables. In terms of the causal graph, G, it is the same as deleting all edges
coming into X.

Definition 1. S, T ⊆ C are called equivalent sets (denoted as S ≡ T ), if Var (P̂ S(Y |do(X))) =
Var (P̂ T (Y |do(X))).
Lemma 2. If F is the set of all covariates that do not have causal paths to Y , then C and C\F are equivalent
sets.

Proof. The proof follows from the fact that a set of covariates can affect Var (P̂Z(Y |do(X))) only through
the causal relationships from itself to Y .

Following Lemma 1, we restrict ourselves to the subgraph G
X̃

. Following Lemma 2, we further delete the
covariates that do not have any causal paths to Y . Denote this new subgraph as G′

X̃
and C′ = C\F . Therefore,

a smallest subset of C that blocks all causal paths from C′ to Y in G′
X̃

gives a solution to 1.

3.2 Motivating Examples and Key Observations

All causal graphs in Figures 1 to 5 represent represent G′
X̃

. Denote the set of parents of W in G′
X̃

as P(W ).

Example 1. For Figures 1 and 2, P(Y )\{X} = {V1, V2} is sufficient to block all causal paths from
C′ = {V1, V2, V3, V4} to Y . Therefore, Z∗ = P(Y )\{X}.

X Y

V1 V2

V3 V4

Figure 1: Example Markovian model (no
latent structures).

X Y

V1 V2

V3 V4

Figure 2: Example semi-Markovian model
with latent variables involving only C′.

Example 2. For Figures 3a and 3b, P(Y )\{X} = {V1, V2} is not sufficient to block all causal paths from
C′ = {V1, V2, V3, V4} to Y . In Figure 3a, the reason is that blocking using V2 opens the path V4 → V2 ← Y for
V4 to cause variability in Y . In Figure 3b, the reason is that the latent structure Y ↔ V4 enables V4 to cause
Y even when the path V4 → V2 → Y is blocked. For both Figures 3a and 3b, Z∗ = (P(Y )\{X}) ∪ {V4}.

X Y

V1 V2

V3 V4

(a)

X Y

V1 V2

V3 V4

(b)

Figure 3: Example semi-Markovian model with latent variables involving C′ and Y .

Example 3. For Figure 4, despite Y having descendants, (P(Y )\{X}) ∪ {V4} blocks all causal paths from
C′ to Y . This is because descendants of Y can never be a cause of variability in Y . In Figures 4a and 4b, V5
(a descendant of Y ) cannot cause Y through the edge Y → V5. Moreover, V2 (a parent of Y ) cannot cause Y
through V5 because V5 is a collidor on the path V2 → V5 ← Y .
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X Y

V1 V2

V3

V5

V4

(a)

X Y

V1 V2

V3

V5

V4

(b)

Figure 4: Example Semi-Markovian Models with latent variables involving C′ and Y , and Y having descendants.

Denote the set of ancestors (including itself) of W in G′
X̃

as A(W ). Denote the subgraph of G′
X̃

restricted to
A(Y ) as G′

X̃,A(Y )
. Based on the insights from Examples 1 to 3, we write the following lemma.

Lemma 3. For finding a solution to Problem 1, it is sufficient to work with the subgraph G′
X̃,A(Y )

.

Proof. The proof follows from the fact that the descendants of a node can never be its cause even in the
presence of latent structures.

3.3 Solution to Problem 1

We now combine the insights from Lemmas 1 to 3 to provide a solution to Problem 1.
Theorem 1. The smallest Z such that Y ⊥ (A(Y )\{X, Y })\Z|Z in G′

X̃,A(Y )
is a solution to Problem 1.

Proof. The proof follows from the fact that Z such that Y ⊥ (A(Y )\{X, Y })\Z|Z in G′
X̃,A(Y )

blocks all
causal paths from C′ to Y .

Theorem 1 provides a sufficient condition for a set Z to be a solution to Problem 1. We next provide a
method to construct a set Z that satisfies this sufficient condition.

Let a path composed entirely of bi-directed edges be called a bi-directed path.
Definition 2. (Tian & Pearl, 2002). For a graph G, the set of observed variables V, can be partitioned into
disjoint groups by assigning two variables to the same group if and only if they are connected by a bi-directed
path. Assume that V is therefore partitioned into k groups S1, . . . ,Sk. We will call each Sj ; j = 1, . . . , k,
a c-component of V in G or a c-component (abbreviating confounded component) of G. The Sj such that
W ∈ Sj is called the c-component of W in G and is denoted as CW,G. As {S1, . . . ,Sk} is a partition of V,
c-component of a variable always exists and is unique.

In Example 2, we observed that due to the presence of latent structures involving Y , P(Y ) was not sufficient
to block all causal paths from C′ to Y . However the parents of c-component of Y in G′

X̃,A(Y )
would be

sufficient for that purpose.
Theorem 2. The smallest Z such that Y ⊥ (A(Y )\{X, Y })\Z|Z is the set of parents of c-component of Y
in G′

X̃,A(Y )
excluding X denoted as P(CY,G

X̃,A(Y )
)\{X}.

Proof. The proof follows from Corollary 1 (Tian, 2002), which states that a node is independent of its
ancestors excluding the parents of its c-component given the parents of its c-component.

Note. In a Markovian model there are no bi-directed paths, Therefore, the elementary partition of A(Y ) is
the c-component of G′

X̃,A(Y )
. Therefore, CY = {Y }, and P(CY,G

X̃,A(Y )
)\{X} = P(Y )\{X} in G′

X̃,A(Y )
. This

matches with our insight in Example 1, where we saw that Y ⊥ (A(Y )\{X, Y })\(P(Y )\{X})|(P(Y )\{X}).
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X V6 Y

V1 V2

V3 V4

V5V7

(a)

X V6 Y

V1 V2

V3 V4

V5V7

(b)

Figure 5: Example semi-Markovian models with post-treatment ancestors of Y .

3.4 Stability of the Solution to Problem 1

We next discuss some concerns with using Z∗ (a solution to Problem 1) as a blocking set. We provide a
method to address those concerns.

Example 4. In Figure 5a and Figure 5b, there are some covariates which are ancestors of Y and descendants
of X. Such covariates are called post-treatment ancestors (excluding itself) of the response. Blocks created
using these covariates are not well-defined. For instance, we are interested in studying the causal effect
of a drug on blood pressure. Suppose anxiety level mediates the effect of drug on blood pressure, i.e.,
drug→ anxiety→ blood pressure. If we create blocks using anxiety then the blocks will change (i.e., become
unstable) during the experiment because change in the drug level will cause the anxiety level to change.
Therefore, it is reasonable not to create blocks using these covariates. With this insight, for Figure 5a,
(P(Y )\{X}) ∪ {V4} blocks all (pre-treatment) causal paths from C′ to Y . However, we cannot simply delete
these covariates from the subgraph G′

X̃,A(Y )
of interest. This is because presence of latent structures between

pre- and post-treatment ancestors of the response affects blocking set of interest. For instance, in Figure 5b,
V2 is a collidor on the path V3 → V1 ← V6 keeping V1 in the blocking set will open this path for V3 to cause
variability in Y . Therefore, for Figure 5a, we need (P(Y )\{X})∪ {V3, V4} to block all (pre-treatment) causal
paths from C′ to Y .

Denote the post-treatment ancestors (excluding itself) of the response while studying the causal effect Y |do(X)
as M(Y |do(x)).
Definition 3. For studying the causal effect of X on Y , a blocking set Z, is said to be stable if Z ∩
M(Y |do(x)) = ϕ.

Denote the set of descendants (including itself) of W in G′
X̃,A(Y )

as D(·).

Lemma 4. M(Y |do(x)) = (D(X) ∩ A(Y ))\{X, Y }.

Proof. The proof follows from the definition of post-treatment ancestors (excluding itself) of Y .

Theorem 3. A stable solution to Problem 1 is Z∗ = (P(CY,G
X̃,A(Y )

\{X})\M(Y |do(x)).

Proof. The proof follows from Lemma 4.

3.5 Final Algorithm

We next provide steps to obtain a stable solution to Problem 1 based on Theorems 1 to 3. First, we
reduce G to G′

X̃,A(Y )
. Next, we obtain the set Z = P(CY,G

X̃,A(Y )
)\{X} which is the smallest set such that

Y ⊥ (A(Y )\{X, Y })\Z|Z in G′
X̃,A(Y )

. Finally, we drop M(Y |do(x)) from Z to get a stable solution to
Problem 1.
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Denote the edge W1 →W2 as directed-edge(W1, W2), a path consisting of directed edges from W1 to W2 as
directed-path(W1, W2), and a path consisting of all bi-directed edges from W1 to W2 as bi-directed-path(W1, W2).
Algorithm 1 outlines the psuedocode of the proposed algorithm to obtain a stable solution to Problem 1.

Algorithm 1 Stable-Causal-Blocking (G, X, Y )
1: for i in 1, . . . , |V| do ▷ Reducing G to G

X̃
2: if ∃ directed-edge(Vi, X) then
3: delete directed-edge(Vi, X) from G
4: for i in 1, . . . , |V| do ▷ Reducing G

X̃
to G′

X̃
5: if ∄ directed-path(Vi, Y ) then
6: delete Vi from G
7: A′(Y )← ϕ
8: for i in 1, . . . , |V| do ▷ Reducing G′

X̃
to G′

X̃,A(Y )
9: if ∄ path(Vi, Y ) then

10: delete Vi from G;A′(Y )← A′(Y ) ∪ {Vi}
11: A(Y ) = V\A′(Y )
12: Si = {Vi}, i = 1, . . . , |V| ▷ Finding CY,G

X̃,A(Y )

13: for i in 1, . . . , |V| do
14: for j in 1, . . . , i do
15: if ∃ bi-directed-path(Vi,Vj) then
16: Si ← Si ∪ Sj ;Sj ← ϕ

17: i← 1;S ← S1
18: while Y /∈ S do
19: i← i + 1;S ← Si

20: P(S) = ϕ ▷ Finding P(CY,G
X̃,A(Y )

)
21: for i in 1, . . . , |V| do
22: for W in S do
23: if ∃ directed-edge(Vi, W ) then
24: P(S)← P(S) ∪ {Vi}
25: D(X)← ϕ ▷ Finding D(X)
26: for i in 1, . . . , |V| do
27: if ∄ directed-path(X, Vi) then
28: D(X)← D(X) ∪ {Vi}
29: Z ← (P(S)\{X})\(D(X) ∩ A(Y ))\{X, Y }.
30: return Z

3.6 Time Complexity of Algorithm 1

We next show that Algorithm 1 is an efficient polynomial-time algorithm. Finding if there exists a path
between any two nodes in a directed graph can be done using breath-first-search which has the worst-case
time complexity of O(|V|2). Algorithm 1 first reduces G to G′

X̃,A(Y )
which involves

1. finding variables with edges going into X: O(|V|),

2. finding variables with no path into Y : O(|V|3), and

3. finding all ancestors of Y : O(|V|3).

Algorithm 1 next finds the c-component of Y involves traversing all pairs of variables: O(|V|2), and finding if
there exists a bi-directed path between any pair of variables: O(|V|2). Therefore, the total time at this step
is O(|V|4). Finally Algorithm 1 finds M(Y |do(x)) which involves
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1. finding descendants of X: O(|V|3), and

2. finding ancestors of Y : O(|V|3).

Therefore, the time complexity of Algorithm 1 is O(|V|4).

3.7 Implementing Algorithm 1

We demonstrate the implementation of Algorithm 1 to obtain a stable solution to Problem 1 for a general
semi-Markovian causal graph, G given in Figure 6.

X V5 Y

V1 V2

V3 V4

V6 V7

V8

V9

Figure 6: The Original Graph G.

X V5 Y

V1 V2

V3 V4

V6 V7

V8

V9

Figure 7: The Graph G
X̃

.

X V5

V6

Y

V1 V2

V3 V4

Figure 8: The Graph G
X̃,A(Y ).

We first obtain the graph GAn
X̃

(Y ) as displayed in Figure 8. We next obtain the c-components (following
Definition 2) of G

X̃,A(Y ) are {X}, {V1, V5, Y, V2}, {V3}, {V4}, and the c-component of Y is {V1, V5, Y, V2}. We
next obtain the set of parents of the c-component of Y as {X, V1, V2, V3, V4, V5}. The set D(X) ∩ A(Y ) is
{X, Y, V5, V6}. Finally, we obtain the final set as ({X, V1, V2, V3, V4, V5}\{X})\({X, Y, V5, V6}\{X, Y }) =
{V1, V2, V3, V4}.

4 Conclusion and Future Work

We investigated the problem of finding a stable set of covariates to be used for forming blocks, that minimizes
the variance of the causal effect estimates. By leveraging the underlying causal graph, we provided an efficient
algorithm to obtain such a set for a general semi-Markovian causal model. In the future, we are interested
in finding stable solutions to Problem 1 with additional cardinality or knapsack constraint on the feasible
solutions.
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A Appendix

A.1 Expectation and Variance of β̂

We calculate the expectation of β̂ as

E (β̂) = E (Ȳ (1))− E (Ȳ (0)). (16)

In general, due to non-homogeneous experimental units, E (Ȳ (x)) ̸= E (Y (x)), x = 0, 1. Let Z be the
covariates causing non-homogeneity, rewrite equation 16 as

E (β̂) = EZ
(
E (Ȳ (1)|Z)

)
− EZ

(
E (Ȳ (0)|Z)

)
. (17)

For fixed covariates the experimental units are identical. Therefore, E (Ȳ (x)|Z) = E (Y (1)|Z), x = 0, 1. Thus,

E (β̂) = EZ (E (Y (x)|Z))− EZ (E (Y (0)|Z)) , (18)
= E (Y (1))− E (Y (0)) = β. (19)

We next calculate the variance of β̂ as

Var (β̂) = Var (Ȳ (1)− Ȳ (0)). (20)

Let Z be the covariates causing non-homogeneity, we rewrite equation 20 as

Var (β̂) = Var Z
(
E ((Ȳ (1)− Ȳ (0))|Z)

)
+ EZ

(
Var ((Ȳ (1)− Ȳ (0))|Z)

)
, (21)

= Var Z
(
E (Ȳ (1)|Z)− E (Ȳ (0)|Z)

)
+ EZ

(
Var (Ȳ (1)|Z) + Var (Ȳ (0)|Z)

)
. (22)

equation 22 uses linearity of expectation and randomization.

For fixed covariates the experimental units are identical. Therefore, E (Ȳ (x)|Z) = Y (x)|Z, x = 0, 1, and
Var (Ȳ (x)|Z) = 1

nx,z
Var (Y (x)|Z), x = 0, 1. Therefore,

Var (β̂) = Var Z (E (Y (1)|Z)− E (Y (0)|Z)) + EZ

(
Var (Y (1)|Z)

n1,z
+ Var (Y (0)|Z)

n0,z

)
(23)

Define β(Z) := E (Y (1)|Z)− E (Y (0)|Z). Therefore,

Var (β̂) = Var Z (β(Z)) + EZ

(
Var (Y (1)|Z)

n1,z
+ Var (Y (0)|Z)

n0,z

)
(24)

= EZ (β(Z)− EZ(β(Z)))2 + EZ

(
Var (Y (1)|Z)

n1,z
+ Var (Y (0)|Z

n0,z
)
)

(25)

= EZ (β(Z)− β))2 + EZ

(
Var (Y (1)|Z)

n1,z
+ Var (Y (0)|Z)

n0,z

)
(26)

equation 26 uses EZ(β(Z)) = EZ(E (Y (1)|Z))− EZ(E (Y (0)|Z)) = E (Y (1))− E (Y (0)) = β.

A.2 Expectation and Variance of β̂Z

We calculate the expectation of β̂Z as

E (β̂Z) = E

(∑
Z

P̂(Z)
(
Ȳ (1)|Z − Ȳ (0)|Z

))
, (27)

=
∑

Z
E
(
P̂(Z)(Ȳ (1)|Z − Ȳ (0)|Z)

)
, (28)

=
∑

Z
E
(
P̂(Z)

) (
E (Ȳ (1)|Z)− E (Ȳ (0)|Z)

)
, (29)

=
∑

Z
P(Z)

(
E (Ȳ (1)|Z)− E (Ȳ (0)|Z)

)
, (30)

= EZ
(
E (Ȳ (1)|Z)− E (Ȳ (0)|Z)

)
= β. (31)

11



Under review as submission to TMLR

We next calculate the variance of βZ as

Var (β̂Z) = Var Z

(
E

(∑
Z

( ¯Y (1)|Z − ¯Y (0)|Z)P̂ (Z)
))

+ EZ

(
Var

(∑
Z

( ¯Y (1)|Z − ¯Y (0)|Z)P̂ (Z)
))

,

(32)

= Var Z

(∑
Z

E ( ¯Y (1)|Z − ¯Y (0)|Z)P̂ (Z)
)

+ EZ

(∑
Z

Var ( ¯Y (1)|Z − ¯Y (0)|Z)P̂ (Z)
)

, (33)

= Var Z

(∑
Z

E (Ȳ (1)|Z)− E (Ȳ (0)|Z)P̂ (Z)
)

+ EZ

(∑
Z

(
Var (Ȳ1|Z) + Var (Ȳ0|Z)

)
P̂ (Z)

)
,

(34)

equation 33 and equation 34 use linearity of expectation and randomization.

For fixed covariates the experimental units are identical. Therefore, E (Ȳ (x)|Z) = E (Y (x)|Z), x = 0, 1, and
Var (Ȳ (x)|Z) = 1

nx,z
Var (Y (x)|Z), x = 0, 1. Therefore,

Var (β̂Z) = Var Z

(∑
Z

β(Z)P̂(Z)
)

+ EZ

(∑
Z

(
Var (Y (1)|Z)

n1,z
+ Var (Y (0)|Z)

n0,z

)
P̂(Z)

)
, (35)

= EZ

(∑
Z

β(Z)P̂(Z)− EZ

(∑
Z

β(Z)P̂(Z)
))2

+
∑

Z

Var (Y (1)|Z)
n1,z

EZ(P̂(Z))

+
∑

Z

Var (Y (0)|Z)
n0,z

EZ(P̂(Z)), (36)

= EZ

(∑
Z

β(Z)P̂(Z)− β

)2

+
∑

Z

Var (Y (1)|Z)
n1,z

P(Z) +
∑

Z

Var (Y (0)|Z)
n0,z

P(Z), (37)

= EZ

(∑
Z

β(Z)P̂(Z)− β

)2

+ EZ

(
Var (Y (1)|Z)

n1,z

)
+ EZ

(
Var (Y (1)|Z)

n1,z

)
, (38)

= EZ

(
Var (Y (1)|Z)

n1,z
+ Var (Y (0)|Z)

n0,z

)
+ EZ

(∑
Z

β(Z)P̂(Z)− β

)2

. (39)
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