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ABSTRACT

Diffusion-based image editing methods have achieved remarkable advances in
text-driven image editing. The editing task aims to convert an input image with
the original text prompt into the desired image that is well-aligned with the tar-
get text prompt. By comparing the original and target prompts, we can obtain
numerous editing pairs, each comprising an object and its corresponding editing
target. To allow editability while maintaining fidelity to the input image, existing
editing methods typically involve a fixed number of inversion steps that project
the whole input image to its noisier latent representation, followed by a denoising
process guided by the target prompt. However, we find that the optimal number of
inversion steps for achieving ideal editing results varies significantly among dif-
ferent editing pairs, owing to varying editing difficulties. Therefore, the current
literature, which relies on a fixed number of inversion steps, produces sub-optimal
generation quality, especially when handling multiple editing pairs in a natural
image. To this end, we propose a new image editing paradigm, dubbed Object-
aware Inversion and Reassembly (OIR), to enable object-level fine-grained edit-
ing. Specifically, we design a new search metric, which determines the optimal
inversion steps for each editing pair, by jointly considering the editability of the
target and the fidelity of the non-editing region. We use our search metric to find
the optimal inversion step for each editing pair when editing an image. We then
edit these editing pairs separately to avoid concept mismatch. Subsequently, we
propose an additional reassembly step to seamlessly integrate the respective edit-
ing results and the non-editing region to obtain the final edited image. To system-
atically evaluate the effectiveness of our method, we collect two datasets called
OIRBench for benchmarking single- and multi-object editing, respectively. Ex-
periments demonstrate that our method achieves superior performance in editing
object shapes, colors, materials, categories, etc., especially in multi-object editing
scenarios. The project page can be found here.

1 INTRODUCTION

Large-scale text-to-image diffusion models, such as Latent Diffusion Models (Rombach et al.,
2022), SDXL (Podell et al., 2023), Imagen (Saharia et al., 2022), DALL·E 2 (Ramesh et al., 2022),
have advanced significantly and garnered widespread attention. Recently, many methods have be-
gun using diffusion models for image editing. These methods offer fine-grained control over content,
yielding impressive results that enhance the field of artistic content manipulation. We focus on text-
driven image editing, aiming to align the region of interest (editing region) with user-defined text
prompts while protecting the non-editing region. We define the combination of the editing region
and its corresponding editing target as the “editing pair”. In Fig. 1, (parrot, crochet parrot) emerges
as an editing pair when comparing the original prompt with target prompt 1. To enable editability in
the editing region while maintaining fidelity to the input image, existing text-driven image editing
methods (Tumanyan et al., 2023; Couairon et al., 2022; Hertz et al., 2022; Mokady et al., 2023;
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Figure 1: Motivation. In the process of text-driven image editing, we first inverse the original
image to progressively acquire all latents. Then, we denoise each latent to generate images under
the guidance of the target prompt. After obtaining all the images, the most optimally edited results
are selected by human. From the first and second rows, we note that different editing pairs have
unique optimal inversion steps. Moreover, we observe editing different editing pairs with the same
inversion step results in concept mismatch or poor editing, as shown in the third row.

Meng et al., 2021) typically project the original image into its noisier representation, followed by a
denoising process guided by the target prompt.

Our key finding is that different editing pairs require varying inversion steps, depending on the edit-
ing difficulties. As shown in the first and second rows in Fig. 1, if the object and target within an
editing pair are similar, it requires only a few inversion steps, and vice versa. Over-applying inver-
sion steps to easy editing pairs or insufficient steps to challenging pairs can lead to a deterioration in
editing quality. This can be even worse when multiple editing pairs exist in the user prompt, as edit-
ing these objects with the same inversion step at once can lead to concept mismatch or poor editing
in the third row of Fig. 1. However, current methods (Tumanyan et al., 2023; Couairon et al., 2022;
Hertz et al., 2022; Mokady et al., 2023; Wang et al., 2023) uniformly apply a fixed inversion step to
different editing pairs, ignoring the editing difficulty, which results in suboptimal editing quality.

To this end, we propose a novel method called Object-aware Inversion and Reassembly (OIR) for
generating high-quality image editing results. Firstly, we design a search metric in Fig. 2. This met-
ric automatically determines the optimal inversion step for each editing pair which jointly considers
the editability of the editing object of interest and the fidelity to the original image of the non-editing
region. Secondly, as shown in Fig. 3, we propose a disassembly then reassembly strategy to enable
generic editing involving multiple editing pairs within an image. Specifically, we first search the
optimal inversion step for each editing pair with our search metric and edit them separately, which
effectively circumvents concept mismatch and poor editing. Afterward, we propose an additional
reassembly step during denoising to seamlessly integrate the respective editing results. In this step, a
simple yet effective re-inversion process is introduced to enhance the global interactions among edit-
ing regions and the non-editing region, which smooths the edges of regions and boosts the realism
of the editing results.

To systematically evaluate the proposed method, we collect two new datasets containing 208 and
100 single- and multi-object text-image pairs, respectively. Both quantitative and qualitative exper-
iments demonstrate that our method achieves competitive performance in single-object editing, and
outperforms state-of-the-art (SOTA) methods by a large margin in multi-object editing scenarios.

In summary, our key contributions are as follows.

• We introduce a simple yet effective search metric to automatically determine the optimal inversion
step for each editing pair, which jointly considers the editability of the editing object of interest
and the fidelity to the original image of the non-editing region. The process of using a search
metric to select the optimal result can be considered a new paradigm for image editing.

2



Published as a conference paper at ICLR 2024

• We design a novel image editing paradigm, dubbed Object-aware Inversion and Reassembly,
which separately inverses different editing pairs to avoid concept mismatch or poor editing and
subsequently reassembles their denoised latent representations with that of the non-editing region
while taking into account the interactions among them.

• We collect two new image editing datasets called OIRBench, which consist of hundreds of text-
image pairs. Our method yields remarkable results, outperforming existing methods in multi-
object image editing and being competitive to single-object image editing, in both quantitative
and qualitative standings.

2 RELATED WORK

Text-driven image generation and editing. Early methods for text-to-image synthesis (Zhang
et al., 2017; 2018b; Xu et al., 2018) are only capable of generating images in low-resolution and
limited domains. Recently, with the scale-up of data volume, model capacity, and computational
resources, significant progress has been made in the field of text-to-image synthesis. Representative
methods like DALLE series (Ramesh et al., 2021; 2022), Imagen (Saharia et al., 2022), Stable
Diffusion (Rombach et al., 2022), Parti (Yu et al., 2022), and GigaGAN (Kang et al., 2023) achieve
unprecedented image generation quality and diversity in open-world scenarios. However, these
methods provide limited control over the generated images. Image editing provides finer-grained
control over the content of an image, by modifying the user-specified content in the desired manner
while leaving other content intact. It encompasses many different tasks, including image colorization
(Zhang et al., 2016), style transfer (Jing et al., 2019), image-to-image translation (Zhu et al., 2017),
etc. We focus on text-driven image editing, as it provides a simple and intuitive interface for users.
We refer readers to (Zhan et al., 2023) for a comprehensive survey on multimodal image synthesis.

Text-driven image editing. Text-driven image editing need understand the semantics in texts. The
CLIP models (Radford et al., 2021), contrastively pre-trained with learning on internet-scale image-
text pair data, provide a semantic-rich and aligned representation space for image and text. There-
fore, several works (Abdal et al., 2020; Alaluf et al., 2021; Bau et al., 2020; Patashnik et al., 2021)
attempt to combine Generative Adversarial Networks (GANs) (Goodfellow et al., 2020) with CLIP
for text-driven image editing. For example, StyleCLIP (Patashnik et al., 2021) develops a text in-
terface for StyleGAN (Karras et al., 2019) based image manipulation. However, GANs are often
limited in their inversion capabilities (Xia et al., 2022), resulting in an undesired change in image.

The recent success of diffusion models in text-to-image generation has sparked a surge of interest
in text-driven image editing using diffusion models (Meng et al., 2021; Hertz et al., 2022; Mokady
et al., 2023; Miyake et al., 2023; Tumanyan et al., 2023; Avrahami et al., 2022; Wang et al., 2023;
Brooks et al., 2023; Kawar et al., 2023). These methods typically transform an image into noise
through noise addition (Meng et al., 2021) or inversion (Song et al., 2020), and then performing de-
noising under the guidance of the target prompt to achieve desired image editing. Early works like
SDEdit (Meng et al., 2021) achieve editability by adding moderate noise to trade-off realism and
faithfulness. Different from SDEdit which focuses on global editing, Blended Diffusion (Avrahami
et al., 2022) and Blended Latent Diffusion (Avrahami et al., 2023) necessitates local editing by using
a mask during the editing process and restricting edits solely to the masked area. Similarly, DiffEdit
can automatically produce masks and considers the degree of inversion as a hyperparameter, fo-
cusing solely on the editing region. Prompt2Prompt (Hertz et al., 2022) and Plug-and-Play (PNP)
(Tumanyan et al., 2023) explore attention/feature injection for better image editing performance.
Compared to Prompt2Prompt, PNP can directly edit natural images. Another line of work explores
better image reconstruction in inversion for improved image editing. For example, Null-text Inver-
sion (Mokady et al., 2023) trains a null-text embedding that allows a more precise recovery of the
original image from the inverted noise. Negative Prompt Inversion (Miyake et al., 2023) replaces the
negative prompt with the original prompt, thus avoiding the need for training in Null-text Inversion.

While progress has been made, existing methods leverage a fixed number of inversion steps for
image editing, limiting their ability to achieve optimal results. Orthogonal to existing methods, we
find that superior image editing can be achieved by simply searching the optimal inversion steps for
editing, without any additional training or attention/feature injection. Our approach is completely
training-free and automatically searches the optimal inversion steps for various editing pairs within
an image, enabling fine-grained object-aware control.
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Figure 2: Overview of the optimal inversion step search pipeline. (a) For an editing pair, we
obtain the candidate images by denoising each inverted latent. (b) We use a mask generator to
jointly compute the metrics Se and Sne, and finally we obtain S by computing their average.

3 METHOD

In general, an image editing task can be expressed as a triplet ⟨Io, Po, Pt⟩, where Po is the original
prompt describing the original image Io, and Pt is the target prompt reflecting the editing objective.
In image editing, we aim to edit Io to the target image It that aligns with Pt. To achieve this, we
employ Stable Diffusion (Rombach et al., 2022), a strong text-to-image diffusion model, to enable
text-driven image editing. Specifically, Io is first inverted to Inoise using DDIM Inversion guided by
Po. Following that, Inoise is denoised to generate It guided by Pt to meet the user’s requirement.
We further define an editing pair as (Oo, Ot), where Oo and Ot denote an object in Po and its
corresponding editing target in Pt, respectively. As shown in Fig. 1, there exist multiple editing
pairs {(Oo, Ot)} given an image editing task ⟨Io, Po, Pt⟩ that have multiple editing targets.

As shown in Fig. 1, each editing pair can have a distinct optimal inversion step. Hence, using a
single inversion step for an image with multiple editing pairs might lead to poor editing and concept
mismatch. For example, the gold branch is confusingly replaced with a crochet branch at the 40th
step in the third row of Fig. 1. In Sec. 3.1, We propose a optimal inversion step search method to
automatically search for the optimal inversion step for each editing pair, and in Sec. 3.2, we propose
Object-aware Inversion and Reassembly (OIR) to solve the problems of poor editing and concept
mismatch.

3.1 OPTIMAL INVERSION STEP SEARCH

Candidate images generation. DDIM Inversion sequentially transforms an image into its corre-
sponding noisier latent representation. The diffusion model can construct an edited image Iit from
each intermediate result from inversion step i, as shown in Fig. 2 (a). This process produces a set of
images {Iit} called candidate images. Notably, from these candidate images, one can manually se-
lect a visually appealing result Ii

∗

t that aligns closely with Pt, with its non-editing region unchanged.
Its associated inversion step i∗ is defined as the optimal inversion step. Surprisingly, comparing to
the commonly used feature-injection-based image editing methods (Tumanyan et al., 2023), sim-
ply choosing a good Iit often produces a better result. A discussion on the difference between our
method and feature-injection-based image editing methods can be found in Appendix A.3.

Optimal candidate selection. Since manually choosing It can be impractical, we further devise a
searching algorithm as shown in Fig. 2 (b). To automate the selection process, we first apply mask
generator to extract the editing region mask Me and the non-editing region mask Mne from Io. By
default, we employ Grounded-SAM (Liu et al., 2023; Kirillov et al., 2023) for mask generation.
However, other alternatives can be used to obtain the editing mask, for example, we can follow
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DiffEdit (Couairon et al., 2022) or MasaCtrl (Cao et al., 2023) to generate masks from the attention
maps. For a detailed discussion of the mask generation process, please refer to Appendix A.5.

Subsequently, we propose a quality evaluation metric based on two criteria: Se, the alignment be-
tween the editing region of the target image It and the target prompt Pt; and Sne, the degree of
preservation of the non-editing region relative to the original image Io.

For the first criterion regarding the editing region, we utilize CLIP score (Hessel et al., 2021) to
assess alignment:

Se(It, Pt,Me) = normalize(
CLIPimage(It, Me) · CLIPtext(Pt)

∥CLIPimage(It, Me)∥2 · ∥CLIPtext(Pt)∥2
), (1)

where CLIPimage(It, Me) and CLIPtext(Pt) are the extracted editing region image feature and
text feature with CLIP (Radford et al., 2021). normalize(·) is the min-max normalization. The
normalization formula is given by: ({Se}i −min{Se})/(max{Se}−min{Se}), {Se} denotes the
complete set of Se values obtained from all candidate images, i denotes the index of the image in
candidate images. Insufficient inversion can restrict the editing freedom while too much inversion
can lead to corrupted results. Thus, we observe that Se first rises then drops as the inversion step
increases.

To measure the similarity between the non-editing regions of It and Io, we employ the negative
mean squared error:

Sne(It, Io,Mne) = normalize(−∥ (It − Io)⊙Mne∥22), (2)

where ⊙ denotes the element-wise product, Mne represents the non-editing region mask. Sne usu-
ally decreases as inversion step grows, since the inversion process increases the reconstruction diffi-
culty of the non-editing region. The search metric is simply an average of Se and Sne:

S = 0.5 · (Se + Sne), (3)

where S is the search metric. As shown in Fig. 2 (b), we define the inversion step that has the highest
search metric as the optimal inversion step.

Acceleration for generating candidate images. We notice that the sequential steps in generating
multiple candidate images in Fig. 2 (a) are independent, and the varying number of steps make
parallelization challenging. Consequently, we propose a splicing strategy over the denoising process.
Firstly, we pair denoising processes of different steps to achieve equal lengths. In this way, denoising
processes of the same length can proceed simultaneously for parallel acceleration, as there is no
dependency between denoising processes. This strategy is detailed in Appendix A.4.

3.2 OBJECT-AWARE INVERSION AND REASSEMBLY

The optimal inversion search can be performed for each editing pair, providing us great flexibility in
multi-object editing tasks. In short, to solve concept mismatch and poor editing, we disassemble the
image to add different inversion noise according to the optimal step for each region and reassemble
the noised regions at the corresponding stage.

Disassembly. From the original and target prompts, we get a sequence of editing pairs {(Oo, Ot)k}.
For preparation, we replace the entity Ok

o in Po with Ok
t for each pair in {(Oo, Ot)k}, generating a

sequence of guided prompts {P k
t }, as shown in Fig. 3 (a). Then, we feed the original image and the

guided prompts into the optimal inversion step search pipeline to obtain the optimal inversion step
i∗k for all editing pairs, as illustrated in Fig. 3 (b). Here, each guided prompt is treated as the Pt for
the optimal inversion step search pipeline. Subsequently, we use the guided prompt for denoising of
each editing pair, as depicted in Fig. 3 (c). Moreover, the optimal inversion step searching processes
for distinct editing pairs are independent. In a multi-GPU scenario, we can run the step searching
processes for different editing pairs in parallel on multiple GPUs, achieving further acceleration.

The disassembly process segregates the editing processes of different editing pairs, effectively cir-
cumventing concept mismatch. Simultaneously, this isolated denoising allows each editing pair to
employ the latent from its respective optimal inversion step, thus avoiding poor editing.

Reassembly. In this process, given the inversion step for each editing pair, we edit and integrate
the regions into the final result, as illustrated in Fig. 3 (c). We also assign an inversion step for the
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 Original Prompt(Po): a dog sitting next to a gift
------------------------------------------------------
 Target Prompt(Pt): ... cat ... cake ...
 Editing Pairs: (dog, cat), (gift, cake)
------------------------------------------------------
 Guided Prompt(cat): ... cat ... gift ...
 Editing Pair:  (dog, cat)
------------------------------------------------------
 Guided Prompt(cake): ... dog ... cake ...
 Editing Pair:  (gift, cake)

Figure 3: Overview of object-aware inversion and reassembly. (a) We create guided prompts for
all editing pairs using Po and Pt. (b) For each editing pair, we utilize the optimal inversion step
search pipeline to automatically find the optimal inversion step. (c) From each optimal inversion
step, we guide the denoising individually using its guided prompt. We crop the denoised latent of the
editing regions and splice them with the inverted latent of the non-editing region’s at the reassembly
step. Subsequently, we apply a re-inversion process to the reassembled latent and denoise it guided
by Pt.

non-editing region named reassembly step ir, indicating the editing regions reassemble at this step.
Specifically, for the k-th editing region, we start from Iiknoise, the noised image at the optimal inver-
sion step ik, and use the guided prompt P k

t to denoise for ik − ir steps. This ensures the resulting
image Iirk will be at the same sampling step as the non-editing region Iirnoise. To reassemble the
regions, we paste each editing result to Iirnoise to get the reassembled image Iirr at step ir. We found
that for most images, setting the reassembly step to 20% of total inversion steps yields satisfactory
outcomes. To enhance the fidelity of the editing results and smooth the edges of the editing region,
instead of directly denoise from Iirr , we introduce another noise adding process called re-inversion.
Inspired by (Xu et al., 2023; Meng et al., 2023; Song et al., 2023), this process reapplies several
inversion steps on the reassembled image Ir. In our experiments, the re-inversion step ire is also set
to 20% of the total inversion steps, as we empirically found that it performs well for most situations.
Lastly, we use the target prompt Pt to guide the denoising of the re-inversion image Iir+ire

r , facil-
itating global information fusion and producing the final editing result. Compared with previous
methods, our reassembled latent merges the latents denoised from the optimal inversion steps of all
editing pairs, along with the inverted latent from the non-edited region. This combination enables us
to produce the best-edited result for each editing pair without compromising the non-editing region.

4 EXPERIMENTS

We evaluate our method both quantitatively and qualitatively on diverse images collected from the
internet and the collection method can be found in Appendix A.1. The implementation details of
our method can be found in Appendix A.2. Since single-object editing is encompassed in multi-
object editing, we mainly present the experimental results on multi-object editing. Detailed results
on single-object editing can be found in Appendix A.11.

4.1 MAIN RESULTS

Compared methods. We make comparisons with the state-of-the-art (SOTA) image editing meth-
ods, including DiffEdit (Couairon et al., 2022), Null-text Inversion (Mokady et al., 2023), Plug-and-
Play (PNP) (Tumanyan et al., 2023), and the mask-based stable diffusion inpainting (SDI)1.

1https://huggingface.co/runwayml/stable-diffusion-inpainting
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Figure 4: Qualitative comparisons. From top to bottom: original image, our method (OIR),
PNP (Tumanyan et al., 2023), Stable Diffusion Inpainting, DiffEdit (Couairon et al., 2022), Null-
text Inversion (Mokady et al., 2023). The texts at the top of the images represent editing pairs.

Evaluation metrics. Following the literatures (Hertz et al., 2022; Mokady et al., 2023), we use
CLIP (Hessel et al., 2021; Radford et al., 2021) to calculate the alignment of edited image and target
prompt. Additionally, we use MS-SSIM (Wang et al., 2003) and LPIPS (Zhang et al., 2018a) to
evaluate the similarity between the edited image and the original image.

Qualitative comparison. We show some qualitative experimental results in Fig. 4, and additional
results can be found in Appendix A.11. From our experiments, we observe the following: Firstly,
SDI and DiffEdit often produce discontinuous boundaries (e.g., the boundary between the tank and
the grassland in Fig. 4 (b), and the desk in Fig. 4 (g)). Secondly, feature injection methods (PNP
and Null-text Inversion) show better editing results in certain scenarios (e.g., the Lego plant in Fig. 4
(g)). However, they overlook the variations in inversion steps for different editing pairs, leading to
poor editing (e.g., the foam in the Fig. 4 (e) and the monitor in Fig. 4 (f) and the water in Fig. 4
(h) are left unedited). Moreover, they face serious concept mismatch, e.g., the color and texture of
the “colorful strew hat” in Fig. 4 (c) is misled by the tiger’s skin. Thirdly, our approach can avoid
concept mismatch, since we edit each editing pair individually by disassembly (e.g., the tiger and
the colorful hat in Fig. 4 (c)). In addition, reassembly in our method can edit non-editing region,
e.g., the shadow in the background changes when the leaves turn into a balloon.

Quantitative comparison. We conducted quantitative analyses on our multi-object editing dataset.
As illustrated in Tab. 1, we achieve state-of-the-art outcomes on CLIP score, surpassing other meth-
ods. Notably, our results show a significant improvement over the previous SOTA methods, PNP.
Besides, our result on MS-SSIM is highly competitive, though it’s marginally behind DiffEdit and
PNP. It’s worth noting that MS-SSIM primarily measures the structural similarity between the output
and input images and may not always correlate with the quality of the edit. As the qualitative ex-
periments reveal, DiffEdit and PNP occasionally neglects certain objects, leaving them unchanged,
which inadvertently boosts the MS-SSIM score.
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Figure 5: User study results.
Users are asked to select the best
results in terms of the alignment to
target prompts and detail preserva-
tion of the input image.

CLIP score ↑ MS-SSIM ↑ LPIPS ↓
Ours 30.28 0.653 0.329

Plug-and-Play 28.45 0.658 0.359
SD Inpainting 26.87 0.575 0.398

DiffEdit 20.98 0.736 0.195
Null-text Inversion 28.02 0.651 0.357

Table 1: Quantitative evaluation. CLIP score measures the
alignment of image and text, while MS-SSIM and LPIPS
evaluate the similarity between the original and the edited
images.

original image

(blue sky, sky with sunset), optimal inversion step=41

(lighthouse, rocket taking off), optimal inversion step=25

(sea, grassland), optimal inversion step=48

25 30 35 40 45 50

target image

Inversion 
Step

Figure 6: Visualization of the search metric. The images on the right represent the candidate
images obtained using the search metric for each editing pair. In the bottom-left corner, curves are
plotted with its x-axis representing the inversion step and the y-axis indicating the search metric S.

User study. We selected 15 images from the collected multi-object dataset for user testing, and
we compared our OIR with SDI, DiffEdit, PNP, and Null-text Inversion. The study included 58
participants who were asked to consider the alignment to the target prompt and preservation of
details of the original image, and then select the most suitable image from a set of five randomly
arranged images on each occasion. As can be seen from Fig. 5, the image generated by OIR is the
favorite of 66.7% of the participants, demonstrating the superiority of our method. An example of
the questionnaire can be found in Appendix A.11.

4.2 VISUALIZATION OF THE SEARCH METRIC

We visualize the candidate images and their search metric in Fig. 6 to gain a clearer understanding of
the trend of the search metric S. It’s evident that each editing pair has its own optimal inversion step,
with significant variations between them. For instance, the (sea, and grassland) perform optimally
between steps 45 and 50. Meanwhile, the (lighthouse, rocket taking off) is most effective around
the 25th step, but experience significant background degradation after the 35th step. As shown in
the curves in Fig. 6, the optimal inversion step selected by our search metric aligns closely with
the optimal editing results, showcasing the efficacy of our approach. In addition, in the curves of
each editing pair, we observe a trend that the search metric first increases and then decreases as
the inversion step increases. The reasons are as follows: When the inversion step is small, the
background changes slightly, making editing region alignment with the target prompt the dominant
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factor in the search metric. As the inversion step grows, the edited result aligns well with the target
prompt, amplifying the influence of background consistency in the search metric. More visualization
results can be found in Appendix A.11.

(leaves, a balloon)
(wooden framed, self-
portrait of Van Gogh)

w/o re-inversionOurs(house, church)
(a row of tables, a tank)

Original Image
w/o re-inversion

w/o reassembly step

(a) (b) (c) (d)

premature
reassembly

Figure 7: Ablations for OIR. The images and texts on the far left are the original images and their
editing pairs. The remaining images represent the results after ablating the OIR. The editing effect
within the red box is poor.

4.3 ABLATION STUDY

As shown in Fig. 7, we conduct ablation experiments on each module in the OIR. Initially, we
set the reassembly step to a significantly large value, essentially merging editing pairs at an early
stage. As observed in Fig. 7(d), mismatch emerge between different concepts, such as the area
designated for the house being overtaken by the trees in the background. Additionally, as depicted
in Fig. 7(b), the image edges become notably rough, unrealistic, and contain noise, when re-inversion
is omitted. Without re-inversion, different regions are denoised independently, leading to a weaker
representation of the relationships between them. If neither is added, not only the concept mismatch,
but the edges are sharp and noisy, as shown in Fig. 7(c).

5 CONCLUSION AND FUTURE WORK

We have proposed a new search metric to seek the optimal inversion step for each editing pair, and
this search method represents a new paradigm in image editing. Using search metric, we present
an innovative paradigm, dubbed Object-aware Inversion and Reassembly (OIR), for mulit-object
image editing. OIR can disentangle the denoising process for each editing pair to prevent concept
mismatch or poor editing and reassemble them with the non-editing region while taking into account
their interactions. Our OIR can not only deliver remarkable editing results within the editing region
but also preserve the non-editing region. It achieves impressive performance in both qualitative
and quantitative experiments. However, our method requires additional inference time for optimal
inversion step search, and the effectiveness of our approach on other generic editing tasks, such
as video editing, remains to be verified. Furthermore, exploring the integration of OIR with other
inversion-based editing methods is also an area worth investigating. We consider addressing these
issues in future work.
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A APPENDIX

A.1 DATA COLLECTION

To assess the effectiveness of real-world image editing, we collect two datasets by carefully select-
ing images from various reputable websites, namely Pexels 2, Unsplash 3, and 500px 4. We use
the first dataset to test the ability for single-object editing of the search metric, including animals,
vehicles, food, and more. The second dataset is created to evaluate the method’s multi-object editing
capabilities. Each photo in this dataset contains two editable objects. We also designed one or more
prompts for each image to test the editing effectiveness. The images resize to 512x512 pixels.

A.2 IMPLEMENTATION DETAILS

We use Diffusers5 implementation of Stable Diffusion v1.4 6 in our experiments. For DDIM Inver-
sion, we used a uniform setting of 50 steps. Our method employs the simplest editing paradigm,
consisting of first applying DDIM Inversion to transform the original image into a noisy latent, and
then conducting denoising guided by the target prompt to achieve the desired editing effect. We
employ the CLIP base model to compute the CLIP score as outlined by (Hessel et al., 2021) for
our search metric, and utilize the CLIP large model for quantitative evaluation. Following (Miyake
et al., 2023), we set the negative prompt as the original prompt for the denoising process throughout
our experiments. We use Grounded-SAM7 to generate masks. We use our search metric to perform
single-object editing and compare with Plug-and-Play (PNP) (Tumanyan et al., 2023), Stable Diffu-
sion Inpainting (SDI)8, and DiffEdit (Couairon et al., 2022). For multi-object editing, we compare
our method to PNP, SDI, DiffEdit, and Null-text Inversion (Mokady et al., 2023), which can directly
support multi-object editing.

In the single-object editing experiments, the parameters of PNP9 were kept consistent with the de-
fault values specified in the code. DiffEdit10 utilized the default parameters from the diffusers library.
SDI utilized the code from the Diffusers. The random seed is set to 1 for all experiments.

In the multi-object editing experiments, PNP can easily be extended to generalized multi-object
editing scenarios. For SDI, we consider three approaches to extend it to multi-object scenarios.
Method 1 uses a mask to frame out all editing regions and use a target prompt to guide the image
editing. In Method 2, different masks are produced for different editing regions. These regions
then utilize guided prompts for directed generation. Subsequently, after cropping, the results are
seamlessly merged together. In the third approach, we substitute the guided prompt from Method 2
with Ot specific to each editing pair. Method 3 is used in Fig. 4 because it has the best visual effects.
All our experiments are conducted on the GeForce RTX 3090.

A.3 SCHEMATIC COMPARISON

The automatic image selection through search metric is a new image editing paradigm, which is
theoretically similar to the feature-injected-based image editing method. We use the most repre-
sentative PNP among feature-injected-based image editing methods as an example. In the scenario
of 50 steps of DDIM Inversion, PNP will select the latent after 50 steps of inversion, as shown in
Fig. 8 (a). At this time, latent is the most noisey and has the greatest editability. If we directly
denoise the latent, it will severely destroy the layout of the original image. To solve this problem,
PNP reduces the editing freedom by injecting features. Compared with PNP, our search metric in
Fig. 8 (b) automatically selects the most suitable latent by controlling the number of inversion steps
to achieve editing fidality and editability.

2https://www.pexels.com/zh-cn/
3https://unsplash.com/
4https://500px.com/
5https://github.com/huggingface/diffusers
6https://huggingface.co/CompVis/stable-diffusion-v1-4
7https://github.com/IDEA-Research/Grounded-Segment-Anything
8https://huggingface.co/runwayml/stable-diffusion-inpainting
9https://github.com/MichalGeyer/pnp-diffusers

10https://huggingface.co/docs/diffusers/api/pipelines/diffedit
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Figure 8: Left: the process of the feature injection method. Right: the process of our search metric.

A.4 ACCELERATION FOR GENERATING CANDIDATE IMAGES

t
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(a) Serial Denoise Methods

(b) Parallel Denoise Methods

(c) Parallel Denoise method Extends To 51-Step Denoise

Figure 9: The funnel shape represents the denoising process, while the vertical bold lines represent
the operations of changing the latent and changing the timestep. (a) Schematic for generating all
target images. (b) Our proposed method for implementing parallel generation of all target images.
(c) Extending the methodology to the 50-step DDIM Inversion.

As shown in Fig. 9 (a), generating candidate images is a serial process and there is no interde-
pendence in different denoise processes. We leverage this characteristic to propose an acceleration
method for generating candidate images, illustrated in Fig. 9 (b). This method involves equalizing
the length of denoise operations and introducing “change latent” and “change timestep” operations
at the junctions. By denoising all latents simultaneously, we will change the generation speed of
candidate images to the same speed as generating a picture. An extension of our approach, tailored
to the context where DDIM Inversion spans 50 steps, is shown in Fig. 9 (c).

A.5 GENERATING MASK AND VISUAL CLIP FEATURE

We utilize the Grounded-SAM (Liu et al., 2023; Kirillov et al., 2023) to generate masks of the editing
regions and we will use these masks to compute the CLIP score (Hessel et al., 2021). The detailed
process is depicted in Fig. 10 (a), and examples of the segmentation result is presented in Fig. 11.
Since only the object features within the mask region are of interest, a self-attention mask is applied
to restrict the feature extraction of CLIP vision model. The mask is resized to match the number of
patches in CLIP and is then transformed into an attention mask as depicted in Fig. 10 (b). Finally, it
is fed into the self-attention of the CLIP vision model for interaction with the original image.
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Origin Prompt: a cat wearing a straw hat is lying on the carpet
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Figure 10: Left: the process of generating editing region mask. Right: the process of generating
CLIP’s self-attention mask through object mask.
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Figure 11: Segmentation masks for images in Fig. 4.

A.6 COMPARISON OF EDITING SPEED

Method Ours OIR
(Multi-GPU)

Ours OIR
(Single-GPU)

Null-text
Inversion Plug-and-Play Stable Diffusion

Inpainting DiffEdit

Average time cost 155s 298s 173s 224s 6s 15s
Maximum GPU

usage 19.75 GB 19.75 GB 22.06 GB 7.31 GB 10.76 GB 13.51 GB

Table 2: Editing speed and maximum GPU usage of different editing methods in multi-object
editing.

We evaluate the speed of diverse editing techniques applied to a multi-object dataset using the
GeForce RTX 3090, with the results detailed in Table 2. We ignore the time overhead for pre- and
post-processing, such as model loading and file reading, concentrating primarily on computational
costs. “Time cost” denotes the expended time on editing an image, and “Maximum GPU usage”
represents the peak GPU utilization by a single GPU during the editing process. Our OIR implemen-
tation uses the acceleration scheme in Appendix A.4. In Tab. 2, OIR (Multi-GPU) indicates running
OIR on two GPUs, while OIR (Single-GPU) runs the same process on a single GPU, searching the
optimal inversion step for different editing pairs sequentially. We use the default hyperparameters
for Null-text Inversion (NTI), Plug-and-Play (PNP), and DiffEdit, using their open-source codes.
We can observe that, although OIR is slower than NTI and PNP on a single GPU, our method ex-
cels in editing capability compared to these methods. Additionally, the additional time overhead is
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Figure 12: Compare the impact of different mask generators in the search metric on editing results.

within an acceptable range. Moreover, our method can be accelerated significantly when running on
multi-GPUs, outperforming NTI and PNP in speed, where NTI and PNP do not have clear solutions
that can be accelerated on multi-GPU due to the temporal dependency between the denoise steps.

A.7 COMPARISON OF DIFFERENT MASK GENERATORS

We compare the influence of different mask generators on OIR, as shown in Fig. 12. During our
testing, we employ two types of mask generators. The first approach is the Grounded-SAM method
within the segment model. The second approach involves extracting masks using the attention map
from Stable Diffusion, following methods like DiffEdit (Couairon et al., 2022) and MasaCtrl (Cao
et al., 2023). Specifically, We employ the mask extraction method from DiffEdit, which eliminates
the need for introducing an additional model. The first line in Fig. 12 reveals a notable accuracy loss
in the mask extracted from the attention map compared to the one extracted by Grounded-SAM.
Nevertheless, OIR consistently produces excellent editing results with these sub-optimal masks,
indicating the robustness of our method across various mask generators. Moreover, as seen from the
second line in Fig. 12, our method performs well when using the mask extracted from the attention
map. Thus, our approach is not reliant on the segment model, highlighting its robustness in handling
different masks and producing plausible editing results.

A.8 THE COMBINATION OF SEARCH METRIC AND OTHER INVERSION-BASED IMAGE
EDITING METHODS

Our search metric can be used in conjunction with other inversion-based image editing methods.
Here we use the fusion of Null-text Inversion (NTI) Mokady et al. (2023) and the search metric as an
example. In NTI, the “cross replace step” is a crucial hyperparameter that determines the proportion
of feature injection. A higher value for the “cross replace step” retains more of the original image
information, while a lower value allows for more freedom in editing. In the NTI’s open-source
code, the “cross replace step” is set to 0.8. There are multiple ways to combine the search metric
and NTI. The first approach is to fix the inversion step and use the search metric to find the optimal
“cross replace step”. The second approach is to fix the “cross replace step” and use the search
metric to find the optimal inversion step. The third approach involves simultaneously searching for
both the “cross replace step” and inversion steps. Fig. 13 shows the experimental results for the first
alternative. From the results in the first row, it is clear that the “cross replace step” in the official code
fails to transform the wooden house into a glass house. By contrast, by exploring the parameters
of the search metric, we can achieve improved editing results. As can be seen from the second
row in Fig. 13, it is evident that the “cross replace step” varies significantly for different editing
tasks, making manual adjustment impractical. Therefore, the search metric is highly valuable in this
context. Additionally, the search metric can be used as an ensemble learning approach. For example,
if three editing methods are applied simultaneously, each producing different editing results, the
search metric can be used to select the optimal result as the final editing outcome.
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wooden house -> glass house

dumplings -> fry rice

Cross replace step

0.4 0.5 0.8 0.9

Cross replace step in official code 

Cross replace step searched by search metric

Figure 13: The combination of Search Metric and Null-text Inverison.

Figure 14: The distribution of optimal inversion steps in multi-object dataset.

A.9 THE DISTRIBUTION OF OPTIMAL INVERSION STEPS IN MULTI-OBJECT DATASET

To determine the distribution of optimal inversion steps in images, we use the search metric to find
the optimal inversion steps for 200 editing pairs in 100 images. The results of these editing pairs
are shown in Fig. 14. This figure illustrates the number of optimal inversion steps on the horizontal
axis for multi-object images, while the vertical axis represents the number of images corresponding
to each optimal inversion step. From Fig. 14, it is clear that different editing targets require different
optimal inversion steps. We notice that larger optimal inversion steps are necessary when altering
backgrounds or objects with significant shape changes, such as the sky or the ground. Conversely,
scenarios with smaller inversion steps typically involve objects and targets with similar shapes.
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Figure 15: Our OIR vs. Null-text Inversion with Grounded-SAM.

A.10 OIR VS. NULL-TEXT INVERSION WITH GROUNDED-SAM

Null-text Inversion (NTI) (Mokady et al., 2023) is combined with Prompt-to-Prompt (P2P) (Hertz
et al., 2022) by default, which utilizes the attention map to extract masks and improve background
preservation, allowing for local edits. We replace the mask generation method with Grounded-SAM
to examine whether a precise mask extractor would enhance the editing effectiveness of NTI. In
Fig. 15, columns a, b, and c use the word swap with local edit approach from P2P. Due to the
different lengths of the original prompt and target prompt, columns d, e, and f in Fig. 15 utilize the
prompt refinement with local edit method from P2P. From columns a and d in Fig. 15, we notice
that NTI with Grounded-SAM fails to preserve the layout information of the original image. From
column b, it is evident that NTI cannot effectively address the concept mismatch. From columns c,
e, and f in Fig. 15, it can be seen that NTI fails to overcome the issue of poor editing. The main
reason for the poor performance is that NTI does not take into account that different editing pairs
for the same image should have distinct optimal inversion steps. What’s more, OIR is training-free,
while NTI requires additional training.

A.11 ADDITIONAL RESULTS

CLIP score ↑ MS-SSIM ↑ LPIPS ↓
Search Metric 27.49 0.719 0.215

Plug-and-Play (Tumanyan et al., 2023) 27.39 0.680 0.293
Stable Diffusion Inpainting 27.36 0.706 0.180

DiffEdit (Couairon et al., 2022) 21.23 0.726 0.200

Table 3: Quantitative evaluation for search metric on single-object editing. We use CLIP (Hessel
et al., 2021; Radford et al., 2021) to calculate the alignment of image and text, and use MS-SSIM
(Wang et al., 2003) and LPIPS (Zhang et al., 2018a) to evaluate the similarity between the target
image and the original image.

We compared the single-object editing capabilities of our search metric with the state-of-the-art
(SOTA) method, as shown in Fig. 16. We have provided quantitative metrics for our single-object

18



Published as a conference paper at ICLR 2024

Origin 
image

Ours

PNP

DiffEdit

Stable 
Diffusion 
Inpainting

(Banana leaf, 
broccoli) (bird, flamingo) (buggy, jeep) (Cat, panda) (Fried rice, cake) (horse, wooden 

horse)
(Rubik's cube, 

pine cone)
(cone, birthday 

cake)

Figure 16: Qualitative comparison on the search metric.

dataset in Tab. 3, and it’s evident that our method is comparable to the current SOTA approach.
Simultaneously, we display numerous OIR results on the multi-object dataset, as depicted in Fig. 17
and Fig. 18. The comparison between OIR and SDI’s three methods is shown in Tab. 4. Addition-
ally, we have included some search metric visualization experiments, as presented in Fig. 19. The
visualization of the optimal results for different editing pairs in Fig. 4 can be seen in Fig. 20. Fig. 21
displays our user study questionnaire form.

CLIP score ↑ MS-SSIM ↑ LPIPS ↓
OIR 34.98 0.653 0.329

Stable Diffusion
Inpainting (Method1) 32.97 0.516 0.420

Stable Diffusion
Inpainting (Method2) 32.02 0.581 0.386

Stable Diffusion
Inpainting (Method3) 32.16 0.575 0.398

Table 4: Quantitative evaluation for OIR with Stable Diffusion Inpainting on multi-object
editing. We use CLIP (Hessel et al., 2021; Radford et al., 2021) to calculate the alignment of image
and text, and use MS-SSIM (Wang et al., 2003) and LPIPS (Zhang et al., 2018a) to evaluate the
similarity between the target image and the original image.
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(Cat, owl) 
(dog, golden retriever)

(bee, butterfly) 
(a green and red leafy basket, parrot)

(Dog, penguin) 
(Christmas cart, cardboard box of presents)

(book, towel) 
(Wooden table, gold table)

(dumplings, fry rice) 
(chopsticks, knife)

(bird, parrot) 
(tree, bamboo)

(car, cabriolet) 
(Wooden house, glass house)

(lighthouse, rocket taking off) 
(blue sky, sky with sunset)

(fork, scoop) 
(steak, cup of coffee)

(pickup, rusty pickup) 
(green trees, yellow trees)

(van, Lego van) 
(building, ancient roman architecture)

(book, newspaper) 
(Wooden floor, marble floor)

(pancake, cake) 
(milk, coffee)

(shoes, boots) 
(wooden floor, carpet)

(cigarettes, noodles) 
(spoon, makeup brush)

(tulips, balloons) 
(stormy sky, starry sky)

(lighthouse, rocket) 
(rocks, ship)

(leaves, clipart lollipop) 
(Wooden framed decorations, portrait 

of the Statue of Liberty)

(Cylindrical hay bale, Swiss roll) 
(ground, lavender)

(tall grass, lavender) 
(flowers, a bunch of roses)

(asphalt road, railway track) 
(white sky, a sky like The Starry 

Night of Vincent van Gogh)

(astronaut, Iron Man) 
(glass sphere surrounded by rings, UFO)

(full moon, bloody eyeball) 
(water, blazing fire)

(shack, castle) 
(blue sky, Milky Way sky)

(wooden chair, golden chair) 
(green grass, wooden floor)

(astronaut, mecha robot) 
(pink cloud, spaceship)

(lone tree, full moon) 
(sun flower, crescent moon)

(TV, TV playing a cartoon picture) 
(bench, crochet bench)

(rocks, cakes on a picnic mat) 
(grass of hilltop, lavender field)

(rabbit, fox) 
(daisies, roses)

(cat, empty) 
(carpet, wooden floor)

(cat, crochet cat) 
(glass, golden cup)

(cat, duck) 
(piano, brick wall)

(skull, Captain America’s head) 
(book, wooden box)

(cat, bird) 
(bean bag chair, pumpkin)

(rabbit, origami rabbit) 
(book, newspaper)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j) (k) (l) (m)

Figure 17: Additional qualitative results for OIR. It’s evident that our method can edit not only
objects but also backgrounds, including the sky and ground, and facilitate style transfer. Examples
like (b, k), (b, m), (c, l), (c, m), (d, m) involve background editing, (c, k) encompasses seasonal
editing, and (f, j) achieves style transfer.
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(monkey, tiger) 
(stone pillar, wooden stake)

(wooden boat, Lego boat) 
(green lake, green furry blanket)

(wooden boat, white spacecraft) 
(blue sea, sky with a few stars)

(metal toy car, wooden toy car) 
(gray ground, gray furry carpet)

(man in black clothes and a helmet, motorcycle) 
(man wearing a Spider-Man mask, Lego 

motorcycle)
(toy truck, Lego truck) 

(gray ground, Lego wooden floor)
(sports car, crochet sports car) 

(sand dunes, rocks)
(filament, white rose) 

(book, gift box)

(big tree, broccoli) 
(grass, green grass field)

(grassy field, field full of snow) 
(Mountains and trees, mountains and trees in 

winter)

(small plant, Lego plant) 
(human hand, flowerpot)

(log cabin, crochet house) 
(forest, yellow forest in autumns)

(big tree, broccoli) 
(grass, green grass field)

(two astronauts, two soldiers) 
(spacecraft, monument)

(airplane, Lego airplane) 
(the sky, through the close shot of the moon)

(bird, crochet bird) 
(branch, gold branch)

(parrot, crochet parrot) 
(branch, gold branch)

(wall-e, Lego wall-e) 
(water, grass field)

(wall-e, wooden wall-e) 
(water, a cluster of flowers)

(wall-e, Lego wall-e) 
(water, table)

(a)

(b)

(c)

(d)

(e)

(a)

(f) (g) (h) (i)

Figure 18: Additional qualitative results for OIR. It’s evident that our method can edit not only
objects but also backgrounds, including the sky and ground, and facilitate style transfer. Examples
like (a, h), (c, f), (d, f), (d, h), (e, g), (e, h), (e, i) involve background editing. (c, g), (c, i) encompasses
seasonal editing.
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Original Image Target Image

15 20 25 30 35 40

(straws, lavenders), optimal inversion step=31

(wooden table, gold table), optimal inversion step=35

(book, towel), optimal inversion step=33

Inversion 
Step

Original Image Target Image

15 20 25 30 35 40

(dog, penguin), optimal inversion step=19

(Christmas cart, cardboard box of presents), optimal inversion step=35

Inversion 
Step

Original Image Target Image

25 30 35 40 45 50

(lighthouse, rocket taking off), optimal inversion step=39

(starfish, stuffed toy starfish), optimal inversion step=34

Inversion 
Step

Original Image Target Image

10 15 20 25 30 35

(cat, tiger), optimal inversion step=17

(straw hat, colorful straw hat), optimal inversion step=26

Inversion 
Step

Figure 19: Additional visualization results of our search metric.

22



Published as a conference paper at ICLR 2024

colorful 
straw hat

tiger

optimal inversion step=17

optimal inversion step=26

tank

church

optimal inversion step=33

optimal inversion step=29

stuffed toy 
 starfish

chequered 
blanket

optimal inversion step=34

optimal inversion step=39

plate with fried 
egg and fork

teapot

optimal inversion step=30

optimal inversion step=31

self-portrait 
of Van Gogh

ballon

game 
controll

er

gift box
wooden 
table

small 
Lego 
plant

crochet wall-e 
robot

on a pile of 
confetti

optimal inversion step=31

optimal inversion step=39

optimal inversion step=29

optimal inversion step=34 optimal inversion step=25

optimal inversion step=46

optimal inversion step=25

optimal inversion step=36

Figure 20: The optimal editing results for each editing pair in Fig. 4.
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Figure 21: User study print screen.
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