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Abstract
We present a data-driven method for solving the linear quadratic regulator problem for systems
with multiplicative disturbances, the distribution of which is only known through sample estimates.
We adopt a distributionally robust approach to cast the controller synthesis problem as semidefi-
nite programs. Using results from high dimensional statistics, the proposed methodology ensures
that their solution provides mean-square stabilizing controllers with high probability even for low
sample sizes. As the sample size increases the closed-loop cost approaches that of the optimal
controller produced when the distribution is known. We demonstrate the practical applicability and
performance of the method through a numerical experiment.
Keywords: data driven, distributionally robust, linear quadratic regulation, multiplicative noise,
stochastic optimal control

1. Introduction

We will develop controllers for linear systems with time-varying parametric uncertainty, which
may cover a wide range of system classes extensively studied in the literature. For example, we
obtain Linear Parameter Varying (LPV) systems when the disturbance is observable at each time
step (Wu et al., 1996; Byrnes, 1979), Linear Difference Inclusions (LDIs) when it is unknown but
norm-bounded (Boyd et al., 1994) and stochastic systems with multiplicative noise when it varies
stochastically (Wonham, 1967).

In many practical applications, however, the distribution of the disturbance is not known. These
traditional control approaches either make a boundedness assumption on the disturbance or on its
moments, which allows for a fully robust approach (El Ghaoui, 1995). Such approaches, however,
disregard any statistical information that may be obtained on the distribution of the disturbances.
Our aim, instead, is to design linear controllers which use sampled data to improve performance
over fully robust approaches, while inheriting many of the system-theoretical guarantees of a robust
control strategy. To this end, we adopt a distributionally robust (DR) approach (Dupačová, 1987;
Delage and Ye, 2010) towards solving the infinite-horizon Linear Quadratic Regulator (LQR) prob-
lem, where we minimize the expected cost for the worst-case distribution in a so-called ambiguity
set computed based on the available data such that it contains the true distribution with high proba-
bility. Such a DR approach addresses most of the difficulties associated with learning automatically,
since the ambiguity set directly models the uncertainty in the sample-based estimates against which
the controllers will be robust. Similar techniques were recently studied in Schuurmans et al. (2019)
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for stochastic jump linear systems and in Dean et al. (2019) for deterministic systems, where the
system matrices A and B are learned from data.

The work of Gravell et al. (2019) also deals with learning control of linear systems with multi-
plicative noise, albeit from a different perspective. They employ a policy gradient algorithm, which
requires the initial guess for the control gain to be stabilizing. By contrast, obtaining such a con-
troller is the main goal of our approach.

Our main contributions are summarized as follows. Leveraging recent results from high dimen-
sional statistics, we provide practical high-probability confidence bounds for the ambiguity sets,
which depend only on known quantities (Section 3). We then extend the solution of the (nominal)
infinite horizon LQR problem with known distribution to related DR counterparts which account
for the ambiguity on the disturbance distribution. Whenever the mean of the disturbance is known,
we show that the DR problem is equivalent to a semidefinite program (SDP) which has the same
form as the nominal one. Next, we extend the formulation to the setting in which both the mean and
the covariance are only known to lie in an ellipsoidal ambiguity set (Section 4.2), for which we can
only approximate the optimal controller.

Due to space limitations, only sketches of the proofs are provided here. We refer the reader to
the technical report Coppens et al. (2019) for the full versions of the proofs.

1.1. Notation

Let IR denote the reals and IN the naturals. For symmetric matrices P,Q we write P � Q (P � Q)
to signify that P −Q is positive (semi)definite and denote by ⊗ the Kronecker product. We assume
that all random variables are defined on a probability space (Ω,F ,P), with Ω the sample space,
F its associated σ-algebra and P the probability measure. Let y : Ω → IRn be a random vector
defined on (Ω,F ,P). With some abuse of notation we will write y ∈ Rn to state the dimension of
this random vector. Let Py denote the distribution of y, i.e., Py(A) = P[y ∈ A]. Then, a trajectory
{yi}Ni=1 of identically and independently distributed (i.i.d.) copies of y is defined by the distribution
it induces. That is, for any A0, . . . , AN ∈ F we define Py0,...,yN (A0 × · · · × AN ) :=P[y0 ∈
A0 ∧ · · · ∧ yN ∈ AN ] =

∏N
i=0 Py(Ai). This definition can be extended to infinite trajectories

{yi}i∈IN by Kolmogorov’s existence theorem Billingsley (1995). We will write the expectation
operator as IE. LetM denote the set of probability measures defined on (IRnw ,B), with B the Borel
σ-algebra of IRnw .

2. Problem statement

Consider the stochastic discrete-time system with input- and state-multiplicative noise given by:

xk+1 = A(wk)xk +B(wk)uk (1)

with A(w) :=A0 +

nw∑
i=1

w(i)Ai, B(w) :=B0 +

nw∑
i=1

w(i)Bi,

where at each time k, xk ∈ Rnx denotes the state, uk ∈ Rnu the input and wk ∈ Rnw an
i.i.d. copy of a square integrable random variable w distributed according to Pw. Let w(i) de-
note the i-th element of vector w. We introduce the following shorthands: A := [A>1 ... A>nw ]>,
B := [B>1 ... B>nw ]>, A0 := [A>0 A> ]>, B0 := [B>0 B> ]>. We also define Σ0 :=

[
1 µ>

µ Σ+µµ>

]
, where

µ := IE [w], Σ := IE [(w − µ)(w − µ)>].
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2.1. Nominal stochastic LQR problem and solution

The primary goal is to solve the following LQR problem:

minimize
u0,u1,...

IE

[ ∞∑
k=0

x>kQxk + u>kRuk

]
subj. to xk+1 = A(wk)xk +B(wk)uk, k ∈ IN

x0 = x̄,

(2)

where we assume that Q � 0 and R � 0. The solution of (2) will yield a controller that renders the
closed-loop system exponentially stable in the mean square sense, which is defined as follows.

Definition 1 ((Exponential) Mean Square Stability) We say that an autonomous system xk+1 =
A(wk)xk is mean square stable (m.s.s.) iff IE [x>kxk] → 0 as k → ∞. It is exponentially mean
square stable (e.m.s.s.) iff there exists a pair of positive constants γ ∈ (0, 1) and c such that
IE [x>kxk] ≤ cγk‖x0‖ for all k ∈ IN and for each x0 ∈ IRnx .

This property can be verified using the classical Lyapunov operator (Morozan, 1983):

Theorem 2 (Lyapunov stability) For the autonomous system xk+1 = A(wk)xk the following
statements are then equivalent: (i) it is m.s.s., (ii) it is e.m.s.s., (iii) ∃P � 0:

P −A>0 (Σ0 ⊗ P )A0 � 0. (3)

The LQR problem (2) has been studied for many variations of (1) (Morozan, 1983; Costa and
Kubrusly, 1997). The following proposition is then similar to many classical results in literature:

Proposition 3 Consider a system with dynamics (1) and the associated LQR problem (2). Assum-
ing that (1) is mean square stabilizable, i.e., there exists a K and P � 0 such that (3) holds for the
closed-loop system xk+1 = (A(wk) +B(wk)K)xk, then the following statements hold.

I The optimal solution of (2) is given by K∞ = −(R+G(P∞))−1H(P∞), with P∞ the solution
of the following Riccati equation:

P∞ = Q+ F (P∞)−H(P∞)>(R+G(P∞))−1H(P ), (4)

where F (P ) :=A>0 (Σ0 ⊗ P )A0, G(P ) :=B>0 (Σ0 ⊗ P )B0, H(P ) :=B>0 (Σ0 ⊗ P )A0.
II The controller K∞ stabilizes (1) in the mean square sense.
III The solution of the Riccati equation is found by solving the following SDP:

minimize
P

− TrP

subj. to

[
Q− P + F (P ) H(P )>

H(P ) R+G(P )

]
� 0,

P � 0.

(5)

Proof The proof of statement I and II follows that of (Morozan, 1983, Theorem 1) and the proof
of III follows from Balakrishnan and Vandenberghe (2003) (details in Coppens et al. (2019)).

Notice that the optimal solution to the LQR problem depends solely on the first and second mo-
ment of the random disturbance. This motivates our choice for the parametric form of the ambiguity
set (6) used in the data-driven LQR problem, which we state in the next section.
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2.2. Data-driven stochastic LQR problem

Consider now the case where Pw is not known a priori and only a finite set of offline i.i.d. samples
{ŵ}M−1

i=0 is available. For clarity, we add a hat to imply that a random variable depends on these
samples. It is apparent that under such circumstances, it is only possible to solve (2) approximately.
For most applications, however, it is crucial that the approximate solution remains stabilizing, which
is not trivial. For instance, the empirical approach, where (2) is solved using µ̂ := 1

M

∑M−1
i=0 ŵi and

Σ̂ := 1
M

∑M−1
i=0 (ŵi − µ̂)(ŵi − µ̂)>, does not guarantee stability. We will illustrate this with an

example1, which motivates the methodology presented in this paper.

Example 1 (Motivating example) Consider the following scalar system,

xk+1 = (0.75 + wk)xk + uk,

where xk ∈ IR, uk ∈ IR and wk ∈ IR are defined as before, but now w is assumed Gaussian
with IE[w] = 0 and IE[w2] = σ2 = 0.5. The empirical variance is σ̂2 = 1

M

∑M−1
i=0 ŵ2

i , using
i.i.d. samples {ŵi}M−1

i=0 . We develop an optimal LQR controller with a stage cost given by qx2
k +

ru2
k = x2

k + 104u2
k. Using results from Proposition 3, one can derive that the optimal controller

is approximately given by K̂∗ ≈ (1−0.752−σ̂2)/0.75 for σ̂2 > 0.4375, otherwise K̂∗ ≈ 0. We also
assume that σ̂2 < 1 (related to the uncertainty threshold principle of Athans et al. (1977)) since
otherwise the problem is infeasible as the system is not stabilizable. We can show1 that the controller
K̂∗ is m.s.s. iff (0.75 + K̂∗)2 + 0.5(K̂∗)2 < 1, which holds iff −1.4571 < K̂∗ < −0.0429. This,
in turn, is the case iff 0.4697 < σ̂2 < 1.5303. Only the lower bound is critical since we assumed
that σ̂2 < 1. As σ̂2 is a scaled χ2-distributed random variable with M degrees of freedom, the
probability of σ̂2 < 0.4697 occurring for M = 500 is 0.1693. That is, the probability that the
empirical approach provides an unstable closed-loop controller in this example is almost 17%.

From this example, it is clear that underestimation of the variance of the disturbance is directly
related to the probability of failure of the controller. In order to take this into account, we introduce
an arbitrarily-chosen confidence level β ∈ [0, 1] and a corresponding ambiguity set Â : Ω ⇒M,
which represents the uncertainty of estimators µ̂ and Σ̂. The size of A is then determined such that
P(Pw ∈ Â) ≥ 1− β. In particular, we parametrize A as first suggested by Delage and Ye (2010):

Â :=

{
Pv ∈M

∣∣∣∣ (IE [v]− µ̂)>Σ̂−1(IE [v]− µ̂) ≤ rµ(β)

IE [(v − µ)(v − µ)>] ≤ rΣ(β)Σ̂,

}
, (6)

The values of rµ(β) and rΣ(β) such that P(Pw ∈ Â) ≥ 1−β are derived in Section 3. In Section 4,
the following DR counterpart of (2) is solved

minimize
u0,u1,...

max
Pv∈Â

IE

[ ∞∑
k=1

x>kQxk + u>kRuk

]
subj. to xk+1 = A(vk)xk +B(vk)uk, k ∈ IN

x0 = x̄,

(7)

where {vk}k∈IN is a trajectory of i.i.d. copies of v. In doing so, we can finally establish m.s.s. of the
data-driven controller with high probability, by virtue of the following generalization of Theorem 2
to the DR case.

1. Detailed derivations in Coppens et al. (2019).
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Theorem 4 (DR Lyapunov stability) Consider the matrices {Âi}nwi=0, the set {wk}k∈IN consist-
ing of i.i.d. copies of a square integrable random vector w and the autonomous system xk+1 =
Â(wk)xk, with Â(w) =

∑M
i=1 Âiw

(i). Say that we have an ambiguity set with P(Pw ∈ Â) ≥ 1−β,
with Pw the true distribution of w. Then if there exists a P � 0 such that:

P − max
Pv∈Â

IE [A(v)>PA(v)] � 0, (8)

the autonomous system is e.m.s.s. with probability at least 1− β.

Proof Full proof in Coppens et al. (2019).

3. Data-driven ambiguity set estimation

We now turn to the problem of estimating the parameters rΣ(β) and rµ(β) involved in the definition
of the ambiguity set (6), given that we have M i.i.d. draws from the true distribution. These
parameters will be estimated under the following assumption on the disturbances.

Definition 5 (Sub-Gaussianity) A random variable y is sub-Gaussian with variance proxy σ2 if
IE[y] = 0 and its moment generating function satisfies

IE[exp(λy)] ≤ exp

(
σ2λ2

2

)
∀λ ∈ IR. (9)

We denote this by y ∼ subG(σ2). We say that a random vector ξ ∈ IRnw is sub-Gaussian, or
ξ ∼ subGnw(σ2), if z>ξ ∼ subG(σ2), ∀z ∈ IRnw with ‖z‖2 = 1.

Assumption 1 We assume that (i) w is square integrable; (ii) {wk}k∈IN are i.i.d. copies of w;
(iii) Σ � 0; and (iv) Σ−1/2(wk − µ) ∼ subGnw(σ2) for some σ ≥ 1.

Note that in the specific case of Gaussian disturbances, Assumption 1(iv) holds with σ2 = 1, so
no further prior knowledge on the distribution is required. Moreover, in this case the bound on
the covariance obtained in Theorem 6 can be slightly improved (Wainwright, 2019). In the case of
bounded disturbances, σ2 can be estimated in a data-driven fashion (Delage and Ye, 2010).

For the moment, we restrict our attention to obtaining concentration inequalities for moment
estimators of random vectors with zero mean and unit variance — hereafter referred to as isotropic
random vectors. We will then convert these results into ambiguity sets of the form (6) using argu-
ments from Delage and Ye (2010); So (2011). We begin by specializing the isotropic covariance
bound, derived with constants in (Hsu et al., 2012a, Lemma A.1.) based on a result by Litvak et al.
(2005) and the isotropic mean bound by (Hsu et al., 2012b, Theorem 2.1).

Theorem 6 (Isotropic covariance bound) Let ξ ∼ subGnw(σ2) be a random vector, with IE[ξ] =
0, IE[ξξ>] = Inw . Let {ξ̂i}M−1

i=0 be M independent copies of ξ and Î := 1
M

∑M−1
i=0 ξ̂iξ̂

>
i . Then

P[‖Î − Inw‖2 ≤ tΣ(β)] ≥ 1− β,

with

tΣ(β) :=
σ2

1− 2ε

(√
32q(β, ε, nw)

M
+

2q(β, ε, nw)

M

)
, (10)

where ε ∈ (0, 1/2) is chosen freely and q(β, ε, nw) :=nw log (1 + 1/ε) + log (2/β).
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Theorem 7 (Isotropic mean bound) Let {ξ̂i}M−1
i=0 be as defined in Theorem 6, and

ζ̂ := 1
M

∑M−1
i=0 ξ̂i. Then

P[‖ζ̂‖22 ≤ tµ(β)] ≥ 1− β.
where

tµ(β) :=
σ2

M
p(β, nw),

with p(β, nw) :=
(
nw + 2

√
nw log (1/β) + 2 log (1/β)

)
.

By combining the bounds in Theorems 6 and 7, we readily obtain the following result.

Theorem 8 (Ambiguity set) Let w ∈ IRnw be a sub-Gaussian random vector, with IE[w] = µ,
IE[(w − µ)(w − µ)>] = Σ and ξ = Σ−1/2(w − µ) ∼ subG nw(σ2). Let {ŵi}M−1

i=0 be independent
copies of w. Let µ̂ := 1

M

∑M−1
i=0 ŵi and Σ̂ := 1

M

∑M−1
i=0 (ŵi − µ̂)(ŵi − µ̂)> denote the empirical

estimators for the mean and the covariance matrix, respectively. Let ε, p(β, nw), q(β, ε, nw), tΣ(β/2)
and tµ(β/2) be as defined in Theorems 6 and 7. Provided that

M >

(
σ2
√

32q(β/2,ε,nw)+
√

32σ4q(β/2,ε,nw)+8σ2(1−2ε)q(β/2,ε,nw)+4σ2(1−2ε)2p(β/2,nw)

2(1−2ε)

)2

, (11)

then with probability at least 1− β,

(µ̂− µ)>Σ̂−1(µ̂− µ) ≤ rµ(β), Σ � rΣ(β)Σ̂,

with rΣ(β) := 1
1−tµ(β/2)−tΣ(β/2) and rµ(β) :=

tµ(β/2)
1−tµ(β/2)−tΣ(β/2) .

Proof Apply the procedure of (Delage and Ye, 2010, Thm. 2) to the results of Theorem 6–7.

4. Distributionally Robust LQR

We will tackle the solution of (2) for the ambiguity set given in (6) in two stages. Firstly, we extend
the result of Proposition 3 to the case where µ is known and Σ is estimated, i.e., rµ(β) = 0 and
rΣ(β) > 0. Secondly, we present the result where both the mean and the covariance are estimated.

4.1. Uncertain covariance

The case where the mean is known is interesting since we can still formulate an exact solution to
(7). This will no longer be true for the full-uncertainty case (Section 4.2).

Proposition 9 Consider that v ∈ IRnw is distributed according to an element of the set

ÂΣ :=
{
Pv ∈M | IE [(v − µ)(v − µ)>] � rΣ(β)Σ̂, IE [v] = µ

}
, (12)

where P(Pw ∈ ÂΣ) ≥ 1− β. Then applying Proposition 3 with Σ = rΣ(β)Σ̂ results in the optimal
linear controller for (7), assuming that (1) is DR mean square stabilizable, i.e., there exists aK such
that the DR Lyapunov decrease (8) holds for the closed-loop system xk+1 = (A(wk)+B(wk)K)xk.
The optimal controller is also mean square stabilizing for (1) with probability at least 1− β.

Proof The Bellman operator associated with (7) is of the same form as the one in the proof of
Proposition 3, which makes it applicable (full proof is in (Coppens et al., 2019)).
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4.2. Full uncertainty

We finally consider the more general case using the full ambiguity set Â given by (6). The general
min-max problem (7) for such sets is computationally intractable, which is why an upper bound on
the quadratic cost is minimized instead by employing results from robust control (Boyd et al., 1994;
Kothare et al., 1996). A common approach is to assume that the value function can be written in the
quadratic form V (x) = x>Px for some P � 0 and to solve the optimization problem

minimize
V (x)

IE [V (x̃)]

subj. to V (x) ≥ min
u

{
x>Qx+ u>Ru+ max

Pv∈Â
IE [V (A(v)x+B(v)u)]

}
, ∀x,

(13)

where we introduced the random initial state x̃ ∈ IRnx . The optimal cost of (13) then upper bounds
the true LQR cost of (7) for a given value of x̄ as proven in Kothare et al. (1996) for a similar setup.
We can then write (13) as an SDP using the following theorem.

Theorem 10 Let Â be an ambiguity set of the form (6). Then we can find an approximate solution
of (13) for the system (1), assuming that the initial state is given by the random vector x̃ ∈ IRnx

with IE [x̃] = 0 and IE [x̃x̃>] = Inx , by solving the following SDP.

maximize
W,V,S,L

TrW

subj. to


S rµ(β)H>1 rµ(β)H>2 ··· rµ(β)H>nw

rµ(β)H1 L
rµ(β)H2 L

...
. . .

rµ(β)Hnw L

 � 0, (14a)


W−
√

2S (AW+BV )> (ÂW+B̂V )> W>Q
1
2 V >R

1
2

AW+BV Σ̂−1
dr ⊗W

ÂW+B̂V W−
√

2L

Q
1
2W Inx

R
1
2 V Inu

 � 0, (14b)

where Hi =
∑nw

j=1[Σ̂1/2]ji(AjW + BjV ), Â = A(µ̂), B̂ = B(µ̂), Σ̂dr = rΣ(β)Σ̂. Let Ŵ and V̂
denote the minimizers of (14). The corresponding linear controller u = K̂x with K̂ = V̂ Ŵ−1 then
achieves an upper bound of the cost (13), given by IE[x̃>P̂ x̃], where P̂ = Ŵ−1. Moreover, K̂ is
mean-square stabilizing for (1) with probability at least 1− β.

Proof The proof specializes (Ben-Tal et al., 2000, Theorem 6.2.1) (see Coppens et al. (2019)).

Remark 11 Two approximations are made in Theorem 10. First, (Ben-Tal et al., 2000, Theorem
6.2.1), loosens rµ(β) by a factor of at most

√
nw. Secondly, we minimize an upper-bound of the

LQR cost instead of the cost itself. We can further decrease the closed-loop cost by using a receding
horizon controller for a given x̄, which too can be formulated as an SDP (Kothare et al., 1996; Cop-
pens et al., 2019). By contrast, the assumption in Theorem 10 ensures that the solution converges
to the nominal one as rµ(β) and rΣ(β) go to zero (Balakrishnan and Vandenberghe, 2003).

Remark 12 Invertibility of rΣ(β)Σ̂ can be guaranteed by using rΣ(β)Σ̂+λI instead of rΣ(β)Σ̂ for
some small λ, which increasing the size of the ambiguity set, introducing additional conservatism.
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Figure 1: Relative suboptimality versus
sample size for controllers. The colored area
depicts the 0.3-confidence interval around
the cost. The full line depicts the mean.

5. Numerical Experiment

We experimentally quantify the sample complexity of our approach, i.e., how many samples are
needed before the controller becomes equivalent to the nominal one based on the true Σ and µ
instead of their data-driven estimates. Consider the double integrator model with matrices:

A0 =

[
1 Ts
0 1− 0.4Ts

]
, B0 =

[
0
Ts

]
, A1 =

[
0 0
0 −Ts

]
, A2 =

[
0 0
0 0

]
, B1 =

[
0
0

]
, B2 =

[
0
Ts

]
,

where we chose Ts = 0.02. The dynamics are then given by (1) with wk an independent random
sequence of Gaussian random vectors with covariance Σ = [ 1 0

0 1 ] and mean µ = [ 0
0 ].

To estimate the sample complexity, we determine controllers satisfying (7) for Q = [ 10 0
0 1 ] and

R = 0.01. The parameters of the ambiguity set (6) are determined using Theorem 8 with β = 0.05
and ε = 1/30. Since wk are Gaussian, ξk = Σ−1/2(wk − µ) are sub-Gaussian with σ2 = 1.

The simulation setup is as follows. We compare the nominal controller, the uncertain covariance
controller (Proposition 9) and the full uncertainty controller (Theorem 10). We evaluate the expected
closed-loop cost for x̄ = [ 2 2 ]> by solving the Lyapunov equation. We start with M = 1000 to
satisfy (11). For each value of M we produce 30 realisations of both DR controllers. Figure 1
depicts confidence intervals for relative difference between closed-loop cost of the DR controllers
and the nominal controller (i.e., the relative suboptimality). The figure shows that both converge
with a rate O(1/M) to the nominal cost even though Theorem 10 only solves (7) approximately.

6. Conclusion and future work

We studied the infinite horizon LQR problem for systems with multiplicative uncertainty on both
the states and the inputs. We operate in the setting where the distributions are estimated from data.
We show that using results from high-dimensional statistics, high-confidence ambiguity sets can be
constructed, which allow us to formulate a DR counterpart to the stochastic optimal control problem
as an SDP. As a result, stability of the closed-loop system can be guaranteed with high probability.

In future work, we aim to perform an in-depth analysis of the conservatism introduced by the
proposed formulations. Furthermore, we plan to study extensions towards DR Kalman filtering.
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