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Abstract

Recent text-to-image generative models, e.g., Sta-
ble Diffusion V3 and Flux, have achieved notable
progress. However, these models are strongly re-
stricted to their limited knowledge, a.k.a., their
own fixed parameters, that are trained with closed
datasets. This leads to significant hallucinations
or distortions when facing fine-grained and un-
seen novel real-world objects, e.g., the appearance
of the Tesla Cybertruck. To this end, we present
the first real-object-based retrieval-augmented
generation framework (RealRAG), which aug-
ments fine-grained and unseen novel object gener-
ation by learning and retrieving real-world images
to overcome the knowledge gaps of generative
models. Specifically, to integrate missing mem-
ory for unseen novel object generation, we train a
reflective retriever by self-reflective contrastive
learning, which injects the generator’s knowl-
edge into the sef-reflective negatives, ensuring
that the retrieved augmented images compensate
for the model’s missing knowledge. Furthermore,
the real-object-based framework integrates fine-
grained visual knowledge for the generative mod-
els, tackling the distortion problem and improv-
ing the realism for fine-grained object generation.
Our Real-RAG is superior in its modular applica-
tion to all types of state-of-the-art text-to-image
generative models and also delivers remarkable
performance boosts with all of them, such as a
gain of 16.18% FID score with the auto-regressive
model on the Stanford Car benchmark.
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Figure 1. (a) The pipeline of text-to-image generative models. (b)
The framework of existing retrieval-augmented methods. (c) The
framework of our proposed RealRAG.

1. Introduction
Recent text-to-image generators have achieved notable
progress in image synthesis from the given textual prompts.
There are three mainstream types of generative models,
including the U-Net-based diffusion model (Rombach
et al., 2022a; Podell et al., 2023), the DiT-based diffusion
model (Xiao et al., 2024; Sun et al., 2024), and the auto-
regressive model (Esser et al., 2024; BlackForest, 2024).
Typically, these models store all their visual memory (e.g.,
the appearance of Big Ben) implicitly in the parameters
of the underlying neural network, requiring a lot of pa-
rameters(e.g., 10B). Furthermore, similar to the hallucina-
tion problem of Large Language Models (LLMs) (OpenAI,
2023; Touvron et al., 2023), the large-scale text-to-image
generative models also show the same problem. Some gen-
erated images include ghosting, distortions, and unnatu-
ral elements when generating specific real-world objects.
Therefore, these problems motivate the development of text-
to-image generation models, which can integrate external
visual knowledge (e.g., images from the web) to augment
generative realism and accuracy for fine-grained and unseen
novel object generation.
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Retrieval-augmented generation (RAG) has shown promise
in natural language processing (NLP) (Gao et al., 2023).
To enhance the specific knowledge and minimize the hal-
lucination of LLMs, a retrieval model first retrieves the
most relevant documents for the input prompts (e.g., the
questions), and then LLMs generate predictions powered by
the recalled documents. However, in text-to-image genera-
tion, these RAG methods, which rely primarily on similarity
matching, remain challenging. Specifically, as shown in
Fig. 1 (b) and (c), the candidate image (1), with the high-
est similarity score of the text prompt, fails to improve the
image generation. In contrast, candidate image (2), despite
having a lower similarity score, complements the missing
knowledge and augments the image generation. In this work,
we propose a reflective retriever trained via self-reflective
contrastive learning, aimed at retrieving images with miss-
ing knowledge instead of the most relevant one.

In this paper, we present the first real-object-based retrieval-
augmented generation framework (RealRAG), which lever-
ages real-world images to compensate for the missing knowl-
edge inherent in generative models and improve realistic
image generation. The core insight of RealRAG is to en-
hance realism and reduce hallucination in text-to-image
generative models powered by the reflective retriever, which
is trained via self-reflective contrastive learning. In ad-
dition, our proposed RealRAG demonstrates remarkable
flexibility and can be applied across diverse text-to-image
generative models, yielding significant performance gains,
e.g., a +16.18% gain with Emu (Sun et al., 2024) on the
Stanford Cars benchmark (Krause et al., 2013).

Specifically, we first generate images from the given text
prompts using the specific text-to-image generative models.
Given these generated images, we then sample the reflective
negatives in the image database by selecting images with
the highest cosine similarity of the generated images. In this
way, these sampled negatives are similar to the generated
images that store the generative models’ visual memory.
Second, we train the reflective retriever with self-reflective
contrastive learning, which utilizes text prompts as posi-
tives and trains with the sampled reflective negatives. In
this way, the well-trained retriever can recall the prompt-
relevant images also with missing knowledge for the genera-
tive models. For example, as shown in Fig. 1, our RealRAG
retrieves the image ["Cybertruck"], instead of the im-
age with highest similarity (["A truck is speeding
along the Great Wall"]), which integrates miss-
ing knowledge for generative models.

We apply our RealRAG to all types of state-of-the-art
text-to-image generative models, including U-Net-based
diffusion models (SD V2.1 (Rombach et al., 2022a), SD
XL (Podell et al., 2023)), DiT-based diffusion models (SD
V3 (Esser et al., 2024), Flux (BlackForest, 2024)), and auto-

regressive models (OmniGen (Xiao et al., 2024), Emu (Sun
et al., 2024)). Note that, our RealRAG is the first work to
build a unified RAG framework for all types of text-to-
image generative models. Our RealRAG consistently de-
livers significant performance improvements with all these
models, such as +5.77% on the Stanford Cars benchmark
with Flux (BlackForest, 2024) and +20.48% on the Ox-
ford Flowers benchmark with Emu (Sun et al., 2024). Ad-
ditionally, to evaluate the capability of unseen novel ob-
ject generation, we collect recent novel objects from news
web pages and construct human evaluations. Project page:
https://qc-ly.github.io/RealRAG-page/

2. Related Work
2.1. Text-to-Image Generation

The U-Net-based Stable Diffusion models (Rombach et al.,
2022a; Podell et al., 2023) first perform universal image gen-
eration from text prompts, which typically trained on large
scale text-image paired dataset, a.k.a., LAION 5B (Schuh-
mann et al., 2022). After the proposal of the Diffusion Trans-
former (DiT) (Peebles & Xie, 2023), some research, such
as Stable Diffusion V3 (Esser et al., 2024) and Flux (Black-
Forest, 2024; Liu et al., 2025), utilize DiT as the backbone
to develop DiT-based Diffusion Models for text-to-image
generation. Recently, with the success of auto-regressive
(AR) modeling in natural language processing (OpenAI,
2023; Touvron et al., 2023), some works have explored how
to combine auto-regressive models with diffusion models
to improve the understanding capability and further build
a unified multi-modal model for both understanding and
generation (Chen et al., 2024; Xie et al., 2024; Zhou et al.,
2024). These AR-based models, such as OmniGen (Xiao
et al., 2024) and Emu (Sun et al., 2024), also show no-
table performance on the text-to-image task. While these
methods have achieved strong performance in text-to-image
generation, they store all the knowledge in their pre-trained
parameters, which leads to hallucinations and distortions
when generating realistic objects. To address this limitation,
we propose the real-object-based RAG framework to inte-
grate missing knowledge and improve the ability to generate
realistic images.

2.2. Retrieval-augmented Generation

Retrieval-augmented generation has shown promise with
NLP (Lewis et al., 2020; Guu et al., 2020). To incorporate
external knowledge into a LLM (Gao et al., 2023; Jiang
et al., 2023b), these methods retrieve documents relevant to
inputs from an external database, subsequently, the LLM
utilizes the recalled documents as references to generate
accurate results. The external knowledge used is typically
a text database (Hashimoto et al., 2018; Khandelwal et al.,
2019; Shi et al., 2023; Lyu et al., 2024b). However, the text
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Figure 2. An overview of our RealRAG. (a) The pipeline of the real-object-based RAG. We propose the first real-object-based retrieval-
augmented generation framework, which leverages real-world images to compensate for the knowledge gap inherent in generative models
and augment realistic image generation, (b) The framework of self-reflective contrastive learning, which injects the generator’s knowledge
into the self-reflective negatives ensuring that the retrieved images compensate for the model’s missing knowledge.

database is not direct and controllable for realistic image
generation (Blattmann et al., 2022; Zheng et al., 2025). In
this paper, we conduct a vision-based, real-object-based
database, which is collected by realistic images from public
real-world datasets, including ImageNet (Deng et al., 2009),
Stanford Cars (Krause et al., 2013), Stanford Dogs (Dataset,
2011), and Oxford Flowers (Nilsback & Zisserman, 2008).
In this way, we augment the realism of the generative images
with the real-object-based database.

2.3. Contrastive Learning for Retrieval

Contrastive learning has emerged as a powerful method for
retrieval tasks, leveraging the principle of learning represen-
tations by contrasting positive and negative samples (Khosla
et al., 2020; Le-Khac et al., 2020). The approach aims to
map semantically similar data points closer in the embed-
ding space while simultaneously pushing dissimilar data
points apart. Methods such as SimCLR (Chen et al., 2020)
and MoCo (He et al., 2020) have popularized this frame-
work in vision tasks, whereas in the domain of multi-modal
retrieval, models including CLIP (Radford et al., 2021) have
demonstrated their effectiveness by aligning textual and
visual representations. Recent research has extended con-
trastive learning to various modalities, such as audio (Rad-
ford et al., 2021; Sun et al., 2023; Likhosherstov et al., 2021;
Guzhov et al., 2022; Mahmud & Marculescu, 2023; Girdhar
et al., 2023), video (Huang et al., 2023; Fang et al., 2021;
Luo et al., 2022; Xue et al., 2022; Zhu et al., 2023), point
cloud (Zhang et al., 2022; Zhu et al., 2022b; Huang et al.,
2022; Guo et al., 2023), and tactile data (Yang et al., 2024;

Lei et al., 2024), thereby enhancing cross-modal retrieval
capabilities. These methods often incorporate techniques
(e.g., hard negative mining (Kalantidis et al., 2020; Robin-
son et al., 2020) and balanced learning (Zhu et al., 2022a;
Liu et al., 2022)) to improve the quality of the learned
embedding space. Despite its success in query-document
matching, images that best match a text prompt may not be
the most valuable references for text-to-image generative
models (Zhang et al., 2021). Consequently, we propose a
self-reflective contrastive learning approach, which retrieves
images containing the missing knowledge of the generative
models rather than selecting the most relevant images.

3. Methodology
Problem Setting: Given a textual prompt T drawn from a
text space T , the text-to-image generation task aims to pro-
duce a corresponding image I ∈ I that accurately reflects
the semantics of T . Formally, we model this task as learning
a conditional distribution p(I | T ), which describes how
likely an image I is given the text T . In practice, we often
parameterize this distribution with a neural generator Gθ

(with parameters θ), yielding:

Pθ(I | T ) ≈ P (I | T ), (1)

given a new text prompt T , the learned generator Gθ gener-
ate an image:

Î ∼ Pθ

(
I | T

)
, (2)

Alternatively, one might produce a deterministic output by
taking, for example, the mode of Pθ(I | T ). In either case,
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the goal is to ensure that Î visually manifests the semantics
conveyed by T .

Overview: An overview of RealRAG is shown in Fig. 2.
Specifically, as shown in Fig. 2 (b), we first train the
reflective retriever via self-reflective contrastive learning
(Sec. 3.1). Powered by self-reflective contrastive learning,
the reflective retriever retrieves images with the generator’s
missing knowledge. Subsequently, as shown in Fig. 2 (a),
we utilize the recalled image as the reference for the re-
alistic image generation, which effectively addresses the
text-to-image generation’s hallucinations (Sec. 3.2). We
now describe these technical components in detail.

3.1. Self-reflective Contrastive Learning

We propose self-reflective contrastive learning to retrieve
useful images for the generator. Our key insight is to train
a retriever that retrieves images staying off the generation
space of the generator, yet closing to the representation of
text prompts. To this end, as shown in Fig. 2 (b), we first
generate images from the given text prompts and then utilize
the generated images as queries to retrieve the most relevant
images in the real-object-based database. These most rele-
vant images are utilized as reflective negatives. Concretely,
we denote the generator as G, given a text prompt T , we
generate image Igen and extract its feature embedding Zgen

is by:
Igen = G(T ), Zgen = Fi(Igen), (3)

where Fi is the vision encoder for extracting visual embed-
ding from input images. We then select the self-reflective
negative by ranking the images from the real-object-based
database I with the cosine-similarity. We choose the highest
one:

Ineg = argmax
Ik
obj∈I

sim
(
Fi(I

k
obj), Zgen

)
. (4)

The reflective negative, with the highest cosine-similarity
score, includes the original knowledge of the generator and
empowers the retriever to capture the real-object-based im-
ages with missing knowledge of the generator. For training
the retriever via self-reflective contrastive learning, we first
extract object feature embeddings {Z1

obj , Z
2
obj , ..., Z

n
obj} for

the real-object-based images {I1obj , I2obj , ..., Inobj} ∈ I:

{Z1
obj , Z

2
obj , ..., Z

n
obj} = Fi({I1obj , I2obj , ..., Inobj}), (5)

we select the embedding Zpos
obj of ground truth image, which

is matched with the input text prompt T , from the object
feature embeddings {Z1

obj , Z
2
obj , ..., Z

n
obj}.

Subsequently, we encode text prompt T as the query em-
bedding Zq and the reflective negative Ineg as the negative
feature embedding Zneg:

Zq = Ft(T ), Zneg = Fi(Ineg), (6)
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Figure 3. The comparison of generation space. We show the gen-
eration space of the normal RAG (left) and our RealRAG (right).

where Fi is the vision encoder and Ft is the text encoder
(As shown in Fig. 2 (b)).

We perform our self-reflective contrastive learning by using
normal in-batch negative and the reflective negative at the
same time. We calculate the similarity between the text
prompt and negatives:

Dnor
neg =

N∑
j ̸=pos

(exp(ZT
q · Zj

obj/τ)), Dref
neg = exp(ZT

q · Zneg),

(7)
where N is the training batch size, Dnor

neg is the similarity between
the text prompt and the in-batch negative, Dref

neg is the similarity
between the text prompt and the reflective negative.

Lastly, the overall loss of self-reflective contrastive learning is:

L = −log
exp(ZT

q · Zpos
obj /τ)

exp(ZT
q · Zpos

obj /τ) +Dnor
neg +Dref

neg

, (8)

where τ is a temperature hyperparameter.

Powered by self-reflective contrastive learning, the reflective
retriever integrates the missing knowledge of the generator,
augmenting the realism and accuracy of the generated im-
ages and effectively addressing the hallucination problems
in the text-to-image generation.

3.2. Real-object-based Retrieval-augmented Generation

Expanding upon our trained reflective retriever, we subse-
quently retrieve the augmented real-object-based images
Iref based on the given text prompt T for the generator:

Iref = Retriever(T, {I1obj , I2obj , ...Inobj}), (9)

where Retriever is the trained reflective retriever, and n in
the scale of real-object-base database.

We then generate image Ires based on the text prompt T
and the augmented image Iref :

Ires = G(T, Iref ), (10)

where G is the generator. Our real-object-based RAG im-
proves the knowledge of the generator and significantly
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extends the generation space for the frozen generator. As
shown in Fig. 3, powered by Eq. 8, the reference image is
distributed in the distribution space outside the generator’s
generation space and close to the text prompt embedding. In
this way, the generation space of our real-object-based RAG
can effectively expand toward the text prompt embedding.

3.3. Implementation

Our RealRAG can be flexibly implemented with different
existing generators, including U-Net-based diffusion mod-
els, DiT-based diffusion models, and auto-regressive models.
It is the first work to build a unified RAG framework for all
types of text-to-image generative models.

Real-object-based Database. We collect our real-object-
based database from wide-use real-world datasets, including
ImageNet (Deng et al., 2009), Stanford Cars (Krause et al.,
2013), Stanford Dogs (Dataset, 2011), and Oxford Flow-
ers (Nilsback & Zisserman, 2008). We use the training set
of these datasets to conduct our database.

Generator. We use existing text-to-image generative mod-
els as the generator to implement our RealRAG. Concretely,
we implement our RealRAG with the following models:
U-Net-based diffusion models (SD V2.1 (Rombach et al.,
2022a), SD XL (Podell et al., 2023)), DiT-based diffusion
models (SD V3 (Esser et al., 2024), Flux (BlackForest,
2024)), and auto-regressive models (OmniGen (Xiao et al.,
2024), Emu (Sun et al., 2024)). Specifically, for autore-
gressive models, they can directly generate images from the
image condition. For diffusion models, we utilize Control-
Net, which introduces a branch to stable diffusion, enabling
the inclusion of additional inputs, to input image-based con-
ditions. For example. First, we retrieve and sort the closest
images. Next, we input the selected images into the Con-
trolNet branch to control specific elements during the image
synthesis process.

Training Details. We train our reflective retriever based
on the pre-trained CLIP model (Radford et al., 2021). We
add a simple MLP layer at the end of the vision encoder
of the CLIP model, to map the visual embeddings outside
the generation space of the generator and close to the input
prompt embedding. We utilize the frozen text encoder from
the CLIP model as our text encoder.

4. Experiment
4.1. Datasets and Implementation Details

Datasets and Benchmarks. We evaluate our proposed
RealRAG on three fine-grained real-world image datasets,
including Stanford Cars (Krause et al., 2013), Stanford
Dogs (Dataset, 2011), and Oxford Flowers (Nilsback &
Zisserman, 2008). We use the test sets of these datasets

to validate the realism of the generated images (Sec. 4.2).
Furthermore, to validate the ability of RealRAG to generate
unseen novel objects, we also test our model on recently
introduced novel objects (Sec.4.3).

Evaluation Metrics. We employ FID, CLIP-T, and CLIP-
I to compare the visual quality and realism of generated
images from different methods. Specifically, FID measures
how closely the distribution of generated images matches
that of real images by comparing their feature statistics in
the latent space of Inception V3. CLIP-T uses CLIP model
to assess how well the generated image matches with its text
prompt, essentially quantifying text-image correspondence.
CLIP-I, on the other hand, focuses on measuring image-
image similarity through CLIP, often comparing a generated
image to a reference or target image, thereby evaluating
visual fidelity or consistency across images.

4.2. Fine-grained Object Generation

4.2.1. EXPERIMENT SETUP

To evaluate the realism of the generated images, we use the
text prompt ["A photo of a [CLASS NAME]"] for
image generation. We generate ten images for each class
to get more reliable results by multiple sampling. We use
fine-grained real-world datasets to evaluate the realism of
the generated images by calculating the FID score, CLIP-T
score, and CLIP-I score between the ground truth images
and the generated images.

4.2.2. GENERATIVE RESULT

Quantitative Results. In Tab. 1, we apply our method with
all the types of SoTA text-to-image generators. Our Real-
RAG demonstrates significant performance gains with all
these models on the three benchmarks, including an average
gain of 6.19% on the Stanford Cars, a 3.62% gain on the
Stanford Dogs, and an 8.94% gain on the Oxford Flowers.
As shown in Tab. 1, our RealRAG achieves the most sig-
nificant improvement (a 9.90% gain on average) with the
auto-regressive model, which shows the potential of our Re-
alRAG to enhance the development of the large-scale auto-
regressive model. To further evaluate the generative quality
and realism of fine-grained objects, we utilize a pre-trained
classification model (OpenCLIP (Cherti et al., 2022)) to cal-
culate the classification accuracy for the generated images.
As shown in Tab. 2, our RealRAG achieves considerable im-
provements of the classification performance, e.g., a 3.89%
gain for the auto-regressive model.

Qualitative Results. We show the qualitative results in
Fig. 4. The visual results show the ability of our RealRAG
to overcome hallucinations and significantly improve the
realism and quality of fine-grained realistic image gener-
ation. Specifically, for the autoregressive model, In the
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Table 1. Evaluation of fine-grained object generation. We report the quantitative results on the Stanford Cars (Krause et al., 2013), Stanford
Dogs (Dataset, 2011), and Oxford Flowers (Nilsback & Zisserman, 2008) benchmarks.

Type Method Stanford Cars Stanford Dogs Oxford Flowers
CLIP-I ↑ CLIP-T ↑ FID ↓ CLIP-I ↑ CLIP-T ↑ FID ↓ CLIP-I ↑ CLIP-T ↑ FID ↓

OmniGen (Xiao et al., 2024) 55.69 11.25 77.35 72.47 17.92 67.94 82.78 20.72 66.22
AR OmniGen W. Ours 57.11 14.48 74.98 78.74 18.30 63.10 84.65 20.98 54.42

Model Emu (Sun et al., 2024) 61.41 13.49 86.73 80.51 19.52 48.75 81.88 21.17 84.33
Emu W. Ours 63.07 15.30 70.55 80.39 19.60 45.04 85.52 22.42 63.85
∆ +1.54 +2.52 -9.28 +3.08 +0.23 -4.28 +2.76 +0.75 -16.14

SD V2.1(Rombach et al., 2022a) 61.48 14.16 64.99 68.80 17.69 49.60 82.97 20.76 69.17
U-Net-based SD V2.1 W. Ours 64.50 15.84 58.98 79.06 18.57 43.93 88.43 21.77 60.76

Diffusion Model SDXL (Podell et al., 2023) 59.53 13.03 61.98 77.10 18.05 49.28 81.08 19.59 55.20
SDXL W. Ours 64.71 15.16 60.95 77.79 18.31 45.31 85.63 20.92 47.41
∆ +4.10 +1.91 -3.52 +5.48 +0.57 -4.82 +5.01 +1.17 -8.10

SD V3 (Esser et al., 2024) 59.43 12.61 59.94 80.28 18.56 53.37 83.23 20.19 63.46
DiT-based SD V3 W. Ours 60.01 14.80 54.60 81.04 18.62 53.28 82.68 20.73 60.89

Diffusion Model Fux (BlackForest, 2024) 60.50 13.70 58.47 80.16 18.36 45.71 82.18 20.19 55.93
Flux W. Ours 62.81 14.46 52.28 83.53 18.64 42.25 86.18 21.46 53.32
∆ +1.45 +1.48 -5.77 +2.07 +0.17 -1.78 +1.73 +0.91 -2.59

Model Original RealRAG Original RealRAG Original RealRAG

Prompt: Borzoi Prompt: Colt's foot

Prompt: Audi 100 Wagon 1994 Prompt: Bluetick Prompt: Ball moss

Prompt: Silverbush

AR
Model

U-Net-
based 

Diffusion
Model

DiT-based 
Diffusion

Model

Real Obj.Real Obj.Real Obj.

Prompt: Audi TT Hatchback 2011

Prompt: Aston Martin Virage Convertible 2012 Prompt: Brabancon griffon

Figure 4. The visual results of fine-grained object generation. We visually compare the images generated by the original generators and
our RealRAG. We also add real-world images for reference.

prompt ["Audi TT Hatchback 2011"], the Real-
RAG model produces a highly realistic rendering of the
vehicle, capturing intricate details like the side mirrors and
headlights, which are closer to the real object compared
to the original AR model with significant hallucination in
the car’s side. For the U-Net-based diffusion model, In
prompt ["Silverbush"], RealRAG ensures the correct
flower structure and vibrant color tones, whereas the orig-
inal model struggles with maintaining fine-grained details
like petal shape. Lastly, compared with the original gen-
erator, RealRAG delivers a compelling representation of

the breed’s signature coat patterns and body posture from
the ["Bluetick"] prompt. The results demonstrate that
RealRAG generates high realism and correct objects and
show the flexible application of the SoTA generators.

4.3. Unseen Novel Object Generation

4.3.1. EXPERIMENT SETUP

To evaluate the ability to generate unseen novel objects,
we collect several recently introduced objects (e.g., the Cy-
bertruck) to form the input prompts. Specifically, we use a
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Real Objects Text-to-Image Generation Real Objects Text-to-Image Generation

Venus Flytrap

Figure 5. The visual results of unseen novel object generation.

LLM (e.g., ChatGPT) to generate prompts based on these
novel objects. For the image database, we use the images
from the Internet (Google Images), which include the novel
objects. To ensure fairness in our comparison, we conduct
both qualitative evaluations and human evaluations.

4.3.2. GENERATIVE RESULT

Qualitative Results. In Fig. 5, we present the visual com-
parison of the SoTA model Flux (BlackForest, 2024) and
Our RealRAG. The visual results demonstrate the significant
improvement in the unseen object generation of our Real-
RAG. As the case ["Cybertruck"] shows, compared
with the original result generated by Flux, our RealRAG
generates the realistic shape for the Cybertruck and also syn-
thesis the sense of ["speeding along the Great
Wall"]; As the case ["Boston Dynamics Spot"],

although the Flux can generate the sense of ["a robot
walks on mountains"], the shape and type of the
["Boston Dynamics Spot"] is inaccurate. Our Re-
alRAG can generate the correct and realistic objects, which
shows the significant improvement of our RealRAG for
unseen noval object generation.

Human Evaluation. We conducted a human evaluation
to assess the accuracy of the generated images. Data ac-
quisition primarily revolved around participants’ subjective
assessments of the generative accuracy of the unseen novel
objects. We involved 26 participants in our evaluation
(More details are included in the Appendix.). We use a 7-
point Likert scale to evaluate the accuracy of the generated
images in the human’s view. As shown in Fig. 6, we ask
participants to give a score from 1 (low accuracy) to 7 (high
accuracy) for the 4 sets of images. The results show that

7



RealRAG: Retrieval-augmented Realistic Image Generation via Self-reflective Contrastive Learning

Table 2. The classification results of fine-grained object generation.
We use the pre-trained classification model (OpenCLIP (Cherti
et al., 2022)) to test the classification accuracy of the generated
images from the three datasets. A higher accuracy indicates the
generated images are more similar to real images. We report the
average accuracy score (the full results of the three datasets are
shown in Tab. 5 of the Appendix).

Type Method Average Acc. ↑
OmniGen (Xiao et al., 2024) 35.26

Autoregressive OmniGen W. Ours 38.96
Model Emu (Sun et al., 2024) 35.81

Emu W. Ours 39.90
∆ +3.89

SD V2.1(Rombach et al., 2022a) 37.45
U-Net-based SD V2.1 W. Ours 40.23

Diffusion Model SDXL (Podell et al., 2023) 36.32
SDXL W. Ours 40.49
∆ +3.48

SD V3 (Esser et al., 2024) 36.09
DiT-based SD V3 W. Ours 39.03

Diffusion Model Fux (BlackForest, 2024) 37.29
Flux W. Ours 40.37
∆ +2.99

1

0

2

3

4

5

6

7

Set 1

Flux Ours RealRAG

Set 2 Set 3 Set 4

Figure 6. The 7-point Likert scale of the human evaluation. The
participant is asked to score the generated images from 1 (low
accuracy) to 7 (high accuracy), according to given text prompts.

all participants consistently rated the quality of RealRAG-
generated images with a mean score exceeding 5, indicating
significant performance gains compared to Flux. RealRAG
exhibited a relatively small variance across samples, high-
lighting its proficiency in unseen novel object generation.
Overall, the combination of higher mean scores and lower
variance demonstrates that RealRAG is not only better at
generating higher-realism images but also more reliable, as
participants consistently rated its outputs highly.

5. Ablation Study
To investigate and analyze the effectiveness of our pro-
posed RealRAG, we first perform an ablation study on the

Table 3. Evaluation of fine-grained object generation. We report
the quantitative results on the Stanford Cars (Krause et al., 2013).

Generator Method CLIP-I ↑ CLIP-T ↑ FID ↓
Zero-RAG 61.84 14.06 80.75

Emu (Sun et al., 2024) Normal-RAG 62.20 14.31 76.85
RealRAG 63.07 15.30 70.55

Zero-RAG 62.59 14.87 61.67
SD V2.1 (Rombach et al., 2022a) Normal-RAG 63.05 15.03 60.77

RealRAG 64.50 15.84 58.98

Zero-RAG 61.20 13.96 54.25
Flux (BlackForest, 2024) Normal-RAG 61.72 14.52 54.04

RealRAG 62.81 14.46 52.28
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Figure 7. The results present the performance comparison of Nor-
mal RAG and our RealRAG with the checkpoint from the second,
fourth, sixth, eighth, and tenth epoch.

fine-grained object generation setting. As shown in Ta-
ble 3, we compare the generative performance of three
variants: Zero-shot RAG, Normal RAG, and RealRAG.
Specifically, Zero-shot RAG is a baseline approach that em-
ploys a pre-trained CLIP model to retrieve relevant images
based on cosine similarity, whereas Normal RAG trains
the retriever via contrastive learning to retrieve the most
relevant images. We evaluate each approach using three
different generators—Emu (Sun et al., 2024) (AR model),
SDXL (Podell et al., 2023) (U-Net-based diffusion model),
and Flux (BlackForest, 2024) (DiT-based diffusion model).
The results highlight the effectiveness of our proposed self-
reflective contrastive learning. Compared with the Normal
RAG framework, RealRAG achieves substantial improve-
ments in both generation realism and accuracy. In addition,
we employ a classification model to measure the classifica-
tion accuracy of the generated images (see Table 5 in the Ap-
pendix), which further demonstrates the robust performance
of RealRAG for fine-grained, realistic image generation.

To further investigate the effectiveness of the reflective neg-
ative, we evaluate the performance of the checkpoints from
the second, fourth, sixth, eighth, and tenth epochs. As
shown in Fig. 7, while our RealRAG does not improve as
rapidly as retrieval frameworks relying solely on similarity
in the early stages of training, it ultimately surpasses the
generative bottleneck in later training stages, powered by
the reflective negative.

Lastly, the results of the t-SNE visualization in Fig. 8 re-
veal the differences between the representation spaces con-
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Ground Truth Normal RAG RealRAG

Figure 8. The t-SNE visualization of the generated images.

structed by normal RAG and our RealRAG. The visual
results demonstrate that the generative space of RealRAG
expands more in the direction of ground-truth images.

6. Discussion
Research Purpose: Different from RDMs (Rombach
et al., 2022b; Blattmann et al., 2022; Sheynin et al.,
2022; Chen et al., 2022) that use retrieval-augmented tech-
niques to train or fine-tune a diffusion model and achieve
out-of-distribution (OOD) image generation by switching
databases, our RealRAG aims to use retrieval-augmented
techniques to train or fine-tune a diffusion model and
achieve out-of-distribution (OOD) image generation by
switching databases.

Unseen novel objects: These refer to objects that appear
after the generative models and retrieval models are trained.
The generative model cannot generate these objects, and the
retrieval model can’t easily retrieve relevant references by
similarity. This is a much more challenging issue.

Hallucination When Generating Fine-Grained Objects:
Existing SoTA t2i models are pre-trained on large-scale
text-image paired datasets. As a result, they tend to produce
hallucinations, such as inaccuracy or unrealistic features,
when generating fine-grained objects. This is a problem
inherent to large generative models.

7. Conclusion
In this paper, we proposed RealRAG, the first real-object-
based retrieval-augmented generation framework. Our
RealRAG augmented fine-grained and unseen novel object
generation by learning and retrieving real-world images to
overcome the knowledge gaps of generative models. Our
RealRAG achieved remarkable performance boosts and
is compatible with all types of generative models. Addi-
tionally, we examined the potential of the RAG framework
for text-to-image generation. For future work, we will con-
tinue to explore more efficient RAG frameworks for the
text-to-image generation task and other generation tasks.

Impact Statement
This paper advances the field of machine learning, with a
particular focus on text-to-image generation. It addresses
the prevalent challenge of hallucinations and distortions
in generated images, which arise from the limited knowl-
edge stored in the fixed parameters of generative models—
an issue frequently encountered in real-world applications.
While there are potential societal implications, we feel none
need to be specifically highlighted here.
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A. Appendix
A.1. More Experimental Results

We show the full classification results of fine-grained object generation in Tab. 4. The results demonstrate that RealRAG
effectively enhances the generative quality and realism. Notably, the augment of our RealRAG is not limited to the original
generative ability of the generators. For example, although the SoTA model, Flux (BlackForest, 2024) achieves the best
performance on the Stanford Car, e.g.35.78 Accuracy score, our RealRAG also effectively enhances the generative quality
and realism (a 4.20% gain).

Table 4. The full classification results of fine-grained object generation.

Type Method Stanford Cars Stanford Dogs Oxford Flowers Average Acc. ↑
OmniGen (Xiao et al., 2024) 32.80 40.93 32.04 35.26

Autoregressive OmniGen W. Ours 37.45 44.71 34.72 38.96
Model Emu (Sun et al., 2024) 33.94 41.32 32.18 35.81

Emu W. Ours 40.24 44.33 35.13 39.90
∆ +5.48 +3.40 +2.82 +3.89

SD V2.1(Rombach et al., 2022a) 35.21 42.35 34.79 37.45
U-Net-based SD V2.1 W. Ours 39.43 46.10 35.15 40.23

Diffusion Model SDXL (Podell et al., 2023) 35.20 41.06 32.69 36.32
SDXL W. Ours 40.55 44.76 36.17 40.49
∆ +4.79 +3.73 +1.92 +3.48

SD V3 (Esser et al., 2024) 33.90 41.26 33.12 36.09
DiT-based SD V3 W. Ours 38.72 44.24 34.05 39.03

Diffusion Model Fux (BlackForest, 2024) 35.78 42.11 33.98 37.29
Flux W. Ours 39.98 45.84 35.29 40.37
∆ +4.51 +3.36 +1.12 +2.99

A.2. More Results in Ablation Study

We show the ablation study of fine-grained classification in Tab. 5. Specifically, Zero-shot RAG is the straightforward
pipeline of the RAG, which simply uses the pre-trained CLIP model to retrieve relevant images by cosine-similarity; Normal
RAG trains the retriever via contrastive learning to retrieve the most relevant images. The results show the effectiveness
of our proposed self-reflective contrastive learning. Compared with the normal RAG framework, our RealRAG achieves
significant improvements in generation realism and accuracy.

Table 5. The ablation study of fine-grained classification on the three datasets.

Generator Method Stanford Cars Stanford Dogs Oxford Flowers Average Acc. ↑
Zero-RAG 37.18 42.88 34.27 38.11

Emu (Sun et al., 2024) Normal-RAG 38.75 43.09 35.10 38.98
RealRAG 40.24 44.33 35.13 39.90

Zero-RAG 38.64 44.07 33.70 38.80
SD V2.1 (Rombach et al., 2022a) Normal-RAG 39.07 44.92 35.21 39.73

RealRAG 39.43 46.10 35.15 40.23

Zero-RAG 36.27 44.31 34.59 38.39
Flux (BlackForest, 2024) Normal-RAG 37.84 45.01 34.96 39.27

RealRAG 39.98 45.84 35.29 40.37

A.3. Details and More Results in Human Evaluation

We conducted a human evaluation to assess the realism and accuracy of the generated images. Data acquisition primarily
revolved around participants’ subjective assessments of the realism in fine-grained image generation and accuracy in unseen
novel image generation. The evaluation consists of two tasks: (1) Text-to-image matching task and (2) Real/False task. The

13



RealRAG: Retrieval-augmented Realistic Image Generation via Self-reflective Contrastive Learning

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

CASE 1 CASE 2 CASE 3 CASE 4 CASE 5 CASE 6 CASE 7 CASE 8

REAL FAKE

Figure 9. The results of the Real/fake task. Case 1,2,3,4 are generated by our RealRAG and case 5,6,7,8 are generated by the original
generators.

human evaluation procedures were approved by the ethical committee.

Participants. The evaluation involved 26 participants, of whom 69.23% were aged 18-24 and 30.77% were aged 25-34.
The gender distribution was 53.85% male and 46.15% female. Also, 57.69% of the participants had previous experience
with generative models, and 42.31% had no experience using AI generative models in the last six months.

Tasks and Measurement. We designed two tasks to evaluate the effectiveness of RealRAG for its ability to generate
fine-grained and unseen novel objects. The two tasks include: (1) Text-to-image matching task and (2) Real/False task.

• Text-to-image matching task. In this task, we collected four sets of images, and for each set, there were two images,
one was generated by the original Flux model (BlackForest, 2024), and the other was generated by our RealRAG. We
then asked the participants to rate how well the text prompt and the generative image matched via a 7-point Likert
scale. Images were presented in a random order, and the specific cases are shown in Fig. 10.

• Real/Fake task. In this task, we selected eight cases, of which, four of them are generated by original generators and
others are generated by our RealRAG. Furthermore, we asked the participants whether the images were real or fake
images (generated by AI). We show the task details in Fig. 11.

Results. We show the evaluation results of task (1) in Fig.6 of the main paper. For the task (2), we present the human-
evaluation results in Fig.9. The results show that the images generated by our RealRAG have got higher scores from the
participants. To summarize, more than 70% of the participants found our images to be realistic, which demonstrates the
strong performance of our RealRAG for realistic image generation.

B. More Visualization
B.1. Qualitative Feature Visualization

We show more t-SNE visualization results in Fig. 12, which shows that the generative space of RealRAG expands more in
the direction of ground-truth images.

B.2. Generative Results

We show more generative results for fine-grained generative results in Fig. 13. The results show the generative ability of our
RealRAG in realistic image generation.
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text: A cybertruck is speeding along the 
Great Wall.

Please review the left image and text 
carefully. 
How would you rate the matching of 
the images to the text? On a scale of 1 
(low) to 7 (high).

text: Boeing 747 (lcf) forced to land in 
the desert.

Please review the left image and text 
carefully. 
How would you rate the matching of 
the images to the text? On a scale of 1 
(low) to 7 (high).

text: The Burj Khalifa Tower is 
surrounded by greenery below.

Please review the left image and text 
carefully. 
How would you rate the matching of 
the images to the text? On a scale of 1 
(low) to 7 (high).

text: A dog wearing an apple vision pro.

Please review the left image and text 
carefully. 
How would you rate the matching of 
the images to the text? On a scale of 1 
(low) to 7 (high).

Set 1

Set 2

text: An electric air taxi (volocopter
2x) parked on the roof.

Please review the left image and text 
carefully. 
How would you rate the matching of 
the images to the text? On a scale of 1 
(low) to 7 (high).

text: DJI Avata 2 flying over the 
rainforest.

Please review the left image and text 
carefully. 
How would you rate the matching of 
the images to the text? On a scale of 1 
(low) to 7 (high).

text: Boston Dynamics “Spot” walks on 
mountains.

Please review the left image and text 
carefully. 
How would you rate the matching of 
the images to the text? On a scale of 1 
(low) to 7 (high).

text: Venus Flytrap in the desert.

Please review the left image and text 
carefully. 
How would you rate the matching of 
the images to the text? On a scale of 1 
(low) to 7 (high).

Set 3

Set 4

Figure 10. The cases in Text-to-image matching task of the human evaluation.
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Please review the left image and 
text carefully. 
How would you rate the realism of 
the images? On a scale of 1 (low) 
to 7 (high).

Case 1

Please review the left image and 
text carefully. 
How would you rate the realism of 
the images? On a scale of 1 (low) 
to 7 (high).

Case 2

Please review the left image and 
text carefully. 
How would you rate the realism of 
the images? On a scale of 1 (low) 
to 7 (high).

Case 3

Please review the left image and 
text carefully. 
How would you rate the realism of 
the images? On a scale of 1 (low) 
to 7 (high).

Case 4

Please review the left image and 
text carefully. 
How would you rate the realism of 
the images? On a scale of 1 (low) 
to 7 (high).

Case 5

Please review the left image and 
text carefully. 
How would you rate the realism of 
the images? On a scale of 1 (low) 
to 7 (high).

Case 6

Please review the left image and 
text carefully. 
How would you rate the realism of 
the images? On a scale of 1 (low) 
to 7 (high).

Case 7

Please review the left image and 
text carefully. 
How would you rate the realism of 
the images? On a scale of 1 (low) 
to 7 (high).

Case 8

Figure 11. The cases in Real/Fake task of the human evaluation. Case 1,2,3,4 are generated by our RealRAG and case 5,6,7,8 are
generated by the original generators.
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Ground Truth Normal RAG RealRAG

AR Model

U-Net-based
Diffusion

Model

DiT-based
Diffusion

Model

Stanford Car Stanford Dog Stanford Flower

Figure 12. More t-SNE visualization results of generated images.
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Original RealRAG Original RealRAG Original RealRAG

Prompt: Saluki

Prompt: Ibizan hound

Real Obj.Real Obj.Real Obj.

Prompt: Kelpie Prompt: Red ginger

Prompt: Chevrolet Monte Carlo Coupe 2007 Prompt: Great Dane Prompt: Mallow

Prompt: Chevrolet Express Cargo Van 2007 Prompt: Great masterwort

Prompt: Audi A5 Coupe 2012

Prompt: Bugatti Veyron 16.4 Convertible 2009

Prompt: Ford E-Series Wagon Van 2012

Prompt: Chevrolet Cobalt SS 2010

Prompt: Brabancon griffon Prompt: Osteospermum

Prompt: Pelargonium

Prompt: Rose

Prompt: Mexican hairless

Figure 13. More visual results of fine-grained object generation.
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C. Application Value
For existing commercial text-to-image generative models, training them is cost-prohibitive. Therefore, a pipeline is needed
to integrate real-time updated data from the internet into the generative model without any retraining, enabling the generation
of unseen novel objects. On the other hand, in specific application scenarios such as advertising creation and multi-modal
generation (Tang et al., 2023; Lyu et al., 2024a), users need generated images that meet their design requirements, while
also ensuring that products (fine-grained objects) within the image remain realistic. This requires generative models to have
the ability to generate both open-domain and fine-grained objects. Therefore, RealRAG focuses on reducing hallucinations
in large t2i generators through RAG technology, enabling open-domain generators to generate specific fine-grained objects.

Beyond text-to-image (T2I) generation itself, several downstream tasks depend on and extend the same technology, like 3D
generation (Li et al., 2024; Jiang et al., 2023a; Li et al., 2023) and video generation (Singer et al., 2022; Gu et al., 2025;
Wang et al., 2025). For example, (i) text-to-3D synthesis (Poole et al., 2022; Jiang et al., 2024a;b; Bai et al., 2023) generally
requires a strong T2I backbone, while (ii) image-to-3D reconstruction (Jiang et al., 2025; Hong et al., 2023; Tang et al.,
2024) often begins with an image created by a T2I model.
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