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Figure 1: Our model takes a single source image and a driving video as input and can synthesize
a high-quality video of the source image following the expressions and poses of the driving video.
Although our model is trained on real human videos, it generalizes well to stylized human-like images
as well.

ABSTRACT

Portrait animation aims to generate photo-realistic videos from a single source
image by reenacting the expression and pose from a driving video. While early
methods relied on 3D morphable models or feature warping techniques, they often
suffered from limited expressivity, temporal inconsistency, and poor generalization
to unseen identities or large pose variations. Recent advances using diffusion
models have demonstrated improved quality but remain constrained by weak
control signals and architectural limitations. In this work, we propose a novel
diffusion-based framework that leverages masked facial regions—specifically the
eyes, nose, and mouth—from the driving video as strong motion control cues.
To enable robust training without appearance leakage, we adopt cross-identity
supervision. To leverage the strong prior from the pre-trained diffusion model, our
novel architecture introduces minimal new parameters that converge faster and
help in better generalization. We introduce spatial-temporal attention mechanisms
that allow inter-frame and intra-frame interactions, effectively capturing subtle
motions and reducing temporal artifacts. Our model uses history frames to ensure
continuity across segments. At inference, we propose a novel signal fusion strategy
that balances motion fidelity with identity preservation. Our approach achieves
superior temporal consistency and accurate expression control, enabling high-
quality, controllable portrait animation suitable for real-world applications.

1 INTRODUCTION

Portrait animation aims to synthesize photo-realistic changes in facial expressions and head poses.
This has a wide range of applications in telepresence, virtual reality, gaming, and entertainment.
High-fidelity systems often rely on expensive multiview video capture setups to acquire large volumes

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

of data for realistic synthesis. More recent approaches achieve improved synthesis quality using
only a single image at test time. While this setup enables broader accessibility and deployment, it
introduces challenges in generalizing to unseen identities and expressions. There are also various
ways to control expressions and head poses. Some methods provide explicit control using audio,
facial landmarks, emotions, or a video of another person as driving input. Among these, video-driven
methods offer the highest degree of control and are especially desirable in many practical scenarios.
In this work, we address the task of generating a video of a source identity from a single image, such
that it faithfully reenacts the motion and expressions from a driving video. (See Fig. 1).

Earlier works addressed this task by using pretrained 3D morphable models to explicitly disentangle
identity and expression. However, due to their limited expressiveness and the inherent ambiguity in
representing identity and motion separately, these methods often produce results that lack realism.
Subsequent approaches introduced warping-based techniques that disentangle appearance from
motion, using feature-space warping and neural rendering for output synthesis. While these methods
improved visual quality, they generally lacked temporal modeling, crucial for capturing subtle motion,
such as during speech. Additionally, they struggled with generalizing to large pose variations and
often produced artifacts in regions like the shoulders due to ambiguities in the warping fields.

Recently, diffusion models have revolutionized image and video synthesis tasks. They provide rich
prior knowledge and latent spaces that can be easily fine-tuned to use various control signals to
synthesize high-quality outputs. Many facial animation works leverage audio Tian et al. (2024);
Wang et al. (2025) or landmark-based control Wei et al. (2024); Chen et al. (2024) with diffusion
models. While audio offers limited motion guidance, landmarks can be too sparse to express the rich
dynamics of facial motion. A recent method, X-Portrait Xie et al. (2024), overcame these problems
by using a masked image from the driving video, which contains only the eyes and mouth regions,
as the conditional signal to drive the input image. While the results are better compared to previous
methods, it struggles significantly with temporal artifacts and large pose variations. Moreover, the
model is based on U-Net style architecture (and not the more recent Diffusion Transformer (DiT)
architecture), which introduces spatial biases and lacks the capacity to model fine-grained temporal
dependencies. Moreover, all the prior methods Guo et al. (2025); Wei et al. (2024); Xie et al. (2024)
introduce new modules to incorporate the control signals.

In this paper, we tackle the problem using DiT-based architecture by introducing minimal changes to
the base model, while exploiting the power of transformers. This not only helps in faster training, it
also generalizes well to various types of input images (see Fig. 4). Moreover, our model can model
subtle movements of various face parts, which are perceptually crucial in speech and expression
reenactment, thanks to our novel architecture. These results are better appreciated in video format,
and we kindly request the reader to check our supplementary video. Our method outperforms all
prior methods, establishing a new state-of-the-art.

We follow X-Portrait’s Xie et al. (2024) intuition and use masked eyes, nose, and mouth regions of
the driving video to control the output video of a given source image. Instead of using the same
identity to drive the output during training, which risks appearance leakage, we adopt cross-identity
training using the state-of-the-art motion transfer method LivePortrait Guo et al. (2025) to enforce
stronger generalization. To effectively integrate control signals, we propose a novel mechanism that
reuses the pretrained diffusion model with minimal new parameters. This helps to retain the prior
knowledge better while requiring less time to adapt the model to new control signals. Our method
also introduces full spatiotemporal attention, allowing each token to interact not only within its frame
but also across time. This significantly improves temporal coherence by mitigating flickering artifacts
and enables the synthesis of subtle motions. We also provide history frames to the model to provide
smooth transitions between consecutive chunks of frames. At inference time, we propose a novel
way to combine various control signals that can maintain good identity preservation of the source
image while still following motions from the driving video.

In summary, we make the following contributions,

• We propose a pure DiT-based portrait animation model that takes a single source image and a
driving video to synthesize high-quality video of the source image following the expressions
and poses of the driving video.

• We propose a novel architecture that introduces minimal new parameters and reuses the
pretrained diffusion model to incorporate the control signals. This helps in generalizing to
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novel identities. Although our model is trained with real human videos, because of prior
knowledge from a pretrained diffusion model, our model can generalize to stylized versions
of human images. Thanks to our novel architecture, our model outperforms all baselines in
capturing subtle lip and facial movements that are perceptually crucial for realistic speech
reenactment.

• We provide an extensive qualitative and quantitative evaluation to showcase the advantage
of our method over the baselines, with accurate expression transfer and temporally smooth,
high-quality output.

2 RELATED WORKS

Talking-head generation also referred to as head avatar synthesis, focuses on animating a target face
according to motion observed in a driving signal (e.g., another video). Over the past few years, this
task has inspired a diverse range of approaches. These can broadly be divided into GAN-based and
diffusion-based methods.

GAN-based Methods. A substantial body of work uses pre-defined motion descriptors such as 3D
morphable models (3DMM), facial landmarks, or dense flow maps. For example, FOMM Siarohin
et al. (2020) employs learned keypoints and local affine transformations for animating a source image
according to the driving video frames. Many other studies Qian et al. (2024); Xu et al. (2023);
Khakhulin et al. (2022) studies incorporate 3D landmarks, blendshapes, or thin-plate splines to better
cope with complex head rotations and large expressions.

Instead of explicitly modeling landmarks or 3D structures, several approaches learn latent codes that
capture facial and head motion Zakharov et al. (2020); Burkov et al. (2020). MegaPortraits Droby-
shev et al. (2023) demonstrates the effectiveness of high-resolution, one-shot avatars via latent
representations that preserve identity. EmoPortraits Drobyshev et al. (2024) focuses on emotional ex-
pressiveness, using an expression-rich dataset to achieve more nuanced facial animation. Additionally,
MCNet Hong & Xu (2023) explores an identity-conditioned memory compensation module to tackle
extreme pose changes. LivePortrait Guo et al. (2025) extends implicit-keypoint-based video-driven
frameworks (e.g. FaceVid2Vid Wang et al. (2021a)) by significantly scaling up the training data,
upgrading network architecture, and introducing auxiliary modules for better controllability (e.g.,
stitching and retargeting), all while maintaining high inference efficiency.

Diffusion-based Methods. While GANs have long dominated portrait animation, recent progress in
diffusion-based generative models has opened new pathways for high-fidelity synthesis. Early works
on diffusion probabilistic models Ho et al. (2020); Song et al. (2021); Rombach et al. (2022) high-
lighted the potential of iterative denoising in pixel or latent spaces. Since then, evolved pipelines Kar-
ras et al. (2022) and alternative formulations Lipman et al. (2023); Liu et al. (2022) have shown
improved stability and sampling quality, culminating in state-of-the-art results Esser et al. (2024).

Some diffusion-based approaches integrate explicit control (e.g., keypoints, segmentation masks, or
3D facial priors) into the denoising process Wei et al. (2024); Ostrek & Thies (2024). AniPortrait Wei
et al. (2024), for instance, injects keypoints into a latent diffusion backbone, preserving coherent
facial motion over time. Other methods focus on transferring motion signals directly from driving
data. XPortrait Xie et al. (2024) avoids explicit landmarks, learning a latent motion representation
from cross-identity video pairs; this captures subtle facial expressions yet requires careful training
to prevent identity leakage. In contrast, EchoMimic Chen et al. (2024) addresses audio-driven
synthesis, using a speech-aware temporal module to synchronize lip movements with the spoken
content. Despite their impressive generative capabilities, diffusion-based portrait animation still
faces challenges such as handling extreme poses and ensuring fully coherent temporal consistency,
motivating further research.

3 METHOD

Given a single image of a source identity S and a driving video D of any identity, the goal is to
synthesize a video T of the source image closely following the expressions and head poses of the
driving video. Our model is capable of generating F frames at a time. To generate longer videos, we
use F′ number of previously generated video frames as one of the control signals to generate smooth
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Figure 2: Overview of the method. Our model takes a source image and a driving video as input,
and can synthesize a video of the source image following the expressions and poses of the driving
video. The model is based on the SD3.5 Medium model. We concatenate the tokens of the source and
driving frame to the video noise latents and process them using the Image-Text block. We introduce
an additional Full-Video attention block that takes in both video noise latents and tokens of previous
video frames to achieve temporally smooth and consistent results with respect to the previous frames.

transitions. Instead of learning the model from scratch, we use a powerful pre-trained diffusion
model based on pure transformer architecture as our base and propose novel ways to provide the
control signals with minimal changes to the architecture and minimal addition of new parameters.
We start with a brief explanation of the diffusion models in Sec 3.1, discuss various control signal
and their motivations in Sec 3.2, propose a novel architecture to accommodate the various control
signals in Sec 3.3, and finally provide the novel inference strategy in Sec 3.4. We provide a high-level
architecture of our model in Fig. 2.

3.1 PRELIMINARIES

Diffusion Models (DM)Ho et al. (2020); Song et al. (2021); Rombach et al. (2022) are generative
models that learn to map a Gaussian noise distribution to the data distribution through denoising steps.
Latent distribution models are a type of diffusion models that apply the same technique in the latent
space of the data. This reduces the dimensionality and makes the model efficient. We are interested
in image/video-based models for our task. In the literature, mainly 2 types of network architecture
have been used to learn this mapping function. The first one is based on U-Net-style architecture, and
the second one is based on pure transformer blocks. The objective of noise estimation in a diffusion
model is to predict the noise ϵt added at each timestep during the forward diffusion process. The
model learns to estimate this noise by minimizing the difference between the true noise and the
predicted noise at each timestep. The objective function is:

Lϵ = Eq(z0,t)

[
∥ϵt − ϵ̂θ(zt, t)∥2

]
Where, ϵt is the true noise added at time step t, ϵ̂θ(zt, t) is the predicted noise by the model
parameterized by θ, Eq(z0,t) denotes the expectation over the clean data distribution q(z0) and the
diffusion process at time t. By minimizing this objective, the model learns to reverse the diffusion
process effectively, allowing for denoising and generating new samples from noise.

3.2 CONTROL SIGNALS

The main control signals for the task are the source image S and the driving video D. At inference,
the identity of S and D could be different. To train this model, ideally, one needs paired data of
2 identities performing the same set of expressions and head poses with the same camera position
to be able to train in a supervised manner. But practically, it’s impossible to obtain such real data.
Existing works train the model using video of the same identity to supervise self-driven tasks. That
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is, the S and D are of the same identity during training. With this setup, there could be leakage of
appearance information from D to the output if not handled carefully. The existing works propose
elaborate ways to disentangle appearance from motion information to avoid appearance and identity
leakage during self-driven training tasks and can be generalized to novel identities at test time. Our
goal is to efficiently use the rich priors of the pre-trained diffusion model and adapt the model for the
reenactment task. Following the approach in X-Portrait Xie et al. (2024), we avoid identity leakage
by using different identities for S and D during training. To ensure consistent motion while varying
identity, we employ the state-of-the-art LivePortrait model Guo et al. (2025) to generate paired videos
where different subjects perform the same motion patterns. This encourages the model to disentangle
motion from appearance. Also, instead of using the complete driving image as input, we only used
masked areas of the eyes, nose, and mouth region, which are the most relevant signal for the chosen
task.

Our model can synthesize F frames at a time. To synthesize a longer sequence of video, we need to
run the model multiple times in a sliding window manner over the driving video frames. To have
smooth transitions between consecutive sets of frames, we also use a set of previous frames for
generating the current set of frames. We explain how we make use of these various control signals
with minimal changes to the model architecture in the next section.

3.3 NETWORK ARCHITECTURE

We use a pure transformer architecture, text-to-image diffusion model as our base model. This model
is trained to take in textual data to sample images. At a high level, the network architecture has
multiple blocks with two branches, an image branch and a text branch. The image and text tokens
interact with each other in a self-attention block with concatenated tokens as input. As it is hard to
have all the identity-specific and motion details accurately described in textual space, we mainly
resort to image-based conditioning to handle this duty.

Source Image S: The identity-specific details come from the source image S . Instead of introducing
a new module that can interpret S, we exploit the pure transformer architecture that already has an
image branch that can interpret image details well in the form of noise latent z. Specifically, to induce
identity information into the noise latent, we simply concatenate the tokens of S with z. Note, since
we generate F frames at a time, we simply repeat the S by F number of times for concatenation with
z. To distinguish tokens of z and S , we simply use different spatial encoding for each of these tokens.
Specifically, we shift the width and height of source token positions by a fixed size, which doesn’t
overlap with that of z tokens.

Driving Video D: The motion information comes from D and they also have F frames. As D is also
represented as a set of images, we follow a similar strategy as that of S and concatenate it with z
and S in the token dimension, which finally yields 3× S tokens for each frame. Similar to S tokens,
to distinguish tokens of D tokens, we use a different spatial encoding for D tokens. Note that we
haven’t introduced any new parameters or major changes to the architecture till now.

Previous Video T ′: As mentioned before, our model is capable of synthesizing F frames at a time.
To maintain temporal smoothness across consecutive sets of frames, we use previous frames of the
target video T to condition the model. Specifically, we use F′ number of previous frames of target
video T for conditioning, denoted as T ′. Since we want to reuse the same network architecture as
much as possible, we simply reuse the image-text block to obtain an intermediate representation of
T ′ and use it in Temporal Module to introduce a smooth transition to the current set of output frames.

Temporal Module: The base model sd3 is only trained to handle spatial data. We introduce a new
module that can handle temporal data. Specifically, we want temporal interaction between frames of
z and T ′ to introduce smooth changes over time. Please note, since D and S majorly contribute to
spatial changes and have a minimal role to play in the temporal aspect, and for efficiency reasons,
we exclude tokens corresponding to each of them for temporal modeling. We provide concatenated
tokens of z and T ′ in the frame dimension and provide that as input to a full-video attention module.
To incorporate the frame number information, we add frame number encoding to both T ′ and z.

3.4 INFERENCE

Given the presence of multiple control signals during training, we adopt a dropout strategy similar
to those used in text-to-image and other conditional diffusion models, where control signals are
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randomly dropped during training. This approach enables classifier-free guidance (CFG) at inference
time and allows us to modulate the influence of each control signal. Our primary goal is to control
the strength of identity details, motion cues, and the influence of previous frames. To achieve this, we
run the model with four different input configurations and combine their outputs at each denoising
step to produce the final denoised latent representation, z. In the first configuration, all control signals
are dropped to enable unconditional generation, denoted as u. In the second, only the source image
S is provided to control identity-specific details, resulting in s. In the third configuration, both S and
the driving video D are used as control signals, yielding d. Finally, all control signals—including S ,
D, and previous frames T ′—are provided to obtain the fully conditioned output, p.

We combine these 4 outputs in each denoising step in the following way,
z = u+ λs × (s− u) + λd × (d− s) + λp × (p− d)

4 EXPERIMENTS

First, we provide the details of the implementation. Then we present the results and provide a
comparison to the baselines considered.

Implementation Details: We use Stable Diffusion 3.5 Medium sd3 (SD3.5M) as our base model.
SD3.5M is a pure DiT model that has multiple blocks. Each block mainly has 2 branches, one for
image and another for text. And, it also has a module that concatenates both image and text outputs to
perform self-attention. We introduce a spatio-temporal block before each block SD3.5M, that takes
image noise tokens and previous frame tokens and performs full attention where each token in each
frame attends to every other token from other frames to obtain spatiotemporal coherence. We train
our model in 2 stages. In the first stage, we zero out history frames to avoid the model being overly
dependent on history frames. In the second stage, we include history frames for the training. We
initialize the model using SD3.5M and fine-tune the whole model on 32 NVIDIA H100 GPUS for
around 50k iterations, with a batch size of 1. We use a dataset that was collected internally, which
consists of around 20000 clips to train our model. We use a resolution of 576 × 576 videos. We
set λs = 2, λd = 2.5, λp = 1, F = 16, and F′ = 3. Our model takes around 4 seconds to run 1
denoising step. We use 40 steps to get the complete denoised output.

Source Driving LivePortrait AniPortrait XPortrait Ours

Figure 3: Comparison of Self-Reenactment results on HDTF dataset. Our model outperforms all the
other methods in both video quality and accurate expression transfer.

Baselines: We compare our method with both non-diffusion-based, such as LivePortrait Guo et al.
(2025), and diffusion-based methods, such as XPortrait Xie et al. (2024) and AniPortrait Wei et al.
(2024). We use their official implementation to obtain the results.

Benchmark: We use HDTF Zhang et al. (2021), TalkingHead1KH Wang et al. (2021b), SD3.5M
sd3 model to sample real and different style portrait images, CMU-Mosei Bagher Zadeh et al. (2018)
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Method
Self-Reenactment

L1↓ LPIPS↓ PSNR↑ FVD↓ Sync-D↓ Sync-C↑ CSIM↑ MAE↓
LivePortraits Guo et al. (2025) 0.1084 0.1773 20.1437 82.47 7.34 7.84 0.8808 7.49
AniPortrait Wei et al. (2024) 0.0726 0.111 22.7084 77.85 10.09 4.83 0.8341 10.38
X-Portrait Xie et al. (2024) 0.0811 0.1233 22.1313 74.88 8.20 6.92 0.8581 7.63
Ours 0.0687 0.1031 22.9669 50.31 7.31 8.01 0.9087 5.51

Table 1: Quantitative comparisons for Self-Reenactment. Our method outperforms all the other
baselines across all metrics.

Method
Cross-Reenactment

FVD ↓ Sync-D↓ Sync-C↑ CSIM ↑ MAE ↓
LivePortraits Guo et al. (2025) 174.95 8.50 6.72 0.7811 11.02
AniPortrait Wei et al. (2024) 243.22 11.47 3.80 0.8192 18.56
X-Portrait Xie et al. (2024) 171.70 9.32 5.90 0.7679 13.25
Ours 152.31 8.48 6.98 0.7961 10.56

Table 2: Cross-Reenactment: Our method outperforms all the other baselines in most metrics. While
AniPortrait performs slightly better on identity preservation, it suffers significantly in video quality,
eye gaze, and expression transfer metrics.

data for evaluations. To evaluate the performance of test cases, we evaluate the results using a number
of metrics. We use L1, LPIPS, and PSNR metrics in case the corresponding image output is available.
To evaluate the identity preservation in the output, we use the CSIM metric Deng et al. (2019). To
evaluate the expression preservation with respect to driving video, we use the lip synchronization
metric (Sync-C, Sync-D) to measure the correlation of lip movement with respect to the audio of
the driving signal Chung & Zisserman (2016). Sync-C represents synchronization confidence, and
Sync-D represents average synchronization distance. To measure the perceptual quality of video
output, we use Content-Debiased FVD Ge et al. (2024). To measure faithful eye movement transfer,
we use the Mean Angular Error (MAE) of eye-ball direction Abdelrahman et al. (2023).

4.1 SELF-REENACTMENT

We perform self-reenactment on the test set by using the first image as the source image and the rest
of the frames as the driving frames of a test video. Specifically, we use HDTF Zhang et al. (2021)
to perform the evaluation. We compare both qualitatively and quantitatively to the baselines in the
following.

Qualitative: We provide a qualitative comparison in Fig. 3. Our method faithfully transfers motion,
including both expressions and pose. While LivePortrait does a reasonable job in self-reenactment, it
lacks high-frequency details. AniPortrait Wei et al. (2024) relies on facial landmarks as the control
signal. While it provides a coarse signal of expressions and pose, landmarks alone aren’t sufficient
to represent subtle changes in expressions. X-Portrait Xie et al. (2024) works well if the poses are
aligned well with the source and driving frame, but suffers significantly with spatial and temporal
artifacts otherwise. The reenactment results are better appreciated in the video results. We request
the reader to check the supplementary video results.

Quantitative: We provide a quantitative comparison in Tab. 1. Our method outperforms all the
baselines in all the metrics. While LivePortrait Guo et al. (2025) works well in lip synchronization
metrics, it lacks perceptual quality and video quality metrics. AniPortrait Wei et al. (2024) has better
perceptual quality, but because of the landmark-based control signal, it suffers significantly in lip
synchronization metrics. X-Portrait Xie et al. (2024) performs reasonably, but suffers from spatial
and temporal artifacts, which are evident in a drop in the FVD metric.

4.2 CROSS-REENACTMENT

We perform cross-reenactment on the source images from TalkingHead-1KH Wang et al. (2021b)
and driving videos from HDTF Zhang et al. (2021). To showcase generalization capability, we
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Source Driving LivePortrait AniPortrait XPortrait Ours

Figure 4: Comparison of Cross-Reenactment results using TalkingHead-1KH, HDTF, SD3.5 and
CMU-Mosei dataset. In general, LivePortrait fails to generate high-frequency details. AniPortraits
fail to transfer expression faithfully, relying on coarse landmarks as the control signal. XPortrait has
both spatial and temporal artifacts and has wrong expression predictions. Our model outperforms all
the methods in various aspects.

sample images from the Stable Diffusion 3.5 Large sd3 (SD3.5L) model of real and different styles
of portraits like sketch, painting, Ghibli, etc, and use the CMU-Mosei dataset Bagher Zadeh et al.
(2018) and an internally collected dataset to drive them.

Qualitative: We provide a qualitative comparison of cross-reenactment in Fig. 4. Similar to that
of self-reenactment, LivePortrait results can not synthesize high-frequency details. AniPortrait only
relies on landmarks to control expression; it tends to keep the expression bias of the input source
image in the output, ignoring the emotion of the driving input (see rows 2, 3, and 6 in Fig 4). X-
Portrait fails to generalize well across different styles. For example, if the source image is of a sketch
portrait, X-Portrait fails to keep the output consistent with sketch style (see 4th row in Fig 4, where
tongue turns red). The reenactment results are better appreciated in the video results. We request the
reader to check the supplementary video results.

Quantitative: We provide the quantitative comparison in Tab. 2. Our methods outperform all the
baselines in most of the metrics. AniPortrait Wei et al. (2024) performs slightly better in the identity
metric(CSIM). This, we believe, is because this baseline retains the expression bias of the source
image in the output and, as a result, could have influenced the identity metric. This impacts the
quality of expression transfer, which is evident in its poor performance in the lip synchronization
metric. Since the landmark doesn’t represent the eye gaze, their eye direction metric (MAE) is quite
bad as well. LivePortrait fails to generalize well to stylized images (see 4th row in Fig. 4). XPortrait
struggles when the driving pose is different from that of the source image (see 5th row in Fig. 4)
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4.3 ABLATION STUDY

We provide 2 ablation studies for our model.

Factorized Attention (FA): To model the temporal aspect, we use full video attention where each
token of a frame attends to all the tokens of all the frames. We provide an ablation study where we
replace full video attention with only factorized attention, where a token in each frame attends to
only corresponding tokens in other frames. The quantitative comparison can be found in Tab. 3. We
observe that although the model with factorized attention has slightly better identity and video quality
metrics, it struggles to have better lip synchronization. We choose the model with full video attention
as our main model, which is used for generating all the results shown.

Source Driving Ours (w/o CC) Ours

Figure 5: Training curriculum ablation. Observe
the accumulated error patches on the forehead
for the model without careful curriculum (CC).

Method FVD ↓ Sync-D↓ Sync-C↑ CSIM ↑ MAE ↓
Ours (w/o history) 202.29 8.72 6.72 0.7833 11.13
Ours 152.31 8.48 6.98 0.7961 10.56

Table 3: Factorized Attention ablation. Although
the model with factorized attention has better
identity and video quality metrics, it has poor
performance in lip synchronization and eyeball
movement transfer.

Careful Curriculum (CC): The training curriculum determines the quality of the model. Although
the previous frames signal helps in providing smooth transitions in the output, training the model with
that signal for the entire training makes the model overly rely on the history frames. When generating
a longer sequence of output, we need to run the model multiple times by using the previous run’s
output. If the output has a minor error, overreliance on the previous frames results in the accumulation
of error over time. To avoid this, we pretrain our model by zeroing out the previous frames’ input and
fine-tune with this signal for the last 10k iterations. We provide the comparison in Fig 5. One can
observe the accumulation of error resulting in the dark artifacts on the forehead for the model trained
without the careful curriculum.

5 LIMITATIONS

Source Driving Output

Figure 6: Limitation.

Although our method works well on most of the real-human
portraits and their stylized versions, like sketch, painting, pixart,
etc., it doesn’t work well on extreme cases where the propor-
tions of face parts are not similar to those of real human faces.
One such failure sample is shown in Fig. 6. We can observe
that the source image has eyes that are close to the nose and the
mouth. Our model mistakes the eyebrows for the eyes, resulting
in the wrong output.

6 CONCLUSION

In this work, we presented a diffusion transformer-based approach for high-quality portrait animation
using a single source image and a driving video. Our method addresses key challenges in existing
video-driven reenactment systems, including temporal inconsistency, identity leakage, and limited
generalization to diverse appearances. By leveraging masked facial regions as expressive control sig-
nals, adopting cross-identity training via a motion transfer model, and introducing full spatio-temporal
attention mechanisms, our model achieves accurate and temporally coherent outputs. Our model has
better lip synchronization than the state-of-the-art methods. Furthermore, our strategy for integrating
control signals into a pretrained diffusion transformer requires minimal additional parameters and
enables strong generalization, even to stylized human-like inputs. Extensive experiments demonstrate
the superiority of our approach over prior methods, both qualitatively and quantitatively.
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SUPPLEMENTARY

1. Video Results
We present comparative video results in the supplementary video, including self-reenactment
and cross-reenactment on both real and stylized human subjects. Our method consistently
outperforms all the baseline approaches. These improvements are most evident in motion
and visual quality, and we strongly encourage readers to view the supplementary video to
fully appreciate the results.

2. Implementation Details
Here we provide more implementation details. We used 0.0001 as our learning rate with a
batch size of 1. We drop out S, D, and T ′ at 50% of iterations each during training. Our
network architecture is based on SD3.5 Medium model, where we introduce a full video
attention module in all the blocks of SD3.5 Medium model. We optimize all the parameters
of the model during training.

3. Broader impact In the entertainment and media industry, it enables more immersive and
realistic visual effects, bringing historical figures to life or allowing actors’ performances to
be altered without requiring reshoots. In accessibility, it offers promising tools for generating
expressive avatars for people with disabilities. However, the technology also raises serious
ethical and societal concerns, especially in the context of misinformation and deepfakes.
The ability to convincingly alter facial expressions can be exploited to fabricate videos
for malicious purposes, potentially undermining public trust in digital media and enabling
identity fraud. As face reenactment technology continues to advance, its broader impact
underscores the urgent need for responsible development, regulation, and public awareness
to ensure it is used for beneficial, rather than harmful, applications.

4. Societal Impact
The societal impact of face reenactment technology is significant and complex, as it chal-
lenges traditional notions of authenticity and trust in visual media. By enabling the realistic
manipulation of facial expressions and identities in videos, face reenactment can blur the
line between genuine and fabricated content. This has profound implications for public
discourse, journalism, and personal privacy. On one hand, the technology can be used for
creative expression, education, and accessibility, but on the other, it poses serious risks
when used to create deepfakes for political manipulation, defamation, or cyberbullying. The
widespread availability of such tools can erode trust in video evidence, making it harder
to distinguish truth from deception in an already polarized information environment. As a
result, face reenactment not only raises technical and ethical challenges but also demands
urgent societal engagement to develop safeguards, promote media literacy, and establish
legal and regulatory frameworks to prevent misuse.
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