
Functional Scaling Laws in Kernel Regression: Loss
Dynamics and Learning Rate Schedules

Binghui Li1,∗ Fengling Chen2,∗ Zixun Huang2,∗ Lean Wang3,∗ Lei Wu1,2,4,†

1Center for Machine Learning Research, Peking University
2School of Mathematical Sciences, Peking University

3State Key Laboratory of Multimedia Information Processing,
School of Computer Science, Peking University

4AI for Science Institute, Beijing

{libinghui, lean}@pku.edu.cn, flchen_lwycc@stu.pku.edu.cn
alexpku@stu.pku.edu.cn, leiwu@math.pku.edu.cn

We strongly recommend reading the arXiv version of this paper,
available at https://arxiv.org/abs/2509.19189.

Abstract

Scaling laws have emerged as a unifying lens for understanding and guiding the
training of large language models (LLMs). However, existing studies predomi-
nantly focus on the final-step loss, leaving open whether the entire loss dynamics
obey similar laws and, crucially, how the learning rate schedule (LRS) shapes them.
We address these gaps in a controlled theoretical setting by analyzing stochastic
gradient descent (SGD) on a power-law kernel regression model. The key in-
sight is a novel intrinsic-time viewpoint, which captures the training progress
more faithfully than iteration count. We then establish a Functional Scaling Law
(FSL) that captures the full loss trajectory under arbitrary LRSs, with the sched-
ule’s influence entering through a simple convolutional functional. We further
instantiate the theory for three representative LRSs—constant, exponential decay,
and warmup–stable–decay (WSD)—and derive explicit scaling relations in both
data- and compute-limited regimes. These comparisons explain key empirical
phenomena: (i) higher-capacity models are more data- and compute-efficient; (ii)
learning-rate decay improves training efficiency; and (iii) WSD-type schedules
outperform pure decay. Finally, experiments on LLMs ranging from 0.1B to 1B
parameters demonstrate the practical relevance of FSL as a surrogate model for
fitting and predicting loss trajectories in large-scale pre-training.

1 Introduction
It is well established that the training of large-scale deep learning models mysteriously follows
scaling laws, which describe how model performance scales predictably with available resources
such as compute or data [19]. In particular, the landmark study by Kaplan et al. [25] demonstrated
that, in LLM pre-training, the loss L decreases with model size M and dataset size D according to a
power-law relation:

L(M,D) = L0 + CMM−αM + CDD−αD , (1)
where αM and αD are the scaling exponents, L0 denotes the irreducible loss, and CM , CD are
some constants. Such empirical relations have proven remarkably robust across scales, architec-

∗Equal contribution.
†Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://arxiv.org/abs/2509.19189

SGD excess risk Functional Scaling Law

2000 4000 6000 8000 10000
Step

0.010

0.015

0.020

0.025

0.030

0.035

Ri
sk

s = 0.5, = 4.0
Learning Rate Schedules

cos
wsd
cyclic

(a) Loss Dynamics

103 104

Data D

10 2

10 1

Ri
sk

s = 0.5, = 4.0

const
exp
wsd

(b) Scaling Behavior
Figure 1: FSL accurately captures the loss dynamics and scaling behavior of SGD in PLK regression.
In both subplots, solid lines denote the results of SGD, while dashed lines represent the corresponding FSL
predictions. (a) FSL accurately tracks the loss dynamics of SGD, averaged over 1000 runs, for three learning rate
schedules: cosine, WSD-like, and a non-standard cyclic schedule. (b) FSL predictions (dashed) are computed
using the analytical forms from Section 5, and compared with the mean of 200 SGD runs (solid).

tures, and training setups [20, 59, 36] and have become foundational principles for guiding LLM
development [18, 24, 1, 5, 54, 27]. In practice, they are now routinely used to design optimal
resource-allocation strategies [20] and to tune key hyperparameters such as learning rates and batch
sizes [36, 29].

Despite their empirical success, the theoretical understanding of scaling laws remains limited. Recent
studies have begun to illuminate the underlying mechanisms [53, 22, 39, 62, 23, 42, 43, 2, 14, 3, 7,
35, 49, 8, 69], yet two important gaps persist:

• Determinants of scaling efficiency. Existing studies lack a systematic characterization of
how key factors—such as model capacity, task difficulty, and hyperparameter choices—govern
scaling efficiency, as reflected by the exponents αM and αD. In particular, learning rate
schedules (LRSs) are known to be critical in practice [40, 4, 17], but their precise role in
shaping scaling behavior remains unclear.

• Beyond the final-step loss. The scaling law (1) focuses only on the end-of-training loss [25, 20],
thus leaving open whether the full trajectory follows similar laws. Empirical studies [58, 38]
suggest this possibility, but the fits there are still crude and lack theoretical grounding.

1.1 Our Contribution
In this paper, we take a step toward addressing these gaps in a controlled yet representative theoretical
setting. We study stochastic gradient descent (SGD) training of the power-law kernel (PLK)
regression—a widely adopted surrogate for scaling-law analysis [7, 3, 49, 35, 8]. The PLK regression
is characterized by four parameters: the task difficulty s, the capacity exponent β, the model size M ,
and the label-noise level σ. To capture the influence of learning-rate schedules (LRSs), we model
SGD via an intrinsic-time SDE, in which the concept of intrinsic time emerges as a key quantity
enabling a unified characterization of how different LRSs shape the loss dynamics. Building on this
formulation, we establish the Functional Scaling Law (FSL), which provides a unified description
of the entire loss dynamics—beyond the traditional final-loss prediction.

Concretely, for a general intrinsic-time LRS γ : [0,∞)→ [0,∞), and under some conditions, the
dynamics of the expected loss E[R(νt)] (where t denotes the intrinsic time) satisfies:

E[R(νt)]−
σ2

2︸︷︷︸
irreducible error

≂
1

Msβ︸ ︷︷ ︸
approx. error

+ e(t)︸︷︷︸
signal learning

+

∫ t

0

K(t− z) [e(z) + σ2] γ(z) dz︸ ︷︷ ︸
noise accumulation

, (2)

where e(t) = (1 + t)−s and K(t) = (1 + t)−(2−1/β). Each term in FSL admits clear interpretation:
σ2

2 denotes the irreducible error caused by label noise, M−sβ represents the approximation error,
e(t) characterizes the signal-learning dynamics under noiseless (full-batch) gradient descent, and
the final term captures the injection and dissipation of gradient noise, with the LRS γ entering through

2

Table 1: Learning-rate schedule (LRS) strongly influences scaling efficiency in power-law kernel regression.
Efficiency is determined by two key factors: relative task difficulty s ∈ (0,∞) and model capacity β > 1. We
distinguish between an easy-learning regime (s ⩾ 1− 1/β) and a hard-learning regime (s < 1− 1/β).

Learning Rate Schedule (LRS)
Data-Optimal Scaling Laws Compute-Optimal Scaling Laws

Easy Hard Easy Hard

Constant D− s
s+1 C− sβ

1+sβ+β

Exponential-decay D− sβ
1+sβ (logD)

sβ
1+sβ D−s(logD)s C− sβ

2+sβ (logC)
sβ

2+sβ C− sβ
1+β (logC)

sβ
1+β

Warmup-stable-decay (WSD) D− sβ
1+sβ (logD)

sβ−s
1+sβ D−s C− sβ

2+sβ (logC)
sβ−s
2+sβ C− sβ

1+β

a tractable convolutional functional. The function K, referred to as forgetting kernel, quantifies
how fast the injected noise dissipates during training.

Building on FSL, we derive concrete scaling laws for the final-step loss under three representative
LRSs—constant, exponential decay [15], and warmup–stable–decay (WSD) [68, 21]—in both data-
limited and compute-limited regimes. The results, summarized in Table 1, recover and extend prior
analyses [7, 8, 49, 35], and reveal several unifying insights.

• Scaling efficiency of different schedules. WSD achieves the best scaling efficiency, followed
by exponential decay and then constant schedules. This efficiency hierarchy provides theoretical
justification for learning-rate decay and explains empirical success of WSD [68, 21, 57, 36].

• Role of model capacity. Higher-capacity models are consistently more efficient in both compute
and data, highlighting the necessity of scaling model capacity [25].

• Data–model trade-off. Compute-optimal training requires scaling data more than model size,
consistent with established heuristics in LLM pre-training [20].

• Scaling law for peak learning rate. Optimal scaling requires the peak learning rate (LR) to
scale appropriately with the training budget (data or compute), revealing the importance of
careful peak LR tuning [6, 29].

Beyond PLK regression, we further apply the FSL ansatz to fit and predict loss trajectories from
LLM pre-training experiments with model sizes ranging from 0.1B to 1B parameters, covering both
dense and MoE architectures. These results highlight the potential of FSL as a practical surrogate for
understanding and guiding LLM pre-training.

To better situate our contribution, we provide a detailed comparison with related work in Appendix B.

Notation. For any n ∈ N, let [n] := {1, 2, . . . , n}. For a positive semi-definite (PSD) matrix S,
denote by µj(S) its j-th largest eigenvalue, and define the S-induced norm ∥u∥S :=

√
u⊤Su for any

vector u. We write A ⪯ B (resp. A ⪰ B) if B−A (resp. A−B) is PSD. Throughout the paper,
we use ≂ to denote equivalence up to a constant factor, and ≲ (resp. ≳) to denote an inequality up to
a constant factor. For two nonnegative functions f, g : R⩾0 → R⩾0, we write f(t) ≂ g(t) if there
exist constants C1, C2 > 0 (independent of t) such that C1f(t) ⩽ g(t) ⩽ C2f(t), ∀ t ⩾ 0.

2 Power-Law Kernel (PLK) Regression
Let X denote the input domain and D the input distribution, and assume labels are generated
by y = ⟨ϕ(x),θ∗⟩ + ϵ, where f∗(x) := ⟨ϕ(x),θ∗⟩ is the target function, and the label noise
ϵ ∼ N (0, σ2) is independent of x. Here ϕ : X → RN with N ∈ N+ ∪ {∞} is a feature map,
satisfying the following assumption:
Assumption 2.1 (Hypercontractivity). Let H := Ex∼D[ϕ(x)ϕ(x)

⊤] be the feature covariance.
There exist constants C1, C2 > 0 such that for any PSD matrix A ∈ RN×N , C1 tr(HA)A ⪯
Ex∼D

[(
ϕ(x)⊤Aϕ(x)

)
ϕ(x)ϕ(x)⊤

]
−HAH ⪯ C2 tr(HA)A.

This condition ensures that the feature distribution is sufficiently regular—its fourth-order moments
are controlled by the second-order ones [41]. It holds, for example, for Gaussian features ϕ(x) ∼
N (0,H) with C1 = 1, C2 = 2 (see Lemma G.1). For simplicity, we also assume:
Assumption 2.2. H = diag(λ1, λ2, . . . , λN) with λ1 ⩾ λ2 ⩾ · · · ⩾ λN .

To learn f∗, we consider a model of width M : f(x;v) =
∑M

j=1 vjw
⊤
j ϕ(x) =: ⟨v,Wϕ(x)⟩, where

v ∈ RM denotes trainable weights and W ∈ RM×N projects the N -dimensional features onto an
M -dimensional subspace. We study two choices of projection W:

3

• Top-M features: wj = ej for j ∈ [M], i.e., selecting the top-M features {ϕj}Mj=1;

• Random-M features: wj ∼ N (0, IN) independently for j ∈ [M].

The top-M setting is a particularly simple yet analytically representative case, widely adopted in
prior scaling-law studies [43, 13]. For random features [3, 7, 49, 35, 8], we will show that, in certain
regimes, their scaling behavior closely parallels that of the top-M case. As clarified in Appendix A.3,
our setup is equivalent to learning with the kernel Kϕ(x,x

′) := ϕ(x)⊤ϕ(x′).

We now formalize the key notions of model capacity and task difficulty. Let ϕ̂j := ϕj/λ
1/2
j for

j ∈ [N]. So {ϕ̂j}Nj=1 forms an orthonormal basis of L2(D).

Assumption 2.3 (Model capacity). The spectrum of the feature map satisfies λj ≂ j−β , β > 1.

The condition β > 1 ensures tr(H) =
∑N

j=1 λj ⩽ C for some constant C independent of N , making
our analysis dimension-free and applicable to the infinite-dimensional setting (N = ∞).

For the top-M features, the model takes the form f(·;v) =
∑M

j=1 vjϕj =
∑M

j=1 vjλ
1/2
j ϕ̂j ≂∑M

j=1 vj j
−β/2ϕ̂j reveals that higher-index (less significant) features are increasingly down-weighted

by the factor j−β/2. As β increases, the spectrum decays more rapidly, and the model effectively
relies on fewer features. Hence, the model’s expressive power is governed by two complementary
factors: (i) the model size M , which controls how many features are retained, and (ii) the capacity
exponent β, which controls how quickly these features decay in importance.

Assumption 2.4 (Task difficulty). Suppose |θ∗j |2 ≂ j−1λ s−1
j for some s > 0.

Under Assumptions 2.3 and 2.4, the target function admits the expansion f∗ =
∑N

j=1 θ
∗
jϕj ≂∑N

j=1 j
−1/2λ

s/2
j ϕ̂j ≂

∑N
j=1 j

−(sβ+1)/2 ϕ̂j . Since {ϕ̂j} are orthonormal, this assumption implies
that the spectral energy of f∗ decays as a power law. The exponent α := sβ therefore quantifies the
task’s intrinsic difficulty, which depends only on the target function itself and is independent of the
model spectrum. In contrast, s measures the relative difficulty with respect to a model of capacity β:
for a fixed f∗ (fixed α), adopting a higher-capacity model (smaller β) increases s = α/β, making
the task relatively easier. In other words, the same task appears easier to a higher-capacity model.

We remark that similar assumptions have been widely used in the analysis of kernel methods [12, 11,
56, 9, 39]. Our work builds upon and extends this line of research.

3 One-Pass SGD and Intrinsic-Time SDE
Given a data point z = (x, y) ∈ X×R and a model f(·;v), define the loss ℓ(z,v) = 1

2

(
f(x;v)−y

)2
.

Then, the population risk is R(v) = Ez[ℓ(z,v)] =
1
2∥W

⊤v − θ∗∥2H + σ2

2 =: E(v) + σ2

2 , where
E(v) denotes the excess risk. We minimize R(v) via one-pass SGD, given by

vk+1 = vk − ηk
Bk

∑
z∈Sk

∇vℓ(z,vk), (3)

where Sk := {(xk,j , yk,j)}Bk
j=1 is a mini-batch of i.i.d. samples, ηk and Bk are the learning rate and

batch size, respectively. The initialization is set to v0 = 0.

Throughout, we refer to η := (η0, η1, . . . , ηK−1) as the learning rate schedule (LRS). Common
choices in practice include the cosine [37, 59], WSD [21], and multi-step [5] schedules (see Ap-
pendix A.2 for details). To analyze the effect of LRS, we rewrite (3) as

vk+1 = vk − ηk
(
∇R(vk) + ξk

)
, (4)

where the gradient noise ξk = 1
Bk

∑
z∈Sk

∇ℓ(z,vk) − ∇R(vk) satisfies E[ξk] = 0,E[ξkξ⊤k] =
1
Bk

Σ(vk), with Σ(·) denoting the noise covariance for batch size 1.

Continuous-time limit. Following prior work [30, 31, 32, 33, 50, 34], we analyze the continuous-
time limit of SGD rather than the discrete update (3) or (4). This perspective makes the analysis
more tractable and clarifies the emergence of scaling laws. Fix a discretization step size h > 0 and

4

let φk := ηk/h for k ∈ N. Then, (4) becomes vk+1 = vk − φk∇R(vk)h− φkhξk. For sufficiently
small h, this iteration is well approximated by the Itô-type SDE [31, 45]:

dv̄τ = −φ(τ)∇R(v̄τ) dτ + φ(τ)

√
h

b(τ)
Σ(v̄τ) dBτ , (5)

where Bτ ∈ RM is an M -dimensional Brownian motion, and φ(·) is the continuous-time LRS
satisfying φ(kh) = ηk/h for all k ∈ N; b(·) is the continuous-time batch-size schedule satisfying
b(kh) = Bk for all k ∈ N. In (5), the learning rate affects both the drift and diffusion terms, thereby
coupling the deterministic and stochastic effects.

Intrinsic-time reparametrization. In SDE (5), the physical time τ serves as the continuous analogue
of the discrete step index k. However, when the learning rate varies over time, the actual training
progress is determined not by the number of updates k but by the accumulated step size

∑k
j=1 ηj ,

which more faithfully reflects the total optimization effort. Motivated by this observation, we
introduce an intrinsic time variable that rescales the physical time τ according to the LRS:

t = T (τ) :=

∫ τ

0

φ(r) dr, (6)

which measures the LRS-adjusted training duration. Let νt = v̄T−1(t). Applying Øksendal’s time
change formula [44] to the SDE (5) yields the intrinsic-time SDE:

dνt = −∇R(νt) dt+
√
γ(t)Σ(νt) dBt with γ(t) =

hφ(T−1(t))

b(T−1(t))
. (7)

Here γ(t) quantifies the joint effect of learning-rate and batch-size scheduling. Compared with (5),
the LRS dependence is absorbed from the drift and retained only in the diffusion term, thereby
decoupling the deterministic and stochastic effects. This structural simplification greatly facilitates
the subsequent scaling analysis.

For a clearer explanation of the connection between the discrete SGD (4) and the SDE formulations (5)
and (7), we refer the reader to Appendix A.4.

4 Intrinsic-Time Functional Scaling Laws
In this section, we present our main results on the Functional Scaling Law (FSL). All proofs are
deferred to Appendix E. We begin with assumptions on the learning-rate schedule and model size.
Assumption 4.1. Suppose Assumptions 2.1, 2.3 and 2.4 hold. Assume both M and N−M are
sufficiently large, and the LRS satisfies supt⩾0 γ(t) ⩽ C3 for a sufficiently small constant C3 > 0.

Theorem 4.2 (Intrinsic-Time FSL, top-M features, hard-regime). Under Assumption 4.1, let νt

denote the solution to the intrinsic-time SDE (7) with top-M features. Then, for f∗ with difficulty
s ∈ (0, 1− 1/β] and any σ ⩾ 0, it holds for all t ⩾ 0 that

E[R(νt)]− 1
2σ

2 ≂ M−sβ + e(t) +

∫ t

0

K(t− z)[e(z) + σ2]γ(z) dz, (8)

where e(t) := (1 + t)−s, K(t) := (1 + t)−(2−1/β).

This theorem establishes that, for hard tasks with s ⩽ 1− 1/β, the loss dynamics are fully charac-
terized by the FSL (8). We explain the emergence of power laws in FSL from a multi-task learning
perspective in Appendix A.5. Moreover, each term in the FSL (8) admits a clear interpretation:

• Irreducible error: 1
2σ

2. This term is due to label noise.

• Approximation error: M−sβ . This term corresponds to the error due to finite model size, with
the scaling efficiency is determined by the task’s intrinsic difficulty sβ.

• Signal learning: e(t). This term corresponds to learning under full-batch gradient descent,
capturing the rate at which SGD extracts the signal f∗. Moreover, the rate depends on the task’s
relative difficulty s. For a fixed target f∗ (fixed α = sβ), increasing model capacity (smaller β)
accelerates its convergence since s = α/β becomes larger.

5

• Noise accumulation:
∫ t

0
K(t− z)[e(z)+ σ2]γ(z) dz. This term characterizes how the learning-

rate and batch-size schedules shape the accumulation and dissipation of stochastic noise. The
integrand [e(z) + σ2]γ(z) represents the instantaneous noise magnitude, where e(z) captures
mini-batch noise and σ2 captures label noise. The forgetting kernel K(·) quantifies how noise
injected at time z still affects the loss at time t. Due to K(t) ≍ t−(2−1/β), a higher-capacity
model (smaller β) tends to forget noise more slowly.

Notably, the last two terms together constitute the optimization error and two key factors govern the
trade-off between the them: (i) Model capacity: Increasing model capacity (β ↓) accelerates signal
learning but simultaneously slows noise forgetting. (ii) Learning-rate and batch-size schedules:
Smaller learning rates or larger batch sizes suppress noise injection but also shorten the intrinsic
training time. However, sufficient intrinsic time is important: the signal-learning term requires it to
effectively reduce the risk, while the noise-forgetting term relies on it to forget noise memorized in
early training. Hence, effective schedules must balance these competing objectives—suppressing
injected noise while maintaining enough intrinsic time for both learning and forgetting.

4.1 General Results

The FSL (8) is established for the hard-learning regime where s ⩽ 1 − 1/β. We now show
that an analogous FSL also holds in the general case. To state the result, we define eM (t) =∑M

j=1 λj |θ∗j |2e−2λjt,KM (t) =
∑M

j=1 λ
2
je

−2λjt. One can verify that both functions exhibit power-
law decay for 1 ≲ t ≲ Mβ :

eM (t) ≍ t−s, KM (t) ≍ t−(2−1/β), 1 ≲ t ≲ Mβ . (9)

Consequently, e∞(t) ≂ e(t) and K∞(t) ≂ K(t) for t ⩾ 0.

The following theorem provides a characterization of the loss dynamics for general case:

Theorem 4.3 (Intrinsic-Time FSL, top-M features, general label noise). Suppose Assumption 4.1
holds. Let νt denote the solution to the intrinsic-time SDE (7) with the top-M features. Define
FM (t; γ) = eM (t) +

∫ t

0
KM (t − z)[eM (z) + σ2]γ(z) dz. There exists a c > 0 such that for

0 ⩽ t ⩽ cMβ , it holds that

E[R(νt)]− 1
2σ

2 ≂ M−sβ + F∞(t; γ). (10)

For all cMβ ⩽ t < ∞, it holds that

M−sβ + FM (t; γ) ≲ E[R(νt)]− 1
2σ

2 ≲ M−sβ + F∞(t; γ). (11)

Notably, the constants implicit in ≂,≲ are independent of the noise level σ.

A proof sketch is provided in Appendix D. The above characterization is uniform with respect to the
label-noise level σ, and holds for all s > 0 and β > 1. It asserts that the exact FSL relation (10) (i.e.,
the FSL (8)) remains valid up to the intrinsic time t ⩽ cMβ =: tM . For later times t > tM , although
the FSL may no longer hold exactly, the loss dynamics remain controlled from both sides as in (11).

At the critical time tM , we have eM (tM)≍M−sβ , indicating that signal learning has reached the
approximation-error limit. Beyond this point, further training no longer improves the learned signal;
instead, the dynamics become dominated by noise effects. Depending on the interaction between the
stochastic gradient noise and the decaying learning rate, additional training may either inject more
noise or dissipate it. Thus, it is a priori unclear whether the total error will significantly increase
or decrease after tM . Nevertheless, the upper bound in (11) ensures that the overall loss remains
well-controlled, analogous to the behavior of the infinite-width limit (M = ∞).

Nevertheless, an FSL may still hold for all t ⩾ 0, under suitably stronger conditions. In Theorem 4.2,
we considered the setting with tasks satisfying s ⩽ 1− 1/β. The following result shows that a similar
characterization extends to general task difficulty with constant label noise.

Theorem 4.4 (Intrinsic-Time FSL, top-M features, constant label noise). Under Assumption 4.1,
suppose σ ≳ 1. Let νt denote the solution to the intrinsic-time SDE (7) with the top-M features.
Then, for any s > 0 and all t ⩾ 0, E[R(νt)]− 1

2σ
2 ≂ M−sβ + FM (t; γ).

6

Theorem 4.2 implies that the finite-M functions eM and KM can be replaced by their infinite-width
counterparts e∞ and K∞ in the hard-learning regime. The next result demonstrates that the same
FSL characterization naturally extends to the noiseless case σ = 0.
Theorem 4.5 (Intrinsic-Time FSL, top-M features, zero label noise). Suppose Assumption 4.1 holds
and σ = 0. Let νt denote the solution to the intrinsic-time SDE (7) with the top-M features. If
s ∈ [0, 2− 1/β], then for all t ⩾ 0, E[R(νt)] ≂ M−sβ + eM (t) +

∫ t

0
KM (t− z) eM (z) γ(z) dz.

Random-M features. The next theorem establishes that the same FSL characterization also holds
when the top-M features are replaced by randomly selected features.
Theorem 4.6 (Intrinsic-Time FSL, random-M features). Suppose Assumption 4.1 holds and s ∈
(0, 1]. Let νt denote the solution to the intrinsic-time SDE (7) with the random-M features. Then,
with probability at least 1− e−Ω(M) over the randomness of the projection matrix W, the results of
Theorems 4.2, 4.3, 4.4, and 4.5 continue to hold.

This theorem implies that when the task difficulty satisfies s ⩽ 1, training with random-M features
is equivalent to using the top-M features, up to exponentially small probability. We emphasize,
however, that for easier tasks with s > 1, the behaviors of random and top feature may diverge—an
analysis we leave to future work.

5 Learning Rate Schedules Impact Scaling Efficiency

Having established the general FSL, we now instantiate it under three representative LRSs—constant,
exponential decay, and warmup–stable–decay (WSD)—to examine how schedule design influences
scaling efficiency. All proofs can be found in Appendix F. For clarity, we make:
Assumption 5.1. Assume constant label noise σ2 ≳ 1 and batch size b(τ) = B for all τ ⩾ 0.

Under this assumption, given a physical-time LRS function φ(·), Theorem 4.4 implies that the FSL
for t ≳ 1 simplifies to E[R(νt)]− 1

2σ
2 ≂ M−sβ + eM (t) + σ2

B

∫ t

0
KM (t− r)φ(T−1(r)) dr.

Let EK = E[R(νKh)]− 1
2σ

2 denote the expected excess risk after K training steps. For each LRS,
we derive concrete scaling laws describing how EK scales with the model size M , the total step count
K, as well as the LRS’s hyperparameters. We then reinterpret these results from a resource-allocation
perspective by optimizing under two canonical constraints: (i) the data-limited regime, where the
total data size D := BK is fixed; and (ii) the compute-limited regime [20], where the total compute
C := MD is fixed. For each regime, we further examine how the optimally tuned hyperparameters
(e.g., the peak learning rate) should scale with increasing available resources.

Finally, for clarity, we distinguish between two task regimes: an easy-learning regime, where
s ⩾ 1− 1/β, and a hard-learning regime, where s < 1− 1/β.

5.1 Constant LRS

Theorem 5.2 (Scaling law for constant LRS). Under Assumption 5.1, we have EK ≂ M−sβ +
(ηK)−s + η

Bσ2.

Let γ := η/B be the effective learning rate. Then, the scaling law can be rewritten as EK ≂
M−sβ+(γD)−s+γσ2 =: h(γ,M,D), where the excess risk depends the learning rate via γ = η/B.
This suggests that we should scale the learning rate linearly with respect to batch size (a.k.a. linear
scaling rule) [26, 16, 40].

Data-optimal scaling. Clearly, this involves minimizing h(·) while keeping D fixed. A straightfor-
ward calculation yields: γopt ≂ D− s

s+1 ,Mopt ≳ D
1

(1+s)β , Eopt ≂ D− s
s+1 .

Notably, both the best achievable excess risk Eopt and optimal learning rate γopt depend exclusively
on the task’s relative difficulty s. For a fixed target (fixed α), a higher-capacity model (smaller β)
gives a larger s = α/β and is therefore more data-efficient.

Compute-optimal scaling. This involves minimizing h(·) while keeping C := DM fixed.
The solution is summarized as follows, with the derivation deferred to Appendix F.1: γopt ≂
C− sβ

1+(s+1)β , Mopt ≂ C
1

1+(s+1)β , Dopt ≂ C
(s+1)β

1+(s+1)β , Eopt ≂ C− sβ
1+sβ+β .

7

This shows that the performance of the compute-optimal model improves with the total compute
budget C in a power law. For a fixed task (α = sβ fixed), we have the following observations:

• Increasing model capacity (β ↓) enhances compute efficiency—the extra β in the scaling
exponent sβ

1+sβ+β quantifies this gain. This explains a well-known empirical observation in
LLM pre-training: Large models are more compute-efficient than small models [25, 20].

• The optimal learning rate γopt decreases as C grows, and the compute-optimal allocation favors
investing more in data than in model size—again consistent with current LLM pre-training
practice [5, 54, 20].

Note that [8] also investigated compute-optimal scaling for constant LRS but assumed a fixed learning
rate and no label noise. In contrast, we consider a more realistic scenario where the learning rate is
optimally tuned and the irreducible risk is present, leading to a compute-optimal scaling law that
matches empirical observations.

5.2 Exponential Decay LRS

For a given number of training steps K [15, 64], an exponential decay (exp-decay) LRS is given by
φ(τ) = a exp(−λτ), φ(Kh) = b, where λ is chosen such that φ(Kh) = b. For brevity, we assume
h = 1. Note that the hyperparameters a and b specify the peak and final learning rates, respectively.
Theorem 5.3 (Scaling law for exp-decay LRS). Under Assumption 5.1, we have EK ≂ M−sβ +

T−s + σ2
(

b
B + (a− b)min{M,T 1/β}

BT

)
, where T = (a− b)K/ log(a/b) is the total intrinsic time.

Let b = a/K. Then the intrinsic time becomes T = a(K − 1)/ logK, whereas a constant LRS with
step size η = a yields T = aK. Thus, exp-decay LRS drives the learning rate down to as small as
a/K, yet sacrifices only a logarithmic factor of intrinsic time compared to the constant schedule.

Data-optimal scaling. Let γ = a/B be the effective peak learning rate. By minimizing the right
hand side of the exponential decay scaling law with respect to a, b,K,B,M under the constraint
KB = D (see Appendix F.2), We obtain Mopt = ∞ and

• For s ⩾ 1− 1
β , γopt ≂ (D/ logD)−

1+sβ−β
1+sβ and Eopt ≂ (D/ logD)−

sβ
sβ+1 .

• For s < 1− 1
β , γopt ≂ 1 and Eopt ≂ (D/ logD)−s.

Compared with the constant LRS, exp-decay LRS achieves a strictly faster decay of the excess risk,
justifying the importance of learning-rate decay in stochastic optimization.

Compute-optimal scaling. A straightforward calculation (see Appendix F.2) yields:

• For s ⩾ 1 − 1
β , γopt ≂ (C

logC)−
1+sβ−β
2+sβ ,Mopt ≂ (C

logC)
1

2+sβ , Dopt ≂ C
1+sβ
2+sβ (logC)

1
2+sβ , and

Eopt ≂ (C
logC)−

sβ
2+sβ .

• For s < 1− 1
β , γopt ≂ 1,Mopt ≂ (C

logC)
1

1+β , Dopt ≂ C
β

1+β (logC)
1

1+β , Eopt ≂ (C
logC)−

sβ
1+β .

In the easy-learning regime, the excess-risk rate is determined solely by the intrinsic difficulty α = sβ;
hence, increasing model capacity alone does not lead to asymptotic gains. The compute-optimal
allocation consistently favors data over model and moreover, the optimal compute split depends
solely on the task’s intrinsic difficulty, with ratio Dopt/Mopt ≂ Cα/(2+α) decreasing as the task
becomes harder. This implies that, for harder tasks, one should allocate more compute to increasing
model size. The optimal γopt decreases with the compute budget C, and for fixed α, higher-capacity
models (β ↓) require smaller γopt.

In the hard-learning regime, data still dominates compute allocation, but now the optimal split
depends only on model capacity, independent of the task difficulty. Moreover, the optimal maximal
learning rate remains constant (γopt ≂ 1). These results imply that a single, universal choice
of compute split and learning rate suffices to attain optimal scaling across all tasks satisfying
s < 1 − 1/β, greatly simplifying hyperparameter tuning. Finally, in this regime, higher-capacity
models (smaller β) become strictly more compute-efficient, as evidenced by the excess-risk scaling
exponent −sβ/(1 + β).

8

5.3 WSD-like LRS
We lastly turn to consider a WSD-like LRS [68, 21], which comprises a K1-step stable phase
followed by a K2-step decay phase, for a total K = K1 +K2 steps, given by

φ(τ) =

{
a , if τ ⩽ K1h;

a exp(−λ(τ −K1h)) , if τ > K1h.
(12)

where λ is chosen such that φ(Kh) = b. For brevity, we assume h = 1 and let r = K2/K. This
schedule is thus characterized by three hyperparameters: the peak learning rate a, the final learning
rate b, and the decay proportion r, which controls the duration of decay-phase. (The warmup phase is
omitted, as it does not affect our analysis.)

Theorem 5.4 (Scaling law for WSD-like LRS). Under Assumption 5.1, we have for the LRS (12):

EK ≂ M−sβ + (T1 + T2)
−s + σ2

(
b
B + (a− b)

min{M,T
1/β
2 }

BT2

)
, where T1 = aK1 and T2 =

(a− b)K2/ log(a/b) denote the intrinsic training times of the stable and decay phases, respectively.

We see that WSD-like LRS can leverage the initial stable phase to boost the intrinsic training time.
For a decay proportion r < 1, we have T = T1+T2 ⩾ (1−r)Ka, which far exceeds the the intrinsic
time T ≂ aK/ logK achieved by the pure exp-decay LRS. Consequently, WSD removes logarithmic
factors in the full-batch GD term, without altering the noise term’s order as long as r > 0. Building
on this insights, we show that WSD can indeed improve the scaling efficiency, as detailed below.

Data-optimal scaling. Assuming b = a/K, we have Mopt = ∞ and

• For s ⩾ 1− 1
β , γopt ≂ D− 1+sβ−β

1+sβ (logD)
β−1
1+sβ , ropt ∈ (0, 1), Eopt ≂ D− sβ

sβ+1 (logD)
sβ−s
1+sβ .

• For s < 1− 1
β , γopt ≂ 1, ropt ≳ D

sβ+1−β
β−1 logD, Eopt ≂ D−s.

Compared with the exp-decay LRS, both regimes enjoy a logarithmic improvement in excess-risk
decay. In particular, for the hard-learning regime, the logarithmic factor disappears. This improvement
requires the decay-phase duration only needs to scale sublinearly with D, as indicated by ropt → 0
as D → ∞. This matches the WSD practice in LLM pre-training, where the decay phase typically
occupies only 10%-20% of the total training duration. Moreover, our theory suggests that for harder
tasks, the decay fraction can be reduced further to enhance compute efficiency.

Compute-optimal scaling. Analogous improvements hold in the compute-limited regime. Assuming
b = a/K and imposing the compute constraint MD = C, the compute-optimal satisfies:

• For s ⩾ 1 − 1
β , γopt ≂ (C

logC)−
1+sβ−β
2+sβ , ropt ∈ (0, 1),Mopt ≂ (C

logC)
1

2+sβ , Dopt ≂

C
1+sβ
2+sβ (logC)

1
2+sβ , and Eopt ≂ C− sβ

2+sβ (logC)
sβ−s
2+sβ .

• For s < 1− 1
β , γopt ≂ 1, ropt ≳ D− β−1−sβ

β−1 logD,Mopt ≂ C
1

1+β , Dopt ≂ C
β

1+β , Eopt ≂ C− sβ
1+β .

6 Experiments

6.1 Power-Law Kernel Regression

While the FSL is derived in the continuous-time limit, we now verify that it also accurately captures
the loss dynamics and scaling behavior of the discrete-time SGD (3). Specifically, we consider the
PLK regression with difficulty s = 0.5 and capacity β = 4, corresponding to a hard-learning regime
and the results are shown in Figure 1.

FSL accurately captures the loss dynamics of SGD. Figure 1(left) compares the loss dynamics
of SGD with the predictions of the FSL under three representative LRSs: cosine, WSD, and an
unconventional cyclical schedule [55]. Across all cases, the FSL provides a remarkably accurate
description of the SGD’s loss evolution. Comparing the WSD and cosine schedules, we observe
that the loss under WSD exhibits a slower decay during the stable phase but undergoes a much
sharper drop once the decay phase begins, ultimately yielding a lower final loss. This seemingly
counterintuitive two-phase dynamical behavior of WSD aligns well with empirical observations in
practical LLM pre-training [21, 63, 57].

9

10000 20000 30000

Step

2.5

2.6

2.7

R
is

k

400M LLaMA, 20B tokens

811
cos
wsd

10000 20000 30000

Step

2.3

2.4

2.5

R
is

k

1B LLaMA, 20B tokens

811
cos
wsd

(a) Fitting and prediction using FSL.

0 10000 20000 30000

Step

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

Le
ar

ni
ng

ra
te

LRSs for 1B QwenMoE

811
cos
wsd
opt

25000 27500 30000 32500

Step

2.40

2.45

2.50

R
is

k

1B QwenMoE, 20B tokens

811
wsd
cos
opt

(b) The FSL-optimal LRS and its performance

Figure 2: Experiment on LLMs. (a) Fitting and predictive accuracy of the FSL on dense LLaMA
models. (b) Left: comparison of various LRSs. Right: loss trajectories of the FSL-optimal schedule
versus baseline LRSs on a 1B QwenMoE model.

FSL predicts the scaling behavior of SGD. Figure 1(right) further validates the scaling laws derived
in Section 5 for the three canonical LRSs—constant, exponential, and WSD-like (12). The results
show that the final-step loss of SGD closely follows the theoretical predictions of FSL. Among
these schedules, WSD yields the best scaling performance, followed by exponential decay, while the
constant schedule performs the worst. More experiment details and additional results experiments
with varying (s, β) and other LRSs are provided in Appendix C.1, and exhibit consistent behaviors.

6.2 LLM Pre-training

We now evaluate the practical utility of FSL as a surrogate model for capturing the loss dynamics of
LLM pre-training. Specifically, three popular LRSs: cosine, WSD, and the 8-1-1 [5] are considered;
see Figure 2b(left) for a visualization. In the 8-1-1 LRS, the learning rate is reduced by a factor

√
10

at 80% and 90% of the total token budget, yielding a final value that is 0.1 times the peak learning
rate. For more experiment details, we refer to Appendix C.2.

FSL accurately fit and predict loss curves. We first quantify the descriptive and predictive power of
FSL. Following the protocol of [58] and [38], we restrict attention to the post-warmup portion of the
loss trajectory. Two Llama [59] models (400 M and 1 B) are trained on 20 B tokens under the three
LRSs. For each model we (i) fit the FSL parameters on the loss curve obtained using the 8-1-1 LRS
and (ii) deploy the fitted FSL to predict the loss curves of the cosine and WSD schedules. Figure 2a
demonstrates that FSL not only fits the 8-1-1 trajectory accurately but also generalizes reliably to the
unseen WSD and cosine schedules for both model sizes.

The FSL-optimal LRS is WSD-like. We next leverage the fitted FSL to design improved LRSs.
Specifically, we numerically minimize the final-step loss over the space of LRSs using the fitted
FSL. This experiment employs a 1B-parameter QwenMoE model [67], trained on 20B tokens using
the same three LRSs. We fit the FSL using the trajectory from the 8-1-1 LRS and numerically
solve for the FSL-optimal LRS. The model is then trained under this FSL-optimal LRS, using
the same compute budget, and compared against the baseline LRSs. Figure 2b(left) shows that
surprisingly, the FSL-optimal LRS is WSD-like and the decay phase drives the learning rate far
below the conventional 0.1ηmax threshold. This echos recent empirical recommendations by [4, 17].
Furthermore, Figure 2b(right) demonstrates that the FSL-optimal schedule yields a strictly lower final
loss than all baselines, substantiating its practical relevance. Taken together, these results suggest that
FSL is a faithful surrogate for studying LLM training dynamics and a principled tool for interpreting
and designing LRSs in large-scale pre-training.

7 Conclusion

In this paper, we present a systematic study of how LRS shapes the loss dynamics in kernel regression.
Specifically, we establish a novel functional-level scaling law, which precisely characterizes the loss
dynamics of SGD for general learning LRSs. The utility of our FSL is demonstrated through detailed
analyses of three widely used LRSs, providing theoretical justification for several prevailing practices
in LLM pre-training—most notably, offering an explanation for the effectiveness of the empirically
popular but previously less-understood WSD schedules.

10

Acknowledgement

Lei Wu is supported by the National Natural Science Foundation of China (NSFC12522120,
NSFC92470122, and NSFC12288101). Binghui Li is supported by the Elite Ph.D. Program in
Applied Mathematics at Peking University. We are grateful to Kaifeng Lyu, Kairong Luo, and
Haodong Wen for generously sharing their work [38], which greatly inspired this study. We also
thank Tingkai Yan, Yuhao Liu, Yunze Wu, and Zean Xu for many helpful discussions, and the
anonymous reviewers for their valuable feedback.

References
[1] Armen Aghajanyan, Lili Yu, Alexis Conneau, Wei-Ning Hsu, Karen Hambardzumyan, Susan

Zhang, Stephen Roller, Naman Goyal, Omer Levy, and Luke Zettlemoyer. Scaling laws for
generative mixed-modal language models. In International Conference on Machine Learning,
pages 265–279. PMLR, 2023. (cited on page 2)

[2] Alexander Atanasov, Jacob A Zavatone-Veth, and Cengiz Pehlevan. Scaling and renormalization
in high-dimensional regression. arXiv preprint arXiv:2405.00592, 2024. (cited on pages 2 and 19)

[3] Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and Utkarsh Sharma. Explaining
neural scaling laws. Proceedings of the National Academy of Sciences, 121(27):e2311878121,
2024. (cited on pages 2, 4, and 19)

[4] Shane Bergsma, Nolan Dey, Gurpreet Gosal, Gavia Gray, Daria Soboleva, and Joel Hestness.
Straight to zero: Why linearly decaying the learning rate to zero works best for llms. arXiv
preprint arXiv:2502.15938, 2025. (cited on pages 2 and 10)

[5] Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui
Ding, Kai Dong, Qiushi Du, Zhe Fu, and Others. DeepSeek LLM: Scaling open-source language
models with longtermism. arXiv preprint arXiv:2401.02954, 2024. (cited on pages 2, 4, 8, 10,
and 17)

[6] Johan Bjorck, Alon Benhaim, Vishrav Chaudhary, Furu Wei, and Xia Song. Scaling optimal lr
across token horizons. In The Thirteenth International Conference on Learning Representations.
(cited on page 3)

[7] Blake Bordelon, Alexander Atanasov, and Cengiz Pehlevan. A dynamical model of neural
scaling laws. arXiv preprint arXiv:2402.01092, 2024. (cited on pages 2, 3, 4, and 19)

[8] Blake Bordelon, Alexander Atanasov, and Cengiz Pehlevan. How feature learning can improve
neural scaling laws. arXiv preprint arXiv:2409.17858, 2024. (cited on pages 2, 3, 4, 8, and 19)

[9] Blake Bordelon, Abdulkadir Canatar, and Cengiz Pehlevan. Spectrum dependent learning
curves in kernel regression and wide neural networks. In International Conference on Machine
Learning, pages 1024–1034. PMLR, 2020. (cited on page 4)

[10] Sébastien Bubeck and Others. Convex optimization: Algorithms and complexity. Foundations
and Trends® in Machine Learning, 8(3-4):231–357, 2015. (cited on page 23)

[11] Andrea Caponnetto and Ernesto De Vito. Optimal rates for the regularized least-squares
algorithm. Foundations of Computational Mathematics, 7:331–368, 2007. (cited on page 4)

[12] Andrea Caponnetto and Ernesto De Vito. Fast rates for regularized least-squares algorithm.
2005. (cited on page 4)

[13] Shihong Ding, Haihan Zhang, Hanzhen Zhao, and Cong Fang. Scaling law for stochastic gradi-
ent descent in quadratically parameterized linear regression. arXiv preprint arXiv:2502.09106,
2025. (cited on page 4)

[14] Elvis Dohmatob, Yunzhen Feng, Pu Yang, Francois Charton, and Julia Kempe. A tale of tails:
Model collapse as a change of scaling laws. arXiv preprint arXiv:2402.07043, 2024. (cited on
pages 2 and 19)

11

[15] Rong Ge, Sham M Kakade, Rahul Kidambi, and Praneeth Netrapalli. The step decay schedule:
A near optimal, geometrically decaying learning rate procedure for least squares. Advances in
neural information processing systems, 32, 2019. (cited on pages 3 and 8)

[16] P Goyal. Accurate, large minibatch SGD: training imagenet in 1 hour. arXiv preprint
arXiv:1706.02677, 2017. (cited on page 7)

[17] Alex Hägele, Elie Bakouch, Atli Kosson, Leandro Von Werra, Martin Jaggi, and Others.
Scaling laws and compute-optimal training beyond fixed training durations. Advances in Neural
Information Processing Systems, 37:76232–76264, 2024. (cited on pages 2, 10, 17, and 20)

[18] Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson,
Heewoo Jun, Tom B Brown, Prafulla Dhariwal, Scott Gray, and Others. Scaling laws for
autoregressive generative modeling. arXiv preprint arXiv:2010.14701, 2020. (cited on page 2)

[19] Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan
Kianinejad, Md Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is
predictable, empirically. arXiv preprint arXiv:1712.00409, 2017. (cited on page 1)

[20] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, and
Others. Training compute-optimal large language models. arXiv preprint arXiv:2203.15556,
2022. (cited on pages 2, 3, 7, 8, and 16)

[21] Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei
Fang, Yuxiang Huang, Weilin Zhao, and Others. MiniCPM: Unveiling the potential of small
language models with scalable training strategies. arXiv preprint arXiv:2404.06395, 2024.
(cited on pages 3, 4, 9, 17, and 20)

[22] Marcus Hutter. Learning curve theory. arXiv preprint arXiv:2102.04074, 2021. (cited on pages 2
and 19)

[23] Ayush Jain, Andrea Montanari, and Eren Sasoglu. Scaling laws for learning with real and
surrogate data. arXiv preprint arXiv:2402.04376, 2024. (cited on pages 2 and 19)

[24] Arlind Kadra, Maciej Janowski, Martin Wistuba, and Josif Grabocka. Power laws for hyperpa-
rameter optimization. arXiv preprint arXiv:2302.00441, 2023. (cited on page 2)

[25] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020. (cited on pages 1, 2, 3, and 8)

[26] Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks. arXiv
preprint arXiv:1404.5997, 2014. (cited on page 7)

[27] Tanishq Kumar, Zachary Ankner, Benjamin F Spector, Blake Bordelon, Niklas Muennighoff,
Mansheej Paul, Cengiz Pehlevan, Christopher Ré, and Aditi Raghunathan. Scaling laws for
precision. arXiv preprint arXiv:2411.04330, 2024. (cited on page 2)

[28] Kiwon Lee, Andrew Cheng, Elliot Paquette, and Courtney Paquette. Trajectory of mini-batch
momentum: batch size saturation and convergence in high dimensions. Advances in Neural
Information Processing Systems, 35:36944–36957, 2022. (cited on page 26)

[29] Houyi Li, Wenzhen Zheng, Jingcheng Hu, Qiufeng Wang, Hanshan Zhang, Zili Wang, Shijie
Xuyang, Yuantao Fan, Shuigeng Zhou, Xiangyu Zhang, and Daxin Jiang. Predictable scale:
Part I – optimal hyperparameter scaling law in large language model pretraining. arXiv preprint
arXiv:2503.04715, 2025. (cited on pages 2 and 3)

[30] Qianxiao Li, Cheng Tai, and E Weinan. Stochastic modified equations and adaptive stochastic
gradient algorithms. In International Conference on Machine Learning, pages 2101–2110.
PMLR, 2017. (cited on page 4)

[31] Qianxiao Li, Cheng Tai, and E Weinan. Stochastic modified equations and dynamics of
stochastic gradient algorithms I: Mathematical foundations. Journal of Machine Learning
Research, 20(40):1–47, 2019. (cited on pages 4 and 5)

12

[32] Zhiyuan Li, Kaifeng Lyu, and Sanjeev Arora. Reconciling modern deep learning with traditional
optimization analyses: The intrinsic learning rate. Advances in Neural Information Processing
Systems, 33:14544–14555, 2020. (cited on page 4)

[33] Zhiyuan Li, Sadhika Malladi, and Sanjeev Arora. On the validity of modeling SGD with
stochastic differential equations (SDEs). Advances in Neural Information Processing Systems,
34:12712–12725, 2021. (cited on page 4)

[34] Zhiyuan Li, Tianhao Wang, and Sanjeev Arora. What happens after SGD reaches zero loss?
–a mathematical framework. In International Conference on Learning Representations, 2022.
(cited on page 4)

[35] Licong Lin, Jingfeng Wu, Sham M Kakade, Peter L Bartlett, and Jason D Lee. Scaling laws
in linear regression: Compute, parameters, and data. arXiv preprint arXiv:2406.08466, 2024.
(cited on pages 2, 3, 4, 19, 33, and 34)

[36] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, and Others. DeepSeek-V3 technical report. arXiv
preprint arXiv:2412.19437, 2024. (cited on pages 2, 3, and 20)

[37] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016. (cited on pages 4 and 17)

[38] Kairong Luo, Haodong Wen, Shengding Hu, Zhenbo Sun, Zhiyuan Liu, Maosong Sun, Kaifeng
Lyu, and Wenguang Chen. A multi-power law for loss curve prediction across learning rate
schedules. In NeurIPS 2024 Workshop on Mathematics of Modern Machine Learning, 2024.
(cited on pages 2, 10, 11, 17, and 20)

[39] Alexander Maloney, Daniel A Roberts, and James Sully. A solvable model of neural scaling
laws. arXiv preprint arXiv:2210.16859, 2022. (cited on pages 2, 4, and 19)

[40] Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. An empirical model
of large-batch training. arXiv preprint arXiv:1812.06162, 2018. (cited on pages 2 and 7)

[41] Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Generalization error of random
feature and kernel methods: hypercontractivity and kernel matrix concentration. Applied and
Computational Harmonic Analysis, 59:3–84, 2022. (cited on page 3)

[42] Eric Michaud, Ziming Liu, Uzay Girit, and Max Tegmark. The quantization model of neural
scaling. Advances in Neural Information Processing Systems, 36, 2024. (cited on pages 2 and 19)

[43] Yoonsoo Nam, Nayara Fonseca, Seok Hyeong Lee, and Ard Louis. An exactly solvable model
for emergence and scaling laws. arXiv preprint arXiv:2404.17563, 2024. (cited on pages 2, 4,
and 19)

[44] Bernt Øksendal. Stochastic differential equations. Springer, 2003. (cited on page 5)

[45] Antonio Orvieto and Aurelien Lucchi. Continuous-time models for stochastic optimization
algorithms. Advances in Neural Information Processing Systems, 32, 2019. (cited on page 5)

[46] Courtney Paquette, Kiwon Lee, Fabian Pedregosa, and Elliot Paquette. Sgd in the large:
Average-case analysis, asymptotics, and stepsize criticality. In Conference on Learning Theory,
pages 3548–3626. PMLR, 2021. (cited on page 26)

[47] Courtney Paquette and Elliot Paquette. Dynamics of stochastic momentum methods on large-
scale, quadratic models. Advances in Neural Information Processing Systems, 34:9229–9240,
2021. (cited on page 26)

[48] Courtney Paquette, Elliot Paquette, Ben Adlam, and Jeffrey Pennington. Homogenization of sgd
in high-dimensions: Exact dynamics and generalization properties. Mathematical Programming,
pages 1–90, 2024. (cited on page 26)

[49] Elliot Paquette, Courtney Paquette, Lechao Xiao, and Jeffrey Pennington. 4+3 phases of
compute-optimal neural scaling laws. arXiv preprint arXiv:2405.15074, 2024. (cited on pages 2,
3, 4, 19, and 26)

13

[50] Scott Pesme, Loucas Pillaud-Vivien, and Nicolas Flammarion. Implicit bias of SGD for diagonal
linear networks: a provable benefit of stochasticity. Advances in Neural Information Processing
Systems, 34:29218–29230, 2021. (cited on page 4)

[51] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, and Others.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019. (cited on
page 23)

[52] Fabian Schaipp, Alexander Hägele, Adrien Taylor, Umut Simsekli, and Francis Bach. The
surprising agreement between convex optimization theory and learning-rate scheduling for large
model training. arXiv preprint arXiv:2501.18965, 2025. (cited on page 20)

[53] Utkarsh Sharma and Jared Kaplan. A neural scaling law from the dimension of the data manifold.
arXiv preprint arXiv:2004.10802, 2020. (cited on pages 2 and 19)

[54] Xian Shuai, Yiding Wang, Yimeng Wu, Xin Jiang, and Xiaozhe Ren. Scaling law for language
models training considering batch size. arXiv preprint arXiv:2412.01505, 2024. (cited on pages
2 and 8)

[55] Leslie N Smith. Cyclical learning rates for training neural networks. In 2017 IEEE winter
conference on applications of computer vision (WACV), pages 464–472. IEEE, 2017. (cited on
page 9)

[56] Stefano Spigler, Mario Geiger, and Matthieu Wyart. Asymptotic learning curves of kernel
methods: empirical data versus teacher–student paradigm. Journal of Statistical Mechanics:
Theory and Experiment, 2020(12):124001, 2020. (cited on page 4)

[57] Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, and Others. Kimi K2: Open agentic intelligence.
arXiv preprint arXiv:2507.20534, 2025. (cited on pages 3, 9, and 20)

[58] Howe Tissue, Venus Wang, and Lu Wang. Scaling law with learning rate annealing. arXiv
preprint arXiv:2408.11029, 2024. (cited on pages 2, 10, 16, 20, and 23)

[59] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, and Others. LLaMA 2:
Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023. (cited on
pages 2, 4, 10, 17, and 23)

[60] Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48.
Cambridge university press, 2019. (cited on page 38)

[61] Mingze Wang and Lei Wu. A theoretical analysis of noise geometry in stochastic gradient
descent. arXiv preprint arXiv:2310.00692, 2023. (cited on page 26)

[62] Alexander Wei, Wei Hu, and Jacob Steinhardt. More than a toy: Random matrix models predict
how real-world neural representations generalize. In International Conference on Machine
Learning, pages 23549–23588. PMLR, 2022. (cited on pages 2 and 19)

[63] Kaiyue Wen, Zhiyuan Li, Jason Wang, David Hall, Percy Liang, and Tengyu Ma. Understanding
warmup-stable-decay learning rates: A river valley loss landscape perspective. arXiv preprint
arXiv:2410.05192, 2024. (cited on pages 9 and 20)

[64] Jingfeng Wu, Difan Zou, Vladimir Braverman, Quanquan Gu, and Sham Kakade. Last iter-
ate risk bounds of SGD with decaying stepsize for overparameterized linear regression. In
International Conference on Machine Learning, pages 24280–24314. PMLR, 2022. (cited on
page 8)

[65] Lei Wu and Weijie J Su. The implicit regularization of dynamical stability in stochastic gradient
descent. In International Conference on Machine Learning, pages 37656–37684. PMLR, 2023.
(cited on page 28)

[66] Lei Wu, Mingze Wang, and Weijie Su. The alignment property of SGD noise and how it helps
select flat minima: A stability analysis. Advances in Neural Information Processing Systems,
35:4680–4693, 2022. (cited on pages 26 and 28)

14

[67] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, and Haoran Wei. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115, 2024. (cited on pages 10 and 23)

[68] Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transform-
ers. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 12104–12113, 2022. (cited on pages 3, 9, 17, and 20)

[69] Hanlin Zhang, Depen Morwani, Nikhil Vyas, Jingfeng Wu, Difan Zou, Udaya Ghai, Dean
Foster, and Sham Kakade. How does critical batch size scale in pre-training? arXiv preprint
arXiv:2410.21676, 2024. (cited on page 2)

15

Appendix

Table of Contents
A Miscellanea 16

A.1 Empirical Fitting of LLM Pre-training Loss Trajectory 16
A.2 Popular Learning Rate Schedules . 17
A.3 Connections to Kernel Regression . 17
A.4 The SDE Modeling . 19
A.5 The Emergence of Power Laws . 19

B Related Work 19

C Experiment Details and Additional Results 20
C.1 Power-Law Kernel Regression . 20
C.2 LLM pre-training . 21

D Proof Sketch for the FSL (10) 26

E Proofs for Section 4 27
E.1 Volterra Integral Equation Governing the Loss Dynamics 27
E.2 The Case of Top-M Features . 29
E.3 The Case of Random-M Features . 33

F Proofs for Section 5 39
F.1 Proofs for Constant LRS . 39
F.2 Proof for The Exponential-Decay LRS . 40
F.3 Proof for the WSD-Like LRS . 44

G Auxiliary Lemmas 48

A Miscellanea

A.1 Empirical Fitting of LLM Pre-training Loss Trajectory

The Chinchilla Law [20] describes the final-step loss L as follows:

L(M,D) = L0 +A1M
−κ1 +A2D

−κ2 ,

where L0, A1, A2, κ1, and κ2 are constants, and D and M represent the amount of training data
(tokens) and model size (number of parameters), respectively.

Later, [58] proposed the Momentum Law, a heuristic rule designed to capture the full loss trajectory.
Given a learning rate schedule η := {ηj}j , the loss at the k-th step is modeled as

Lk(η) = L0 +AS−κ
1 − CS2,

where

S1 =

k∑
i=1

ηi, S2 =

k∑
i=2

i∑
j=2

(ηj−1 − ηj)λ
i−j .

Here L0, A, C, and κ are constants, and λ ∈ (0, 1) is a hyperparameter representing the decay factor
for learning rate annealing, which typically ranges from 0.99 to 0.999.

16

Subsequently, [38] proposed the Multi-Power Law (MPL), which replaces the S2 in the Momentum
Law with additional power laws to better capture the progressive loss reduction induced by learning-
rate decay. Specifically, the MPL takes the following form:

Lk(η) = L0 +AS−κ
1 − LD(k), (13)

where

LD(k) := C

k∑
i=2

(ηi−1 − ηi)G(η−κ′

i Si), Si :=

i∑
j=1

ηj , G(x) := 1− (C ′x+ 1)−κ′′
.

Here L0, A,C,C ′, κ, κ′, κ′′ are constants.

A.2 Popular Learning Rate Schedules

Here, we introduce some widely used LRSs in the context of LLM pre-training.

• Cosine Schedule [37]. The schedule is given by ηk = 1+ρ
2 ηmax + 1−ρ

2 ηmax cos(
k−1
K−1),

where ηmax is the maximum learning rate and the hyper-parameter ρ is usually chosen as
0.1 such that the minimum learning rate is ηmax/10 [59].

• Warmup-Stable-Decay (WSD) Schedule [68, 21, 17]. The schedule consists of three
phases: a warm-up phase of Kwarm-up steps, followed by a stable phase maintaining the
learning rate ηk = ηmax, and finally a decay phase governed by ηk = h(k −Kstable)ηmax

for Kstable ⩽ k ⩽ K, where Kstable represents the total duration of the first two phases.
Here, the decay function h(·) ∈ (0, 1) can be linear or exponential.

• Multi-Step Schedule [5]. The entire schedule is divided into S stages, i.e., [K0,K1] ∪
[K1,K2] ∪ · · · ∪ [KS−1,KS] = [0,K], where 0 = K0 < K1 < · · · < KS = K.
The schedule satisfies that ηk = ηKi for Ki−1 < k ⩽ Ki (1 ⩽ i ⩽ S). In our LLM
experiments, we consider a 8-1-1 LRS, corresponding to the case where S = 3 with
ηK1

= ηmax, ηK2
= ηmax/

√
10, and ηK3

= ηmax/10, and K1 = 0.8K,K2 = 0.9K.

A.3 Connections to Kernel Regression

In this section, we explain how our setup in Section 2 are equivalent to learning with kernels.
Definition A.1 (Positive semidefinite (PSD) kernel). A function K : X × X → R is called a
continuous positive semidefinite (PSD) kernel if it satisfies:

• Symmetry: K(x,x′) = K(x′,x) for all x,x′ ∈ X ;

• Positive semidefiniteness: for any x1, . . . ,xn ∈ X and a1, . . . , an ∈ R,
n∑

i,j=1

aiaj K(xi,xj) ⩾ 0.

Definition A.2 (Reproducing kernel Hilbert space (RKHS)). Given a kernel K, the reproducing
kernel Hilbert space HK associated with K is a Hilbert space of functions f : X → R such that

⟨f,K(x, ·)⟩HK
= f(x), ∀f ∈ HK , x ∈ X .

Kernel methods learn functions from a hypothesis space defined by the associated RKHS. For instance,
kernel ridge regression gives estimator:

f̂λ = argmin
f∈HK

1

n

n∑
i=1

(f(xi)− yi)
2 + λ∥f∥2HK

.

Hence, model capacity is determined by the size of the RKHS HK .

Let D be the input distribution. Given a kernel K, define the associated integral operator TK :
L2(D) → L2(D) by

TKf(·) = Ex∼D[K(·,x)f(x)].

17

By assuming Ex∼D[K(x,x)] < ∞, the operator TK is compact (Mercer’s theorem) and consequently,
the kernel admits the following eigenvalue decomposition

K(x,x′) =

∞∑
j=1

λjej(x)ej(x
′),

where {λj}∞j=1 and {ej}∞j=1 denotes the eigenvalues and eigenfunctions, respectively. Moreover,
⟨ei, ej⟩L2(D) = δi,j , i.e., the eigenfunctions form an orthonormal basis of L2(D).

Using the spectral decomposition, the RKHS admits the following representation:

HK =


∞∑
j=1

ajej :

∞∑
j=1

a2j
λj

< ∞

 .

To better quantify the smoothness of functions, we often consider the interpolation space Hs
K with

s ⩾ 0, defined as

Hs
K =


∞∑
j=1

ajej :

∞∑
j=1

a2j
λs
j

< ∞

 .

Clearly, H1
K = HK , and

Hs1
K ⊂ Hs2

K , ∀ s1 > s2 ⩾ 0.

Hence, the index s characterizes the smoothness of a function relative to the chosen kernel.

In the analysis of kernel methods, the following conditions are commonly used to describe the
smoothness of the target function and the capacity of the kernel, respectively.

Assumption A.3 (Source condition). There exists some s > 0 such that f∗ ∈ Hs
K .

Assumption A.4 (Capacity condition). There exists some β > 1 such that λj ≂ j−β .

These conditions yield the following interpretation:

• A smaller s indicates that the target function f∗ belongs to a larger space, corresponding to
a more difficult learning problem.

• A smaller β implies a slower eigenvalue decay, meaning a richer hypothesis space HK and
thus higher model capacity.

Our formulation in Section 2 is equivalent to the above setting, but expressed in terms of the feature
map ϕ. Under Assumption 2.2, we have

Kϕ(x,x
′) =

N∑
j=1

ϕj(x)ϕj(x
′) =

N∑
j=1

λj ϕ̂j(x)ϕ̂j(x
′).

In this case, Assumption 2.3 corresponds exactly to the above capacity condition, while the task-
difficulty assumption in Section 2 can be viewed as a power-law version of the source condition.
Specifically, under Assumption 2.4,

f∗ =

N∑
j=1

θ∗jϕj =

N∑
j=1

j−1/2λ s
j ϕ̂j =

N∑
j=1

aj ϕ̂j .

Hence, for any arbitrarily small δ ∈ (0, 1), we have f∗ ∈ Hs−δ
Kϕ

, since

N∑
j=1

a2j

λs−δ
j

=

N∑
j=1

j−1−β(s−δ) < ∞.

18

A.4 The SDE Modeling

The physical-time SDE. In our setup, the SGD update can be written as

vk+1 = vk − φk∇R(vk)h− φkhξk.

The term ξk is the gradient noise, whose covariance is 1
Bk

Σ(vk). By assuming the gradient noise to
be Gaussian, the SGD becomes

vk+1 − vk = −φk∇R(vk)h+ φk

√
h N

(
0, h

Bk
Σ(vk)

)
.

It is exactly the Euler–Maruyama discretization of the Itô-type SDE:

dv̄τ = −φ(τ)∇R(v̄τ) dt+ φ(τ)

√
h

b(τ)
Σ(v̄τ) dBτ ,

where Bτ ∈ RM denotes the M -dimensional Brownian motion, and φ(·), b(·) are the continuous
version of LRS function and batch-size schedule function, respectively.

The intrinsic-time SDE. Intuitively, the discrete update (4) can be viewed as the Euler–Maruyama
discretization of SDE (7) on the non-uniform grid {tk =

∑k
j=0 ηj}k∈N where the effective step size

is ∆tk = ηk:

vk+1 − vk = −∇R(vk)(tk+1 − tk)−
√
tk+1 − tk N

(
0, ηk

Bk
Σ(vk)

)
.

A.5 The Emergence of Power Laws

We illustrate how the power law emerges in our setting from a multi-task learning viewpoint. For
brevity, consider the case of the top-M features and an infinitesimal learning rate, where the
SDE (7) reduces to the gradient flow ODE: dνt = −W⊤WHνt dt. Noting that W⊤WH =
diag{λ1, λ2, · · · , λM , 0, · · · , 0} is diagonal, consequently the ODE is solvable and gives the follow-
ing expression of the excess risk:

R(νt)− 1
2σ

2 ≂
M∑
j=1

λj |θ∗j |2e−2λjt +

∫ t

0︸ ︷︷ ︸
learned sub-tasks

+

N∑
j=M+1

λj |θ∗j |2︸ ︷︷ ︸
unlearned sub-tasks

.

Intuitively, we can view the learning of each eigenfunction as a sub-task. Due to the limited model
size, student model can at most learn the top-M eigenfunctions.

(i) Intrinsic-time power law. For each sub-task, the sub-task risk converges exponentially
w.r.t. the intrinsic time t. However, owing to the power-law structure of λj , θ

∗
j , the total multi-

task risk exhibits a power-law decay for sufficiently large M due to
∑M

j=1 λj |θ∗j |2e−2λjt ≂∫ 1

0
us−1e−2ut du ≂ 1

ts if M ≫ 1.
(ii) Model-size power law. Approximation error accounts for total risk of the N −M unlearned

sub-tasks, which follows a power-law decay due to
∑N

j=M+1 λj |θ∗j |2 ≂ M−sβ if N−M ≫
1.

Summary. The emergence of power law arises from the accumulation effect, requiring both the
number of learned tasks and unlearned tasks to be large (ideally infinite).

B Related Work

Theoretical explanation of scaling laws. Among the growing body of work seeking to theoretically
explain scaling laws [53, 22, 39, 62, 23, 42, 43, 2, 14, 3, 7, 35, 49, 8], the most closely related
are [7, 49, 8, 35], which also analyze PLK regression (often written in the equivalent linear-regression
form). Specifically, [7] studies gradient flow, [49, 8] analyze SGD with a constant LRS, and [35]

19

considers an exponential-decay LRS. In contrast, we establish a unified scaling law applicable to
general LRSs, which not only recovers these prior results as special cases but also substantially
extends them by capturing the loss dynamics rather than only the final-step loss. This unification is
enabled by introducing the key notion of intrinsic time, which more faithfully captures the effective
training progress than the raw number of training steps.

Predicting loss trajectories in LLM pre-training. [58] presented the empirical evidence sug-
gesting that full loss trajectories in LLM pre-training may be predictable. Subsequent work [38]
proposed a heuristic called the multi-power law, achieving improved predictive accuracy. A detailed
description of these fitting strategies is provided in Appendix A.1. Our analysis offers a theoretical
explanation for these empirical findings.

Warmup-Stable-Decay (WSD) LRS. A WSD schedule [68, 21] maintains a constant learning rate
for a long stable phase, followed by a learning rate decay only near the end of training. Although
unconventional, WSD has become popular in LLM pre-training [21, 17] and is already deployed
in training industry-scale LLMs such as DeepSeek-V3 [36] and Kimi-K2 [57]. Yet its mechanism
remains poorly understood. While recent works [63, 52] offer partial insights, we show—perhaps
surprisingly—that even quadratic optimization, corresponding to a kernel regression problem, already
reproduces the essential advantage of WSD. Furthermore, we quantify this advantage through explicit
comparisons of scaling efficiency against constant and exponential-decay schedules.

C Experiment Details and Additional Results

In this section, we present the details of our experiments as well as additional results.

C.1 Power-Law Kernel Regression

Physical-time FSL. The FSL (10) is presented in terms of intrinsic time, but in practice, it is often
more convenient to use physical time (training steps). By a suitable change of times, after τ steps
(equivalently, τ/h discrete steps), the FSL maintains the form (10), with adjustments:

t−s = T (τ)−s,

N (φ, b) =

∫ τ

0

K(T (τ)− T (u)) (e(T (u)) + σ2)
hφ(u)2

b(u)
du.

Fitting FSL on SGD Average-Risks. To validate that the Functional Scaling law (FSL) can
accurately capture the risk curve of SGD, we conducted a series of SGD experiments under different
configurations of s and β. Subsequently, we fitted the FSL to these risk curves. Our results
demonstrate that FSL indeed provides a close fit to the SGD trajectories.

In each experiment, we adopt a PLKR configuration with M = N = 128, σ = 3 and employ the
top-M projection matrix, thereby eliminating the approximation error term M−sβ . We explore
a range of values for s ∈ [0.5, 1] and β ∈ [1.5, 5], encompassing both easy- (s ⩾ 1 − 1/β) and
hard-learning (s < 1− 1/β) regimes. For each parameter configuration, we execute 200 independent
SGD runs with a batch size of 1 over 10,000 steps. The resulting average trajectory across these runs
serves as the fitting target. The FSL fitting is performed using the physical-time FSL formulation.

Ek = c1T (k)
−s + c2

k∑
i=1

K(T (k)− T (i))e(T (i))η2i + c3σ
2

k∑
i=1

K(T (k)− T (i))η2i ,

where c1, c2, c3 are constants to fit, {ηi}ki=1 is the learning rate schedule, and T (i) =
∑i

j=1 ηj .

When fitting the SGD trajectory, we minimize the mean squared error (MSE) between the empirical
risk trajectory of SGD (without the irreducible risk σ2

2), denoted by ESGD(k), and the theoretical
prediction from FSL, Ek. Formally, we solve the following optimization problem:

min
c1,c2,c3

1

K

K∑
k=1

(ESGD(k)− Ek)2 ,

20

where K represents the total number of training steps. This minimization is performed using ordinary
least squares (OLS), with the integrals in the FSL expression Ek evaluated numerically via quadrature
methods.

We display the learning rate schedules (LRSs) used in the SGD experiments in the top-left panel of
Figure 3. Complementing Figure 1 (middle and right), additional experimental results for various
values of s and β are presented in Figure 3.

0 2000 4000 6000 8000 10000

Step

0.002

0.004

0.006

0.008

0.010

L
ea

rn
in

g
ra

te

LRSs for SGD training

cos

wsd

cyclic

2000 4000 6000 8000 10000

Step

0.06

0.08

0.10

0.12

0.14

R
is

k

s = 0.5, β = 1.5,M = 128

cos

wsd

cyclic

2000 4000 6000 8000 10000

Step

0.04

0.06

0.08

R
is

k

s = 0.5, β = 3,M = 128

cos

wsd

cyclic

2000 4000 6000 8000 10000

Step

0.02

0.03

0.04

0.05

0.06

R
is

k

s = 0.5, β = 5,M = 128

cos

wsd

cyclic

2000 4000 6000 8000 10000

Step

0.01

0.02

0.03

0.04

R
is

k
s = 0.8, β = 3,M = 128

cos

wsd

cyclic

2000 4000 6000 8000 10000

Step

0.01

0.02

0.03

R
is

k

s = 0.8, β = 5,M = 128

cos

wsd

cyclic

Figure 3: Fitting results of FSL on SGD trajectories. The shaded curves are the average over 200 independent
SGD runs, while the solid curves show the predictions of FSL.

Scaling law experiments. These experiments are designed to evaluate the correctness of the scaling
laws predicted by our analytical analysis. To this end, we conduct two complementary sets of
experiments:

• FSL experiments. This experiment is intended to validate the theoretical predictions derived
from the FSL. We compute the predicted risk by numerically discretizing the FSL (10),
with all untracked constants set to 1. For each LRS, following the theoretical analysis, we
set ηmax = 0.05D−r, where r = s/(1 + s) for the constant learning rate schedule, and
r = 1 for exponential decay and WSD schedules. We fix the batch size to B = 1; thus, for
each data budget D, we compute the intrinsic time and evaluate the final-step loss using the
discretized FSL.

• SGD experiments. This experiment serves to assess whether the scaling behavior predicted
by our continuous-time FSL faithfully captures that of discrete-time SGD. We simulate
stochastic gradient descent (SGD) with 200 independent trajectories and a fixed batch size
B = 1. For each data budget D, the maximum learning rate is set as ηmax = 0.05D−r,
using the same theoretical values of r as in the FSL experiments. We run SGD for D steps
under each corresponding LRS and record the final-step excess risk.

C.2 LLM pre-training

Practical FSL Ansatz for LLM pre-training In this section, in order to fit real LLM pre-training
loss curves, we will derive an approximation form of the FSL in Theorem 4.2.

First, by the physical-time for of the FSL (10) with h = 1 and B(u) ≡ B, we have

Ek ≂
1

T (k)s
+M−sβ +

1

B

∫ k

0

K(T (k)− T (u))(σ2 + e(T (u))) · φ(u)2 du.

Here we focus on the integral term. Since φ(u) =
∫ u

0
φ′(r) dr + φ(0), and that∫ k

0

K(T (k)−T (u))(σ2+ e(T (k)) ·φ(u)φ(0) du = φ(0)

∫ T (k)

0

K(T (k)− t)(σ2+ e(t)) dt. (14)

21

Note that this is exactly the SGD noise term at the constant LRS η(0) for a total intrinsic-time T (τ).
By results of constant LRS (as seen in the proof of Theorem F.1), we have

(14) ≂ φ(0)(σ2 + e(T (k))).

As φ(0) ≲ 1, we have

Ek ≂
1

T (k)s
+M−sβ − LRD(k), (15)

where

LRD(k) := − 1

B

∫ k

0

K(T (k)− T (u))(σ2 + e(T (u)))φ(u)

∫ u

0

φ′(r) dr du

= − 1

B

∫ k

0

φ′(r)

∫ k

r

K(T (k)− T (u))(σ2 + e(T (u)))φ(u) dudr

= − 1

B

∫ k

0

φ′(r)

∫ T (k)

T (r)

K(T (k)− t)(σ2 + e(t)) dtdr.

We discretize the outer integral at integer nodes r = 0, 1, . . . , k,

LRD(k) ≈ 1

B

k∑
i=1

(ηi−1 − ηi)

∫ T (k)

T (i)

K(T (k)− t)(σ2 + e(t)) dt.

By the integral mean value theorem, we can take (σ2 + e(t)) outside the integral, which gives

LRD(k) ≈ 1

B

k∑
i=1

(ηi−1 − ηi)(σ
2 + e(ξi))

∫ T (k)

T (i)

K(T (k)− t) dt,

where ξi ∈ [T (i), T (k)]. Now since∫ T (k)

T (i)

K(T (k)− t) dt ≈
∫ T (k)

T (i)

1

(1 + ct)2−1/β
dtdu ≂ 1− 1

(1 + c(T (k)− T (i))1−1/β
,

we then further simplify it as

LRD(k) ≈ 1

B

k∑
i=1

(ηi−1 − ηi)(σ
2 + e(T (i)))(1− (1 + c(T (k)− T (i)))−γ).

Here, we approximate ξi as T (i) and introduce a new parameter γ to replace 1− 1
β for simplicity.

Therefore, combining with (15), when the batch size B is fixed, after renaming some constants, the
final discrete ansatz can be written as

Rk ≈ c0 +
c1

T (k)s
+ c2M

−sβ

− c3

k∑
i=1

(ηi−1 − ηi)

(
c4 +

1

T (i)s

)(
1− (1 + c5(T (k)− T (i)))−γ

)
,

(16)

where c0, c1, c2, c3, c4, c5, s, β, γ are constants to fit.

Fitting the Practical FSL The objective of this experiment is to analyze and fit the loss function
using our functional scaling law, by (16), since we do not explore the effect of varying the model size
M in our experiments, we drop the term M−sβ and get

LΘ(k) = L0 +
c1

T (k)s
− LRD(k)

where T (k) =
∑k

i=1 ηi and

LRD(k) := c2

k∑
i=1

(ηi−1 − ηi)

(
c3 +

1

T (i)s

)(
1− 1

(1 + c4(T (k)− T (i)))γ

)
,

22

and Θ = (L0, c1, c2, c3, c4, s, γ).

Following [58], we utilize the Huber loss as the objective function.

min
Θ

K∑
k=1

Huberδ (logLΘ(k)− logLgt(k)) ,

where δ = 1 × 10−3, Lgt denotes the ground truth of the validation losses. We adopt the Adam
optimizer, with a learning rate of 5× 10−2 for the index parameters in our law and 5× 10−3 for the
coefficient or constant parameters. Each optimization takes over 10,000 steps.

We fit the law on the 400M model and 1B model trained with 20B tokens and an 8-1-1 LRS We
then predict the loss curve for the 400M model and 1B model with cosine LRS and WSD LRS. The
experiment result is present in Figure 2a.

FSL-optimal LRS via numerical variation. We propose to obtain a numerical optimal LRS by
directly minimizing the final-step loss over the space of LRS using the fitted FSL, termed FSL-optimal
LRS.

Step 1: Fitting FSL. Fit FSL on the loss curve of a 1B QwenMoE model trained on 20B tokens
with batch size 288, maximum learning rate η0 = 0.001, and the 8-1-1 scheduler over a total step of
K = 33907 , following the same procedure described earlier.

Step 2: Optimize LRS. To improve optimization stability, we reparameterize the learning rate
schedule by defining

δi = ηi − ηi+1, for i = 0, 1, . . . ,K − 1.

Then, the i-th step learning rate can be recovered by ηi = η0 −
∑i−1

k=0 δk, which defines a one-to-one
correspondence between the learning rate schedule {ηi} and {δi}. The optimization problem is

min
{δi}K

i=1

LΘ({ηi}Ki=1), subject to
K−1∑
k=0

δk ⩽ η0, dηi ⩾ 0, i = 0, 1, . . . ,K − 1. (17)

To solve the above constraint optimization, we use the projected gradient descent (PGD) [10]. The
learning rate of PGD is searched ranging from 1 × 10−8 to 5 × 10−10, and the optimization step
number ranges from 50,000 to 100,000.

The resulting FSL-optimal LRS is presented in Figure 2b (left), where cosine, WSD, and 8-1-1 LRSs
are also given for a comparison.

Step 3: Evaluate our LRS. We then evaluate the performance of the resulting FSL-optimal LRS,
and the three LRSs in Figure 2b (left) are used as baseline. All comparisons are conducted on the
same 1B QwenMoE model under identical training conditions: 33,907 total steps, batch size 288,
and 20B training tokens. Full loss curves are shown in Figure 2b.

Additional Experiments We have further conducted ablation experiments with different model
sizes and architectures, different total steps and different WSD schedules.

We validate our functional scaling law in models with various sizes, ranging from 100M to 1B, and
diverse architectures including GPT-2 [51], LLaMA [59] and QwenMoE [67]. For each model, we
first fit the FSL using the 8-1-1 LRS and subsequently employ it to predict the loss curve under a
WSD LRS. Next we numerically solve the FSL-optimal LRS and empirically validate its efficacy by
comparing the final pre-training loss against those obtained using other commonly adopted learning
rate schedules. We present the results in Figure 4 for the 1B LLaMA dense model, Figure 5 for the
100M GPT-2 dense model. The consistent alignment between predicted and observed performance
across architectures and sizes underscores the robustness and generalizability FSL.

We further validate the applicability of our functional scaling law (FSL) across varying training
durations. Using a 100M LLaMA dense model, we conduct experiments with total training steps set
to 17k, 34k, 68k, and 134k. As demonstrated in Figures 6 and 7, our FSL accurately models the loss
trajectories across all evaluated step counts, confirming its robustness to different total training steps.

Finally, we conduct a comprehensive empirical comparison between our FSL-optimal learning rate
schedule and various WSD baselines, examining different decay ratios and minimum learning rate

23

0 5000 10000 15000 20000 25000 30000 35000
Step

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Lo
ss

Actual Loss (Rolling Mean)
Functional Fit
RMSE=0.01851

(a) Prediction on WSD LRS

0 5000 10000 15000 20000 25000 30000 35000
Steps0.0

00
0

0.0
00

2
0.0

00
4

0.0
00

6
0.0

00
8

0.0
01

0

LR

WSD
Cosine
Optimal

(b) Optimal and Existing LRSs

20000 22000 24000 26000 28000 30000 32000 34000
Step

2.25

2.30

2.35

2.40

2.45

2.50

Lo
ss

(E
MA

)

1037M, Cosine
1037M, WSD
1037M, 8-1-1
1037M, Optimal

(c) Loss curve of LRSs

Figure 4: Experiment on the 1B LLaMA (dense) model. Figure (a): We fit our functional scaling
law on the loss curve of 1B LLaMA (dense) model with 20B tokens training data and 8-1-1 LRS.
Figures (b)(c): The comparison on the 1B model between the optimal LRS, cosine LRS, WSD LRS
with exponential decay and 8-1-1 LRS.

0 5000 10000 15000 20000 25000 30000 35000
Step

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Lo
ss

Actual Loss (Rolling Mean)
Functional Fit
RMSE=0.03792

(a) Prediction on WSD LRS

0 5000 10000 15000 20000 25000 30000 35000
Steps0.0

00
0

0.0
00

2
0.0

00
4

0.0
00

6
0.0

00
8

0.0
01

0

LR

WSD
Cosine
Optimal

(b) Optimal and Existing LRSs

18000 20000 22000 24000 26000 28000 30000 32000 34000
Step

2.625

2.650

2.675

2.700

2.725

2.750

2.775

2.800

Lo
ss

(E
MA

)

100M GPT, Cosine
100M GPT, WSD
100M GPT, 8-1-1
100M GPT, Optimal

(c) Loss curve of LRSs

Figure 5: Experiment on the 100M GPT2 (dense) model. Figure (a): We fit our functional scaling
law on the loss curve of 100M GPT2 (dense) model with 20B tokens training data and 8-1-1 LRS.
Figures (b)(c): The comparison on the 100M model between the optimal LRS, cosine LRS, WSD
LRS with exponential decay and 8-1-1 LRS.

configurations. As evidenced by Figures 8 and 9, our FSL-optimal LRS consistently outperforms
all WSD variants, achieving superior final pre-training loss across all experimental conditions. This
systematic evaluation demonstrates both the effectiveness of our theoretically-derived schedule and
its practical advantages over conventional heuristic approaches.

0 20000 40000 60000 80000 100000 120000 140000
Steps

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

Lo
ss

17k, RMSE=0.09893
34k, RMSE=0.10484
68k, RMSE=0.11104
134k, RMSE=0.08559

(a) Prediction result

0 20000 40000 60000 80000 100000 120000 140000
Steps

0.0
00

0
0.0

00
2

0.0
00

4
0.0

00
6

0.0
00

8
0.0

01
0

LR

17k
34k
68k
134k

(b) Optimal LRS

Figure 6: Experiments with different total steps. Figure (a): Fitted functional scaling laws on
100M LLaMA model with different total training steps 17k, 34k, 68k and 134k (corresponding to
10B, 20B, 40B and 80B tokens respectively). Figure (b): Optimal LRSs compared with cosine and
WSD LRSs. The solid lines are optimal LRSs, and the dashed lines are cosine/WSD LRSs.

24

12000 13000 14000 15000 16000 17000
Step

2.66

2.68

2.70

2.72

2.74

2.76

2.78

2.80

2.82

Lo
ss

(E
MA

)

100M, Cosine
100M, WSD
100M, 8-1-1
100M, Optimal

(a) 17k steps

40000 45000 50000 55000 60000 65000
Step

2.550

2.575

2.600

2.625

2.650

2.675

2.700

2.725

2.750

Lo
ss

(E
MA

)

100M, Cosine
100M, WSD
100M, 8-1-1
100M, Optimal

(b) 68k steps

60000 70000 80000 90000 100000 110000 120000 130000 140000
Step

2.500

2.525

2.550

2.575

2.600

2.625

2.650

2.675

2.700

Lo
ss

(E
MA

)

100M, Cosine
100M, WSD
100M, 8-1-1
100M, Optimal

(c) 134k steps

Figure 7: Experiments with different total steps. We compare loss curves of existing LRSs and
optimal LRS on the 100M LLaMA model with different total training steps 17k, 68k and 134k.

20000 22000 24000 26000 28000 30000 32000 34000
Step

2.400

2.425

2.450

2.475

2.500

2.525

2.550

2.575

2.600

Lo
ss

(E
MA

)

400M, Cosine
400M, WSD (3:1)
400M, WSD (4:1)
400M, WSD (5:1)
400M, Optimal

Figure 8: WSD with different decay ratios: We train a 400M LLaMA (dense) model with 20B
tokens of training data and WSD LRSs with the ratios between stable time and decay time of 3:1, 4:1,
and 5:1. All WSD LRSs exhibit a final loss similar to that of the Cosine LRS, and the optimal LRS
derived from our functional scaling law outperforms all other LRSs by a loss gap of approximately
0.01.

40000 45000 50000 55000 60000 65000
Step

2.550

2.575

2.600

2.625

2.650

2.675

2.700

2.725

2.750

Lo
ss

(E
MA

)

100M, Cosine
100M, WSD
100M, 8-1-1
100M, Optimal
100M, WSD to 0

Figure 9: Comparison between optimal LRS and WSD with a near-zero final learning rate: We
train a 100M LLaMA (dense) model with 40B tokens training data and various LRSs with the same
ηmax = 10−3, including WSD LRS with ηmin = 1

10ηmax, WSD LRS with ηmin = 10−7, cosine LRS
with ηmin = 1

10ηmax, 8-1-1 LRS with ηmin = 1
10ηmax, and optimal LRS. The experimental results

show that decaying to (near) zero does not result in significant loss reduction.

25

D Proof Sketch for the FSL (10)

In this section, we outline the main ideas behind the proof of the FSL (10), highlighting the key
techniques. Complete proofs of the above theorems are deferred to Appendix E.

We will need the following characterization of the gradient noise structure.
Lemma D.1 (Noise structure). For any v ∈ RM , it holds that

(2C1E(v) + σ2)∇2R(v) ⪯ Σ(v) ⪯ (2C2E(v) + σ2)∇2R(v),

where ∇2R(v) = WHW⊤, and the constants C1 and C2 are the same as in Assumption 2.1.

The proof is provided in Appendix E.1. Let ξ(v) denote the gradient noise at v. Since R(v) =
E(v) + 1

2σ
2, it follows that for any direction n ∈ SM−1,

E[|ξ(v)⊤n|2] = n⊤Σ(v)n ≂ R(v)n⊤∇2R(v)n,

where n⊤∇2R(v)n represents the local curvature of the population risk along n. Hence, the noise
energy in each direction is proportional to the product of the population risk and the curvature along
that direction. This anisotropic structure of the gradient noise—scaling with the risk and shaped by
curvature—has also been reported in prior work [66, 61].

For clarity, in this section, we focus on the case of top-M features, for which the population risk
takes the form

2E(v) =
M∑
j=1

λj(vj − θ∗j)
2 +

N∑
j=M+1

λj |θ∗j |2. (18)

For the intrinsic-time SDE (7), each coordinate of ν(t) evolves as

dνj(t) = −λj(νj − θ∗j) dt+
√
γ(t)qj(t) dBj(t),

where qj(t) := e⊤j Σ(νt)ej is the variance of gradient noise along ej , and ej is the j-th canonical
basis vector for j ∈ [M]. By applying Itô’s formula to (νj − θ∗j)

2 and noting ν(0) = 0, we obtain

E[(νj(t)− θ∗j)
2] = (0− θ∗j)

2e−2λjt + λj

∫ t

0

e−2λj(t−τ)γ(τ)qj(τ) dτ.

Let Et = E(νt) and plugging the above equation into (18) gives

2E[Et] =
M∑
j=1

λj |θ∗j |2e−2λjt +

M∑
j=1

λ2
j

∫ t

0

e−2λj(t−τ)γ(τ)E[qj(τ)] dτ +

N∑
j=M+1

λj |θ∗j |2. (19)

By Lemma D.1 and noting ∇2R(v) = diag(λ1, . . . , λM), we have

qj = e⊤j Σ(νt)ej ≂ λjR(νt) = λj(E(νt) + σ2/2).

Let δM =
∑N

j=M+1 λj |θ∗j |2, eM (t) =
∑M

j=1 λj |θ∗j |2e−2λjt, and KM (t) =
∑M

j=1 λ
2
je

−2λjt. Plug-
ging them back into (19) gives the following Volterra equation:

E[Et] ≂ δM + eM (t) +

∫ t

0

KM (t− τ)γ(τ)(E[Et] + σ2) dτ. (20)

The above equation characterizes the expected loss dynamics of SGD under a general spectrum and
has been derived in prior works such as [46, 47, 28, 48, 49]. Our key observation is that, under the
power-law assumptions on {θ∗j }j and {λj}j (Assumptions 2.3 and 2.4), the solution to (20) admits a
sharp asymptotic characterization, providing explicit upper and lower bounds that precisely capture
its scaling behavior.

Let f(t) := E[Et], g(t) := δM + eM (t) + σ2
∫ t

0
KM (t− τ)γ(τ) dτ , and define the linear operator

T f(t) =

∫ t

0

KM (t− τ)γ(τ)f(τ) dτ.

26

Then, the Volterra equation (20) can be expressed in the compact form f = g + T f. Formally, its
solution can be expanded as an infinite series:

f = (I − T)−1g = g + T g + T 2g + T 3g + · · · . (21)

The key observation is that, under Assumptions 2.3 and 2.4, the higher-order terms T kg for k⩾2
can be well controlled by the first-order term T g.
Lemma D.2 (Half-scale comparability). For any t ≲ Mβ , it holds KM (t/2) ≲ KM (t).

Proof. The result follows from the fact that KM exhibits a power-law decay for t≲Mβ . Indeed,

KM (t) =

M∑
j=1

λ2
je

−2λjt ≂
∫ 1

M−β

z 1− 1
β e−2zt dz ≂ t−(2−1/β), 1 ≲ t ≲ Mβ .

Consequently, KM (t/2) ≂ (t/2)−(2−1/β) ≂ t−(2−1/β) ≂ KM (t), which establishes the claim.

Corollary D.3 (Subconvolution property). For any t ≲ Mβ , it holds KM ∗ KM (t) ≲ KM (t).

Proof. Noting KM is non-increasing and integrable. and applying Lemma D.2, we obtain

(KM ∗ KM)(t) =

∫ t/2

0

KM (t− τ)KM (τ) dτ +

∫ t

t/2

KM (t− τ)KM (τ) dτ

⩽ 2KM (t/2)

∫ t/2

0

KM (τ) dτ ≲ KM (t/2) ≲ KM (t),

which proves the claim.

Let ∥γ∥∞ = maxt⩾0 γ(t). By Corollary D.3, it holds for any t ≲ Mβ that

T 2g(t) ⩽ ∥γ∥∞
∫ t

0

KM ∗ KM (t− τ)γ(τ)g(τ) dτ

≲ ∥γ∥∞
∫ t

0

KM (t− τ)γ(τ)g(τ) dτ = ∥γ∥∞T g(t).

When ∥γ∥∞ is sufficiently small, there exists a constant 0 < c < 1 such that T kg(t) ⩽ ck−1T g(t)
holds for any 0 ⩽ t ≲ Mβ . Hence,

f(t) ⩽ g(t) + T g(t) +

∞∑
k=2

ck−1T g(t) ≲ g(t) + T g(t) + c
1−cT g(t).

Combining f(t) ⩾ g(t) + T g(t) with the above upper bound, we conclude f(t) ≂ g(t) + T g(t),
which completes the proof of FSL (10).

E Proofs for Section 4

E.1 Volterra Integral Equation Governing the Loss Dynamics

In this section, we derive a Volterra-type integral equation that exactly characterizes the evolution
of expected loss under the intrinsic-time SDE. This equation serves as the starting point for all
subsequent theoretical analysis. Recall the intrinsic-time SDE:

dνt = −∇R(νt) dt+
√
γtΣ(νt) dBt, (22)

where γt = γφ,b(t). Here, we drop the dependence on φ and b for simplicity.

By the definition of R(v), we have ∇R(v) = WH(W⊤v − θ∗). Let ut = W⊤νt − θ∗. Then, we
have

Et = E(ut) =
1

2
∥ut∥2H

To obtain the estimate of Et, we consider the intrinsic-time SDE for ut given by:

27

Lemma E.1. We have

dut = −W⊤WHut dt+
√
γtW⊤ΣtW dBt, (23)

where Σt := Σ(νt).

Proof. By Eq. (22),

dut = d(W⊤νt − v∗) = W⊤ dνt = −W⊤WHut dt+W⊤
√

γtΣt dB̃t.

Here B̃t is an N dimensional standard Brownian motion, we are going to replace it with an M
dimensional standard Brownian motion Bt.

It is easy to see that the diffusion term W⊤√γtΣt dB̃t has the same distribution as√
γtW⊤ΣtW dBt, hence the SDE can be written in Bt as

dut = −W⊤WHut dt+
√

γtW⊤ΣtW dBt.

A key insight for tractability is that the gradient noise exhibits the following anisotropic structure:

Our analytic analysis also relies on the noise structure characterized by the following lemma.
Lemma E.2 (Noise Structure). For any v ∈ RM , it holds that

(2C1E(v) + σ2)WHW⊤ ⪯ Σ(v) ⪯ (2C2E(v) + σ2)WHW⊤.

Noting ∇2R(v) = WHW⊤ and R(v) = E(v) + 1
2σ

2, this lemma means Σ(v) ≂ R(v)∇2R(v).
That is, the gradient noise scales proportionally with the population risk and aligns with the local
curvature. Notably, the noise has two distinct sources: (i) the fit-dependent term E(v), which arises
purely from minibatching and persists even in the absence of label noise; (ii) the σ2 term, which
captures the contribution from label noise. This anisotropic structure of SGD noise – scaling with
risk and shaped by curvature – has also been observed in prior work [66, 65].

Proof. Noting ℓ(z;v) = 1
2 (v

⊤Wϕ(x)− y)2, we have

∇ℓ(z;v) = Wϕ(x)ϕ(x)⊤
(
W⊤v − θ∗)−Wϕ(x)ϵ

∇R(v) = E[∇ℓ(z;v)] = WH
(
W⊤v − θ∗) .

Hence, the covariance matrix of the noise ξ := ∇ℓ(z;v)−∇R(v) is given by

Σ(v) = E[ξξ⊤|v]
= W

(
E
[
ϕ(x)ϕ(x)⊤uu⊤ϕ(x)ϕ(x)⊤

]
−Huu⊤H

)
W⊤ + σ2WHW⊤.

Noting

E
[
ϕ(x)ϕ(x)⊤uu⊤ϕ(x)ϕ(x)⊤

]
−Huu⊤H = E

[
ϕ(x)⊤uu⊤ϕ(x)ϕ(x)ϕ(x)⊤

]
−Huu⊤H,

then applying Assumption 2.1, we have

Σ(v) ⪯ C2Wtr(Huu⊤)HW⊤ + σ2WHW⊤ =
(
2C2E(u) + σ2

)
WHW⊤,

where the last step follows from tr(Huu⊤) = ∥u∥2H = 2E(v). The lower bound follows the same
proof.

The excess-risk dynamics is then given by the following Volterra integral equation:
Proposition E.3. For the intrinsic-time SDE, we have

2E[Et] = u⊤
0 A

⊤
t HAtu0 +

∫ t

0

tr(SA⊤
t−τHAt−τS) · γτ (cτE[Eτ] + σ2) dτ, (24)

where At := e−W⊤WHt, S :=
√
W⊤WHW⊤W, and 2C1 ⩽ cτ ⩽ 2C2 are some constants.

28

Proof. By Itô’s formula,

d(eW
⊤WHtut) = eW

⊤WHt(W⊤WHut dt+ dut)

= eW
⊤WHt

√
γtW⊤ΣtW dBt.

Integrating both sides, we get

eW
⊤WHtut − u0 =

∫ t

0

eW
⊤WHτ

√
γτW⊤ΣτW dBτ .

Now write At = e−W⊤WHt, we have

ut = Atu0 +

∫ t

0

At−τ

√
γτW⊤ΣτW dBτ .

Note that the integral with respect to Bt always has zero expectation, therefore we have

2EEt = E(u⊤
t Hut)

= u⊤
0 A

⊤
t HAtu0 + E

∫ t

0

γτ tr
(√

W⊤ΣτWA⊤
t−τHAt−τ

√
W⊤ΣτW

)
dτ.

By Lemma G.2 and Lemma E.2, we have

tr
(√

W⊤ΣτWA⊤
t−τHAt−τ

√
W⊤ΣτW

)
⩽ (2Eτ + σ2)tr(SA⊤

t−τHAt−τS),

tr
(√

W⊤ΣτWA⊤
t−τHAt−τ

√
W⊤ΣτW

)
⩾ (Eτ + σ2)tr(SA⊤

t−τHAt−τS).

Hence there exists some constant cτ ∈ [2C1, 2C2] such that

Etr
(√

W⊤ΣτWA⊤
t−τHAt−τ

√
W⊤ΣτW

)
= (cτE[Eτ] + σ2)tr(SA⊤

t−τHAt−τS),

from which the lemma follows.

E.2 The Case of Top-M Features

First, we prove the general label-noise case of FSL (Theorem 4.3). Applying this result, we then
derive the constant label-noise case (Theorem 4.4), the noiseless case (Theorem 4.5) and the hard
regime case (Theorem 4.2)

E.2.1 Proof of Theorem 4.3

In the top-M feature case, the matrix W satisfies wj = ej for each j ∈ [M], therefore we can
simplify the equation for E[Et] as follows.

Theorem E.4 (Volterra equation of the top-M case). In the top-M case, we have

E[Et] ≂ M−sβ + eM (t) +

∫ t

0

KM (t− τ)γτ (E[Eτ] + σ2) dτ, (25)

where the function eM and KM are defined as

eM (t) :=

M∑
j=1

λj(θ
∗
j)

2e−2λjt, KM (t) :=

M∑
j=1

λ2
je

−2λjt. (26)

Proof. By (24) in Proposition E.3, note that W⊤WH = H0:M ∈ RN×N is the top-M part of the
matrix H, i.e. H0:M = diag{λ1, . . . , λM , 0, . . . , 0}, we get

E[Et] ≂ u⊤
0 He−2H0:M tu0 +

∫ t

0

tr(H2
0:Me−2H0:M)γτ (E[Et] + σ2) dτ,

29

which can be further written in terms of the eigenvalues {λj} as

E[Et] ≂
M∑
j=1

λj(u
(j)
0)2e−2λjt +

∞∑
j=M+1

λj(u
(j)
0)2 +

∫ t

0

M∑
j=1

λ2
je

−2λjtγτ (E[Et] + σ2) dτ.

Note that u(j)
0 , the j-th component of u0, is equal to θ∗j because of the zero initialization of ν0.

Therefore by the definition of eM and KM we arrive at the Volterra-type integral equation of
E[Et].

Lemma E.5. For the forgetting kernel KM and t ⩽ Mβ , there exists a constant C independent of t,
such that

KM ∗ KM (t) ⩽ CKM (t), ∀t ⩽ Mβ .

where ∗ denotes convolution:

KM ∗ KM (t) :=

∫ t

0

KM (τ)KM (t− τ) dτ.

Proof. Observe that KM (t) is a monotonically decreasing function, by the symmetry of the convolu-
tion, we have

KM ∗ KM (t) =

∫ t

0

KM (τ)KM (t− τ) dτ

= 2

∫ t/2

0

KM (τ)KM (t− τ) dτ.

Since KM is decreasing, for 0 ⩽ τ ⩽ t/2 we have KM (t− τ) ⩽ KM (t/2), thus

KM ∗ KM (t) ⩽ 2KM

(
t
2

) ∫ ∞

0

KM (τ) dτ ⩽ CKM

(
t
2

)
,

where

C = 2

∫ ∞

0

KM (τ) dτ ⩽ 2

∫ ∞

0

∞∑
j=1

λ2
je

−2λjτ dτ =

∞∑
j=1

λj = tr(H) < ∞.

It remains to show that when t ⩽ Mβ ,

KM

(
t

2

)
⩽ C ′KM (t)

for some constant C ′ > 0. Recall that

KM (t) =

∞∑
j=1

λ2
je

−2λjt =

M∑
j=1

j−2βe−2j−βt ≂
∫ M

1

x−2βe−2x−βt dx.

By the change of variable y = x−βt, one obtains

KM (t) ≂
1

β
t−2+ 1

β

∫ t

tM−β

y1−
1
β e−2y dy.

When t ⩽ Mβ , the lower limit tM−β ⩽ 1, and the integrand is smooth and bounded on [tM−β , t].
Hence the integral remains comparable up to a constant factor, i.e., there exists a constant C1 > 0
such that

KM

(
t
2

)
⩽ C1KM (t), ∀ t ⩽ Mβ .

Combining the above estimates, we obtain

(KM ∗ KM)(t) ⩽ C KM

(
t
2

)
⩽ CC1 KM (t) =: C ′KM (t).

The proof is complete.

30

We now prove Theorem 4.3.

Proof. The lower bound is trivial by E[Et] ⩾ eM (t) and the Volterra equation (25). For the upper
bounds, first we prove the weaker bound with K∞.

Proof of weaker upper bound. By Equation (25), we have

E[Et] ≂ M−sβ + eM (t) +

∫ t

0

KM (t− τ)γτ (E[Eτ] + σ2) dτ

⩽ M−sβ + eM (t) +

∫ t

0

K∞(t− τ)γτ (E[Eτ] + σ2) dτ.

Define f(t) :=
∫ t

0
K∞(t− τ)γτ (E[Eτ] + σ2) dτ , substitute the above inequality into the right-hand

side, we get

f(t) ≲
∫ t

0

K∞(t− τ)(M−sβ + eM (τ) + σ2)γτ dτ

+

∫ t

0

∫ τ

0

K∞(t− τ)K∞(τ − r)γτγr(E[Er] + σ2) dr dτ

≲ γmaxM
−sβ +

∫ t

0

K∞(t− τ)(eM (τ) + σ2)γτ dτ

+ γmax

∫ t

0

∫ t

r

K∞(t− τ)K∞(τ − r) dτγr(E[Er] + σ2) dr

= γmaxM
−sβ +

∫ t

0

K∞(t− τ)(eM (τ) + σ2)γτ dτ

+ γmax

∫ t

0

(K∞ ∗ K∞)(t− r)γr(E[Er] + σ2) dr

Lemma E.5
≲ γmaxM

−sβ +

∫ t

0

K∞(t− τ)(eM (τ) + σ2)γτ dτ + γmaxf(t)

Therefore when γmax is sufficiently small (γmax ⩽ c
tr(H) for some absolute constant c), the constant

factor of f(t) on the right-hand side will be less than 1
2 , hence we can substract it from both sides

and get ∫ t

0

K∞(t− τ)γτE[Eτ] dτ ≲ γmaxM
−sβ +

∫ t

0

K∞(t− τ)(eM (τ) + σ2)γτ dτ.

Therefore substitude this back to the Volterra equation yields

E[Et] ≲ M−sβ + eM (t) +

∫ t

0

K∞(t− τ)(eM (τ) + σ2)γτ dτ.

■

Note that in the above proof, the only properties of K∞ we used are Lemma E.5 and the convergence
of integral

∫∞
0

K∞(t) dt.

Now when t ⩽ Mβ , as the kernel KM also satisfies these two properties, the proof of the stronger
bound is identical with the above, except we replace K∞ with KM .

E.2.2 Proof of Theorem 4.4

Proof. It is clear that eM (t), γτ are all bounded from above by constants, thus by the upper bound in
Theorem 4.3, noting that σ2 ≳ 1,

E[Et] ≲ 1 + (σ2 + 1)

∫ t

0

K∞(t− τ) dτ ≲ σ2,

31

since the integral
∫∞
0

K∞(t) dt is convergent.

Therefore by the Volterra equation (25), note that E[Eτ] + σ2 ≂ σ2 ≂ eM (τ) + σ2,

E[Et] ≂ M−sβ + eM (t) +

∫ t

0

KM (t− τ)(eM (τ) + σ2)γτ dτ.

E.2.3 Proof of Theorem 4.5

Proof. When σ2 = 0, by FSL in general case (Theorem 4.3), we have

E[Et] ≲ M−sβ + eM (t) +

∫ t

0

K∞(t− τ)eM (τ)γτ dτ.

Claim. We will bound the gap introduced by K∞ and KM :∫ t

0

(K∞(t− τ)−KM (t− τ))eM (τ)γτ dτ ≲ Mmax{−sβ,−2β+1}. (27)

Proof of Claim. First note that

K∞(t)−KM (t) =

∞∑
j=M+1

λ2
je

−2λjt ≲
∞∑

j=M+1

j−2β ≂ M−2β+1.

Therefore we can bound the integral as∫ t

0

(K∞(t− τ)−KM (t− τ))eM (τ)γτ dτ

≲ M−2β+1

∫ t

0

eM (τ)γτ dτ

⩽ γmaxM
−2β+1

∫ ∞

0

eM (τ) dτ

= γmaxM
−2β+1

∫ ∞

0

M∑
j=1

λj(θ
∗
j)

2e−2λjτ dτ

≂ γmaxM
−2β+1

M∑
j=1

j−sβ−1+β

≲ γmaxM
max{−sβ−β+1,−2β+1} ≲ γmaxM

max{−sβ,−2β+1}

■

By s ⩽ 2− 1
β and γmax is sufficiently small, we can combine the upper bound with (27), and directly

conclude that

E[Et] ≲ M−sβ + eM (t) +

∫ t

0

KM (t− τ)eM (τ)γτ dτ.

Now with the lower bound in FSL Theorem 4.3, the result follows.

E.2.4 Proof of Theorem 4.2

Proof. In the hard regime s ⩽ 1− 1
β , by FSL in general case (Theorem 4.3), we have

E[Et] ≲ M−sβ + eM (t) +

∫ t

0

K∞(t− τ)(eM (τ) + σ2)γτ dτ.

32

Claim. We will bound the gap introduced by K∞ and KM :∫ t

0

(K∞(t− τ)−KM (t− τ))γτ dτ ≲ M−β+1. (28)

Proof of Claim. First note that

K∞(t)−KM (t) =

∞∑
j=M+1

λ2
je

−2λjt

Therefore we can bound the integral as∫ t

0

(K∞(t− τ)−KM (t− τ))γτ dτ

= γmax

∫ ∞

0

M∑
j=1

λ2
je

−2λjτ dτ

≂ γmax

M∑
j=1

j−β ≲ γmaxM
−β+1.

■

By s ⩽ 1− 1
β and γmax is sufficiently small, we can combine the upper bound with (28), (27), and

directly conclude that

E[Et] ≲ M−sβ + eM (t) +

∫ t

0

KM (t− τ)(eM (τ) + σ2)γτ dτ.

Now with the lower bound in FSL Theorem 4.3, the result follows.

E.3 The Case of Random-M Features

First, for the random-M feature setting, we can establish the following Volterra equation.
Proposition E.6. Suppose 0 < s ⩽ 1. Then, with probability at least 1 − e−Ω(M), the Volterra
equation derived in Theorem E.4 continues to hold for the random-feature case; that is,

E[Et] ≂ M−sβ + eM (t) +

∫ t

0

KM (t− τ) γτ
(
E[Eτ] + σ2

)
dτ. (29)

Theorem 4.6 then follows by applying exactly the same argument as in the top-M case. It therefore
remains to prove Proposition E.6. The key idea is to show that the spectrum of the random matrix
WHW⊤ ∈ RM×M closely matches that of the top-M truncation, namely,

µj(WHW⊤) ≂ λj , 1 ⩽ j ⩽ M.

E.3.1 Concentration Inequalities

Recall that we derived the following recursive equation in Eq. (24):

2EEt = u⊤
0 A

⊤
t HAtu0 +

∫ t

0

tr(SA⊤
t−τHAt−τS) · γτ (cτE[Eτ] + σ2) dτ,

where At = e−W⊤WHt and S = (W⊤WHW⊤W)
1
2 .

We first introduce the following notation: for integers 0 ⩽ a < b ⩽ N (we allow b = ∞, in this case
we regard it as the same as b = N),

Ha:b = diag{λa+1, . . . , λb} ∈ R(b−a)×(b−a), ua:b = ((u)a+1, . . . , (u)b) ∈ Rb−a,

while
Wa:b = [Wa+1, . . . ,Wb] ∈ RM×(b−a)

is the (a+ 1)-th to b-th columns of W.

To understand this equation with random projection matrix W, we leverage the following concentra-
tion results developed in [35].

33

Lemma E.7 (Lemma G.4 in [35]). There exist β-dependent constants 0 < c1 < c2 such that it holds
with probability at least 1− e−Ω(M) for all j ∈ [M] that

c1j
−β ⩽ µj(WHW⊤) ⩽ c2j

−β

Lemma E.8 (Lemma G.5 in [35]). There exists some β-dependent constant c such that for all k ⩾ 1,
the ratio between the M

2 -th and M -th eigenvalue

µM
2
(Wk:∞Hk:∞W⊤

k:∞)

µM (Wk:∞Hk:∞W⊤
k:∞)

⩽ c

with probability at least 1− e−Ω(M).

E.3.2 Upper and Lower Bounds

Let λ̂j = µj(WHW⊤).

Lemma E.9. With probability at least 1− e−Ω(M), for s > 0 we have

tr(SA⊤
t−τHAt−τS) =

M∑
j=1

e−2(t−τ)λ̂j λ̂2
j ≂ KM (t− τ).

Proof. We can compute that

tr(SA⊤
t−τHAt−τS) = tr(W⊤WHW⊤WA⊤

t−τHAt−τ)

= tr

W⊤WHW⊤W

∞∑
a,b=0

1

a!b!
(−(t− τ))a+b(HW⊤W)aH(W⊤WH)b


= tr

 ∞∑
a,b=0

1

a!b!
(−t+ τ)a+b ·W⊤(WHW⊤)a+b+1WH


= tr

 ∞∑
a,b=0

1

a!b!
(−t+ τ)a+b · (WHW⊤)a+b+2


=

∞∑
a,b=0

1

a!b!
(−t+ τ)a+b

M∑
j=1

λ̂a+b+2
j

=

M∑
j=1

e−2(t−τ)λ̂j λ̂2
j .

By Lemma E.7, λ̂j ≂ λj ≂ j−β , hence the summation can be estimated by the integral

M∑
j=1

e−2(t−τ)λ̂j λ̂2
j ≂

∫ M

1

e−2(t−τ)x−β

x−2β dx =

∫ 1

M−β

e−2(t−τ)uu2− 1
β du = KM (t− τ),

where the last but second equality is a change of variable u = x−β in the integral.

For the first term in Eq. (24), following [35], we have

Lemma E.10. With probability at least 1− e−Ω(M), for s ⩽ 1 we have

u⊤
0 A

⊤
t HAtu0 ≲ M−sβ + e(t).

Proof. Note

A⊤
t HAt =

∞∑
a,b=0

1

a!b!
(−t)a+b(HW⊤W)aH(W⊤WH)b

34

=

∞∑
a,b=0

1

a!b!
(−t)a+bHW⊤(WHW⊤)a+b−1WH

= HW⊤(WHW⊤)−1Mt(WHW⊤)−1WH

where Mt = Pt(WHW⊤) with Pt being the power series

Pt(x) =
∑

a+b⩾0

1

a!b!
(−t)a+bxa+b+1.

Note that when x ∈ R, we have Pt(x) = xe−2tx, hence the eigenvalues of Mt is exactly Pt(λ̂j).
Since

u⊤
0 A

⊤
t HAtu0 = u⊤

0 (HW⊤(WHW⊤)−1Mt(WHW⊤)−1WH)u0,

for any positive integer k ⩽ M
2 , note that WHu = W0:kH0:ku0:k +Wk:∞Hk:∞uk:∞, we have

u⊤
0 A

⊤
t HAtu0 ⩽ 2(T1 + T2),

where

T1 = u⊤
0:k(H0:kW

⊤
0:k(WHW⊤)−1Mt(WHW⊤)−1W0:kH0:k)u0:k,

T2 = u⊤
k:∞(Hk:∞W⊤

k:∞(WHW⊤)−1Mt(WHW⊤)−1Wk:∞Hk:∞)uk:∞.

Then by Lemma E.13, we can derive an upper bound. Since s ⩽ 1 < β,

T1 + T2 ≲
1

t
∥u0:k∥22 + ∥uk:∞∥2Hk:∞

≂
1

t

k∑
j=1

j−1−s(β−1) +

N∑
j=k+1

j−1−sβ ≂
k−s(β−1)

t
+ k−sβ .

By setting k = min{t1/β , M
3 }, we have

u⊤
0 A

⊤
t HAtu0 ≲ max{t−s,M−sβ}.

Now when Mβ < t, we have

e(t) ≂
1

ts
.

and then the conclusion follows.

Lemma E.11. For s > 0, it holds with probability at least 1− e−Ω(M) that

u⊤
0 A

⊤
t HAtu0 ≳ max{e(t),M−sβ}.

Proof. Following the proof of Lemma E.10, we have

u⊤
0 A

⊤
t HAtu0 = u0HW⊤(WHW⊤)−1Mt(WHW⊤)−1WHu0

= tr
(
(WHW⊤)−1Mt(WHW⊤)−1 ·WHu0u

⊤
0 HW⊤)

⩾
M∑
i=1

µM−i+1

(
(WHW⊤)−1Mt(WHW⊤)−1

)
· µi

(
WHu0u

⊤
0 HW⊤) ,

where the last inequality is by Von Neumann’s trace inequality. Note that Mt = Pt(WHW⊤), we
then get

u⊤
0 A

⊤
t HAtu0 ⩾

M∑
i=1

µi

(
(WHW⊤)2M−1

t

)−1
µi

(
WHu0u

⊤
0 HW⊤)

=

M∑
i=1

e−2tλ̂i λ̂−1
i µi

(
WHu0u

⊤
0 HW⊤) .

35

Note that u0 = v∗, by Assumption 2.3 and 2.4,

u⊤
0 A

⊤
t HAtu0 ⩾

M∑
i=1

e−2tλ̂i λ̂−1
i µi

(
WHu0u

⊤
0 HW⊤)

≂
M∑
i=1

e−2tλ̂i λ̂−1
i µi(WH1+s+1/βW⊤)

≳
M∑
i=1

e−2tλ̂i λ̂
s+1/β
i

≂
∫ M

1

e−2tx−β

x−1−sβ dx

=

∫ 1

M−β

e−2tuus−1 du = e(t).

Here we used Lemma E.7.

On the other hand, we prove the lower bound on M−sβ . First, we claim that

u⊤
0 A

⊤
t HAtu0 ⩾ ∥(I −H

1
2W⊤(WHW⊤)−1WH

1
2)H

1
2u0∥2 =: T3,

which will be proved in the Lemma E.12

Notice that

T3 =
〈

IN −H1/2W⊤(WHW⊤)−1WH1/2,H
1
2u0u

⊤
0 H

1
2

〉
Therefore note that µi(H

1
2u0u

⊤
0 H

1
2) = i−1−sβ by source and capacity conditions,

T3 ⩾
N∑
i=1

µi

(
IN −H1/2W⊤(WHW⊤)−1WH1/2

)
· µN+1−i(H

1
2u0u

⊤
0 H

1
2)

≳
N∑
i=1

µi(M) · (N + 1− i)−1−sβ

where the third line follows from Von-Neuman’s Inequality. Since M = IN −
H1/2W⊤(WHW⊤)−1WH1/2 is a projection matrix such that M2 = M and rank(IN−M) = M
with probability 1, in this case M has M eigenvalues 0 and N −M eigenvalues 1.

Hence we have

T3 ≳
N∑

i=M

i−1−sβ ≳ M−sβ .

Lemma E.12.

u⊤
0 A

⊤
t HAtu0 ⩾ ∥(I−H

1
2W⊤(WHW⊤)−1WH

1
2)H

1
2u0∥2

Proof. By the definition of positive semi-definite, we only need to prove that

A⊤
t HAt ⪰ H

1
2 (I−H

1
2W⊤(WHW⊤)−1WH

1
2)2H

1
2

Notice that

A⊤
t HAt = e−HW⊤WtHe−W⊤WHt

= H
1
2

I+
∑

a+b⩾1

1

a!b!
(−t)a+bH

1
2W⊤(WHW⊤)−1WH

1
2

H
1
2

36

Notice that H is a positive definite matrix, and now we only need to prove

I+
∑

a+b⩾1

1

a!b!
(−t)a+bH

1
2W⊤(WHW⊤)a+b−1WH

1
2 ⪰ (I−H

1
2W⊤(WHW⊤)−1WH

1
2)2.

Let P = WH
1
2 . After simplification, we only need to prove that

I+
∑

a+b⩾1

1

a!b!
(−t)a+bP⊤(PP⊤)a+b−1P ⪰ I−P⊤(PP⊤)−1P.

Notice that, by the definition of matrix exponential, we have

I+
∑

a+b⩾1

1

a!b!
(−t)a+bP⊤(PP⊤)a+b−1P

= I−P⊤(PP⊤)−1P+P⊤(PP⊤)−1

 ∑
a+b⩾0

2a+b

(a+ b)!
(−t)a+b(PP⊤)a+b

P

= I−P⊤(PP⊤)−1P+P⊤(PP⊤)−1e−2PP⊤tP.

Notice that the matrix P⊤P and e−2PP⊤t are both positive semi-definite, we have
P⊤(PP⊤)−1e−2PP⊤tP is positive semi-definite. As a result,

I+
∑

a+b⩾1

1

a!b!
(−t)a+bP⊤(PP⊤)a+b−1P ⪰ I−P⊤(PP⊤)−1P.

which completes the proof.

Lemma E.13. With probability 1− e−Ω(M), we have

T1 ⩽ c
∥u0:k∥22

t

(
µM

2
(W0:kH0:kW

⊤
0:k)

µM (W0:kH0:kW⊤
0:k)

)2

, T2 ⩽ ∥uk:∞∥2Hk:∞
.

where c is some constant.

Proof. First, we prove that
∥Mt∥2 ⩽

c

t
.

Note that the eigenvalues of Mt is Pt(λ̂j) =
f(2tλ̂j)

2t , where

f(x0) = x0e
−x0 ⩽

1

e
.

So we have
∥Mt∥2 ⩽ max

1⩽j⩽M
Pt(λ̂j) ⩽

1

2et
.

By definition of T1, we have

T1 ⩽ ∥H0:kW
⊤
0:k(WHW⊤)−1Mt(WHW⊤)−1W0:kH0:k∥∥u0:k∥22

⩽ ∥Mt∥2∥(WHW⊤)−1W0:kH0:k∥22∥u0:k∥22
⩽

c

t
∥(WHW⊤)−1W0:kH0:k∥22∥u0:k∥22.

We only need to show

∥(WHW⊤)−1W0:kH0:k∥2 ⩽ c

(
µM

2
(Wk:∞Hk:∞W⊤

k:∞)

µM (Wk:∞Hk:∞W⊤
k:∞)

)
.

We denote Ak = Wk:∞Hk:∞W⊤
k:∞, and since WHW⊤ = W0:kH0:kW

⊤
0:k +Ak, we have

(WHW⊤)−1W0:kH0:k = (A−1
k −A−1

k W0:k[H
−1
0:k +W⊤

0:kA
−1
k W0:k]

−1W⊤
0:kA

−1
k W0:k)W0:kH0:k

37

= A−1
k W0:kH0:k −A−1

k W0:k[H
−1
0:k +W⊤

0:kA
−1
k W0:k]

−1W⊤
0:kA

−1
k W0:kH0:k

= A−1
k W0:k[H

−1
0:k +W⊤

0:kA
−1
k W0:k]

−1H−1
0:kH0:k

= A−1
k W0:k[H

−1
0:k +W⊤

0:kA
−1
k W0:k]

−1

where the first line uses Woodbury’s identity. Since

H−1
0:k +W⊤

0:kA
−1
k W0:k ⪰ W⊤

0:kA
−1
k W0:k.

it follows that

∥[H−1
0:k +W⊤

0:kA
−1
k W0:k]

−1∥2 ⩽ ∥[W⊤
0:kA

−1
k W0:k]

−1∥2.

Therefore, with probability at least 1− e−Ω(M)

∥A−1
k W0:k[H

−1
0:k +W⊤

0:kA
−1
k W0:k]

−1∥2 ⩽ ∥A−1
k ∥2 · ∥W0:k∥2 · ∥[H−1

0:k +W⊤
0:kA

−1
k W0:k]

−1∥2
⩽ ∥A−1

k ∥2 · ∥W0:k∥2 · ∥[W⊤
0:kA

−1
k W0:k]

−1∥2

⩽
∥A−1

k ∥2 · ∥W0:k∥2
µmin(W⊤

0:kA
−1
k W0:k)

.

Assume k ⩽ M
2 and with probability at least 1− e−Ω(M) for some constant c > 0, ∥W0:k∥2 ⩽ c.

We may write W⊤
0:kA

−1
k W0:k =

∑M
i=1

1
λ̂M−i

sis
⊤
i , where si

i.i.d.∼ N (0, Ik/N) and (λ̂i)
M
i=1 are

eigenvalues of Ak in non-increasing order. Therefore, for k ⩽ M/3,

M∑
i=1

1

λ̂M−i

sis
⊤
i ⪰

M/2∑
i=1

1

λ̂M−i

sis
⊤
i ⪰ 1

λ̂M/2

M/2∑
i=1

sis
⊤
i ⪰ cIk

λ̂M/2

.

with probability at least 1 − e−Ω(M), where in the last inequality we again use the concentration
properties of Gaussian covariance matrices (see e.g., Theorem 6.1 in [60]).

∥A−1
k W0:k[H

−1
0:k +W⊤

0:kA
−1
k W0:k]

−1∥2 ≲
∥A−1

k ∥2
µmin(W⊤

0:kA
−1
k W0:k)

⩽
µM/2(Ak)

µM (Ak)
.

Now we focus on T2, by definition of T2 we have

T2 = uk:∞
⊤Hk:∞W⊤

k:∞(WHW⊤)−1/2 exp(−2tWHW⊤)(WHW⊤)−1/2Wk:∞Hk:∞uk:∞

⩽ uk:∞
⊤Hk:∞W⊤

k:∞(WHW⊤)−1Wk:∞Hk:∞uk:∞

⩽ ∥H1/2
k:∞W⊤

k:∞(WHW⊤)−1Wk:∞H
1/2
k:∞∥ · ∥uk:∞∥2Hk:∞

⩽ ∥uk:∞∥2Hk:∞
,

where the last line follows from

∥H1/2
k:∞W⊤

k:∞(WHW⊤)−1Wk:∞H
1/2
k:∞∥2

= ∥H1/2
k:∞W⊤

k:∞(W0:kH0:kW
⊤
0:k +Wk:∞Hk:∞W⊤

k:∞)−1Wk:∞H
1/2
k:∞∥2

⩽ ∥H1/2
k:∞W⊤

k:∞A−1
k Wk:∞H

1/2
k:∞∥2 = 1.

The last line is because a nonzero projection matrix has norm 1.

Combining Lemma E.9, E.10 and E.11, we get with probability at least 1− e−Ω(M),

E[Et] ≂ M−sβ + eM (t) +

∫ t

0

KM (t− τ)γτ (cτE[Eτ] + σ2) dτ, (30)

which is of the same form as in Theorem E.4. From here following the same proof as before, we get
the functional scaling laws for random projection matrices.

38

F Proofs for Section 5

When the condition σ ≳ 1 holds – indicating a constant label-noise level – the FSL simplifies to

E[E(νt)] ≂
1

Msβ
+

1

ts
+

σ2

B
N (φ), with N (φ) =

∫ t

0

KM (t− r)φ(T−1(r)) dr, (31)

where eM (t) + M−sβ ≂ e∞(t) + M−sβ ≂ t−s + M−sβ as e∞(t) − eM (t) ≲ M−sβ , and the
fit-dependent noise term eM (r) is absorbed by the label noise term due to σ ≳ 1. Extending to the
full range σ ⩾ 0 is possible but makes the statements and derivations much more involved. We
therefore focus on the above case to streamline the exposition.

F.1 Proofs for Constant LRS

In this section, we prove Theorem 5.2 and present the data-optimal scaling strategy, as well as some
results related to the compute-optimal allocation.
Theorem F.1 (Restatement of Theorem 5.2). Under Assumption 5.1, when the learning rate η(k) ≡ η,
for the top-M selection of the projection matrix W or for the random case with probability at least
1− e−Ω(M), we have

E[RK]− σ2

2
≂

1

(ηK)s
+

η

B
σ2 +M−sβ .

Proof. By our main Theorem 4.2, when the learning rate η(k) ≡ η, denote γ := η
B , by (31) we have

E[EK] ≂ γσ2 +
1

ts
+M−sβ .

Now we may write it as

E[RK]− σ2

2
≂ γσ2 +

1

ts
+M−sβ .

Notice that t = ηK and γ = η
B , we have

E[RK]− σ2

2
≂

1

(ηK)s
+

η

B
σ2 +M−sβ .

Theorem F.2. Given a total data size of D ≫ 1, the optimal strategy for minimizing the final
population risk, in terms of the effective learning rate γ and model size M is:

γopt ≂ D− s
s+1 , Mopt ≳ D

1
(1+s)β , Eopt ≂ D− s

s+1 . (32)

Proof. Since we have

E[EK] ≂ γσ2 +
1

(γD)s
+M−sβ ,

By weighted AM-GM inequality, we have that when EK is minimized, it must hold that

γσ2 ≂
1

(γD)s

which gives
γopt ≂ D− s

s+1 .

Substituting this into the error expression yields

Eopt ≂ D− s
s+1 +M−sβ .

To balance the two terms and achieve the optimal rate, we require

Mopt ≳ D
1

(1+s)β .

Consequently, the optimal loss rate becomes

Eopt ≂ D− s
s+1 .

39

Next we consider the compute optimal strategy for constant learning rates. We define the compute
C = MKB to be the product of the model size, training steps and batch size.
Theorem F.3. Given a total compute budget of C ≫ 1, the optimal strategy for minimizing the final
population risk, in terms of the effective learning rate γ, model size M , and data size D := BK, is:

γopt ≂ C− sβ
1+β+sβ ,Mopt ≂ C

1
1+β+sβ , Dopt ≂ C

β+sβ
1+β+sβ ,

Proof. Since we have

E[EK] ≂ γσ2 +
1

(ηK)s
+M−sβ ,

substituting K = C
MB , we get

E[EK] ≂ γσ2 +
Ms

(Cγ)s
+M−sβ .

By weighted AM-GM inequality, we have that when EK is minimized, it must hold that

γσ2 ≂
Ms

(Cγ)s
,

Ms

(Cγ)s
≂ M−sβ ,

which gives
γopt ≂ C− sβ

1+β+sβ , Mopt ≂ C
1

1+β+sβ .

Now we can further compute D = BK = CM−1 ≂ C
β+sβ

1+β+sβ .

F.2 Proof for The Exponential-Decay LRS

Recall that the LRS given by

φ(τ) = ae−λτ , with φ(K) = b,

where λ = log(a/b)/K =: 1/K̄. Note that the intrinsic-time transform is given by

T (τ) =

∫ τ

0

φ(r) dr =
a

λ

(
1− e−λτ

)
.

Thus, we have

• The total intrinsic time is:

T (K) =
a

λ
(1− e−λK) =

K

log(a/b)
(a− b) =: K̄(a− b).

For simplicity, we shall write T = T (K) in what follows.
• The LRS-adjusted function in intrinsic time is given by

γφ(t) = φ(T−1(t)) = a− λt.

Lemma F.4. The noise term satisfies N (φ) = bI1 + (a− b)I2 with

I1 =

∫ 1

M−β

1− e−2uT

2u1/β
du, I2 =

∫ 1

M−β

(
1− e−2uT − 2uTe−2uT

4Tu1+1/β

)
du.

Proof. We use the integral to approximate the forgetting kernel KM as

KM (t) ≂
M∑
j=1

j−2βe−2j−βt ≂
∫ M

1

x−2βe−2x−βt dx ≂
∫ 1

M−β

u1−1/βe−2ut du.

Noticing b = a− λT and λT = a− b, we have∫ T

0

KM (T − t)γφ(t) dt =

∫ T

0

(∫ 1

M−β

u1−1/βe−2u(T−t) du

)
(a− λt) dt

40

=

∫ 1

M−β

u1−1/βe−2uT

(∫ T

0

e2ut(a− λt) dt

)
du

=

∫ 1

M−β

u1−1/βe−2uT

[
a

2u

(
e2uT − 1

)
− λ

2u

(
Te2uT − e2uT − 1

2u

)]
du

=

∫ 1

M−β

[
a

2u1/β
− ae−2uT

2u1/β
− λT

2u1/β
+

λ(1− e−2uT)

4u1+1/β

]
du

=

∫ 1

M−β

[
a− λT

2u1/β
− (a− λT + λT)e−2uT

2u1/β
+

λ(1− e−2uT)

4u1+1/β

]
du

= (a− λT)

∫ 1

M−β

1− e−2uT

2u1/β
du+ λT

∫ 1

M−β

(
−e−2uT

2u1/β
+

1− e−2uT

4Tu1+1/β

)
du.

Thus, we complete the proof.

We next bound I1 and I2 separately.

Lemma F.5. If T and M is sufficiently large, then I1 = β
2β−1 + oT,M (1).

Proof. Note that ∫ 1

M−β

1

2u1/β
du =

β(1−M−(β−1))

2(β − 1)
=: A.

and ∫ 1

M−β

e−2uT

2u1/β
du =

1

2(2T)1−1/β

∫ T

T/Mβ

e−r

r1/β
dr ⩽

Γ(1 + 1
β)

22−1/β

1

T 1−1/β
=: B.

Then, we complete the proof by noting I1 = A−B.

Lemma F.6. If T and M is sufficiently large, then

I2 ≂
βmin(M,T 1/β)

4T
.

Proof. Let r = uT . Then, by a change of variable, we obtain

I2 =
1

4T 1−1/β

∫ T

T

Mβ

1− e−2r − 2re−2r

r1+1/β
dr =:

1

4T 1−1/β

∫ T

T

Mβ

qβ(r) dr.

It is easy to verify that for any β ⩾ 1, infr⩾0 qβ(r) ⩾ 0 and qβ(r) ≂ r−1−1/β when r is sufficiently
large. We refer to Figure 10 for an illustration of qβ(·).

0 2 4 6 8 10

r

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

q β
(r

)

β = 1.1

β = 1.5

β = 2

Figure 10: Illustration of the function qβ(·).

• When T/Mβ ⩽ 1 and T is sufficiently large such that
∫ T

T

Mβ
qβ(r) dr ≂ β and thus we have

I2 =
β + oM,T (1)

4T 1−1/β
.

41

• When T/Mβ > 1, it holds for all r ⩾ 1 that 0.5 ⩽ 1− e−2r − 2re−2r ⩽ 1 . Thus, there
exists a CT,M ∈ [0.5, 1] such that

I2 = CT,M
1

4T 1−1/β

∫ T

T

Mβ

r−1−1/β dr

=
CT,Mβ

4T 1−1/β

((
T

Mβ

)−1/β

− T−1/β

)
=

CT,Mβ(M − 1)

4T
.

Combining the two cases, we complete the proof.

Theorem F.7 (Theorem 5.3 in the main paper). We consider the exponentially decaying learning
rate schedule

φ(τ) = ae−λτ , with φ(K) = b,
Under this learning rate schedule, for the top-M projection matrix or the random projection with
probability at least 1− e−Ω(M), we have

EK ≂ M−sβ + T−s +
σ2

B

(
b+ (a− b)

min{M,T 1/β}
T

)
,

where T = (a− b)K/ log(a/b) is the total intrinsic training time.

Proof. By the functional scaling laws (31),

EK ≂ M−sβ + T−s +
σ2

B
N (φ).

The noise term N (φ) is estimated by Lemma F.4 and the bound on I1, I2 as

N (φ) = bI1 + (a− b)I2 ≂ b+ (a− b)
min(M,T 1/β)

T
,

which gives

EK ≂ M−sβ + T−s +
σ2

B

(
b+ (a− b)

min(M,T 1/β)

T

)
,

so we complete the proof.

Theorem F.8. Given a total data size D ≫ 1, the optimal strategy for minimizing the final population
risk when b = a

K is given by Mopt = ∞ and

• If s > 1− 1
β , then γopt ≂ (D/ logD)−

1+sβ−β
1+sβ and Eopt ≂ (D/ logD)−

sβ
sβ+1 .

• If s ⩽ 1− 1
β , then γopt ≂ 1 and Eopt ≂ (D/ logD)−s.

Proof. Denote D̃ := D
logK , then by Theorem 5.3,

EK ≂ M−sβ + (γD̃)−s +
min(M, (γD̃)

1
β)

D̃
.

Case 1. When Mβ ⩽ γD̃,

EK ≂ M−sβ + (γD̃)−s +
M

D̃
.

We see that in this case γ should be as large as possible, since a ≲ 1, we set γ ≂ 1 accordingly.

In this case M−sβ + M
D̃

≳ D̃− sβ
1+sβ , with equality at M ≂ D̃

1
1+sβ .

When s > 1− 1
β , the above equality condition can be acheived as Mβ = D̃

β
1+sβ < D̃. Hence we

have that
Mopt ≂ D̃

1
1+sβ , γopt ≂ 1, Eopt ≂ D̃− sβ

1+sβ .

Note that γ = a
B ≂ 1 and a ≲ 1, which forces B ≂ 1, hence D̃ ≂ D

logD .

When s ⩽ 1− 1
β , the quantity M−sβ + M

D̃
is decreasing with respect to M , hence the optimal M in

this case is M = (γD̃)
1
β , which transfers to case 2.

42

Case 2. When Mβ > γD̃,

EK ≂ M−sβ + (γD̃)−s + γ
1
β

1

D̃1− 1
β

.

Clearly in this case Mopt = ∞, and by AM-GM inequality,

(γD̃)−s + γ
1
β

1

D̃1− 1
β

≳ D̃− sβ
1+sβ ,

with equality at γ ≂ D̃
β−1−sβ
1+sβ .

When s > 1− 1
β , the equality can be achieved, hence we have

Mopt = ∞, γopt ≂ D̃− 1+sβ−β
1+sβ , Eopt ≂ D̃− sβ

1+sβ .

When s ⩽ 1− 1
β , since γ ≲ 1, we must have

Mopt = ∞, γopt ≂ 1, Eopt ≂ D̃−s.

Similarly, as a ≲ 1, we have B ≲ D̃1− β
1+sβ , which means K ≳ D̃

β
1+sβ , hence logK ≂ logD,

D̃ ≂ D
logD .

Summary. Combining the two cases together, we see that Mopt = ∞ can always achieves the
optimal rate, hence the conclusion follows.

Theorem F.9. Given a large total compute budget C ≫ 1, the optimal strategy for minimizing the
final population risk – expressed in terms of the effective maximum learning rate γ, model size M ,
and data size D – is given by:

• When s > 1− 1
β , the optimal scaling laws are:

γopt ≂ (C
logC)−

1+β(s−1)
2+sβ , Mopt ≂ (C

logC)
1

2+sβ , Dopt ≂ C
1+sβ
2+sβ (logC)

1
2+sβ ,

which leads to the following optimal final population risk:

Eopt(C) ≂ (C
logC)−

sβ
2+sβ .

• When s ⩽ 1− 1
β , the optimal scaling laws are

γopt ≂ 1, Mopt ≂ (C
logC)

1
1+β , Dopt ≂ C

β
1+β (logC)

1
1+β ,

which leads to the following optimal final population risk:

Eopt(C) ≂ (C
logC)−

sβ
1+β .

Proof. Denote D̃ = D/ logK. For similar reasons as in the derivation of data-optimal scaling, we
may assume logK ≂ logC to simplify the proof. At this point, the loss can be reformulated as
follows.

EK ≂ M−sβ +
1

(γD̃)s
+ σ2min{M, (γD̃)1/β}

D̃
.

Case 1. Mβ < γD̃ and we have

EK ≂ M−sβ +
1

(γD̃)s
+ σ2M

D̃

As γ only appears in the second term, and 1
(γD̃)s

is monotone decreasing with γ, we have that when
EK is minimized, it must hold that

M = (γD̃)1/β .

43

When s > 1− 1
β , we then consider a weighted AM-GM inequality, we have

M−sβ = σ2M

D̃
.

Combining with C = MD and M = (γD̃)1/β , we have

γopt ≂ (C
logC)−

1+β(s−1)
2+sβ , Mopt ≂ (C

logC)
1

2+sβ , Dopt ≂ C
1+sβ
2+sβ (logC)

1
2+sβ ,

and
Eopt(C) ≂ (C

logC)−
sβ

2+sβ .

When s ⩽ 1− 1
β , since a ≲ 1, we set γopt ≂ 1 accordingly, and proceed as follows:

Mopt ≂ (C
logC)

1
1+β , Dopt ≂ C

β
1+β (logC)

1
1+β ,

and
Eopt(C) ≂ (C

logC)−
sβ

1+β .

Case 2. Mβ ⩾ γD̃ and we have

EK ≂ M−sβ +
1

(γD̃)s
+ σ2 (γD̃)1/β

D̃

As M only appears in the second term, and M−sβ is monotonically decreasing in M , we have that
when EK is minimized, it must hold that

M = (γD̃)1/β .

And then the rest is identical to the first case.

F.3 Proof for the WSD-Like LRS

To prove Theorem 5.4, we first present the following lemma, which gives an upper bound for the
SGD noise induced by the stable phase.
Lemma F.10. For T2 > 0, we have∫ ∞

0

KM (T2 + t) dt ≲
min{M,T

1
β

2 }
T2

.

Proof. Similar to the previous section, we use integral to approximate the forgetting kernel KM and
get ∫ ∞

0

KM (T2 + t) dt =

∫ ∞

0

∫ 1

M−β

u1− 1
β e−2u(T2+t) dudt

=

∫ 1

M−β

u1− 1
β e−2uT2

du

2u

≂
1

T
1− 1

β

2

∫ T2

T2M−β

u− 1
β e−2u du.

Since the integral
∫∞
0

u− 1
β e−2u du is convergent, we have∫ ∞

0

KM (T2 + t) dt ≲
1

T
1− 1

β

2

.

When T2 > Mβ , similarly we have∫ ∞

0

KM (T2 + t) dt ≂ M1−β

∫ Mβ

1

u− 1
β e−2u

T2
Mβ du.

44

Let p = T2

Mβ ⩾ 1, we have∫ ∞

0

KM (T2 + t) dt ≂
M

T2
p

∫ Mβ

1

u− 1
β e−2up du

≲
M

T2

∫ Mβ

1

u− 1
β e−2u du ≂

M

T2
.

Where the last line is because pe−2up is decreasing in p when u, p ⩾ 1.

Theorem F.11 (Theorem 5.4 in the main paper). Suppose the FSL (10) hold and M,K are sufficiently
large. Then, we have

EK ≂ M−sβ + T−s + σ2

(
b

B
+ (a− b)

min{M,T
1/β
2 }

BT2

)
,

where T = aK1 + (a − b)K2/ log(a/b) is the total intrinsic training time, and T2 = (a −
b)K2/ log(a/b) is the decay-phase intrinsic training time.

Proof. By the results of the exponential decay LRS, let λ = log(a/b)/K2, we have∫ T (K)

0

KM (T (K)− t)γφ(t) dt =

∫ T1

0

KM (T (K)− t)adt+

∫ T2

0

KM (T2 − t)(a− λt) dt,

Hence by the estimation of the noise term of the exponential decay LRS (see the proof of Theorem 5.3),
we have ∫ T2

0

KM (T2 − t)(a− λt) dt ≂ b+
(a− b)min{M,T

1
β

2 }
T2

.

Thus, we know∫ T (K)

0

KM (T (K)− t)γφ(t) dt ≂
∫ T1

0

KM (T (K)− t)adt+ b+
(a− b)min{M,T

1
β

2 }
T2

≂ a

∫ T1

0

KM (T2 + t) dt+ b+
(a− b)min{M,T

1
β

2 }
T2

≂ b+
(a− b)min{M,T

1
β

2 }
T2

. (by using Lemma F.10)

Hence the loss is given by

EK ≂
1

T s
+M−sβ +

σ2

B

b+ (a− b)
min{M,T

1
β

2 }
T2

 .

Theorem F.12. Assume b = a
K , then we have the following data-optimal strategy:

• If s ⩾ 1 − 1/β, we have γopt ≂ D− 1+sβ−β
1+sβ (logD)−

β−1
1+sβ , (D1)opt, (D2)opt ≂ D and

Eopt ≂ D− sβ
sβ+1 (logD)

sβ−s
1+sβ .

• If s < 1− 1/β, we have γopt ≂ 1, (D1)opt ≂ D, (D2)opt ≳ D
sβ

β−1 logD and Eopt ≂ D−s.

Proof. Since the total intrinsic time T ≲ γD, we can always take D1 ≂ D to ensure T ≂ γD.
Denote D̃2 := D2

logK , then by Theorem F.11,

EK ≂ M−sβ + (γD)−s +
min(M, (γD̃2)

1
β)

D̃2

.

45

Case 1. When Mβ ⩽ γD̃2,

EK ≂ M−sβ + (γD)−s +
M

D̃2

.

We see that in this case γ should be as large as possible, since a ≲ 1, we set γ ≂ 1 accordingly.

In this case M−sβ + M
D̃2

≳ D̃
− sβ

1+sβ

2 , with equality at M ≂ D̃
1

1+sβ

2 .

When s > 1− 1
β , the above equality condition can be achieved as Mβ = D̃

β
1+sβ

2 < D̃2. Hence we
have that

Mopt ≂ D̃
1

1+sβ

2 , γopt ≂ 1, Eopt ≂ D̃
− sβ

1+sβ

2 .

Therefore (D2)opt ≂ D. Note that γ = a
B ≂ 1 and a ≲ 1, which forces B ≂ 1, hence D̃2 ≂ D

logD .

When s ⩽ 1− 1
β , the quantity M−sβ + M

D̃2
is decreasing with respect to M , hence the optimal M in

this case is M = (γD̃2)
1
β , which transfers to case 2.

Case 2. When Mβ > γD̃2,

EK ≂ M−sβ + (γD)−s + γ
1
β

1

D̃
1− 1

β

2

.

Clearly in this case Mopt = ∞, and by AM-GM inequality,

(γD)−s + γ
1
β

1

D̃
1− 1

β

2

≳ D− s
1+sβ D̃

− sβ−s
1+sβ

2 ,

with equality at γ ≂ D− sβ
1+sβ D̃

β−1
1+sβ

2 .

When s > 1− 1
β , the equality can be achieved, hence we have that (D2)opt ≂ D, so D̃2 ≂ D

logK ,

Mopt = ∞, γopt ≂ D− 1+sβ−β
1+sβ (logK)−

β−1
1+sβ , Eopt ≂ D− sβ

1+sβ (logK)
sβ−s
1+sβ .

When s ⩽ 1− 1
β , since γ ≲ 1, we must have either γ ≂ 1 or γ ≂ D− sβ

1+sβ D̃
β−1
1+sβ

2 ≲ 1. To reach the

minimum risk, in both cases we require (D̃2)opt ≳ D
sβ

β−1 (this gives (D2)opt ≳ D
sβ

β−1 logD), and

Mopt = ∞, γopt ≂ 1, Eopt ≂ D−s.

Similarly, as a ≲ 1, we have B ≲log D1− β
1+sβ , which means K ≳log D

β
1+sβ , hence logK ≂ logD,

which gives the desired rate.

Summary. Combining the two cases together, we see that Mopt = ∞ (case 2) always achieves the
optimal rate, hence the conclusion follows.

Theorem F.13. Assume b = a
K , under the compute constraint C ≫ 1, the optimal strategy for

minimizing the final population risk—expressed in terms of the effective maximum learning rate γ,
model size M , and data size D—is given by:

• When s > 1− 1/β, the optimal scaling laws are:

γopt ≂ (C
logC)−

1+sβ−β
2+sβ ,Mopt ≂ (C

logC)
1

2+sβ , Dopt ≂ C
1+sβ
2+sβ (logC)

1
2+sβ , (D1)opt ≂ D, (D2)opt ≂ D,

which leads to the following optimal final population risk:

Eopt ≂ C− sβ
2+sβ (logC)

sβ−s
2+sβ .

46

• When s ⩽ 1− 1/β, the optimal scaling laws are:

γopt ≂ 1,Mopt ≂ C
1

1+β , Dopt ≂ C
β

1+β , (D1)opt ≂ D, (D2)opt ≳ D
sβ

β−1 logD,

which leads to the following optimal final population risk:

Eopt ≂ C− sβ
1+β .

Proof. Since the total intrinsic time T ≲ γD, we can always take D1 ≂ D to ensure T ≂ γD.
Denote D̃2 := D2

logK , the loss can be reformulated as follows.

EK ≂ M−sβ +
1

(γD)s
+ σ2min{M, (γD̃2)

1/β}
D̃2

.

Case 1. Mβ < γD̃2 and we have

EK ≂ M−sβ +
1

(γD)s
+

M

D̃2

.

As γ only appears in the second term, and 1
(γD)s is monotone decreasing with γ, we have that when

EK is minimized, it must hold that
M = (γD̃2)

1/β .

When s > 1− 1
β , we then consider a weighted AM-GM inequality, we have

M−sβ =
M

D̃2

.

Combining with M = (γD̃2)
1/β , we have

γopt ≂ D̃
− 1+β(s−1)

1+sβ

2 , Mopt ≂ D̃
1

1+sβ

2

and
Eopt ≂ D̃

s− sβ
1+sβ

2 D−s.

Notice that
C ≂ D̃

1
1+sβ

2 D ⩾ D̃
2+sβ
1+sβ =⇒ E ≳ C− sβ

2+sβ .

Note that this implies D
2+sβ
1+sβ ≳ C ≳ D =⇒ logD ≂ logC, and by similar reasons logK ≂ logD

(the max learning rate Bγ ≲ 1).

Hence when E is optimized, we have D̃2 ≂ D/ logC and

γopt ≂ (C
logC)−

1+β(s−1)
2+sβ , Mopt ≂ (C

logC)
1

2+sβ , Dopt ≂ C
1+sβ
2+sβ (logC)

1
2+sβ ,

and
Eopt(C) ≂ (C

logC)−
sβ

2+sβ (logC)s.

When s ⩽ 1− 1
β , since a ≲ 1, we set γopt ≂ 1 accordingly, and proceed as follows:

Mopt ≂ D̃
1
β

2

and
Eopt ≂ D−s.

Notice that
C ≂ D̃

1
β

2 D ≳ D̃
1+β
β

2 =⇒ E ≳ C− sβ
1+β .

Hence when E is optimized, we have D̃2 ≂ D/ logC and

γopt ≂ 1,Mopt ≂ C
1

1+β , Dopt ≂ C
β

1+β ,

and
Eopt ≂ C− sβ

1+β .

47

Case 2. Mβ ⩾ γD̃2 and we have

EK ≂ M−sβ +
1

(γD)s
+

(γD̃2)
1
β

D̃2

.

By AM-GM inequality,

(γD)−s + γ
1
β

1

D̃
1− 1

β

2

≳ D− s
1+sβ D̃

− sβ−s
1+sβ

2 ,

with equality at γ ≂ D− sβ
1+sβ D̃

β−1
1+sβ

2 .

When s > 1− 1
β , the equality can be achieved, hence (D2)opt ≂ D, and the loss can be written as

follows.
EK ≂ M−sβ +D− s

1+sβ D̃
− sβ−s

1+sβ

2

Combining with C = MD, we have the optimal scaling laws as follows:

γopt ≂ C− 1+sβ−β
2+sβ (logC)−

β−1
1+sβ ,Mopt ≂ C

1
2+sβ (logC)−

1−1/β
2+sβ , Dopt ≂ C

1+sβ
2+sβ (logC)

1−1/β
2+sβ ,

which leads to the following optimal final population risk:

Eopt ≂ C− sβ
2+sβ (logC)

sβ−s
2+sβ .

When s ⩽ 1− 1
β , since γ ≲ 1, we must have either γ ≂ 1 or γ ≂ D− sβ

1+sβ D̃
β−1
1+sβ

2 ≲ 1. To reach the

minimum risk, in both cases we require (D̃2)opt ≳ D
sβ

β−1 (this gives (D2)opt ≳ D
sβ

β−1 logD), and

γopt ≂ 1, EK ≂ M−sβ +D−s.

Combining with C = MD, we have the optimal scaling laws as follows:

γopt ≂ 1,Mopt ≂ C
1

1+β , Dopt ≂ C
β

1+β ,

which leads to the following optimal final population risk:

Eopt ≂ C− sβ
1+β .

Summary. Combining the results of each case, we get the desired optimal scaling strategy stated in
the theorem.

G Auxiliary Lemmas

Lemma G.1. For any PSD matrix A and a random gaussian vector x ∼ N (0,H),

tr(HA)H ⪯ E
[
xx⊤Axx⊤ −HAH

]
= tr(HA)H+HAH ⪯ 2tr(HA)H

Proof. Assume A = (Aij)i,j=1,...,M . The (i, j)-th entry of xx⊤Axx⊤ is∑
k,l

xixkAklxlxj .

If i ̸= j,

E

∑
k,l

xixkAklxlxj

 = 2E
[
Aijx

2
ix

2
j

]
= 2Aijλiλj = 2HAH(i, j).

If i = j

E

∑
k,l

xixkAklxlxj

 = E

[
M∑
k=1

Akkx
2
ix

2
k

]
=
∑
k ̸=i

Akkλiλk+3Aiiλ
2
i = 2HAH(i, i)+tr(HA)H.

48

By the trace inequality we have
HA ⪯ tr(HA).

Multiplying H at both sides,
HAH ⪯ tr(HA)H.

Combining the results, we have

E[xx⊤Axx⊤] = tr(HA)H+ 2HAH ⪯ 2tr(HA)H+HAH.

Lemma G.2. Let P ⪯ Q be two PSD matrices. Then for any PSD matrix U, we have

tr(
√
PU

√
P) ⩽ tr(

√
QU

√
Q).

Proof. It is clear that tr(
√
PU

√
P) = tr(UP) and

tr(UQ)− tr(UP) = tr(U(Q−P)) ⩾ 0,

since U and Q−P are both PSD matrices.

49

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Specifically, we state that our work introduces a novel Functional Scaling
Law (FSL) that captures the impact of learning-rate and batch-size schedules. These claims
are substantiated by rigorous theoretical analysis (e.g., Theorem F.1), concrete examples
(Section 5) and experiments in Section 6.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss several limitations and future directions in Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

50

Answer: [Yes]
Justification: The paper presents a complete set of assumptions and rigorous theoretical
proofs for all main results. Assumptions 2.1, 2.3 and 2.4 define the problem setup, model
capacity, and task difficulty. Detailed proofs of all the theoretical results are provided in
Appendix E and F.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Appendix C provides detailed specifications of the learning rate schedules,
model sizes, number of steps, averaging procedures, and other hyper-parameters. The
information provided is sufficient to reproduce the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in

51

some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: While we provide detailed descriptions of all experimental setups and hyper-
parameters in Section 6 and Appendix C, we do not currently release code or datasets.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper provides all necessary training details for reproducing the
teacher–student kernel regression experiments in Appendix C.1. For LLM experiments, we
specify the details in Appendix C.2
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the standard deviation as the error bar. This is clearly stated in
Section 6 and Appendix C.1. While we do not explicitly verify the normality of the error
distribution, the large number of samples ensures that the mean and standard deviation are
reliable indicators of statistical trends.
Guidelines:

52

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: While we describe the experimental setup in full detail, we do not currently
report the specific compute resources used.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work does not involve human subjects, sensitive data, or deployment in
real-world applications. All claims are rigorously supported by mathematical derivations
and empirical validation, and we have taken care to ensure transparency, reproducibility, and
fairness throughout the study.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

53

https://neurips.cc/public/EthicsGuidelines

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our paper is a theoretical work and there is no societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper does not involve the release of any pretrained models, generative
systems, or scraped datasets that pose a risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The code packages and open-source models used in this paper are all properly
credited.
Guidelines:

54

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release any datasets, pretrained models, or external code
packages.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The research does not involve human subjects or crowdsourced data collection.
No participant interaction or compensation is involved at any stage of the work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

55

paperswithcode.com/datasets

Answer: [NA]
Justification: The research does not involve human subjects or any data collection from
individuals.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper does not involve LLMs as any important, original or non-standard
components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

56

https://neurips.cc/Conferences/2025/LLM

	
	Introduction
	Our Contribution

	Power-Law Kernel (PLK) Regression
	One-Pass SGD and Intrinsic-Time SDE
	Intrinsic-Time Functional Scaling Laws
	General Results

	Learning Rate Schedules Impact Scaling Efficiency
	Constant LRS
	Exponential Decay LRS
	WSD-like LRS

	Experiments
	Power-Law Kernel Regression
	LLM Pre-training

	Conclusion
	Appendix

	 Appendix
	Miscellanea
	Empirical Fitting of LLM Pre-training Loss Trajectory
	Popular Learning Rate Schedules
	Connections to Kernel Regression
	The SDE Modeling
	The Emergence of Power Laws

	Related Work
	Experiment Details and Additional Results
	Power-Law Kernel Regression
	LLM pre-training

	Proof Sketch for the FSL (10)
	Proofs for Section 4
	Volterra Integral Equation Governing the Loss Dynamics
	The Case of Top-M Features
	Proof of Theorem 4.3
	Proof of Theorem 4.4
	Proof of Theorem 4.5
	Proof of Theorem 4.2

	The Case of Random-M Features
	Concentration Inequalities
	Upper and Lower Bounds

	Proofs for Section 5
	Proofs for Constant LRS
	Proof for The Exponential-Decay LRS
	Proof for the WSD-Like LRS

	Auxiliary Lemmas

