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Abstract
The extraordinary capabilities of large language
models (LLMs) such as ChatGPT and GPT-4 are
in part unleashed by aligning them with reward
models that are trained on human preferences rep-
resented as rankings of responses to prompts. In
this paper, we document the phenomenon of re-
ward collapse, an empirical observation where the
prevailing ranking-based approach results in an
identical reward distribution for diverse prompts
during the terminal phase of training. This out-
come is undesirable as open-ended prompts like
“write a short story about your best friend” should
yield a continuous range of rewards for their com-
pletions, while specific prompts like “what is the
capital city of New Zealand” should generate ei-
ther high or low rewards. Our theoretical inves-
tigation reveals that reward collapse is primar-
ily due to the insufficiency of the ranking-based
objective function to incorporate prompt-related
information during optimization. This insight al-
lows us to derive closed-form expressions for the
reward distribution associated with a set of utility
functions in an asymptotic setting. To overcome
reward collapse, we introduce a prompt-aware op-
timization scheme that provably admits a prompt-
dependent reward distribution within the interpo-
lating regime. Our experimental results suggest
that our proposed prompt-aware utility functions
significantly alleviate reward collapse during the
training of reward models.

1. Introduction
A cornerstone of the recent remarkable advancements in the
capabilities of large language models (LLMs) like ChatGPT
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and GPT-4 is the integration of human feedback (Ouyang
et al., 2022; OpenAI, 2023). The approach to leveraging
human feedback often begins with the training of a reward
model that encapsulates human preferences, values, and
ethical considerations (Christiano et al., 2017; Ibarz et al.,
2018; Bahdanau et al., 2018; Ziegler et al., 2019; Ganguli
et al., 2022). This is followed by the fine-tuning of the
LLMs using reinforcement learning, guided by the reward
model. This process, often referred to as reinforcement
learning from human feedback (RLHF), has proven effective
in aligning LLMs with human intent, substantially enriching
the quality of human interaction.

However, developing an effective reward model based on
human preferences is challenging (Bai et al., 2022b; Liu
et al., 2023; Sun et al., 2023). A notable difficulty arises
when a human labeler struggles to give a quantitative score
to a response/completion for a specific prompt. Instead, it
is much easier for humans to make pairwise comparisons
between completions in terms of their quality, which is in-
deed employed in the development of InstructGPT (Ouyang
et al., 2022). Explicitly, a human labeler is presented with
several completions generated by the LLMs for the same
prompt and arranges the responses from the highest to low-
est perceived quality.1 A neural network is then trained to
obtain a reward model that assigns rewards to the responses
in an attempt to align as closely as possible with human
preferences in the form of rankings.

Despite some benefits, such as eliminating calibration issues,
rankings fall short in reflecting the varied reward distribu-
tions of different prompts. This is because rankings do not
indicate the degree of superiority between completions. This
concern is especially relevant in RLHF as some prompts
are open-ended or dependent on the users’ backgrounds,
allowing the reward distribution to span a continuous range.
Conversely, some prompts are closed-ended, resulting in a
response that should be either highly or lowly scored, thus
generating a roughly two-point mass distribution for the
reward distribution. Instances of the first type of prompts
include write a short story about how AI will look like in

1In slightly more detail, (Ouyang et al., 2022) required human
labelers to utilize a drag-and-drop interface to construct consistent
rankings from pairwise comparisons.
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100 years and what is the best cuisine in the world, while
examples of the second type are prove the Pythagorean the-
orem and is chicken a dinosaur. The reward model may
struggle to aid LLMs in accurately calibrating uncertainty
without accounting for the nuances of different prompts.2

As our first main contribution, this paper documents a
surprising phenomenon through a series of experiments,
demonstrating that training a reward model on preference
rankings could result in the same reward distribution re-
gardless of the prompts. We call this phenomenon reward
collapse, which occurs during the terminal phase of train-
ing (Papyan et al., 2020). Intriguingly, our theoretical analy-
sis predicts this phenomenon prior to its experimental con-
firmation. Indeed, we show that the collapse reward distribu-
tion can be numerically deduced from a simple optimization
program or, even simpler, admits a closed-form expression.
As demonstrated in Figure 1, our prediction of reward col-
lapse is in excellent agreement with the empirical results.

Reward collapse is clearly undesirable as it overlooks the
subtle differences among various prompts, potentially lead-
ing to the miscalibration of human preference during the
training of LLMs via reinforcement learning with the re-
ward model. A rudimentary strategy to bypass this issue is
to early stop the training of the reward model (Ouyang et al.,
2022), which, however, is somewhat arbitrary and can make
it challenging to determine the stopping point.

In our second main contribution, we introduce a principled
approach to alleviating reward collapse, leveraging insights
derived from the same optimization program that was instru-
mental in predicting this phenomenon. In essence, we use
distinct utility functions depending on prompts to train the
reward model, such that the resulting reward distribution can
be either widely dispersed or tightly concentrated, contin-
gent on whether the prompt is open-ended or closed-ended.
A notable advantage of this prompt-aware strategy is that our
analysis is analytical, enabling full control over the shape of
the reward distribution as required. As depicted in the right-
most panel of Figure 1 and more results in Section 3, our
experiments show that reward collapse can be substantially
mitigated using this prompt-aware methodology.

2. What Is Reward Collapse and How to
Mitigate It?

2.1. Reward Collapse

We use p to represent a prompt and c to represent a com-
pletion. Let R(p,c) denote a reward model. Without loss

2For instance, we suspect that this is partly accountable for the
poor calibration of GPT-4 after RLHF (see page 12 of (OpenAI,
2023)), although we are unable to verify due to the black-box
nature of GPT-4 as well as insufficient computational resources.

of generality, we assume 0 ≤ R(p,c) ≤ 1. For a given
prompt p and n completions that are i.i.d. draws from an
LLM, a human labeler ranks the n responses from the most
preferred to the least preferred, and the ranking is denoted as
πp. The reward model is expected to score each completion
that is consistent with the human-provided ranking πp as
much as possible. To this end, we train a neural network
that maximizes the following overall utility:∑

(p,cw,cl)∈Π

U (Rθ(p,cw)−Rθ(p,cl)) , (1)

where U is an (increasing) utility function, θ is the weights
of the reward neural network, and Π is the ranking dataset
and cw is a preferred completion than cl in the ranking πp.
In InstructGPT (Ouyang et al., 2022), U is set to Uσ(x) =

log sigmoid(x/σ) ≡ log ex/σ

ex/σ+1
, which is an increasing

concave function. While maximizing Eq. 1, the reward
model learns to not only align with the human-provided
ranking but also distinguish the rewards as much as possible.

To gain insights into how the rewards depend on U , note
that the above is equivalent to

max
∑
p

∑
(cw,cl)∈πp

U (Rθ(p,cw)−Rθ(p,cl)) .

Next, assume that the neural network parameterized by θ is
sufficiently overparameterized such that∑

(cw,cl)∈πp

U (Rθ(p,cw)−Rθ(p,cl))

is exactly maximized. This is precisely the same as maximiz-
ing

∑
1≤i<j≤n U

(
rπp(i) − rπp(j)

)
over 0 ≤ r1, . . . , rn ≤

1. However, the solution to this optimization program is
independent of the prompt and, indeed, is the same as the
solution to

max
0≤r1,...,rn≤1

∑
1≤i<j≤n

U (ri − rj) (2)

up to a permutation. That is, the empirical distribution
of the rewards is independent of the prompt itself in the
interpolating regime, thereby leading to reward collapse.

2.2. Prompt-Aware Optimization

To avoid having the same reward distribution, one simple
strategy is early stopping. While reward collapse can be
avoided via early stopping, early stopping might make the
model neglect other important features. A more principled
approach is to change the objective. Our proposal is to let
the utility function U now depend on the prompt. That is,
now we consider training a neural network that maximizes∑

(p,cw,cl)∈Π

Up (Rθ(p,cw)−Rθ(p,cl)) . (3)
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Figure 1. Illustration of reward collapse. One type of prompt is open-ended, which should result in a roughly uniform distribution of
rewards, while the other is closed-ended, which should yield either high or low rewards (polarized). However, as evidenced in the first
three plots, when a common utility function is employed (see Eq. 1 in Section 2), the two types of prompts result in a strikingly similar
reward distribution. Conversely, when a prompt-aware utility is applied, as seen in the fourth plot, the two types of prompts exhibit distinct
reward distributions. Further details are elaborated in Section 3.

In general, the choice of Up should reflect the open-
endedness of the prompt p. An important feature is that if
Up is concave, this problem becomes a convex optimization
problem (Lemma B.1). Given the high flexibility in choos-
ing Up, it is generally recommended to let the practitioners
choose these functions to meet their needs. Nonetheless,
below we introduce a family of such functions.

For a strictly increasing utility function U , it can be easily
demonstrated that the maximum can only be attained when
r1 ≥ · · · ≥ rn (see Lemma C.1 in the Appendix). As a
result, we only need to consider the problem

max
0≤rn≤...≤r1≤1

∑
1≤i<j≤n

U (ri − rj) . (4)

Class 1. Let Uγ(x) = xγ , x ∈ [0, 1] for some 0 < γ < 1.
This utility function encourages the reward distribution to
take values either near 0 or 1 as γ tends to be large. Some
plots showing the empirical distribution of solutions to (2)
is given in Figure 2(a) and (b).

Class 2. Let Uγ(x) = −xγ , x ∈ (0, 1] for 0 < γ ≤ 1 and
U0(x) = log x, x ∈ (0, 1]. We also define Uγ(0) = ∞ for
0 ≤ γ ≤ 1. In this case, the reward distribution of Eq. 2
becomes more even as γ increases from 0 to 1. Some plots
are shown in Figure 2(c) and (d).

Class 3. Let Uσ(x) = log sigmoid(x/σ) for σ > 0.
The reward distribution becomes more spread between 0
and 1 as σ becomes smaller. Some plots are shown in Figure
2(e) and (f).

2.3. Asymptotics

In general, we can explicitly evaluate the reward distribu-
tion for any n by solving the optimization program (4).
Nevertheless, it is helpful to get a handle on the empirical
distribution of the solution to this optimization program
in the limit n → ∞. The next result gives a closed-form
expression of the reward distribution in the case of a large
number of completions.

Theorem 2.1. Let Uγ(x) = xγ for some 0 < γ < 1. Then
the reward distribution of (4) converges to the Beta distri-
bution Beta

(
1−γ
2 , 1−γ

2

)
as n → ∞, which has probability

density x− 1+γ
2 (1− x)−

1+γ
2 on (0, 1).

The proof of Theorem 2.1 is defered to Appendix B.

Theorem 2.2. For Uγ(x) = −x−γ for 0 ≤ γ ≤ 1 (as a con-
vention, take U0(x) = log x). Then. the reward distribution
of (4) converges in distribution to Beta( 1+γ

2 , 1+γ
2 ).

The proof of Theorem 2.2 can be found in (Martinez-
Finkelshtein et al., 2004; Landkof & Landkof, 1972). In
the limit γ → 1 in Theorem 2.2, the Beta distribution tends
to Beta(1, 1), which is the uniform distribution on [0, 1].
This is indeed an example of the one-dimensional Thomson
problem (Bowick et al., 2002), which asks the configuration
of n electrons constrained to a line that repel each other with
a force given by Coulomb’s law. This problem was first con-
sidered by Maxwell. Indeed, (Martinez-Finkelshtein et al.,
2004; Hardin et al., 2004; Amore & Jacobo, 2019) prove
that the reward distribution will converge to the uniform
distribution for Uγ(x) = −x−γ with γ ≥ 1.

For the above two classes, the limiting distribution does
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(a) U(x) = x0.8
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(b) U(x) = x0.2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.4 0.405 0.41 0.415 0.42
0.43

0.435

0.44

0.445

0.45

(c) U(x) = log x
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(d) U(x) = −x−1
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(e) U(x) = log sigmoid(x)
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(f) U(x) = log sigmoid(4x)

Figure 2. Reward distribution for different utility function.

not admit a probability mass. However, probability mass
can emerge in the case of a scaled log-sigmoid function as
shown by the following theorem, whose proof can be found
in Appendix B.

Theorem 2.3. If U is strictly increasing and concave,
the derivative of the utility function satisfies U ′(0) <
∞, U ′(1) > 0, then the reward distribution of (4) converges
in distribution to a probability measure µ∗ that satisfies

µ∗({0}) = µ∗({1}) ≥ 1
κ+1 ,

where κ = U ′(0)/U ′(1).

In general, the reward distribution can be characterized from
a variational perspective. This gives the following theorem.
The proof is in Appendix B.

Theorem 2.4. If U is bounded, strongly concave, and in-
creasing. There exists a probability measure µ∗ such that
the reward distribution of (2) converges in distribution to
µ∗, which is uniquely determined by the following two prop-
erties:

(a) µ∗ maximizes E
X,X′iid∼µ

U(|X −X ′|) over all proba-

bility measures µ on [0, 1], and

(b) it is symmetric with respect to 1
2 in the sense that, for

any measurable set A ∈ [0, 1] and 1 − A = {x :
1− x ∈ A}, µ∗(A) = µ∗(1−A).

3. Experiments
In this section, we conduct experiments to investigate the
phenomenon of reward collapse in a controlled setting and
demonstrate that prompt-aware training can prevent reward
collapse.

3.1. Experimental Setup

The open-source datasets currently available for RLHF are
rather limited. Most of these datasets (Nakano et al., 2021;
Bai et al., 2022a) typically include only a handful of candi-
date responses (usually a single pair) for each corresponding
prompt question. Moreover, the ranking signals in those
datasets are usually noisy, either because they are sourced
from the Internet (Ethayarajh et al., 2023) or because of the
inherent subjectivity of the ranking process.

In order to conduct a carefully controlled experiment, we
curated our own dataset, focusing on a single, simplified fea-
ture – the length of the response, measured in terms of word
count as the ground truth reward. A subset of questions was
selected from the LongForm dataset (Köksal et al., 2023),
a question-answer dataset characterized by its lengthy an-
swers. To simulate scenarios with open-ended and concrete
problems, we truncated the original answer according to
two distinct length distributions, thereby generating eight
responses for each prompt: the first distribution is nearly
uniform, ranging from 10 to 80 words, while the second
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Figure 3. Reward collapse on the test set. This figure follows the same setting as Figure 1 while the evaluation is on the test set. As we
can see from the figure, the reward distributions have similar collapse phenomenons on the test set, and using prompt-aware loss can
mitigate the collapse.

is a polarized distribution with response lengths primarily
clustered around either 30 or 60 words. Each question was
randomly assigned as either open-ended or concrete. Ad-
ditionally, the phrases ”Write the answer in an open-ended
way.” and ”Write either a short answer or a long answer.”
were added to the open-ended and concrete questions, re-
spectively, to distinguish the question type. Following this
process, we constructed a dataset comprising 8192 training
questions and 16 test questions.

In our experiments, we focus on the following U functions:
x, log x, −1/x, log sigmoid(x), and the prompt-aware U ,
which adaptively selects U from x and −1/x. Given that
the U function operates on x in the range [−1, 1], we adjust
some U functions with suitable continuous extensions or
scaling. We then train a DeBERTa V3 (He et al., 2021)
as the reward model. The training details can be found in
Appendix A.

3.2. Experimental Results

Fixed loss function leads to reward collapse. As de-
picted in Figure 4(a), reward distributions corresponding
to different prompts gradually converge towards a single,
prompt-independent distribution throughout the training pro-
cess. Specifically, in the context of Figure 4(a), where the U
function is represented by LogSigmoid, the reward distri-
bution exhibits positive probability mass at reward scores
of 0 and 1 (illustrated by the flat segments corresponding to
the first two and last two scores). This observation validates
the prediction encapsulated in Theorem 2.3. Examining
other U functions, Figures 1 and 3 collectively indicate
the occurrence of loss collapse on both training and test
datasets. Specifically, employing x as the U function results
in a polarized reward distribution, whereas utilizing −1/x
as the U function yields a uniform reward distribution.

(a) log sigmoid as utility function

(b) Prompt-aware utility function

Figure 4. (Left) Reward collapse when using log sigmoid as
utility function (Ouyang et al., 2022). The reward distribution
of different prompts gradually converges into a single distribution
during training. (Right) Prompt-aware training avoids reward
collapse. When using the prompt-aware loss function, the reward
distributions of the two different prompts can be gradually sepa-
rated during training.
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Prompt-aware training avoids reward collapse. Fig-
ures 1 and 3 show the reward distribution at the end of
training with varying utility functions. The results along
with Figure 4 reveal that using a prompt-aware U function
effectively prevents reward collapse across both training and
test datasets. This strategy yields a more uniform reward dis-
tribution for open-ended prompts while promoting a more
polarized reward distribution for concrete prompts.

4. Extension to Pairwise Comparisons
Our Prompt-Aware approach can be generalized to accom-
modate other settings, such as instances where only pairwise
preference data is accessible. Pairwise preference data may
include loops, similar to the rock-paper-scissors scenario,
and can be produced from a probabilistic model. Conse-
quently, the data might simultaneously indicate a preference
of A over B and a preference of B over A. Pairwise prefer-
ence data is extensively utilized in RLHF (Christiano et al.,
2017; Ibarz et al., 2018; Ziegler et al., 2019; Ouyang et al.,
2022; Zhu et al., 2023).

We explore the well-known Bradley-Terry-Luce (BTL)
model (Bradley & Terry, 1952; Luce, 2012), which as-
sumes the existence of scores {θi}1≤i≤n for n items such
that the preference between item i and item j is given
by P(i is preferred over j) = sigmoid(θi − θj), where
sigmoid denotes the sigmoid function sigmoid(x) =
1/(1 + exp(−x)). This probabilistic model effectively cap-
tures the relative preferences between items, based on the
disparity in their underlying scores.

To illustrate our framework, letting S(r1, · · · , rn) =∑
1≤i,j≤n U(ri − rj)sigmoid(θi − θj),we consider the

following expected version problem:

max0≤r1,··· ,rn≤1 S(r1, · · · , rn).

The function S(r) is similar to a family of log-likelihood
functions considered in (Noothigattu et al., 2020). We
presume that U is increasing and concave. Then similar
to Lemma B.1, U is also concave in (r1, · · · , rn). Let
r̂ = (r̂1, . . . , r̂n) be the vector that maximizes S(r) =∑

1≤i,j≤n U(ri − rj)sigmoid(θi − θj). We present the
following consistency result on r̂:
Theorem 4.1. Assuming that U is increasing and strongly
concave with a constant µ > 0 and κ = max1≤i≤n |θi|.
Then r̂ keep the order of {θi}1≤i≤n, and we have the fol-
lowing:

|r̂i − r̂j | ≤ 2
√
U(1)(1 + eκ)|θi − θj |/µ.

The proof of these results can be found in Appendix E. Theo-
rem 4.1 ensures that for any increasing and strongly concave
utility function U , r̂ is a reliable estimate of {θi}1≤i≤n, in
the sense that r̂i and r̂j are close if θi and θj are close.

Even though we may not be able to determine the precise
limiting distribution of rn in this extended setting, we can
still extract insights from our previous analysis in Section 2.
As previously observed, selecting U(x) = x tends to polar-
ize the reward distribution, while selecting U(x) = −1/x
yields a more uniform reward distribution.This phenomenon
is also evident in this setting, as observed in the results
presented in Figure 5. More details is given in Appendix E.

Based on these findings, we can conclude that in this ex-
tended setting, we can also employ a prompt-aware utility
function U to mitigate reward collapse and achieve the de-
sired reward distribution by carefully selecting the form of
U . This provides us with flexibility in shaping the reward
distribution according to our specific requirements.

5. Discussion
In this paper, we have introduced an empirical phenomenon
known as reward collapse that arises during reward model
training for aligning LLMs using human preference rank-
ings. This phenomenon results in the same reward distribu-
tion regardless of the prompt type. The occurrence of reward
collapse stems from neural network interpolation during the
final training phase. To mitigate reward collapse, we pro-
pose utility functions that consider the nature of prompts
and an analytical framework that evaluates reward distribu-
tion, yielding closed-form reward expressions. Synthetic
experiments substantiate our findings, presenting a method
superior to early stopping to tackle reward collapse.

While our experiments provide valuable insights, it is im-
portant to acknowledge their limitations, primarily stem-
ming from the constrained computational resources avail-
able. Given abundant resources, future research can explore
the use of a more diverse range of prompts, varying in terms
of their open-endedness. Additionally, it would be inter-
esting to investigate the extent to which the trained reward
model enhances the capabilities of large language models,
such as their ability to self-calibrate uncertaintycite (Lin
et al., 2022; Kadavath et al., 2022). Theoretical investiga-
tions could focus on finding increasing, concave functions
that precisely match a given discrete reward distribution. On
the practical side, developing a method to choose a utility
function based on prompts, perhaps using a parameter such
as γ in Section 2.2, poses an intriguing avenue for further
exploration. Furthermore, exploring the potential benefits
of truncated ranking by requiring human labelers to provide
partial rankings of acceptable completions and ignore un-
acceptable completions could offer valuable insights into
improving the training of reward models.
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A. Training Details
We use the following extension of the utility functions during our training.

• log x: U(x) =

{
log(x+ ϵ) for x > 0

x+ log(ϵ) for x ≤ 0
, where ϵ is set to 0.1.

• −1/x: U(x) =

{
−1/(x+ ϵ) for x > 0

x− 1/ϵ for x ≤ 0
, where ϵ is also set to 0.1.

• log sigmoid(x): U(x) = log sigmoid(4x). Here, the scaling factor of 4 ensures the output of log sigmoid spans
a sufficient range.

To train the reward model, we adopted the approach used in the OpenAssistant project, which utilizes the DeBERTaV3 Base
model (He et al., 2021). To constrain the reward output between 0 and 1, a sigmoidfunction was appended before the final
output. The reward model was trained with a batch size of 224 (comprising eight questions per batch, each with 28 pairs) for
a total of 1000 steps, approximately equivalent to 1 epoch. The maximum learning rate was configured to 1e-5, utilizing the
Adam optimizer and a linear learning rate schedule, inclusive of 10% warmup steps. The reward model was trained on a
single A6000 GPU, with the entire training process concluding in roughly 1 hour.

B. Proofs
In this section, we will present the proofs of several theorems in Section 2. However, we will deviate from the previous
order and start by proving Theorem 2.4. Let

S(r1, · · · , rn) :=
∑

1≤i<j≤n

U(ri − rj) and r̂ ≡ (r̂1, . . . , r̂n) := arg max
0≤r1,··· ,rn≤1

S(r1, · · · , rn).

In addition, for any vector (u1, · · · , un) ∈ Rn, we employ boldface notation u to represent the entire vector. THis allows us
to write S(r).

B.1. Proof of Theorem 2.4

First, when U is concave and strictly increasing, r̂ exhibits the following properties:
Lemma B.1. If U is strictly concave and strictly increasing, the function S(r) is concave. Therefore, the optimization
problem uniquely determines r̂n. Additionally, the following properties hold: (1) r̂1 ≥ · · · ≥ r̂n, and (2) 1− r̂i = r̂n−i+1

for any 1 ≤ i ≤ n.

The proof of Lemma B.1 is straightforward and is provided in Appendix C.1. Upon further examination of the function
S(r), we discover that if U is strongly concave with parameter µ > 0, then S also exhibits some kind of strongly concavity,
except in the direction (1, 1, · · · , 1). This property is formulated in the following lemma.
Lemma B.2. If U is strongly concave with parameter µ > 0, and we consider another vector u = (u1, . . . , un) where
u1 ≥ · · · ≥ un, the following inequality holds:

S(u)− S(r̂) ≤ −nµ

2
∥ProjVn

(u− r̂)∥2.

Here, Vn ⊂ Rn denotes the subspace orthogonal to (1, 1, · · · , 1), and ∥ · ∥ represents the Euclidean norm.

The proof of this lemma can be found in Appendix C.2. Our next lemma quantifies the difference between two symmetric
probability measures.

Lemma B.3. For two different symmetric probability measure µ1 and µ2 on [0, 1], let r(j)i = 1
2 inf{t : µj([0, t]) ≥

n−i
n−1}+

1
2 sup{t : µj([0, t)) <

n−i
n−1}}), i = 1, 2, · · · , n; j = 1, 2. Then there exists positive constant c0 such that

∥ProjVn
(r(1) − r(2))∥22 ≥ c0n,

for all n.

9
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The proof of this lemma is also provided in Appendix C.3. Now, we are ready to prove the uniqueness part of Theorem 2.4.
We will present it as a separate lemma and defer the proof to Appendix C.4. In summary, we use Lemma B.2 and Lemma
B.3 to demonstrate that for two distinct symmetric measures, their distance is sufficiently large such that at least one of them
is not optimal.

Lemma B.4. If µ1 and µ2 are two symmetric probability measure which both maximize

E
X,X′iid∼µ

U(|X −X ′|)

over all probability measures µ on [0, 1]. Then we have µ1 = µ2.

Now we are ready to prove the convergence part of Theorem 2.4.

Proof of Theorem 2.4. Let P̂n := 1
n

∑n
i=1 δr̂n denote the empirical distribution of r̂n. Note that {P̂n} are probability

measures defined on [0, 1], so they are tight. By Prohorov’s theorem, there exists a sub-sequence {k(n)}n≥1 such that

P̂k(n)
d→ µ̂. Let Xn, X

′
n

iid∼ P̂n and X̂, X̂ ′ iid∼ µ̂. By continuous mapping theorem, we also have |Xn −X ′
n|

d→ |X̂ − X̂ ′|.
Moreover, because U is bounded and continuous, Portmanteau theorem gives

E
X,X′iid∼ P̂k(n)

U(|X −X ′|) → E
X,X′iid∼ µ̂

U(|X −X ′|).

Let µ be another probability measure on [0, 1]. Let Q̂n = 1
n

∑n
i=1 δqn,i

such that Q̂n
d→ µ. By the same argument before,

we also have E
X,X′iid∼ Q̂k(n)

U(|X −X ′|) → E
X,X′iid∼µ

U(|X −X ′|). Then by the optimal assumption of r̂n ,

E
X,X′iid∼ µ̂

U(|X −X ′|) = lim
n→∞

E
X,X′iid∼ P̂k(n)

U(|X −X ′|)

≥ lim
n→∞

E
X,X′iid∼ Q̂k(n)

U(|X −X ′|) = E
X,X′iid∼µ

U(|X −X ′|).

This means µ̂ maximize E
X,X′iid∼µ

U(|X −X ′|) over all probability measure µ on [0, 1]. From Lemma B.1, we know that

1− r̂i = r̂n−i+1, so µ̂ is symmetric. If there is another sub-sequence m(n) such that P̂m(n)
d→ ν̂. By the same argument

before, ν̂ is also optimal and symmetric. From Lemma B.4, µ̂ = ν̂. Thus for every converging sub-sequence of {P̂n}, the
limit distribution must be the same. By the tightness of {P̂n}, we have P̂n

d→ µ∗.

B.2. Proof of Theorem 2.1

For the utility function Uγ(x) = xγ , having established Theorem 2.4, our objective is to identify a symmetric probability
measure µ∗ that maximizes E

X,X′ iid∼µ
Uγ(|X −X ′|). By employing the variational principle, we can derive a condition that

is necessary for optimality. Notably, this condition also suffices for optimality.

Lemma B.5. Let Uγ(x) = xγ for some γ ∈ (0, 1). A probability measure µ on [0, 1] will maximize E
X,X′iid∼µ

Uγ(|X−X ′|)
if it satisfies the condition that EX∼µ Uγ(|X − c|) is independent of c ∈ [0, 1].

The proof of Lemma B.5 is provided in Appendix D.1. Therefore, proving Theorem 2.1 is reduced to verifying the condition
stated in Lemma B.5. This verification process is tedious and will be deferred to Appendix D.2 for brevity.

B.3. Proof of Theorem 2.3

Theorem 2.3 can be intuitively understood as follows: If the function U satisfies U ′(0) < ∞ and U ′(1) > 0, we can show,
by analyzing the first-order optimality condition, that a positive fraction of r̂ is equal to 1.

Proof of Theorem 2.3. The derivative of −
∑

i<j U(ri − rj) with respect to rk is given by

− ∂
∑

i<j U(ri−rj)

∂rk

∣∣∣
r̂1,··· ,r̂n

=

k−1∑
i=1

U ′(r̂i − r̂k)−
N∑

i=k+1

U ′(r̂k − r̂j) ≤ (k − 1)U ′(0)− (n− k)U ′(1).

10
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The inequality follows from the convexity of U . If k ≤ n/(κ+ 1), we have (k − 1)U ′(0)− (n− k)U ′(1) ≤ 0. Hence, we
can get r̂k = 1. Otherwise, we could increase r̂k to make

∑
i<j U(r̂i − r̂j) larger. As a result, r̂1 = · · · = r̂[n/(κ+1)] = 1.

This gives P̂n({1}) ≥ [ n
κ+1 ]/n. By Theorem 2.4, we know that there exists a limiting distribution µ∗ such that P̂ d→ µ∗ and

µ∗({1}) ≥ 1/(κ+ 1). Due to symmetry proved in Lemma B.1, we also have µ∗({0}) ≥ 1/(κ+ 1).

C. Missing Proofs in Section B.1
C.1. Proof of Lemma B.1

We break the proof of Lemma B.1 into two different lemma.

Lemma C.1. If the utility function U(x) is strictly increasing, let r̂ be the solution of optimization problem 2:

max
0≤r1,...,rn≤1

∑
1≤i<j≤n

U (ri − rj)

Then r̂ satisfies: r̂1 ≥ · · · ≥ r̂n.

Proof. Let S(r) =
∑

1≤i<j≤n U(ri − rj). Suppose the conclusion is not true, then there exists a k ≥ 0, such that
r̂1 ≥ · · · ≥ r̂k and r̂k < r̂k+1. Let us define

r̃i =


r̂i if i ̸= k, k + 1;

r̂k+1 if i = k;

r̂k if i = k + 1.

Then ∑
1≤i<j≤n

U(r̂i − r̂j)−
∑

1≤i<j≤n

U(r̃i − r̃j) = U(r̂k − r̂k+1)− U(r̂k+1 − r̂k) < 0

because U is strictly increasing and r̂k − r̂k+1 < 0. This contracts with the fact that r̂ is the solution of the optimization
problem, and thus the conclusion holds.

Lemma C.2. If the utility function U(x) is strictly increasing and strictly concave, then the function S(r) =∑
1≤i<j≤n U(ri−rj) is concave. Moreover, the solution of optimization problem (2) is unique and satisfies: 1−r̂i = r̂n−i+1

for i = 1, 2, · · · , n.

Proof. The concavity of S follows directly from definition:

S(r) + S(r′) =
∑

1≤i<j≤n

U(ri − rj) + U(r′i − r′j)

≤
∑

1≤i<j≤n

2U(
ri + r′i − rj − r′j

2
) = 2S(

r+ r′

2
).

The above inequality is an equality if and only if ri − rj = r′i − r′j for all 1 ≤ i < j ≤ n when U(x) is strictly concave.
When U is increasing, the solution r̂ of the optimization problem satisfies r̂1 = 1. Thus the solution of the optimization
problem max1≤r1,··· ,rn≤1 S(r) is unique, otherwise the vector r1+r2

2 makes S larger where r1 and r2 are two different
solutions.

Finally, let r̂ be the unique solution of the optimization problem. Let us define r̃i = 1− r̂n−i+1 for all i = 1, 2, · · · , n. It
follows that r̃i − r̃j = r̂n−j+1 − r̂n−i+1, and we have S(r̂) = S(r̃). Consequently, the uniqueness of the solution implies
r̂ = r̃. This means that r̂i = 1− r̂n−i+1 for i = 1, · · · , n.

11
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C.2. Proof of Lemma B.2

Proof of Lemma B.2. The definition of S(r) is

S(r) =
∑

1≤i<j≤n

U(ri − rj).

The value of S does not change if we increase all ri by the same constant. Thus the value of S(r) only depends on ProjVn
(r)

where Vn ⊂ Rn denotes the subspace orthogonal to (1, 1, · · · , 1). We can define a new function on Vn by letting

F (ProjVn
(r)) = S(r).

The domain of F is A = {v ∈ Vn|∃r ∈ Rn such that 0 ≤ ri ≤ 1 and v = ProjVn
(r)}. First, we can show that F is

nµ-strongly concave.

Because U is µ-strongly concave, U(x) + µ
2x

2 is concave. It follows that

S(r) +
µ

2

∑
1≤i<j≤n

(ri − rj)
2

is also concave. We can write
∑

1≤i<j≤n(ri − rj)
2 as

∑
1≤i<j≤n

(ri − rj)
2 = n

n∑
i=1

r2i − (

n∑
i=1

ri)
2

by Lagrange identity. Then note that Vn is the subspace orthogonal to (1, 1, · · · , 1). The projection onto Vn is given by

ProjVn
(r) = (r1 −

1

n

n∑
i=1

ri, · · · , rn − 1

n

n∑
i=1

ri).

As a result,

∥ProjVn
(r)∥2 =

n∑
i=1

ri −
1

n

n∑
j=1

rj

2

=

n∑
i=1

r2i −
1

n
(

n∑
i=1

ri)
2 =

1

n

∑
1≤i<j≤n

(ri − rj)
2.

From this equation and the concavity of S(r) + µ
2

∑
1≤i<j≤n(ri − rj)

2, we know that

S(r) +
nµ

2
∥ProjVn

(r)∥2

is also concave. Consequently, F (ProjVn
(r)) + nµ

2 ∥ProjVn
(r)∥2 is concave, which lead to the strong concavity of F

because

F (v) +
nµ

2
∥v∥2

is concave. Let v̂ be the optimal vector that maximizes F (v), strong concavity implies (See e.g. Section 9.1.2 in (Boyd &
Vandenberghe, 2004))

F (v)− F (v̂) ≤ −nµ

2
∥v − v̂∥2.

Therefore, by the definition of F (ProjVn
(r)) = S(r), we have

S(u)− S(r̂) ≤ −nµ

2
∥ProjVn

(u− r̂)∥2.

12
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C.3. Proof of Lemma B.3

Proof of Lemma B.3. Because µj , j = 1, 2 are symmetric, we have

r
(j)
n,n−i+1 =

1

2
inf{t : µj([0, t]) ≥

i− 1

n− 1
}+ 1

2
sup{t : µj([0, t)) <

i− 1

n− 1
}})

=
1

2
(1− sup{t : µj([t, 1]) ≥

i− 1

n− 1
}) + 1

2
(1− inf{t : µj((t, 1]) <

i− 1

n− 1
})

=
1

2
(1− sup{t : µj([0, t)) <

n− i

n− 1
}) + 1

2
(1− inf{t : µj([0, t]) ≥

n− i

n− 1
}

= 1− r
(j)
n,i.

So we have
∑n

i=1(r
(1)
n,i − r

(2))
n,i ) = 0. Note that Vn ⊂ Rn is the subspace which is orthogonal to (1, 1, · · · , 1), the projection

of x = (x1, · · · , xn) onto Vn is given by

ProjVn
(x) = (x1 −

1

n

n∑
i=1

xi, · · · , xn − 1

n

n∑
i=1

xi).

Consequently,

∥ProjVn
(r(1)n − r(2)n )∥22 =

n∑
i=1

(r
(1)
n,i − r

(2)
n,i)

2.

If µ1 and µ2 are two different symmetric probability measure on [0, 1], we can assume that there exists q1 < q2 ∈ [0, 1] and
δ ≥ 0, such that µ1([0, q2]) < µ2([0, q1])−δ. So when i−1

n−1 ∈ (µ1([0, q2]), µ2([0, q1])−δ), we have r(1)n,n−i+1 ≥ q2 because

µ1([0, q2]) <
i−1
n−1 . We also have r

(2)
n,n−i+1 ≤ q1 because µ2([0, q1]) >

i−1
n−1 . As a result, r(1)n,n−i+1 − r

(2)
n,n−i+1 ≥ q2 − q1

whenever (i− 1)/(n− 1) ∈ (µ1([0, q2]), µ2([0, q1])− δ). Because the length of the interval is positive, the number of such
i is larger than c1n where c1 is a constant independent of n. Then we conclude that

∥ProjVn
(r(1)n − r(2)n )∥22 =

n∑
i=1

(r
(1)
n,i − r

(2)
n,i)

2

≥ c1n(q1 − q2)
2.

Choosing c0 = c1(q1 − q2)
2 gives the inequality

∥ProjVn
(r(1)n − r(2)n )∥22 ≥ c0n.

C.4. Proof of Lemma B.4

Proof of Lemma B.4. Suppose there exist two different symmetric probability measure µ1 and µ2, they both maximize
E
X,X′iid∼µ

U(|X − X ′|). Let M = E
X,X′iid∼µj

U(|X − X ′|), j = 1, 2. Now let r(j)n,i = 1
2 inf{t : µj([0, t]) ≥ i−1

n−1} +

1
2 sup{t : µj([0, t)) <

i−1
n−1}}), i = 1, 2, · · · , n; j = 1, 2 as defined in Lemma B.3. Accordingly, let P(j)

n = 1
n

∑n
i=1 δr(j)n,i

.
Then we have

P(j)
n

d→ µj , j = 1, 2.

This can be proved easily by considering the definition of convergence in distribution. Since G is bounded, this lead to
E
X,X′iid∼ P(j)

n
U(|X −X ′|) → M, j = 1, 2 as n → ∞.

The expectation E
X,X′iid∼ P(j)

n
U(|X −X ′|) can be written more precisely as

E
X,X′iid∼ P(j)

n
U(|X −X ′|) = 1

n2

∑
1≤i,i′≤n

U(|r(j)n,i − r
(j)
n,i′ |).

13
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By Lemma B.2, we can bound the difference

1

n2

∑
1≤i,i′≤n

U(|r(j)n,i − r
(j)
n,i′ |)−

1

n2

∑
1≤i≤i′≤n

U(|r̂n,i − r̂n,i′ |)

=
2(
n
2

) ∑
1≤i<i′≤n

U(r
(j)
n,i − r

(j)
n,i′)−

2(
n
2

) ∑
1≤i<i′≤n

U(r̂n,i − r̂n,i′)

≤ − 2µ

n− 1
∥ProjVn

(r(j)n − r̂n)∥22.

Then apply Lemma B.3, there exist c0 ≥ 0 such that

2∥ProjVn
(r(1)n − r̂n)∥2 + 2∥ProjVn

(r(2)n − r̂n)∥2 ≥ ∥ProjVn
(r(1)n − r(2)n )∥2.

Here, we uses 2∥x∥22 + 2∥y∥22 ≥ ∥x− y∥22. So

min
j=1,2

1

n2

 ∑
1≤i,i′≤n

U(|r(j)n,i − r
(j)
n,i′ |)− U(|r̂n,i − r̂n,i′ |)


= − 2µ

n− 1
max
j=1,2

∥ProjVn
(r(j)n − r̂n)∥22

≤ − 2µ

n− 1

∥ProjVn
(r

(1)
n − r

(2)
n )∥2

4

≤ − µc0n

2n− 2
≤ −c0µ

2
.

Since M = maxE
X,X′iid∼µ

U(|X −X ′|), we know 1
n2

∑
1≤i,i′≤n U(|r̂n,i − r̂n,i′ |) ≤ M . As a result,

min
j=1,2

E
X,X′iid∼ P(j)

n
U(|X −X ′|) ≤ 1

n2

∑
1≤i≤i′≤n

U(|r̂n,i − r̂n,i′ |)− µc0/2 ≤ M − µc0/2.

This contradicts the assumption that E
X,X′iid∼ P(j)

n
U(|X −X ′|) → M, j = 1, 2, n → ∞.

D. Proof of Theorem 2.1
Given Theorem 2.4, we only need to find a symmetric probability measure on [0, 1], which maximizes

E
X,X′iid∼µ

U(|X −X ′|).

The following proof in this section is adapted from (, https://math.stackexchange.com/users/9340/sangchul lee). Let
M(B([0, 1])) denote the sets of all finite signed measure on the Borel sigma algebra B([0, 1]). Apparently, P (B([0, 1])) ⊂
M(B([0, 1])). Then we define the following “inner product” in M(B([0, 1])):

⟨µ, ν⟩ = EX∼µ,X′∼ν,independent U(|X −X ′|) =
∫
[0,1]2

U(|x− y|)µ(dx)ν(dy).

We also define I(µ) as I(µ) := ⟨µ, µ⟩. With these notations, the problem becomes

max
µ∈P (B([0,1]))

I(µ).

Lemma D.1. For U(x) = xγ with γ ∈ (0, 1). If µ is a signed measure satisfying µ([0, 1]) = 0, then we have I(µ) ≤ 0.
Moreover, I(µ) = 0 if and only if µ(E) = 0 for all E ⊂ [0, 1].
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Proof. f(t) = 1−cos(xt)
t1+γ is integrable on (0,∞). As a result, using change of variables, we have

|x|γ = C

∫ ∞

0

1− cos(xt)

t1+γ
dt

for come constant C > 0. Then by Fubini’s theorem, we have

⟨µ, µ⟩ =
∫
[0,1]2

|x− y|γµ(dx)µ(dy)

= C

∫
[0,1]2

∫ ∞

0

1− cos((x− y)t)

t1+γ
dtµ(dx)µ(dy)

= C

∫ ∞

0

(∫
[0,1]2

1− cos((x− y)t)

t1+γ
µ(dx)µ(dy)

)
dt.

Note that cos((x− y)t) = ℜ(eixt−iyt), we have∫
[0,1]2

1− cos((x− y)t)

t1+γ
µ(dx)µ(dy)

= −ℜ

(∫
[0,1]2

eixte−iyt

t1+γ
µ(dx)µ(dy)

)
= −ℜ

(
|µ̂(t)|2

)
,

where µ̂(t) =
∫
[0,1]

eitxµ(dx) is the Fourier transform of µ. Then

I(µ) = −C

∫ ∞

0

|µ̂(t)|2

t1+γ
dt ≤ 0.

Moreover, I(µ) = 0 if and only if µ̂(t) = 0 for all t ∈ [0,∞) if and only if µ(E) = 0 for all E ∈ B([0, 1]).

D.1. Proof of Lemma B.5

We first restate the lemma.

Lemma D.2. Let U(x) = xγ for some γ ∈ (0, 1). If a probability measure µ on [0, 1] maximize E
X,X′iid∼µ

U(|X −X ′|) if

it satisfies that EX∼µ U(|X − c|) does not depend on c ∈ [0, 1].

Proof of Lemma B.5. For two probability measure µ and ν on [0, 1], (µ−ν)([0, 1]) = 0. Suppose µ satisfies EX∼µ U(|X−
c|) = K does not depend on c ∈ [0, 1]. Note that

⟨ν − µ, µ⟩ =
∫
[0,1]

(∫
[0,1]

|x− y|γµ(dx)

)
(ν − µ)(dy) =

∫
[0,1]

K(ν − µ)(dy) = 0.

And by lemma D.1, ⟨ν − µ, ν − µ⟩ ≤ 0. Therefore,

⟨ν, ν⟩ = ⟨µ, µ⟩+ 2 ⟨ν − µ, µ⟩+ ⟨ν − µ, ν − µ⟩ ≤ ⟨µ, µ⟩ .

This means that µ maximize E
X,X′iid∼µ

U(|X −X ′|).

D.2. Proof of Theorem 2.1

Proof of Theorem 2.1. Let µ be the probability measure induced by Beta( 1−γ
2 , 1−γ

2 ). It has probability density function

fγ(x) =
1

B( 1−γ
2 , 1−γ

2 )
x− 1+γ

2 (1− x)−
1+γ
2 .
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For any c ∈ [0, 1], EX∼µ U(|X − c|) can be expressed as

EX∼µ U(|X − c|) = 1

B( 1−γ
2 , 1−γ

2 )

∫ 1

0

|x− c|γx− 1+γ
2 (1− x)−

1+γ
2 dx

=
1

B( 1−γ
2 , 1−γ

2 )

∫ π
2

0

| sin2 θ − c|γ(sin θ)−1−γ(cos θ)−1−γd sin2 θ

=
2

B( 1−γ
2 , 1−γ

2 )

∫ π
2

0

∣∣∣∣ sin2 θ − c

sin θ cos θ

∣∣∣∣γ dθ
=

2

B( 1−γ
2 , 1−γ

2 )

∫ ∞

0

(∫ π/2

0

1

{∣∣∣∣ sin2 θ − c

sin θ cos θ

∣∣∣∣γ ≥ t

}
dθ

)
dt.

Because∫ π/2

0

1

{∣∣∣∣ sin2 θ − c

sin θ cos θ

∣∣∣∣γ ≥ t

}
dθ =

1

2

∫ π

0

1

{∣∣∣∣cos θ + 2c− 1

sin θ

∣∣∣∣γ ≥ t

}
dθ

=
π

2
− 1

2

∫ π

0

1
{
− cos θ − t1/γ sin θ ≤ 2c− 1 ≤ − cos θ + t1/γ sin θ

}
dθ

=
π

2
− 1

2

∫ π

0

1

{
− cos(θ − ϕ) ≤ 2c− 1√

1 + t2/γ
≤ − cos(θ + ϕ)

}
dθ

=
π

2
− ϕ,

where tanϕ = t1/γ and ϕ ∈ [0, π/2], and the last equation use the fact that c ∈ [0, 1]. As a result, EX∼µ U(|X − c|) does
not depend on c.

Note that Beta distribution is also symmetric. It follows from Theorem 2.4 that the reward distribution converges to
Beta

(
1−γ
2 , 1−γ

2

)
E. Proof in Section 4
E.1. Proof of Theorem 4.1

Proof of Theorem 4.1. First, we prove that r̂ keeps the order of {θi}1≤i≤n. If there exist i and j such that θi < θj and
r̂i > r̂j , we define

r̃k =


r̂k if k ̸= i, j;

r̂j if k = i;

r̂i if k = j.

Then

S(r̂)− S(r̃) =
∑

k ̸∈{i,j}

U(r̂i − r̂k)sigmoid(θi − θk) +
∑

k ̸∈{i,j}

U(r̂k − r̂i)sigmoid(θk − θi)

+
∑

k ̸∈{i,j}

U(r̂j − r̂k)sigmoid(θj − θk) +
∑

k ̸∈{i,j}

U(r̂k − r̂j)sigmoid(θk − θj)

−
∑

k ̸∈{i,j}

U(r̂j − r̂k)sigmoid(θi − θk)−
∑

k ̸∈{i,j}

U(r̂k − r̂j)sigmoid(θk − θi)

−
∑

k ̸∈{i,j}

U(r̂i − r̂k)sigmoid(θj − θk)−
∑

k ̸∈{i,j}

U(r̂k − r̂i)sigmoid(θk − θj)

+ U(r̂i − r̂j)sigmoid(θi − θj) + U(r̂j − r̂i)sigmoid(θj − θi)

− U(r̂j − r̂i)sigmoid(θi − θj) + U(r̂i − r̂j)sigmoid(θj − θi).
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Note that for a < b and c < d, we have inequality ad + bc − ac − bd = (a − b)(d − c) < 0. It follows that from the
monotonicity of U and sigmoid function, and our assumption θi < θj and r̂i > r̂j , we have

U(r̂i − r̂k)sigmoid(θi − θk) + U(r̂j − r̂k)sigmoid(θj − θk)

− U(r̂j − r̂k)sigmoid(θi − θk)− U(r̂i − r̂k)sigmoid(θj − θk) < 0,

U(r̂k − r̂i)sigmoid(θk − θi) + U(r̂k − r̂j)sigmoid(θk − θj)

− U(r̂k − r̂j)sigmoid(θk − θi)− U(r̂k − r̂i)sigmoid(θk − θj) < 0,

U(r̂i − r̂j)sigmoid(θi − θj) + U(r̂j − r̂i)sigmoid(θj − θi)

− U(r̂j − r̂i)sigmoid(θi − θj)− U(r̂i − r̂j)sigmoid(θj − θi) < 0.

As a result, S(r̂) < S(r̃), which contradicts the optimality of r̂. This gives that r̂ keep the order of {θi}1≤i≤n.

To prove the inequality in Theorem 4.1, let us consider the case where i = 1 and j = 2 without loss of generality. We also
assume θ1 ≥ θ2. Then it follows from previous argument that r̂1 ≥ r̂2. From the optimality of r̂, we have

S(r̂) ≥ S(
r̂1 + r̂2

2
,
r̂1 + r̂2

2
, r̂3, · · · , r̂n).

The difference can be written as

S(
r̂1 + r̂2

2
,
r̂1 + r̂2

2
, r̂3, · · · , r̂n)− S(r̂)

=
∑
i>2

U(
r̂1 + r̂2

2
− r̂i)(sigmoid(θ1 − θi) + sigmoid(θ2 − θi))

−
∑
i>2

U(r̂1 − r̂i)sigmoid(θ1 − θi)−
∑
i>2

U(r̂2 − r̂i)sigmoid(θ2 − θi)

+
∑
i>2

U(r̂i −
r̂1 + r̂2

2
)(sigmoid(θi − θ1) + sigmoid(θi − θ2))

−
∑
i>2

U(r̂i − r̂1)sigmoid(θi − θ1)−
∑
i>2

U(r̂i − r̂2)sigmoid(θi − θ2)

+ U(0)sigmoid(θ1 − θ2) + U(0)sigmoid(θ2 − θ1)

− U(r̂1 − r̂2)sigmoid(θ1 − θ2)− U(r̂2 − r̂1)sigmoid(θ2 − θ1).

From strong concavity of U , we have

U(x) + U(y)

2
≤ U(

x+ y

2
)− µ(x− y)2

8
.

As a result,

U(
r̂1 + r̂2

2
− r̂i)(sigmoid(θ1 − θi) + sigmoid(θ2 − θi))

≥ 2U(
r̂1 + r̂2

2
− r̂i)sigmoid(θ2 − θi)

≥ sigmoid(θ2 − θi)(U(r̂1 − r̂i) + U(r̂2 − r̂i) +
µ(r̂1 − r̂2)

2

4
).

Similarly,

U(r̂i −
r̂1 + r̂2

2
)(sigmoid(θi − θ1) + sigmoid(θi − θ2))

≥ sigmoid(θi − θ1)(U(r̂i − r̂1) + U(r̂i − r̂2) +
µ(r̂1 − r̂2)

2

4
),

U(0)sigmoid(θ1 − θ2) + U(0)sigmoid(θ2 − θ1)

≥ sigmoid(θ2 − θ1)(U(r̂1 − r̂2) + U(r̂2 − r̂1) + µ(r̂1 − r̂2)
2).

17



Reward Collapse in Aligning Large Language Models: A Prompt-Aware Approach to Preference Rankings

As a consequence, letting m = min|x|<κ sigmoid(x) =
1

1+eκ , M = maxx∈[−1,1] U(x) = U(1), and L be the Lipschitz
constant of sigmoid(·), which is bounded by 1, we have

S(
r̂1 + r̂2

2
,
r̂1 + r̂2

2
, r̂3, · · · , r̂n)− S(r̂)

≥
∑
i>2

(sigmoid(θ2 − θi)− sigmoid(θ1 − θi))U(r̂1 − r̂i)

+
∑
i>2

(sigmoid(θi − θ1)− sigmoid(θi − θ2))U(r̂i − r̂2)

+ (sigmoid(θ2 − θ1)− sigmoid(θ1 − θ2))U(r̂1 − r̂2) +
m(2(n− 2) + 4)µ(r̂1 − r̂2)

2

4

≥ − (2n− 2)LM |θ1 − θ2|+
mnµ(r̂1 − r̂2)

2

2
.

So the optimality of r̂ gives
mnµ(r̂1 − r̂2)

2

2
≤ 2nLM |θ1 − θ2|.

This yields the inequality

|r̂1 − r̂2| ≤ 2
√

LM |θ1 − θ2|/(mµ) ≤ 2
√

U(1)(1 + eκ)|θ1 − θ2|/µ.

E.2. Reward distribution in Section 4
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Figure 5. Reward distribution with different choice of {θ}1≤i≤n when n = 20.

The choice of {θi}1≤i≤n in the left is

θi =

{
i/20 if i ≤ 15,

(i+ 10)/6 if i > 15.

The choice of {θi}1≤i≤n in the left is

θi =

{
i/10 if i ≤ 5,

(i+ 10)/6 if i > 5.
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