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Abstract

An outstanding image-text retrieval model de-
pends on high-quality labeled data. While the
builders of existing image-text retrieval datasets
strive to ensure that the caption matches the
linked image, they cannot prevent a caption
from fitting other images. We observe that
such a many-to-many matching phenomenon
is quite common in the widely-used retrieval
datasets, where one caption can describe up
to 178 images. These large matching-lost data
not only confuse the model in training but also
weaken the evaluation accuracy. Inspired by vi-
sual and textual entailment tasks, we propose a
multi-modal entailment classifier to determine
whether a sentence is entailed by an image plus
its linked captions. Subsequently, we revise the
image-text retrieval datasets by adding these
entailed captions as additional weak labels of
an image and develop a universal variable learn-
ing rate strategy to teach a retrieval model to
distinguish the entailed captions from other
negative samples. In experiments, we man-
ually annotate an entailment-corrected image-
text retrieval dataset for evaluation. The results
demonstrate that the proposed entailment clas-
sifier achieves about 78% accuracy and consis-
tently improves the performance of image-text
retrieval baselines.

1 Introduction

Image-text retrieval aims to retrieve items through
visual or semantic information. It contains two sub-
tasks: image retrieval and text retrieval, depending
on which modality is used as the retrieved target.
Image-text retrieval has been widely adopted in
various applications, such as the retrieval of com-
modity pictures given textual descriptions. Most
image-text retrieval approaches (Li et al., 2019c¢,a;
Tan and Bansal, 2019; Li et al., 2019b; Su et al.,
2020) focus on mapping features of image and text
modalities into a common semantic space. Notably,
recent studies (Li et al., 2020; Chen et al., 2020; Jia
et al., 2021; Radford et al., 2021; Li et al., 2021a)

A herd of sheep walking around in the snow.

A cold and snowy pasture containing numerous sheep.

A field covered with snow has several sheep in it.

A herd of sheep standing in a snow covered field.

A flock of woolly sheep graze on a snowy pasture.

Figure 1: Examples of images and texts from MSCOCO
dataset. While all of captions can describe the two
images, only image-text pairs with the same color are
marked as positive pairs.

have shown that Vision-and-Language Pre-training
(VLP) can effectively learn general representations
and achieves high performance on this task.
Image-text retrieval relies on curated training
datasets that are usually expensive and some-
times even require expert knowledge to ac-
quire. Common image-text retrieval datasets,
including Flickr8K (Rashtchian et al., 2010),
Flickr30K (Young et al., 2014), Multi30k (Elliott
et al., 2016) and MSCOCO (Lin et al., 2015),
are constructed through manually writing a few
descriptive captions for each image using crowd-
sourcing. Therefore, it is only ensured that the im-
age and its descriptive captions are matched when
annotated. However, the possible associations be-
tween an image and other captions in the dataset
are not fully considered. Taking Figure 1 as an ex-
ample, two images depicting the same scene have
their different text descriptions, which can also be
used to describe each other. Such a many-to-many
matching phenomenon is quite common in retrieval
datasets. For example, in MSCOCO, we find that
89 captions can describe one image while this num-
ber amazingly reaches 178 on the text side (refer
to Section 5 for more details). Unfortunately, the
cross-matched image-text pairs with similar seman-



tics are typically regarded as negative examples.
As we know, treating semantically matched image-
text pairs as negative in training will increase their
distance in vector space and thus reduce the quality
of representation learning. Meanwhile, marking
them as errors in evaluation leads to a significant
false negative rate.

This paper proposes an automatic solution to
handle the many-to-many matching problem in the
retrieval datasets. Our solution recognizes this kind
of relationship and utilizes the relationship in train-
ing. We argue that if an image and its descriptive
captions entail the meaning of a sentence, this sen-
tence should be able to describe the image. Inspired
by the tasks of visual entailment (Xie et al., 2019a)
and textual entailment (Glockner et al., 2018), we
propose a multi-modal entailment classifier to rec-
ognize the entailment relationship between a cap-
tion and an image combined with its descriptive
captions. To fully utilize the external textual and vi-
sual entailment data, our entailment model supports
various forms of input, including text-text, image-
text, and image&text-text. We modify existing
models (Li et al., 2021a; Devlin et al., 2019) to con-
duct textual entailment and visual entailment, and
combine the hidden states of textual/visual mod-
ules to produce the final multi-modal entailment re-
sult. Next, we use this entailment model to find the
entailed image-text pairs in the retrieval datasets.
During training, we treat these entailed pairs as
additional weak positive samples and set a small
learning rate for them. This learning strategy can
be used for any retrieval model without changing
its internal structure.

In order to verify the proposed entailment model,
we manually annotated an entailment-corrected
dataset containing 2k image-text pair samples from
MSCOCO and Flickr30K. Results show that our
entailment classifier achieves about 78% accuracy.
Moreover, trained on image-text pairs revised by
our entailment classifier, the retrieval models uni-
formly achieve a performance improvement in both
retrieval and entailment evaluations.

The contributions of this paper can be summa-
rized as follows:

* We utilize multi-modal entailment to han-
dle the many-to-many matching problem in
image-text retrieval datasets and annotate an
entailment-corrected dataset for evaluation'.

Code and the dataset will be released in the final version.

* We propose a strong multi-modal entailment
classifier to determine the entailed image-text
pairs in the retrieval datasets automatically.

* We develop a universal entailment-enhanced
learning strategy to consistently to improve
retrieval models’ matching performance con-
sistently.

2 Related Work

2.1 Image-Text Retrieval Datasets

Early image-text datasets include Flickr8K
(Rashtchian et al., 2010) and Flickr30K (Young
et al., 2014). Inspired by them, Lin et al. (2015)
builds a larger Microsoft Common Objects in COn-
text (MSCOCO) Caption dataset. A number of
datasets subsequently emerge such as Multi30k
(Elliott et al., 2016), Conceptual Captions (Sharma
et al., 2018) and RedCaps (Desai et al., 2021). No-
tably, Conceptual Captions and RedCaps are built
through web crawling, while others are constructed
by manually writing a few descriptive captions
for each image using crowd-sourcing. All these
datasets only ensure relationships between images
and texts created for them and ignore possible as-
sociations of external image-text pairs.

Some recent works have been aware of this
problem and attempted to introduce many-to-many
correspondences for image-text datasets. Criss-
Crossed Caption (CxC) (Parekh et al., 2021) and
Extended COCO Validation (ECCV) (Chun et al.,
2022) datasets are built through manually anno-
tating sampled MSCOCO image-text pairs with
similarity scores or categories. However, due to
expensive labor costs and unscalable annotations,
it is challenging to construct a large-scale dataset
for training. Moreover, the human similarity score
does not entirely fit the retrieval task, and even
image-text pairs with high scores cannot always
be taken as positive samples. For example, in the
CxC dataset, the caption “A couple of birds that are
walking on some sand.” matches the image with a
single seagull.

2.2 Textual Entailment and Visual Entailment

Textual entailment (Dagan et al., 2005), often used
as a benchmark to measure the ability of language
understanding (Dagan et al., 2005; Bowman et al.,
2015a), has been a hot research topic in the NLP
area. In the last few years, with the advancement
of deep learning, the study of textual entailment



is gradually being carried out on some large-scale
data such as SNLI (Bowman et al., 2015b), SciTailL
(Khot et al., 2018), MNLI (Williams et al., 2017),
and XNLI (Conneau et al., 2018). In addition,
textual entailment in the context of the few-shot
scenario has also been much studied, like UFO-
ENTAIL (Yin et al., 2020).

Inspired by textual entailment, Xie et al. (2019b)
proposes visual entailment task to determine the
entailment between a given image and text pair.
They annotate a dataset SNLI-VE by linking
SNLI to Flickr30K. In recent studies, it has often
been treated as a downstream task of Vision-and-
Language Pre-training(VLP) model (Huang et al.,
2021; Li et al., 2021b; Wang et al., 2021, 2022).
In addition, Ilharco et al. (2021) proposes a multi-
modal entailment dataset, but the dataset is not well
adapted to our multi-modal entailment model.

3 Multi-Modal Entailment Classifier

The proposed multi-modal entailment classifier is
used to recognize whether a sentence is entailed
by an image plus its captions. We utilize the clas-
sifier to construct the entailment-revised retrieval
dataset for training automatically. Figure 2 shows
the model structure. It contains a visual entail-
ment module and a textual entailment module and
combines the hidden states of the two modules to
predict the final multi-modal entailment category.
Our model supports three types of input premises:
an image, text, and a combination of image and text.
Note that to be adaptable to downstream image-text
retrieval tasks, we only classify the relationship
into entailment or non-entailment, rather than the
traditional entailment task with three categories:
entailment, neutral, and contradiction. In the fol-
lowing description we use zP* and xP* for the im-
age and text in premise, 2" for the text hypothesis
and y € {0,1} for the target where 1 means en-
tailment and O means non-entailment. This section
will illustrate how our model conducts the three
types of entailment data.

3.1 Textual Entailment

In textual entailment, both the premise and hy-
pothesis are textual sentences, namely the input =
(xPt, 2"). We define this form of the task as text-
text and adopt BERT (Devlin et al., 2019) as our
backbone model.

Following the common practice, we
pack two sentences zP* and 2" together as

([cls], 2P, [sep], z™*), where [cls] and [sep] are two
special tags. Next, the packed texts are fed into the
BERT model to get the entire representation:

h' = BERT (2, 2™). (1)

Like Choi et al. (2021), we just use the hidden state
at the sentence tag ([cls]) to represent the entire
input. On top of h;, we add a simple multi-layer
perceptron (MLP) classifier with two hidden layers
to predict the final label:

p(§)zPt, z") = softmaz(MLP(RY)). (2)

where we adopt ReLU (Glorot et al., 2011) as the
activation function for MLP. Notably, we use soft-
max rather than sigmoid for this binary classifi-
cation task as we compare the two methods, and
the results show that softmax is 1.8% higher than
sigmoid.

3.2 Visual Entailment

In visual entailment, the premise is an image ),
and the task form is defined as image-text. We
adopt the structure of the state-of-art image-text
retrieval model ALBEF (Li et al., 2021b) to encode
Zp, and Ty, namely:

hY = ALBEF (zP*, z"). (3)

ALBEF consists of a 12-layer visual transformer
(ViT) (Dosovitskiy et al., 2020) as the image
encoder and a 6-layer transformer for both text
encoder and multi-modal encoder. The cross-
attention mechanism in a multi-modal encoder
achieves an alignment between visual and textual
modals. Similar to textual entailment, after a sim-
ple multi-layer perceptron with two hidden layers,
we can get a distribution of prediction g.

p(g|xP, z") = softmax(MLP(h)). (4)

Referring to the practice of Liang et al. (2022)
in ViT, we develop an image augment method to
increment negative samples. Concretely, ViT will
split an image into patches and encode them by self-
attention mechanism (Vaswani et al., 2017). Intu-
itively, patches with higher attention scores should
represent more significant regions and play a crit-
ical role in recognizing entailment relationships.
For images of positive samples, we mask their par-
tial patches with the highest score according to the
attention matrix in ViT. Through this augment, orig-
inal image-text pairs will become non-entailment
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Figure 2: Illustration of our multi-modal entailment classifier. It consists of a visual entailment module and a textual
entailment module. The result of multi-modal entailment is obtained by combining the hidden states of visual and

textual entailment through a gate unit.

and supply negative samples. In the experiments,
the masking ratio is a hyper-parameter we set as
0.4, and in each batch, we select up to 4 images for
mask augment.

3.3 Multi-Modal Entailment

In textual entailment and visual entailment, the
premise is just uni-modal. However, we actually
need to check whether a sentence is entailed by an
image plus its captions, and we define the form of
the task when the premise input of our task is multi-
modal as image&text-text. In this section, we want
to combine textual and visual entailment for multi-
modal entailment. The data pairs are defined as
(xPv 4 Pt 2"). Briefly, we merge the captions of
the same image to form zP*. Inspired by Xu et al.
(2021), we want to build a gate unit to combine
visual entailment and textual entailment to make a
comprehensive judgment. Given the hidden states
ht and h¥ computed in the above textual entailment
and visual entailment modules, we propose a gate
unit to merge them into multi-modal hidden states:

g' = a(W'h! + ), ®)
¢° = a(WYRY +bY), 6)
hm:gt'ht+gv'hv. (7)

where W, bt, W7, b? are learnable parameters and
o is sigmoid function. Finally, the classification

is done by a multi-layer perceptron classifier with
two hidden layers:

p(|zP, 2Pt 2h) = softmaz(MLP(h™)). (8)

We have tried to merge xP7, 2P and =" directly
using a multi-modal encoder instead of a gate unit,
but this can easily cause memory overflow and
make it impossible to separate visual and textual
entailment.

3.4 Joint Learning

The learning process is driven by optimizing three
objectives, corresponding to visual entailment £,,,
textual entailment £; and multi-modal entailment
L, respectively.

Li=—=) logp(gi = yilal", x}), ®
i
Ly, == logp(gi = yilal", z}), (10)
i
Lo ==Y logp(s = yila?” + 2", }). (11)
i
To facilitate training, we unify the input form
of the model as the multi-modal task. To achieve
this goal, we fill plain black images for textual
entailment and empty premise strings for visual en-
tailment. Meanwhile, we introduce three binary in-
dicators 6,, 0;, 0,,, to accumulate the related losses



for back-propagation:

ﬁall = etﬁt + evﬁv + emﬁm (12)

For textual entailment, only 6, = 1 and for visual
entailment, only 6, = 1, while all the losses are
used in multi-modal entailment.

4 Entailment-Enhanced Training for
Retrieval Models

With the proposed multi-modal entailment classi-
fier, we automatically detect the entailed image-
text pairs in image-text retrieval datasets. Sub-
sequently, we use entailed pairs in the following
two aspects. On the one hand, current image-text
retrieval models usually adopt negative sampling
(Lietal., 2021a; Radford et al., 2021; Chen et al.,
2020) to enforce dissimilar representations between
non-golden image-text pairs. In the training pro-
cess, we optimize negative sampling method by
preventing sentences being selected as negative
samples of entailed images. On the other hand, we
regard these extra entailed image-text pairs as weak
positives and propose a universal variable learning
rate strategy to handle them. Specifically, assume
that the learning rate of the golden positive exam-
ples during training is A. Then we apply a smaller
learning rate A" to weak positives, where A" = A
and a € (0,1) is a hyper-parameter.

In subsequent experiments, we empirically set
a to 0.3. Considering the learning rate cannot be
distinguished within the same batch, we assemble
weak positives into an additional batch immedi-
ately after each normal batch. We preferentially
select weak positives according to images in nor-
mal batch.

Through these two methods above, semantically
related images and texts can be close to each other,
without introducing too much noise in training.
While optional methods include contrastive learn-
ing (Gutmann and Hyvirinen, 2010) and applying
different weights on training loss for weak posi-
tives, they all need to modify models specifically
and are not as universal as our strategy. Our ex-
periments show that our methods can effectively
enhance the entailment degree of the retrieval mod-
els, while keeping the retrieval performance.

5 Entailment-Corrected Dataset
Annotation

We manually annotate an entailment-corrected
dataset to evaluate the effects of our multi-modal

| Flickr30K | MSCOCO

1000 1000
699 307

Total pairs
Entailment

Table 1: Statistics of the entailment-corrected dataset.

entailment model. We select images and texts from
the MSCOCO and Flikr30K test datasets to im-
prove their diversity.

Since most of the image-text pairs in retrieval
datasets are semantically irrelevant and have no en-
tailment relationship, we use a fine-tuned retrieval
model ALBEF to get the top-30 text retrieval re-
sults as annotation candidates. After sampling im-
ages in the candidates, we randomly select one text
for every image. In this way, the assembled image-
text pairs usually hold high semantic association.
We also add a small part of random image-text pairs
to ensure the diversity of our dataset.

Seven graduate students are arranged for annota-
tion. They must make an inference for the hypothe-
sis sentence according to the given premise. To bet-
ter use multi-modal information for entailment rela-
tionship classification, every premise in our dataset
includes both image and its linked ground truth
captions. More details of our dataset are shown
in Appendix A.1. A hypothesis sentence can be
regarded as entailment with its premise only if it
meets the following two points: (1) This hypothesis
sentence must clearly describe the content of the
image premise without ambiguity. (2) This hypoth-
esis sentence can be inferred from premise texts
and cannot be contradictory to them all. All pairs
not meeting the above conditions are regarded as
negative examples. Testing on 30 identical sam-
ples, the Kappa score (Falotico and Quatto, 2015)
of annotators reaches about 0.8, indicating high
consistency. Finally, we get 1k labeled image-text
pairs for Flickr30K and 1k for MSCOCO. Statistics
about our dataset are shown in Table 1.

In addition, we use the same method to annotate
some typical examples in the original MSCOCO
testset. Surprisingly, we found that one plain cap-
tion “A picture of something and it appears like
food” can match accord with up to 178 images
with food, and the image with a person who is play-
ing a baseball game can be depicted by according
up to 89 captions. More details of these datasets are
described in Appendix A.2. These huge numbers
demonstrate the universality of the many-to-many
matching phenomenon.



Task Dataset Count
XNLI (Conneau et al., 2018) 400.2k
MRPC (Dolan and Brockett, 2005) | 5.8k
TE RTE (Bentivogli et al., 2009) 2.7k
STS-B (Cer et al., 2017) 7.2k
QQP (Chen et al., 2017) 404.2k
Train TS (Kauchak, 2013) 167.6k
VE SNLI-VE (Xie et al., 2019b) 529.5k
Image Masking 132.3k
SNLI-VE 529.5k
MME CXC (Parekh et al., 2021) 39.5k
ECCV (Chun et al., 2022) 26.4k
Image Masking 148.8k
Dev SNLI-VE 17.8k
Test Annotated Dataset 2k

Table 2: Statistics of datasets used in the multi-modal
entailment task. TE, VE, and MME denote textual en-
tailment, visual entailment, and multi-modal entailment,
respectively.

Model accuracy precision recall  fos
Only TE 71.1 65.0 909 689
Only VE 72.3 66.9 87.5 702
OFA 73.3 67.4 89.6 709
Ours 78.1 80.2 743 78.9
w/o Image Masking 78.4 71.7 794  78.0
w/o VE Data 66.4 62.5 819 656
w/o TE Data 77.7 74.2 84.6  76.1
w/o BERT 76.5 72.4 85.1 74.6

Table 3: Performance (%) of different entailment mod-
els tested on our annotated dataset. w/o BERT means
using a text encoder from ALBEF in the textual entail-
ment.

6 Experiment

In this section, we present experimental results
for our multi-modal entailment classifier and the
proposed entailment-enhanced training for various
retrieval models.

6.1 Datasets

Multi-Modal Entailment The datasets we used
for textual entailment, visual entailment, multi-
modal entailment are listed in Table 2. More details
of these datasets are described in Appendix A.3.
For visual entailment, we perform image data aug-
ment by masking critical patchs of images, as de-
scribed in Section 3.2.

Image-Text Retrieval We consider two widely-
used datasets for image-text retrieval tasks:
MSCOCO and Flickr30K. Specifically, we adopt
both datasets’ widely used Karpathy split (Karpa-
thy and Fei-Fei, 2015). The MSCOCO con-
tains 113/5k/5k for train/validation/test, and
the Flickr30K contains 29k/1k/1k images for
train/validation/test. We present experimental re-
sults on MSCOCO 5K and Flickr 1K testsets.

6.2 Baseline Models

Multi-Modal Entailment We adopt BERT (De-
vlin et al., 2019) and ALBEF (Li et al., 2021a) as
the backbone structure of textual entailment and vi-
sual entailment. Therefore we test the performance
using each module. In addition, we introduce OFA
(Wang et al., 2022), a state-of-the-art visual entail-
ment classifier, as a comparison baseline.

Image-Text Retrieval We compare our variable
learning rate strategy with some competitive image-
text retrieval models, including ALBEF, CLIP
(Radford et al., 2021) and UNITER (Chen et al.,
2020). More details of these baseline models are
described in Appendix A.4.

6.3 Evaluation Metrics

Multi-Modal Entailment The accuracy, preci-
sion, and recall of our annotated dataset are re-
ported as the evaluation metrics, which are com-
monly used in the entailment task. Particularly, fol-
lowing the Zhao et al. (2018), We put more weight
on precision and apply Fy 5 as our final evaluation
metric.

Image-Text Retrieval As the common practice
(Karpathy and Fei-Fei, 2015), we report the Re-
call@K (R@K) as evaluating metrics, which mea-
sures the fraction of times a correct item was found
among the top K results. For text-retrieval (TR)
and image-retrieval (IR), we report TR@1/5/10
and IR@1/5/10, respectively.

To quantitatively measure the relevance between
retrieved texts and the query images, we propose
a novel metric called Entail@K (E@k). E@QK
measures the averaged entailment ratio in the top-k
retrieved items:

K
) 1
EntailQK = 7 z; ei(x),

(13)

where the binary indicator e;(z) equals 1 If and
only if the ¢-th retrieved text is ground truth or has
an entailment relationship with the query image x.
Higher E@k values mean that the retrieved texts
have a stronger descriptive and semantic associa-
tion with the query images.

For the image-text pairs included in our
entailment-corrected dataset, the relationship can
be obtained directly. For the rest pairs, we use two
ways to get their entailment labels. On the one
hand, we sample some images and manually an-
notate the entailment relationship of their retrieval



| Flickr30K / MSCOCO

Method | TR@I. TR@5. TR@10. IR@]. IR@5. IR@10.

ALBEF 952/774 98.9/939 100.0/97.1 853/612 97.3/84.6 98.7/91.0
ALBEF# | 40.1/+402 +0.6/+02 -02/+02 +02/-03 +0.1/-0.1  0.0/-0.1

CLIP 89.2/64.5 974/859 99.4/922 744/474 935/744 96.7/834
CLIP# +1.6/+42.0 +14/+11 +0.5/+0.5 +3.1/+1.5 +2.1/+14 +09/+1.0
UNITER | 842/647 97.1/882 987/935 708/49.1 91.7/774 955/86.0
UNITER# | -1.0/+404 +0.1/+13  +0.1/00 +0.4/+13 +0.6/+0.1 +0.7/+0.9

Table 4: Performance (%) of different image-text retrieval models finetuned on Flickr30K and MSCOCO. The
scores before and after the symbol "/" represent the evaluation results on original Flickr30K and MSCOCO testsets,
respectively. "#" denotes the model is trained with our entailment-enhanced strategy. The changes > 1.0 are shown

in bold.

results with the same rules as Section 5. On the
other hand, we use our trained multi-modal entail-
ment model to infer the relationship between image
x and ¢-th text. The manual method is more accu-
rate but requires too much cost, while the automatic
way can quickly evaluate all the datasets.

In subsequent experiments, we randomly se-
lected 50 common images with their retrieved top-
10 texts from the text-retrieval results on both test-
set of Flickr30K and MSCOCO for manual anno-
tation. We denote these manual entailment results
with E@M.

6.4 Implementation Details

We mix the textual, visual, and multi-modal en-
tailment data and train them together indiscrimi-
nately for our multi-modal entailment model. We
found that this mixing strategy is much better than
training separately. We trained the multi-modal en-
tailment model with five epochs on 8 Amax-5000
GPUs with a batch size of 96. We use the AdamW
(Loshchilov and Hutter, 2019) optimizer with a
weight decay of 0.02 and initial learning rate 2e-5.

For image-text retrieval, due to models’ scales,
we set different batch sizes and initial learning
rates for different models (i.e., 96/2e-5 for ALBEEF,
1536/1e-5 for CLIP, 96/5e-5 for UNITER). We use
the AdamW optimizer with a weight decay of 0.02.

6.5 Main Results
6.5.1 Results on entailment

The results of the entailment experiments are
shown in Table 3. As can be seen, our multi-modal
entailment model all the other baselines to a large
extent. For instance, the fj 5 is more than 8% larger
than the state-of-the-art visual entailment model
OFA. The results demonstrate our proposed multi-

Method | E@10 | E@30 | E@M
ALBEF 63.9 44.1 76.7
ALBEF# 66.0 46.0 78.0
CLIP 58.2 415 67.4
CLIP# 60.9 43.2 75.5
UNITER 44.9 27.2 73.1
UNITER* | 46.9 28.5 76.4

Table 5: Performance of E@k on different retrieval mod-
els. E@M stands for evaluation by manually annotated
50 common samples. E@10/30 are averaged scores
over Flickr30K and MSCOCO testsets.

modal entailment model is more competitive than
the traditional textual and visual entailment models.
Meanwhile, the precision of annotated dataset has
improved dramatically, which guarantees the pos-
sibility that the model will be used for automatic
detection. In addition, we conduct a series of abla-
tion experiments for training data. As can be seen,
removing any training data will degrade the f-score,
while the labeled visual entailment data seem more
critical. A possible reason is that the visual entail-
ment datasets fit the multi-modal entailment task
well. We use the text encoder from ALBEF as a
comparison, and the results show that the fj 5 was
about 4.3% higher using BERT. Overall, both the
textual and visual entailment modules are helpful,
making an essential contribution to our model in
learning more about multi-modal interactions.

6.5.2 Entailment-enhanced training strategy

Table 4 shows the results of different retrieval meth-
ods with or without applying our variable learn-
ing rate strategy on two benchmarks, Flickr30K
and MSCOCO, respectively. Although we focus
on the improvement of many-to-many matching
recognition, we find that our entailment-enhanced



Before:

"A crowd of people are watch two guys play buckets.”

“A group of people watching a performer on a sidewalk.”
“A large number of people walk or rest near a fountain.”
"A group of people stand around waiting for something.”
“A crowd of people are watch two guys play buckets.”

“Kids watch silently from behind a concert barrier.”

After:

"There are two street musicians playing percussion, while a crowd of people look on.”
“A group of people watch young men play the drums using makeshift buckets.“

“Two men are performing on a sidewalk as a crowd watches"

"A crowd of people gathering to watch several young men put on a show.",

“A crowd forms on a busy street to watch a street performer.”

“A man is sitting on the street playing drums on buckets.“

Figure 3: Comparison of examples of retrieval results before and after applying our entailment-enhanced learning
strategy. Blue: original positives. Red: manually annotated entailment samples. Black: irrelevant samples.

training could also often improve the retrieval per-
formance. Especially for CLIP’s IR@1 score on
Flickr30K raises more than 3% with our learning
strategy. Therefore, we believe our entailment-
enhanced training indeed helps the retrieval models
find appropriate positive and negative image-text
pairs.

In addition, we demonstrate the entailment per-
formance of different retrieval models in Table 5.
As can be seen, after applying our entailment-
enhanced training strategy, all models’ entailment
performance obviously improves on both automatic
and manual evaluations. Notably, CLIP# signif-
icantly exceeds CLIP by more than 8% in terms
of E@M. The results reveal the effectiveness of
our strategy in refining the entailment degree for
retrieval models universally.

6.5.3 Recall rate is unreliable

The recall rate is unreliable because it only fo-
cuses on the ranking of the golden captions and
ignores others, which cannot fully reflect the re-
trieval quality. We have manually analyzed several
cases where the recall rate declines after applying
an entailment-enhanced strategy and found that
most of their retrieval results have entailment re-
lationship. On the contrary, the increase of the
content rate may occupy the position of original
golden captions, resulting in a decrease in the num-
ber of the top-K retrieval results. This is why the
recall rate results in Table 4 fluctuate.

6.6 Case Study

Multi-Modal Entailment During annotating the
entailment performance, we find that our multi-
modal entailment model has achieved satisfactory
performance in most cases. However, there is still
room for improvement in a few cases. Error types
include the following: (i) Identification of the num-
ber of objects is disturbed; (ii) Wrong recognition
of gender; (iii) For scenes with multiple objects,
the model may only focus on the main objects and

put less attention on others. More details of error
cases are shown in Appendix A.5. In the future, we
could use data augmentation on the text side to re-
duce these mistakes, thus enhancing the robustness
of the proposed model.

Entailment-Enhanced Retrieval As for the re-
trieval results, we find that applying entailment-
enhanced training could usually make the retrieved
captions more relevant and reasonable. As shown
in Figure 3, before applying entailment-enhanced
strategy, many inappropriate descriptions exist in
the retrieval results, such as “near a fountain” and
“concert barrier”. Besides, vague words like “wait-
ing for something” will also reduce the retrieval
quality. After training with our strategy, the number
of entailed captions has increased to 3, while orig-
inal positives also increased by one. In addition,
the retrieval results describe the image from mul-
tiple aspects. For instance, the caption “two men
are performing on a sidewalk as a crowd watches’
indicates the number of performers in the picture,
while “a man is sitting on the street playing drums
on buckets” concretely describes what is happening
in the scene.

s

7 Conclusion

In this paper, we propose to apply multi-modal
entailment to handle the frequent many-to-many
matching problem in image-text retrieval datasets.
Our solution recognizes the relationship and uti-
lizes the relationship in training. Automatic
and manual experiments reveal that the proposed
method can consistently improve the matching per-
formance of retrieval models. In the future, we plan
to extend our multi-modal entailment model to the
video-text retrieval task. Besides, we are devoted
to handling the typical entailment errors mentioned
in Section 6.6.
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A Example Appendix

A.1 Examples of Entailment-Corrected
Dataset

Examples of our entailment-corrected dataset are
shown in Figure 4. Every image corresponds to
five golden captions and one hypothesis text.

Golden Captions:
A street scene with a bench and a rug on the sidewalk.
A park bench sits alone on the street.
A bench sitting on some carpet on the side of the street.
A happy sun is painted on the building behind the bench.
A wood bench is sitting next to a road.
Hypothesis:
A brick building with a wooden bench in front. (V)

Golden Captions:

A woman talking on a cell phone standing in front of a board.

A woman is on a cell phone in front a chalkboard.

A woman smiles as she talks on the phone.

A woman standing with a cell phone in her hand.

A woman stands in front of a blackboard with her cell phone.
Hypothesis:

A girl smiles downward while on the phone. (V)

Golden Captions:

Two girls sitting at a table wearing glasses while one holds a cell phone.

A lady sitting at a table with a green glass.

A girl is sitting at a table and holding a cellphone.

A young woman with glasses at a table holds a cell phone.

A view of a girl sticking her finger in her mother's drinking cup.
Hypothesis:

A male uses her cell phone at a restaurant table. (x)

Figure 4: Examples in our entailment-corrected dataset.
Symbol "/" represents the entailment relationship be-
tween premise and hypothesis, and symbol "x" is the
opposite.

“A picture of something and it appears like food.”

“A baseball game in progress with the batter swinging.”,

“A baseball batter swings his bat while team mates look on.”

“A person that is playing in a baseball game.”

“Baseball player in white and red uniform swinging at a ball. "
“Batter hitting ball at professional baseball game in stadium.”

“A baseball batter in red and white on a baseball field.”

“Batter hitting ball during major baseball daytime game.”

“A baseball player hits the ball as the crowd watches.”

“Baseball player in the middle of his swing with a crowd looking on. "
“A professional baseball player swinging his bat at a game."

Figure 5: Typical examples about how many items that
one image or caption can match. Blue: original posi-
tives.

A.2 Maximum Match

In addition, we use the same method to annotate
some typical examples in the original MSCOCO
testset. As shown in Figure 5, we found that one
plain caption “A picture of something and it ap-
pears like food” can match accord with up to 178
images with food, and the image with a person who
is playing a baseball game can be depicted by ac-
cording up to 89 captions. These huge numbers
demonstrate the universality of the many-to-many
matching phenomenon. We also find contradictions
even in the original golden image-text pairs. For
example, different annotators describe a child in
the same picture as a boy and a girl.

A.3 Datasets For Multi-modal Entailment

We constructed a training dataset for multi-modal
entailment by integrating Visual entailment, Tex-
tual entailment, and Natural Language Understand-
ing (NLU) datasets, the components of which are
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shown below:

SNLI-VE SNLI-VE is a visual entailment
dataset that is constructed based on Flickr30K and
SNLI.

CrissCrossed Caption (CxC) Parekh et al.
(2020) annotate the dataset CrissCrossed Caption
(CxC) based on MSCOCO to enhance the dataset
of cross-modal correlations: image-image,image-
text,text-text.

XNLI XNLI is a significant dataset in natural lan-
guage understanding. It contains 15 languages, and
each piece of data consists of two sentences named
promise and hypothesis, respectively, intending to
predict the relationship between a given two sen-
tences: entailment, contradiction, or neutral.

Extended COCO Validation (ECCV)  Simi-
lar to CxC, Extended COCO Validation (ECCV)
(Chun et al., 2022) is a caption dataset contain-
ing 1,261 image queries (originally 5,000) but with
17.9 positive captions per image query on aver-
age (originally 5). It also contains 1,332 caption
queries (originally 25,000) with 8.5 positive images
per caption (originally 1).

MRPC Microsoft Research Paraphrase Corpus
consists of sentence pairs automatically extracted
from online news sources, with human annotations
for whether the sentences in the pair are semanti-
cally equivalent (Dolan and Brockett, 2005). We
transform the semantic similarity discriminant in
sentence pairs into an entailment discriminant.

RTE Recognizing Textual Entailment is a binary
entailment task similar to XNLI but with much less
training data (Bentivogli et al., 2009).

STS-B The Semantic Textual Similarity Bench-
mark is a collection of sentence pairs drawn from
news headlines and other sources (Cer et al., 2017).
They were annotated with a score from 1 to 5 de-
noting how similar the two sentences are in terms
of semantic meaning.

QQP Quora Question Pairs is a binary classifi-
cation task that aims to determine if two questions
asked on Quora are semantically equivalent (Chen
etal., 2017).

Text Simplification(TS) The text simplification
task is to transform a complex sentence into a clean
and clear sentence, which makes it more conve-
nient to read and communicate (Kauchak, 2013).
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To translate the data into the form of an entail-
ment task, we consider the existence of entailment
relations between pairs of sentences in the text sim-
plification task.

Since the labels of STS-B and CXC datasets
are scores ranging from O to 5, we use three as a
threshold and thus transform them to be usable for
our task.

A.4 Baseline Models For Image-Text
Retrieval

ALBEF (Lietal., 2021a) model combines a ViT
as a visual encoder and stacked 6-layer transformer
blocks as text encoders. In the image-text retrieval
task, ALBEEF first aligns the unimodal image and
text representation before fusing them with a multi-
modal encoder.

CLIP (Radford et al.,, 2021) performs pre-
training on massive noisy image-text data using
a contrastive loss. CLIP officially provides a va-
riety of image encoders. In our experiment, we
choose the official ViT-B/32 as our image encoder
for quickly training and evaluation.

UNITER (Chen et al, 2020) leverage a
transformer-based architecture to learn universal
representations from image and text features. We
choose UNITER-base as our pre-train model.

A.5 Error Cases in Model

Men building a structure Four children playing in a pool.

A man in a white shirt.

A man walks past a storefront.

Figure 6: Typical error cases of our multi-modal en-
tailment model inference. The entailment relationship
inferred by the model is remarked as the symbol "\/"
and the symbol "x" on the contrary.

During annotating the entailment performance,
we find that our multi-modal entailment model has
achieved satisfactory performance in most cases.
However, there is still room for improvement in a
few cases. Error cases shown in Figure 6 represent



the following typical mistakes occurred occasion-
ally: (i) Identification of the number of objects is
disturbed. In regions (a) and (b), the model does
not accurately measure the number of people, like
‘Men’ and ‘Man’; (ii) Wrong recognition of gender.
In region (c), the person depicted in the photo is a
woman; (iii) For scenes with multiple objects, the
model may only focus on the main objects and put
less attention on others. In region (d), we try to
replace “A man in a white shirt.” with “A woman
in a green shirt.” and find the inference result to
be entailment. However, in manual annotation,
we usually also focus on secondary characters and
scenes; In the future, we could use data augmenta-
tion on the text side to reduce these mistakes, thus
enhancing the robustness of the proposed model.
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