
Enhanced Self-Distillation Framework for Efficient
Spiking Neural Network Training

Xiaochen Zhao1† Chengting Yu1,2† Kairong Yu1,2 Lei Liu1 Aili Wang1,2∗
1 ZJU-UIUC Institute, Zhejiang University

2 College of Information Science and Electronic Engineering, Zhejiang University
{xiaochen.24,chengting.21,ailiwang}@intl.zju.edu.cn

Abstract

Spiking Neural Networks (SNNs) exhibit exceptional energy efficiency on neuro-
morphic hardware due to their sparse activation patterns. However, conventional
training methods based on surrogate gradients and Backpropagation Through Time
(BPTT) not only lag behind Artificial Neural Networks (ANNs) in performance,
but also incur significant computational and memory overheads that grow linearly
with the temporal dimension. To enable high-performance SNN training under lim-
ited computational resources, we propose an enhanced self-distillation framework,
jointly optimized with rate-based backpropagation. Specifically, the firing rates
of intermediate SNN layers are projected onto lightweight ANN branches, and
high-quality knowledge generated by the model itself is used to optimize substruc-
tures through the ANN pathways. Unlike traditional self-distillation paradigms, we
observe that low-quality self-generated knowledge may hinder convergence. To
address this, we decouple the teacher signal into reliable and unreliable compo-
nents, ensuring that only reliable knowledge is used to guide the optimization of the
model. Extensive experiments on CIFAR-10, CIFAR-100, CIFAR10-DVS, and Im-
ageNet demonstrate that our method reduces training complexity while achieving
high-performance SNN training. Our code is available at https://github.com/Intelli-
Chip-Lab/enhanced-self-distillation-framework-for-snn.

1 Intorduction

Spiking Neural Networks, which emulate the dynamic behavior of biological neurons [52], transmit
information between neurons through binary spike events across synapses [47, 56]. This spike-based
architectural design enables remarkable energy efficiency on neuromorphic hardware [1, 8, 54].
However, mainstream training for SNNs relies on time-unfolded chain rules and Backpropagation
Through Time (BPTT). Due to the intrinsic temporal dynamics of SNNs, training with BPTT requires
storing the entire computational graph across all time steps, resulting in significant memory and
computational overhead [42, 83, 35, 69, 68]. To address this issue, recent studies have begun
focusing on improving the training efficiency of SNNs by decoupling the chain rule, aiming to
reduce the complexity of BPTT [2, 48, 49, 69, 3, 86, 77, 48]. These approaches significantly
reduce both time and memory consumption while achieving performance comparable to BPTT
[86, 77]. However, the simplifications introduced in the gradient computation graph often lead to
gradient distortions in intermediate layers, which tend to accumulate and become more pronounced
as the network depth increases [77]. Recent works have SNNs exhibit feature representations based
on firing rates that closely resemble those of artificial neural networks (ANNs) [44, 4, 72]. We
adhere to the rate-coding assumption [77], treating the spiking rate as the fundamental unit of
training and designing dedicated strategies specifically tailored to it. This work proposes introducing

†Equal contribution ∗Corresponding author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/Intelli-Chip-Lab/enhanced-self-distillation-framework-for-snn
https://github.com/Intelli-Chip-Lab/enhanced-self-distillation-framework-for-snn


lightweight auxiliary ANN branches to map the firing rate from intermediate SNN layers through
the corresponding auxiliary ANN branches and guiding them with additional supervision signals.
The auxiliary branches are supposed to backpropagate more accurate gradients to the associated
substructures and intermediate implicit rate representations, mitigating the gradient distortion issues
inherent in efficient training frameworks. Importantly, the backpropagation in branches operates solely
on rate-based activations during both forward and backward passes, making it highly compatible
with the rate-based framework and preserving its advantages in training efficiency on time and
memory overhead. Moreover, as auxiliary branches are discarded during inference, our method
incurs no additional computational cost at inference time. A quick comparison is shown in Fig. 1,
illustrating the positioning of our method within the landscape of direct SNN training schemes.

Figure 1: The performance of different train-
ing methods on ResNet-18 with the CIFAR-
100 dataset shows that our approach achieves
superior training efficiency and accuracy com-
pared to current mainstream methods.

Knowledge Distillation (KD) is an effective strat-
egy for enhancing model performance by leverag-
ing soft labels provided by a teacher model [31, 84]
and has recently been applied in SNNs training
[22, 72, 71, 32, 78]. Building on logits-based KD,
the self-distillation framework [82] was proposed to
leverage the model’s own knowledge to guide its
learning process, thereby eliminating the need for an
additional pre-trained teacher model. The idea be-
hind self-distillation is that the final layer, benefiting
from the entire network, can produce higher-quality
predictions, which can be used as teacher labels to
optimize the learning of intermediate layers [82, 12].
However, in the self-distillation framework for SNNs,
we observe that the teacher labels are inherently as-
sociated with different stages of the model’s training
process[74], and their convergence rates may vary
due to the varying structural complexities across layers. We introduce the concept of label reliability
to measure the ability of a teacher signal to effectively guide the student model toward correct
convergence. Our observations indicate that the final layer’s output is not always the most reliable
throughout training, and statically assigning it as the teacher may lead the model to converge to
a suboptimal solution. To address this issue, we propose an enhanced self-distillation framework
that disentangles the reliable and unreliable components from the predictions of multiple branches,
aggregating only the reliable parts to form teacher labels. The framework enables the model to
iteratively leverage its own reliable knowledge while mitigating the negative impact of unreliable
outputs on the student model, thereby improving the effectiveness of self-distillation in optimizing
the backbone network. Our contributions can be summarized as follows:

• We establish a mapping between the firing rates of intermediate layers and the ANN branch,
optimizing the gradient errors of the intermediate layers under rate-based backpropagation.
This results in outstanding performance with extremely low training cost.

• We analyze the reliability of teacher signals in the self-distillation process and propose
a novel decoupling strategy that separates reliable and unreliable components, thereby
constructing a more stable and effective self-distillation framework.

• We conduct empirical validation on standard datasets, including CIFAR-10, CIFAR-100,
CIFAR10-DVS, and ImageNet, and perform ablation studies on various model components.
Our results demonstrate that the proposed framework effectively balances training efficiency
and high performance, offering clear advantages over existing methods.

2 Related Work

2.1 Training Methods in SNNs

The primary training approaches for Spiking Neural Networks (SNNs) include conversion-based
methods and direct training methods. The former establishes a connection between SNNs and
Artificial Neural Networks (ANNs) via an equivalent closed-form mapping, converting a pre-trained
ANN into the target SNN model. This avoids the challenge of training SNNs from scratch. Although

2



several studies [10, 26, 27, 41] have achieved nearly lossless accuracy through such conversions
[6, 13, 28, 59, 57, 10, 41, 14], the resulting SNNs typically require longer inference times to match
the accuracy of the original ANN [5, 39, 30, 29, 34]. In contrast, direct training methods compute
gradients of discrete spikes using surrogate gradients and Backpropagation Through Time (BPTT),
allowing SNNs to achieve competitive performance with very few time steps [51, 60, 67, 20, 75, 85,
80, 42, 61, 66, 83, 73]. However, since the training methods rely on temporal backpropagation, they
introduce both time and memory overhead that scales linearly with the number of time steps, as the
computational graph must be retained during training [42, 35, 68, 69, 48, 12]. Recent works have
proposed methods to decouple the temporal dimension of the backpropagation computation graph
[50, 55, 65, 79, 2, 3, 76, 69, 48, 86]. Among them, [77] proposed a targeted training framework
for rate-based representations, simplifying the cost of backpropagation-based training significantly.
However, efficient training schemes require temporal approximations, which consequently introduce
additional gradient errors that accumulate as the network depth increases.

2.2 Knowledge Distillation in SNNs

Knowledge distillation is a common transfer learning technique that facilitates the transfer of knowl-
edge from a high-capacity model to a lower-capacity one [31, 45, 62, 64, 33, 21], enabling a smaller
student model to approximate the performance of a larger teacher model. In the context of Spiking
Neural Networks, a typical strategy involves using a pre-trained ANN or a larger SNNs to guide the
training of a smaller SNN [37, 38, 63, 81, 70, 24]. Among them, KDSNN [71] adopts a joint distilla-
tion method based on both logits and feature representations, while [32] introduces a hierarchical
feature distillation framework. Although these methods have demonstrated the effectiveness of knowl-
edge distillation for SNNs across various datasets, they share a common limitation: the requirement
for additional training on larger networks, which incurs significant computational overhead. [82, 12]
proposed a self-distillation strategy that leverages the model’s own knowledge to guide the learning
of different parts of the network. However, in the process of self-distillation, the quality of teacher
labels is coupled with the training stage of the model. In the early training phase, statically assigned
teacher labels may be unreliable, potentially misleading the student model. To address this issue,
studies such as [74] have proposed normalized distillation losses and customized soft label schemes,
which improve the quality of teacher labels by smoothing the target class probabilities and adjusting
the distribution over non-target classes. However, when high-confidence predictions correspond to
incorrect classes, the teacher labels may exert an even stronger misleading effect on the student.

3 Method

3.1 Preliminary

Inspired by the mechanism of discrete pulse transmission in the brain, Spiking Neural Networks
(SNNs) utilize spiking neurons as their basic computational units. Among these models, the Leaky
Integrate-and-Fire (LIF) neuron is the most commonly used in SNN training. In this model, when
the inputs received by a neuron raise its membrane potential to a specific threshold, a binary pulse
is triggered, and subsequently, the membrane potential is reset. The equations for the membrane
potential dynamics and spike generation are described as follows:

V l [t+ 1] = λ ·
(
V l [t]− Vth · Sl−1 [t]

)
+W l · Sl [t] + bl (1)

Sl [t+ 1] = H
(
V l [t+ 1]− Vth

)
(2)

Here, λ represents the membrane time constant, Vth is the membrane threshold, W l and bl denote the
weights of the neurons in the l-th layer. V l[t] and Sl[t] represent the membrane potential and spike
emission of the neurons in the l-th layer at time t, respectively. H(·) is the step function that generates
spikes, and due to its non-differentiability, gradient-based methods are used during backpropagation
to propagate the error.

3.2 Model training

Distinguished from conventional BPTT, which performs a single forward and backward propagation,
our training procedure is divided into two distinct stages (in Figure 2). In the first stage, a forward

3



Figure 2: Framework Overview. Unlike the standard BPTT approach, we propose a rate-based
framework that first performs a forward pass of temporal spiking activity to update the eligibility
traces. In a subsequent forward pass, intermediate layer features are projected onto auxiliary ANN
modules. A decoupling module then integrates teacher signals, which are jointly optimized with the
ground-truth labels to supervise the corresponding substructures.

pass is conducted based on temporal spike encoding without constructing the computational graph.
During this phase, temporal information is utilized to accumulate the running statistics (mean and
variance) for batch normalization (BN) layers, while the eligibility traces etij of the spiking neurons

are simultaneously updated. Definition of eligibility trace: etij =
∑t

τ=0 λ
t−τ · ∂St

i

∂V τ
i

· ∂V τ
i

∂Wij
, λ is

the decay factor, St
i denotes the spike output of neuron i at time step t, and V τ

i represents the
membrane potential. The auxiliary branch remains inactive during this stage. In the second stage, a
rate-based forward pass is performed, during which the eligibility traces computed in the first pass
are employed to approximate the backward gradients: ∂L

∂Wij
≜ ∂L

∂ri
· E[etij ], where rate ri = E[St

i ].
Rate-coding primarily captures rate-based spatial features, which are inherently aligned with the
spatial inductive bias of artificial neural networks (ANNs). As such, the encoded data exhibits strong
compatibility with ANN architectures, requiring no additional processing. The auxiliary branch
is designed using depthwise separable convolutions and is supervised by an additional loss signal,
allowing more precise gradients to be propagated from the ANN branches to intermediate layers of
the main network, thereby promoting more effective convergence. Throughout this process, only
a single-step computational graph and a small set of eligibility traces are retained, substantially
reducing both memory and computational costs associated with backpropagation.

3.3 Limitations of Standard Self-Distillation

In standard self-distillation frameworks, the teacher label is typically derived from the prediction of
the final layer, under the assumption that deeper layers, benefiting from the full network capacity,
produce higher-quality predictions. This teacher output is then used to supervise intermediate layers.
Formally, for a deep neural network with L branches, let the output of each branches Ml at training

4



Algorithm 1 An algorithm with caption

Require: SNN model fsnn, timesteps T, hyper-parameter β, τ for rate-based backpropagation, Train
datasets D = {xi, yi}ni=1, ANN block A = {A1, A2, ..., AL−1}

Ensure: Train the SNN model based on self-distillation
1: for each batch training data Di = {xi, yi} do ▷ Spiking Forward
2: Update eligibility traces etij
3: end for
4: for each batch training data Di = {xi, yi} do ▷ Rate Forward
5: Compute each sub-model outputs {p1, p2, ..., pL}
6: Aggregate the teacher labels yteacher (8)
7: Compute the self-distillation loss as shown in Equation(10)
8: Compute the CE loss as shown in Equation (9)
9: Compute the final loss using Equation (11)

10: Approximate backpropagation with eligibility traces etij .
11: end for

iteration t be denoted as p
(t)
l . The quality of the prediction at layer l can be evaluated using the

cross-entropy loss LCE(p
(t)
l , y) with respect to the ground truth label y.

Standard self-distillation assumes that the final layer L consistently yields the best approximation of
the ground truth across all layers:

LCE(p
(t)
L , y) ≤ LCE(p

(t)
l , y), ∀l ∈ {1, . . . , L− 1} (3)

ensuring that the distillation process guides student layers toward a high-quality target distribution.

However, learning dynamics within deep networks are complex. Different layers may converge
or reach peak performance at different training stages. In particular, shallow layers with fewer
parameters may converge or saturate earlier than deeper layers. We define a binary indicator to denote
whether the final layer provides the best prediction at iteration t:

δ(t) =

{
1, if LCE(p

(t)
L , y) ≤ min

l∈{1,...,L−1}
LCE(p

(t)
l , y)

0, otherwise
(4)

The proportion of training iterations during which the final layer is not the best predictor is given by:

η = 1− 1

T

T∑
t=1

δ(t) (5)

In our preliminary experiments, we found that η = 0.507, indicating that in more than 50% of the
training iterations, the final layer prediction is not globally optimal.

When suboptimal teacher predictions are used, they can lead to negative transfer for the student layers.
Let q(t) denote the teacher label at time t, and p

(t)
k denote the output of student branches Mk. The

knowledge distillation loss is defined as:

L(t)
KD = KL

(
q(t) ∥ p

(t)
k

)
(6)

When a significant portion of teacher labels are inferior to the student predictions—as we observed
empirically with η = 0.507—the expected distillation loss can be decomposed as:

Et

[
L(t)

KD

]
= (1− η) · E

[
Lgood

KD

]
+ η · E

[
Lbad

KD

]
(7)

Lgood
KD denotes the knowledge distillation loss under standard conditions. If LCE(q

(t), y) >

LCE(p
(t)
k , y), then the teacher q(t) is logically inferior to the student and should not be used as

a supervisory signal, in this case, we define the loss as Lbad
KD. Since the KL divergence term guides p(t)

k

toward q(t), this misguidance may lead to performance degradation. Moreover, when the erroneous
teacher prediction has high confidence in the incorrect class, its misleading impact is further amplified.

These observations call into question the effectiveness of always using the final layer output as a
teacher and motivate the development of more robust teacher selection strategies during training.

5



3.4 Reliability-Separated Self-Distillation

In our training framework, auxiliary branches connected to intermediate layers produce multiple
outputs, each of which can be regarded as an independent student in an online self-distillation
setup. This naturally provides a rich set of candidate teacher signals. A straightforward solution
is to generate the teacher label by computing a weighted average of the predictions from all n
students. From the perspective of ensemble learning, increasing the number of voting models
generally improves the stability of the final prediction. However, since the quality of teacher signals
improves gradually during training, directly aggregating all predictions in the early training stages
may result in unreliable teacher labels. To address this issue, we propose a reliability-separated
self-distillation strategy. Specifically, we hypothesize that correctly predicted samples are more likely
to exhibit reliable distributions compared to incorrectly predicted ones. As shown in Figure 2, we
filter out samples that are incorrectly predicted by individual students and aggregate only the correctly
predicted ones to form the final teacher label, following the ensemble learning principle. During loss
computation, samples that are misclassified by all n students are excluded from the distillation process
to ensure that only reliable teacher signals participate. While we do not deny that unreliable signals
can still act as regularizers—preventing the student model from becoming overconfident in certain
categories—we apply a small standard regularization term to these samples during loss calculation.
This preserves the regularization effect of the original distillation process. Our strategy thus guides
the student model to focus on learning from reliable knowledge while avoiding the misleading effects
of noisy or unreliable signals.

yteacher =

∑L
l=1 pl · I (argmax pl = argmax y)∑L
l=1 I (argmax pl = argmax y) + ϵ

(8)

In the given formulation, pldenotes the predicted distribution of the i student. The overall loss function
of the model consists of two components: the hard loss Lcecomputed between each classifier’s output
pland the ground truth label, and the soft distillation loss Lesdderived from knowledge distillation.
The definitions of the hard loss and the soft distillation loss are as follows:

Lce =

L∑
l=1

[
−

C∑
c=1

y(c) log
(
p
(c)
l

)]
(9)

Lesd =

L∑
l=1

{[
C∑

c=1

p
(c)
teacher log

(
p
(c)
teacher

p
(c)
i

)]
· I

(
C∑

c=1

∣∣∣p(c)teacher

∣∣∣ ̸= 0

)
+ η · Rl · I

(
C∑

c=1

∣∣∣p(c)teacher

∣∣∣ = 0

)}
(10)

In the aforementioned formula,C represents the total number of categories, while pcteacher denotes the
teacher label’s prediction value for the cth category of each sample. Rl represents the regularization
applied to the remaining part, η is used to control the weight of the regularization. Additionally, we
introduce a balancing factor β , which is used to control the weight of the distillation loss.

Ltarget = Lce + β · Lesd (11)

4 Experiments

4.1 Main Results

We compare our enhanced self-distillation framework with existing direct training methods across
multiple classification benchmarks, including static datasets, CIFAR-10 [36], CIFAR-100 [36], and
ImageNet [9] (Table 1), as well as neuromorphic datasets CIFAR10-DVS [40] (Table 2). We set
β = 0.3 to control the weight of the auxiliary global distillation loss.

Results on static datasets. Experimental results demonstrate that our method achieves significant
accuracy improvements over RateBP. On the CIFAR-100 dataset, it outperforms RateBP by 1.18%
and 1.31% using ResNet-18 and ResNet-19, respectively, and achieves a 0.71% improvement on
the ImageNet dataset. Our method approaches the performance of BPTT-based direct training and
distillation approaches that rely on externally pre-trained artificial neural networks (ANNs). In
contrast, our framework requires no external ANN teacher models; instead, it leverages high-quality
knowledge generated by the model’s own auxiliary branches to guide and enhance the training

6



Table 1: Comparison of top-1 accuracy (%) averaged over three runs on CIFAR-10, CIFAR-100, and
ImageNet datasets. ∗indicates the use of an additional pre-trained ANN model for distillation. For all
experiments on ImageNet, the ResNet-34 model is consistently used for training.

Datasets Training Method Architecture Timestep CIFAR10 CIFAR100 ImageNet
Top-1 Acc (%) Top-1 Acc (%) Top-1 Acc (%)

Direct-training

OTTT [69] online VGG-11 6 93.52 71.05 65.15

OS [86] online ResNet-19 4 95.20 77.86 67.54

Dspike [42] BPTT ResNet-19
6 94.25 74.24

68.194 93.66 73.35
2 93.13 71.68

TET [11] BPTT ResNet-19
6 94.50 74.72

64.794 94.44 74.47
2 94.16 72.87

SEW-ResNet [17] BPTT ResNet-34 4 - - 67.04

DSR [48] one-step PreAct-ResNet-18 20 95.10 78.50 67.74

RateBP [77] one-step

ResNet-18
6 95.9 79.02

70.01

4 95.61 78.26
2 94.75 75.97

ResNet-19
6 96.38 80.83
4 96.26 80.71
2 96.23 79.87

w/ distillation

BKDSNN∗ [71] BPTT ResNet-19 4 94.64 74.95 67.21

SAKD [25] BPTT ResNet-19 4 96.06 80.10 -

TKS [15] BPTT ResNet-19 4 96.35 79.89 69.60

SM [12] BPTT ResNet-18 4 96.04 79.49 68.25ResNet-19 4 96.82 81.70

TWKD∗ [78] BPTT ResNet-18 6 95.96 79.80 71.044 95.57 79.10

EAGD∗ [72] one-step
ResNet-18

6 96.14 79.40

70.644 95.92 78.85
2 95.19 77.06

ResNet-19 2 96.56 81.44

ours one-step
ResNet-18

6 96.19± 0.12 80.20± 0.17

70.72

4 95.92± 0.03 79.30± 0.21
2 95.29± 0.10 77.46± 0.17

ResNet-19 4 96.39± 0.01 81.90± 0.20
2 96.31± 0.07 80.97± 0.05

process. Notably, these performance gains are achieved with constant memory consumption during
backpropagation, resulting in a 75.80% reduction in memory usage and a 23.30% reduction in time
consumption compared to BPTT training.

Results on neuromorphic datasets. On the CIFAR10-DVS neuromorphic dataset, BPTT-based
methods and one-step training methods show differing performance characteristics. While BPTT
preserves temporal dynamics more thoroughly, one-step methods focus more on spatiotemporal
feature extraction. For example, methods such as [72, 77] may partially compress the temporal
dimension. Consequently, BPTT tends to be more adaptable to neuron-based datasets. To address this
challenge, we decouple the backpropagation component of the rate coding mechanism in our method
and conduct a fair comparison using the same encoding scheme as prior work. Compared to RateBP,
our method achieves a 1.50% performance gain under the same number of timesteps. Furthermore,
when the rate coding component is decoupled, our method also achieves leading performance on the
CIFAR10-DVS dataset, indicating its effectiveness under the temporal coding framework as well.

4.2 Ablation study

Ablation study on self-distillation. In this section, we analyze the effectiveness of the enhanced
self-distillation method on spike-rate-coded SNNs and ANNs. We decouple the self-distillation
component within the framework and examine the feedback from classifiers at different depths.
Experimental results demonstrate that our self-distillation method offers significant advantages over
standard self-distillation, and this observation also holds true for ANNs.

7



Table 2: Performance comparison of top-1 accuracy (%) on CIFAR10-DVS and ImageNet, averaged
over three experimental runs.

Training Method Architecture Timestep Top-1 ACC(%)
OTTT [69] online VGG-11 10 76.63

RateBP [77] one-step ResNet-18 10 80.40

EAGD [72] one-step ResNet-19 4 80.54

TET [11] BPTT VGGSNN 10 83.17

SM [12] BPTT ResNet-18 10 83.19

Enof [22] BPTT ResNet-19 10 80.10

TWKD [78] BPTT ResNet-19 10 83.80

ours
one-step ResNet-18 10 81.40

ResNet-19 10 81.90

BPTT ResNet-18 10 85.70
ResNet-19 10 85.90

(a) Comparison of RateBP-Based Distillation Methods. (b) Comparison of ANN-Based Distillation Methods.

Figure 3: Ablation bar chart of the self-distillation module on ANNs and SNNs.

All distillation losses are computed based on KL divergence. We conduct comparative experiments on
the CIFAR-100 dataset using a ResNet-18 model with a temporal dimension of T=6. The following
methods are compared. SD: Introduces a pre-trained ANN teacher model with the same architecture
and performs standard end-to-end distillation based on logits; MB: Adds lightweight auxiliary
branches after each layer to facilitate the optimization of intermediate representations; ASD: Uses the
final layer’s predicted labels as teacher signals for intermediate layers; ESD: Decouples the reliability
of student-generated labels and aggregates them for self-distillation training. As shown in Figure 3a
and Figure 3b, all methods outperform the original baseline. Standard end-to-end distillation provides
limited benefit to model training, highlighting the effectiveness of optimizing intermediate layers
via auxiliary branches. The multi-branch self-distillation framework achieves superior performance
without requiring any external ANN teacher models. Comparing ASD and ESD reveals that ESD
avoids the misleading effects caused by unreliable predictions from the final layer in ASD, resulting
in significant performance improvements. Our method improves the final classifier accuracy by
0.53%, and boosts the ANN model performance by 0.59%.

Baseline ESD(w/o Reg) ESD

79.02% 80.20% 80.32%

Table 3: Ablation of the Regularization

Ablation of the Regularization Component.
In general, knowledge distillation is considered
to serve two main purposes. First, it guides the
student’s predictions toward a higher-quality dis-
tribution. Second, the soft labels act as a form
of regularization, preventing the model from be-
coming overly confident in a single target class
during training. When all n classifiers make incorrect predictions for a particular sample, it indicates

8



Table 4: Comparison of average spike frequency across time steps on CIFAR100 using ResNet-18.
Method T = 1 T = 2 T = 3 T = 4 T = 5 T = 6 avg

Trained for 4 time steps BPTT 0.1799 0.2137 0.2045 0.2091 - - 0.2018
ours 0.1591 0.1709 0.1715 0.1706 - - 0.1680

Trained for 6 time steps BPTT 0.1761 0.2034 0.2023 0.1966 0.2060 0.1941 0.1964
ours 0.1548 0.1560 0.1550 0.1516 0.1550 0.1532 0.1543

that the model has a systematic bias in feature representation at a global level. In such cases, the
model is more likely to assign high confidence to incorrect classes. We acknowledge that even when
the teacher’s soft labels are unreliable, they can still play a role in smoothing the target distribution.
Therefore, in our method, we impose a standard regularization term on this subset of samples. As
shown in Table 3, the model achieves better generalization on the test set after applying regularization.
It is worth noting, that in the middle to later stages of training, the teacher soft labels can cover the
vast majority of samples, making the additional regularization relatively minor in proportion.

4.3 Performance on Energy Efficient Implementation

Impact of time expansion. We compare the proposed method with RateBP and BPTT in terms of the
impact of varying time steps on training accuracy and the memory overhead during backpropagation.
As shown in Figure 4b, the accuracy of our method continues to improve with an increasing number
of time steps, clearly demonstrating its scalability in the temporal dimension. Since the auxiliary
branch only participates in the second forward pass and still uses spike-rate encoding, the additional
memory and computational overhead introduced during backpropagation remains constant. Figure 4a
further illustrates that our method effectively decouples the memory cost of backpropagation from
the time step, ensuring that training costs do not increase with larger values of T.

(a) Comparison of training cost. (b) Comparison of test performance.

Figure 4: Comparison of training cost and test performance of time steps.

Spike firing rate analysis. AS shown in the table 4, our method significantly reduces the spike
frequency at each time step compared to the BPTT-based approach. This indicates that our method
achieves sparser neural activity and lower energy consumption while maintaining competitive perfor-
mance, aligning better with the original design goals of Spiking Neural Networks (SNNs).

5 Conclusion

This study proposes an enhanced self-distillation framework for efficiently training spiking neural
networks (SNNs). Compared to the conventional BPTT approach, our method significantly reduces
memory and time consumption during training, while leveraging auxiliary ANN branches to mitigate
gradient errors in intermediate layers. Moreover, by selectively integrating high- and low-reliability
predictions from multiple classifiers, we construct high-quality teacher signals that enable the model
to better absorb valuable self-generated knowledge. This addresses a critical issue in standard self-
distillation, where unreliable teacher labels can hinder the student model from converging in the

9



right direction. Experimental results demonstrate that our method achieves high-performance SNN
training even under highly constrained computational settings.

6 Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 62304203),
international campus of ZJU international research collaboration seed project, and the ZJU-YST joint
research center for fundamental science.

References
[1] Filipp Akopyan, Jun Sawada, Andrew Cassidy, Rodrigo Alvarez-Icaza, John Arthur, Paul Merolla, Nabil

Imam, Yutaka Nakamura, Pallab Datta, Gi-Joon Nam, et al. Truenorth: Design and tool flow of a 65
mw 1 million neuron programmable neurosynaptic chip. IEEE transactions on computer-aided design of
integrated circuits and systems, 34(10):1537–1557, 2015.

[2] Guillaume Bellec, Franz Scherr, Anand Subramoney, Elias Hajek, Darjan Salaj, Robert Legenstein, and
Wolfgang Maass. A solution to the learning dilemma for recurrent networks of spiking neurons. Nature
communications, 11(1):3625, 2020.

[3] Thomas Bohnstingl, Stanisław Woźniak, Angeliki Pantazi, and Evangelos Eleftheriou. Online spatio-
temporal learning in deep neural networks. IEEE Transactions on Neural Networks and Learning Systems,
34(11):8894–8908, 2022.

[4] Tong Bu, Jianhao Ding, Zecheng Hao, and Zhaofei Yu. Rate gradient approximation attack threats deep
spiking neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7896–7906, 2023.

[5] Tong Bu, Wei Fang, Jianhao Ding, PengLin Dai, Zhaofei Yu, and Tiejun Huang. Optimal ann-snn conver-
sion for high-accuracy and ultra-low-latency spiking neural networks. arXiv preprint arXiv:2303.04347,
2023.

[6] Yongqiang Cao, Yang Chen, and Deepak Khosla. Spiking deep convolutional neural networks for energy-
efficient object recognition. International Journal of Computer Vision, 113:54–66, 2015.

[7] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment: Learning
augmentation strategies from data. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 113–123, 2019.

[8] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha Choday,
Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic manycore processor
with on-chip learning. Ieee Micro, 38(1):82–99, 2018.

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255.
Ieee, 2009.

[10] Shikuang Deng and Shi Gu. Optimal conversion of conventional artificial neural networks to spiking neural
networks. arXiv preprint arXiv:2103.00476, 2021.

[11] Shikuang Deng, Yuhang Li, Shanghang Zhang, and Shi Gu. Temporal efficient training of spiking neural
network via gradient re-weighting. arXiv preprint arXiv:2202.11946, 2022.

[12] Shikuang Deng, Hao Lin, Yuhang Li, and Shi Gu. Surrogate module learning: Reduce the gradient error
accumulation in training spiking neural networks. In International Conference on Machine Learning,
pages 7645–7657. PMLR, 2023.

[13] Peter U Diehl, Daniel Neil, Jonathan Binas, Matthew Cook, Shih-Chii Liu, and Michael Pfeiffer. Fast-
classifying, high-accuracy spiking deep networks through weight and threshold balancing. In 2015
International joint conference on neural networks (IJCNN), pages 1–8. ieee, 2015.

[14] Jianhao Ding, Zhaofei Yu, Yonghong Tian, and Tiejun Huang. Optimal ann-snn conversion for fast and
accurate inference in deep spiking neural networks. arXiv preprint arXiv:2105.11654, 2021.

[15] Yiting Dong, Dongcheng Zhao, and Yi Zeng. Temporal knowledge sharing enable spiking neural network
learning from past and future. IEEE Transactions on Artificial Intelligence, 2024.

[16] Chaoteng Duan, Jianhao Ding, Shiyan Chen, Zhaofei Yu, and Tiejun Huang. Temporal effective batch
normalization in spiking neural networks. Advances in Neural Information Processing Systems, 35:
34377–34390, 2022.

[17] Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and Yonghong Tian. Deep
residual learning in spiking neural networks. Advances in Neural Information Processing Systems, 34:
21056–21069, 2021.

10



[18] Wei Fang, Zhaofei Yu, Yanqi Chen, Timothée Masquelier, Tiejun Huang, and Yonghong Tian. Incorporating
learnable membrane time constant to enhance learning of spiking neural networks. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 2661–2671, 2021.

[19] Wei Fang, Yanqi Chen, Jianhao Ding, Zhaofei Yu, Timothée Masquelier, Ding Chen, Liwei Huang, Huihui
Zhou, Guoqi Li, and Yonghong Tian. Spikingjelly: An open-source machine learning infrastructure
platform for spike-based intelligence. Science Advances, 9(40):eadi1480, 2023.

[20] Pengjie Gu, Rong Xiao, Gang Pan, and Huajin Tang. Stca: Spatio-temporal credit assignment with delayed
feedback in deep spiking neural networks. In IJCAI, volume 15, pages 1366–1372, 2019.

[21] Qiushan Guo, Xinjiang Wang, Yichao Wu, Zhipeng Yu, Ding Liang, Xiaolin Hu, and Ping Luo. Online
knowledge distillation via collaborative learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 11020–11029, 2020.

[22] Yufei Guo, Weihang Peng, Xiaode Liu, Yuanpei Chen, Yuhan Zhang, Xin Tong, Zhou Jie, and Zhe Ma.
Enof-snn: Training accurate spiking neural networks via enhancing the output feature. In The Thirty-eighth
Annual Conference on Neural Information Processing Systems.

[23] Yufei Guo, Yuanpei Chen, Liwen Zhang, Xiaode Liu, Yinglei Wang, Xuhui Huang, and Zhe Ma. Im-loss:
information maximization loss for spiking neural networks. Advances in Neural Information Processing
Systems, 35:156–166, 2022.

[24] Yufei Guo, Weihang Peng, Yuanpei Chen, Liwen Zhang, Xiaode Liu, Xuhui Huang, and Zhe Ma. Joint
a-snn: Joint training of artificial and spiking neural networks via self-distillation and weight factorization.
Pattern Recognition, 142:109639, 2023.

[25] Zhen Guo, Pengzhou Zhang, and Peng Liang. Sakd: Sparse attention knowledge distillation. Image and
Vision Computing, 146:105020, 2024.

[26] Bing Han and Kaushik Roy. Deep spiking neural network: Energy efficiency through time based coding.
In European conference on computer vision, pages 388–404. Springer, 2020.

[27] Bing Han, Gopalakrishnan Srinivasan, and Kaushik Roy. Rmp-snn: Residual membrane potential neuron
for enabling deeper high-accuracy and low-latency spiking neural network. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 13558–13567, 2020.

[28] Bing Han, Gopalakrishnan Srinivasan, and Kaushik Roy. Rmp-snn: Residual membrane potential neuron
for enabling deeper high-accuracy and low-latency spiking neural network. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 13558–13567, 2020.

[29] Zecheng Hao, Tong Bu, Jianhao Ding, Tiejun Huang, and Zhaofei Yu. Reducing ann-snn conversion error
through residual membrane potential. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pages 11–21, 2023.

[30] Zecheng Hao, Jianhao Ding, Tong Bu, Tiejun Huang, and Zhaofei Yu. Bridging the gap between anns and
snns by calibrating offset spikes. arXiv preprint arXiv:2302.10685, 2023.

[31] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

[32] Di Hong, Jiangrong Shen, Yu Qi, and Yueming Wang. Lasnn: Layer-wise ann-to-snn distillation for
effective and efficient training in deep spiking neural networks. arXiv preprint arXiv:2304.09101, 2023.

[33] Mingi Ji, Seungjae Shin, Seunghyun Hwang, Gibeom Park, and Il-Chul Moon. Refine myself by teaching
myself: Feature refinement via self-knowledge distillation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 10664–10673, 2021.

[34] Haiyan Jiang, Srinivas Anumasa, Giulia De Masi, Huan Xiong, and Bin Gu. A unified optimization
framework of ann-snn conversion: Towards optimal mapping from activation values to firing rates. In
International Conference on Machine Learning, pages 14945–14974. PMLR, 2023.

[35] Jinseok Kim, Kyungsu Kim, and Jae-Joon Kim. Unifying activation-and timing-based learning rules for
spiking neural networks. Advances in neural information processing systems, 33:19534–19544, 2020.

[36] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[37] Ravi Kumar Kushawaha, Saurabh Kumar, Biplab Banerjee, and Rajbabu Velmurugan. Distilling spikes:
Knowledge distillation in spiking neural networks. In 2020 25th International Conference on Pattern
Recognition (ICPR), pages 4536–4543. IEEE, 2021.

[38] Dongjin Lee, Seongsik Park, Jongwan Kim, Wuhyeong Doh, and Sungroh Yoon. Energy-efficient
knowledge distillation for spiking neural networks. arXiv preprint arXiv:2106.07172, 2021.

[39] Chen Li, Lei Ma, and Steve Furber. Quantization framework for fast spiking neural networks. Frontiers in
Neuroscience, 16:918793, 2022.

[40] Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. Cifar10-dvs: an event-stream dataset
for object classification. Frontiers in neuroscience, 11:309, 2017.

11



[41] Yuhang Li, Shikuang Deng, Xin Dong, Ruihao Gong, and Shi Gu. A free lunch from ann: Towards
efficient, accurate spiking neural networks calibration. In International conference on machine learning,
pages 6316–6325. PMLR, 2021.

[42] Yuhang Li, Yufei Guo, Shanghang Zhang, Shikuang Deng, Yongqing Hai, and Shi Gu. Differentiable
spike: Rethinking gradient-descent for training spiking neural networks. Advances in neural information
processing systems, 34:23426–23439, 2021.

[43] Yuhang Li, Tamar Geller, Youngeun Kim, and Priyadarshini Panda. Seenn: towards temporal spiking early
exit neural networks. Advances in Neural Information Processing Systems, 36:63327–63342, 2023.

[44] Yuhang Li, Youngeun Kim, Hyoungseob Park, and Priyadarshini Panda. Uncovering the representation of
spiking neural networks trained with surrogate gradient. arXiv preprint arXiv:2304.13098, 2023.

[45] Yifan Liu, Ke Chen, Chris Liu, Zengchang Qin, Zhenbo Luo, and Jingdong Wang. Structured knowledge
distillation for semantic segmentation. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 2604–2613, 2019.

[46] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016.

[47] Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models. Neural
networks, 10(9):1659–1671, 1997.

[48] Qingyan Meng, Mingqing Xiao, Shen Yan, Yisen Wang, Zhouchen Lin, and Zhi-Quan Luo. Training high-
performance low-latency spiking neural networks by differentiation on spike representation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12444–12453, 2022.

[49] Qingyan Meng, Mingqing Xiao, Shen Yan, Yisen Wang, Zhouchen Lin, and Zhi-Quan Luo. Towards
memory-and time-efficient backpropagation for training spiking neural networks. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 6166–6176, 2023.

[50] Hesham Mostafa. Supervised learning based on temporal coding in spiking neural networks. IEEE
transactions on neural networks and learning systems, 29(7):3227–3235, 2017.

[51] Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking neural
networks: Bringing the power of gradient-based optimization to spiking neural networks. IEEE Signal
Processing Magazine, 36(6):51–63, 2019.

[52] Stefano Panzeri and Simon R Schultz. A unified approach to the study of temporal, correlational, and rate
coding. Neural Computation, 13(6):1311–1349, 2001.

[53] A Paszke. Pytorch: An imperative style, high-performance deep learning library. arXiv preprint
arXiv:1912.01703, 2019.

[54] Jing Pei, Lei Deng, Sen Song, Mingguo Zhao, Youhui Zhang, Shuang Wu, Guanrui Wang, Zhe Zou,
Zhenzhi Wu, Wei He, et al. Towards artificial general intelligence with hybrid tianjic chip architecture.
Nature, 572(7767):106–111, 2019.

[55] Nitin Rathi and Kaushik Roy. Diet-snn: A low-latency spiking neural network with direct input encoding
and leakage and threshold optimization. IEEE Transactions on Neural Networks and Learning Systems, 34
(6):3174–3182, 2021.

[56] Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine intelligence with
neuromorphic computing. Nature, 575(7784):607–617, 2019.

[57] Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii Liu. Conversion of
continuous-valued deep networks to efficient event-driven networks for image classification. Frontiers in
neuroscience, 11:294078, 2017.

[58] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors. nature, 323(6088):533–536, 1986.

[59] Abhronil Sengupta, Yuting Ye, Robert Wang, Chiao Liu, and Kaushik Roy. Going deeper in spiking neural
networks: Vgg and residual architectures. Frontiers in neuroscience, 13:95, 2019.

[60] Sumit B Shrestha and Garrick Orchard. Slayer: Spike layer error reassignment in time. Advances in neural
information processing systems, 31, 2018.

[61] Kazuma Suetake, Shin-ichi Ikegawa, Ryuji Saiin, and Yoshihide Sawada. S3nn: Time step reduction
of spiking surrogate gradients for training energy efficient single-step spiking neural networks. Neural
Networks, 159:208–219, 2023.

[62] Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient knowledge distillation for bert model compression.
arXiv preprint arXiv:1908.09355, 2019.

[63] Sugahara Takuya, Renyuan Zhang, and Yasuhiko Nakashima. Training low-latency spiking neural network
through knowledge distillation. In 2021 IEEE Symposium in Low-Power and High-Speed Chips (COOL
CHIPS), pages 1–3. IEEE, 2021.

12



[64] Lin Wang and Kuk-Jin Yoon. Knowledge distillation and student-teacher learning for visual intelligence:
A review and new outlooks. IEEE transactions on pattern analysis and machine intelligence, 44(6):
3048–3068, 2021.

[65] Ziming Wang, Shuang Lian, Yuhao Zhang, Xiaoxin Cui, Rui Yan, and Huajin Tang. Towards lossless
ann-snn conversion under ultra-low latency with dual-phase optimization. arXiv preprint arXiv:2205.07473,
2022.

[66] Ziming Wang, Runhao Jiang, Shuang Lian, Rui Yan, and Huajin Tang. Adaptive smoothing gradient
learning for spiking neural networks. In International conference on machine learning, pages 35798–35816.
PMLR, 2023.

[67] Yujie Wu, Lei Deng, Guoqi Li, and Luping Shi. Spatio-temporal backpropagation for training high-
performance spiking neural networks. Frontiers in neuroscience, 12:323875, 2018.

[68] Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Yisen Wang, and Zhouchen Lin. Training feedback
spiking neural networks by implicit differentiation on the equilibrium state. Advances in neural information
processing systems, 34:14516–14528, 2021.

[69] Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Di He, and Zhouchen Lin. Online training through time
for spiking neural networks. Advances in neural information processing systems, 35:20717–20730, 2022.

[70] Qi Xu, Yaxin Li, Jiangrong Shen, Jian K Liu, Huajin Tang, and Gang Pan. Constructing deep spiking neural
networks from artificial neural networks with knowledge distillation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 7886–7895, 2023.

[71] Zekai Xu, Kang You, Qinghai Guo, Xiang Wang, and Zhezhi He. Bkdsnn: Enhancing the performance
of learning-based spiking neural networks training with blurred knowledge distillation. arXiv preprint
arXiv:2407.09083, 2024.

[72] Shu Yang, Chengting Yu, Lei Liu, Hanzhi Ma, Aili Wang, and Erping Li. Efficient ann-guided distillation:
Aligning rate-based features of spiking neural networks through hybrid block-wise replacement. arXiv
preprint arXiv:2503.16572, 2025.

[73] Yukun Yang, Wenrui Zhang, and Peng Li. Backpropagated neighborhood aggregation for accurate training
of spiking neural networks. In International Conference on Machine Learning, pages 11852–11862.
PMLR, 2021.

[74] Zhendong Yang, Ailing Zeng, Zhe Li, Tianke Zhang, Chun Yuan, and Yu Li. From knowledge distillation
to self-knowledge distillation: A unified approach with normalized loss and customized soft labels. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 17185–17194, 2023.

[75] Bojian Yin, Federico Corradi, and Sander M Bohté. Effective and efficient computation with multiple-
timescale spiking recurrent neural networks. In International Conference on Neuromorphic Systems 2020,
pages 1–8, 2020.

[76] Bojian Yin, Federico Corradi, and Sander M Bohté. Accurate online training of dynamical spiking neural
networks through forward propagation through time. Nature Machine Intelligence, 5(5):518–527, 2023.

[77] Chengting Yu, Lei Liu, Gaoang Wang, Erping Li, and Aili Wang. Advancing training efficiency of deep
spiking neural networks through rate-based backpropagation. arXiv preprint arXiv:2410.11488, 2024.

[78] Chengting Yu, Xiaochen Zhao, Lei Liu, Shu Yang, Gaoang Wang, Erping Li, and Aili Wang. Effi-
cient distillation of deep spiking neural networks for full-range timestep deployment. arXiv preprint
arXiv:2501.15925, 2025.

[79] Friedemann Zenke and Surya Ganguli. Superspike: Supervised learning in multilayer spiking neural
networks. Neural computation, 30(6):1514–1541, 2018.

[80] Friedemann Zenke and Tim P Vogels. The remarkable robustness of surrogate gradient learning for
instilling complex function in spiking neural networks. Neural computation, 33(4):899–925, 2021.

[81] Fengzhao Zhang, Chengting Yu, Hanzhi Ma, Zheming Gu, and Er-ping Li. Knowledge distillation for
spiking neural network. In 2023 5th International Conference on Robotics, Intelligent Control and Artificial
Intelligence (RICAI), pages 1015–1020. IEEE, 2023.

[82] Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei Chen, Chenglong Bao, and Kaisheng Ma. Be your own
teacher: Improve the performance of convolutional neural networks via self distillation. In Proceedings of
the IEEE/CVF international conference on computer vision, pages 3713–3722, 2019.

[83] Wenrui Zhang and Peng Li. Temporal spike sequence learning via backpropagation for deep spiking neural
networks. Advances in neural information processing systems, 33:12022–12033, 2020.

[84] Borui Zhao, Quan Cui, Renjie Song, Yiyu Qiu, and Jiajun Liang. Decoupled knowledge distillation. In
Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition, pages 11953–11962,
2022.

13



[85] Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li. Going deeper with directly-trained larger
spiking neural networks. In Proceedings of the AAAI conference on artificial intelligence, volume 35,
pages 11062–11070, 2021.

[86] Yaoyu Zhu, Jianhao Ding, Tiejun Huang, Xiaodong Xie, and Zhaofei Yu. Online stabilization of spiking
neural networks. In The Twelfth International Conference on Learning Representations, 2024.

14



Appendix

A Experimental Settings

A.1 Datasets

A.1.1 CIFAR-10 and CIFAR-100

The CIFAR-10 and CIFAR-100 [36] datasets consist of color images with a resolution of 32×32
pixels and cover a range of object categories. Both datasets are released under the MIT license.
CIFAR-10 contains 60,000 images across 10 classes, with 50,000 images for training and 10,000
for testing. CIFAR-100 includes 100 classes. Both datasets are preprocessed with zero-mean and
unit-variance normalization. Data augmentation strategies follow AutoAugment [7] and Cutout[16],
consistent with recent works [41, 5, 23, 66, 12]. At each time step, the raw pixel values are directly
encoded [55] and fed into the network input layer.

A.1.2 ImageNet

The ImageNet-1K dataset [9] consists of 1,281,167 training images and 50,000 validation images
across 1,000 distinct categories, and is available for non-commercial use. All images are standardized
to have zero mean and unit variance. During training, images are randomly resized and cropped to
224×224 pixels, followed by horizontal flipping. For validation, images are first resized to 256×256
pixels and then center-cropped to 224×224. Similar to the treatment of CIFAR datasets, each image
is converted into a temporal sequence via direct encoding before being fed into the network.

A.1.3 CIFAR10-DVS

The CIFAR10-DVS dataset [40] is a neuromorphic version of CIFAR-10, consisting of 10,000 event-
based images captured by a Dynamic Vision Sensor (DVS) camera. The images have an increased
spatial resolution of 128×128 pixels and are released under the CC BY 4.0 license. We split the
dataset into 9,000 training images and 1,000 test images. Data preprocessing involves accumulating
events into frames [19, 18] and downsampling the spatial resolution to 48×48 via interpolation.
Additional data augmentation includes random horizontal flipping and random translation within a
5-pixel range, consistent with previous studies [49, 69].

A.2 Training Setup

Our experiments adopt a sigmoid-based surrogate gradient method [19] to approximate the Heaviside
step function, defined ash(x, α) = 1

1+e−αx , where the parameter αis set to 4. We follow the time-
approximate backpropagation strategy from [77], and all implementations are based on the PyTorch
[53] and SpikingJelly [19] frameworks. Experiments on CIFAR-10, CIFAR-100, CIFAR10-DVS,
and ImageNet datasets are conducted on an NVIDIA GeForce RTX 3090 GPU. For all tasks, we
use stochastic gradient descent (SGD) with a momentum of 0.9 [58], and apply a cosine annealing
schedule [46] for learning rate adjustment. Additional hyperparameters are listed in the table 5.

Table 5: Hyperparameters Settings.
CIFAR-10 CIFAR-100 ImageNet CIFAR10-DVS

Epoch 300 300 100 300
Learning rate 0.1 0.1 0.2 0.1

Batch size 128 128 512 32
Weight decay 5e-4 5e-4 2e-5 5e-4

A.3 Network Architectures

For the CIFAR-10, CIFAR-100, and CIFAR10-DVS datasets, we adopt ResNet-18 and ResNet-19
as the backbone models. For the ImageNet dataset, ResNet-34 is used as the backbone model.
All spiking neural network (SNN) models employ leaky integrate-and-fire (LIF) neurons, with
the membrane potential decay factor uniformly set to 0.5. The implementation is based on the
activation-driven paradigm proposed by [17].

1



Table 6: Performance under different β using ResNet-18 on CIFAR100.
classifier/β 0.0 0.1 0.3 0.5 0.7 0.9 1.0

1 75.06 75.71 76.11 75.91 76.12 76.20 76.50

2 77.74 76.96 78.30 77.70 77.51 77.81 77.60

3 78.93 79.29 79.53 79.64 79.89 79.57 79.10

4 79.30 79.69 80.20 79.96 79.89 79.61 79.47

A.4 Surograte Branches Design

In the design of the auxiliary branches, we need to balance computational complexity and feature
extraction capability. On one hand, if the auxiliary branch is too simple, it may fail to effectively
extract features from the intermediate layers of the model, thereby affecting training performance.
On the other hand, if the auxiliary branch is too complex, it will significantly increase computational
complexity, which contradicts the low training cost characteristic of rate coding and may also lead to
gradient fragmentation issues.

We first consider standard convolution, whose parameter storage complexity and computational
complexity are given by:

Pstd = D2
k × Cin × Cout (12)

Cstd = D2
k × Cin × Cout ×D2

f (13)

Dkrepresents the kernel size,CinandCoutdenote the number of input and output channels, respectively,
and Df is the size of the output feature map. Compared to traditional convolution, depthwise separable
convolution decouples computation along the spatial and channel dimensions. Depthwise convolution
extracts spatial features, followed by pointwise convolution, which captures channel-wise features.
Its parameter storage complexity and computational complexity are given by:

Pdsc = D2
k × Cin + Cin × Cout (14)

Cdsc = D2
k × Cin ×D2

f + Cin × Cout ×D2
f (15)

The ratio of the number of parameters required for depthwise separable convolution to that of standard
convolution is 1

N + 1
D2

k
, and the ratio of computational complexity is also 1

N + 1
D2

k
. This demonstrates

that depthwise separable convolution requires fewer parameters and has faster computation, aligning
with the low training cost characteristic of rate coding.

Additionally, to prevent issues such as gradient explosion and enhance training performance, we
introduce residual connections in the auxiliary branches. Finally, after passing through the classifier,
we obtain the soft labels of the required submodule.

B More Results

B.1 Selection of Parameter β

In Table 6, We fixed the weight of the hard loss to 1.0 and focused on investigating the impact of
varying the self-distillation weight β on model training by evaluating the ResNet-18 model on the
CIFAR-100 dataset. We observe that as β increases from 0, the overall model performance improves
progressively, with accuracy steadily rising across all classifiers. This indicates that larger values of
β enable each classifier to better learn from the teacher’s knowledge, thereby facilitating the training
of the entire network. The model achieves optimal performance when β = 0.3. However, when β
exceeds 0.3, we observe that while some intermediate classifiers continue to improve in accuracy, the
final classifier’s performance begins to decline. This suggests that an excessively large distillation
weight shifts the training focus more toward the intermediate layers, diverging from the optimal
learning direction of the final classifier. As a result, this imbalance leads to a gradient diversion
problem, hindering the overall performance of the model.

2



Table 7: Time and memory overhead at different timesteps.
Method Eval Metrics T=2 T=4 T=6 T=8 T=10 T=12

BPTT Time cost(s/batch) 0.076 0.161 0.253 0.360 0.474 0.606
Memory(MB) 2645.94 4889.32 7133.21 9383.85 11636.11 13887.80

RateBP Time cost(s/batch) 0.106 0.143 0.184 0.227 0.267 0.311
Memory(MB) 2120.71 2120.78 2121.18 2296.48 2747.20 3197.42

Our Time cost(s/batch) 0.125 0.154 0.194 0.237 0.277 0.318
Memory(MB) 2380.09 2380.76 2381.91 2383.06 2758.69 3208.44

B.2 Standard self-distillation suboptimal solution count

We evaluate the classification performance of different depth classifiers on the CIFAR-100 dataset
using ResNet-18. Instances where the deepest classifier performs worse than shallower classifiers
are considered as invalid teacher label examples (as indicated by the boxed region in Figure 5).
We conducted three random observation experiments, and the average proportion of invalid teacher
labels was 50.7%. As analyzed in Section 3.3, these invalid teacher labels hinder the student model
from converging in the correct direction. More notably, as the confidence in the target class of
the mispredicted teacher labels increases, and the overall proportion of invalid labels rises during
training, the negative impact intensifies. This phenomenon highlights the theoretical foundation for
our proposed enhanced self-distillation method.

Figure 5: Classification performance of classifiers with different depths during the training process.

B.3 Comprehensive Evaluation of Training Costs

As a supplement to Figures 1 and 4a in the main text, we provide the memory and time overhead at
different timesteps for BPTT, RateBP, and our proposed method, as shown in Table 7.

B.4 Impact on inference efficiency

We recognize SEENN[43] as a highly meaningful work. It determines whether to stop the inference
process early by computing the confidence level over the first t time steps. This allows it to achieve
performance close to that of the full T time steps within a shorter inference duration, thereby reducing

3



inference cost. As shown in Figures 6a and 6b, we further demonstrate that models trained under our
framework are compatible with this method. We tested confidence thresholds of 0.7, 0.8, 0.9, 0.99,
and 0.999. On CIFAR-10 and CIFAR-100, our method achieves the performance of 6 time steps
using only an average of 2.4214 and 3.5371 time steps, respectively. Compared with RateBP, the
accuracy improves by 0.48% and 1.18%, with only a slight increase of 0.0048 and 0.1438 time steps,
respectively.

(a) Performance on CIFAR-10 (b) Performance on CIFAR-100

Figure 6: Comparison of SEENN performance

B.5 Visualization Analysis

We provide a visual analysis comparing standard self-distillation with the enhanced self-distillation
approach. We utilize t-SNE visualization to observe classifiers at different depths and compare the
clustering effects between Standard Self-Distillation and our proposed method. As shown in Figure 7
and Figure 8, two key observations can be made: First, it is evident that the deeper the classifier, the
more compact the clustering becomes. Second, classifiers trained with Enhanced Self-Distillation
exhibit stronger class separability compared to those of the same depth trained with Standard Self-
Distillation. These results confirm that each classifier benefits from learning high-quality teacher
signals, effectively pushing the upper bound of performance.

Figure 7: Clustering Patterns of Classifiers 1–4 in the Standard Self-Distillation

Figure 8: Clustering Patterns of Classifiers 1–4 in the Enhanced Self-Distillation

B.6 Analysis of Rate Statistics

Our method is trained based on rate coding and incorporates an ANN branch to enhance training
effectiveness. While this hybrid strategy improves model performance, it may also influence the

4



spiking characteristics inherent to traditional SNNs. To investigate this, we tracked the average spike
frequency across different layers over multiple time steps. As shown in the figure 9, the results
indicate that the average firing rate remains highly consistent over time, confirming the stability of
the model during inference.

(a) Rate Statistics on CIFAR-10 (b) Rate Statistics on CIFAR-100

Figure 9: Comparison of SEENN performance

C Social Impacts and Limitations

This research primarily focuses on achieving high-performance training of Spiking Neural Networks
(SNNs) under limited training conditions, and therefore does not lead to direct negative social
impacts. Compared to Artificial Neural Networks (ANNs), SNNs inherently offer lower energy
consumption during inference, which helps reduce carbon dioxide emissions. The proposed method
uses a rate coding-based training approach, which contributes to reducing the training time and
hardware requirements for SNNs.

The paper acknowledges several challenges regarding the proposed method. First, by introducing a
lightweight artificial neural network branch based on rate encoding, the training cost is slightly higher
than that of RateBP. However, these memory costs are fixed constants and do not increase linearly
with the time steps, as is the case with backpropagation through time (BPTT). More importantly,
the performance breakthroughs achieved through experimental evaluations make this additional
cost worthwhile. Furthermore, frequency-based backpropagation is designed to efficiently capture
spatiotemporal feature representations to optimize training, but its performance on sequence tasks
is weaker than that of BPTT. This is discussed in Section 4.1. To ensure a fair comparison, we
decoupled the frequency-based backpropagation training method on a dataset with neuron morphology.
Experimental results show that our improved self-distillation method demonstrates outstanding
performance on both frequency- and time-based backpropagation methods, as well as on artificial
neural networks.

5



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See Abstract and Section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Appendix C

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

6



Justification: See Section 3
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Section 3 and Appendix A
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

7



Answer: [Yes]
Justification: See Supplementary Materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

8

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Appendix A and B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This research conforms to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Appendix C.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

9

https://neurips.cc/public/EthicsGuidelines


generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: See Appendix A.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

10

paperswithcode.com/datasets


Answer: [NA]

Justification: We do not use new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We use the existing common datasets.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We use the existing common datasets.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

11



Justification: We do not use LLM.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

12

https://neurips.cc/Conferences/2025/LLM

	Intorduction
	Related Work
	Training Methods in SNNs
	Knowledge Distillation in SNNs

	Method
	Preliminary
	Model training
	Limitations of Standard Self-Distillation
	Reliability-Separated Self-Distillation

	Experiments
	Main Results
	Ablation study
	Performance on Energy Efficient Implementation

	Conclusion
	Acknowledgments
	Experimental Settings
	Datasets
	CIFAR-10 and CIFAR-100
	ImageNet
	CIFAR10-DVS

	Training Setup
	Network Architectures
	Surograte Branches Design

	More Results
	Selection of Parameter 
	Standard self-distillation suboptimal solution count
	Comprehensive Evaluation of Training Costs
	Impact on inference efficiency
	Visualization Analysis
	Analysis of Rate Statistics

	Social Impacts and Limitations

