
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

S2MAM: SEMI-SUPERVISED META ADDITIVE MODEL
FOR ROBUST ESTIMATION AND VARIABLE SELECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Semi-supervised learning with manifold regularization is a classical family for
learning from the labeled and unlabeled data jointly, where the key requirement
is the support of unknown marginal distribution enjoys the geometric structure of
a Riemannian manifold. Usually, the Laplace-Beltrami operator-based manifold
regularization can be approximated empirically by the Laplacian regularization
associated with the whole training data and its graph Laplacian matrix. However,
the graph Laplacian matrix depends heavily on the pre-specifying similarity metric
and may result in inappropriate penalties when facing redundant and noisy input
variables. In order to address the above issues, this paper proposes a new Semi-
Supervised Meta Additive Model (S2MAM) under a bilevel optimization scheme
to automatically identify the informative variables, update the similarity matrix,
and achieve the interpretable prediction simultaneously. Theoretical guarantees
are provided for S2MAM including the computing convergence and the statistical
generalization bound. Experimental assessments on synthetic and real-world
datasets validate the robustness and interpretability of the proposed approach.

1 INTRODUCTION

Manifold regularization provides an elegant and effective framework to develop semi-supervised
learning (SSL) models by utilizing a large amount of unlabeled data with limited labeled data jointly
(Belkin & Niyogi, 2004; Belkin et al., 2005; 2006; Geng et al., 2012; Van Engelen & Hoos, 2020). The
key assumption of manifold regularization is that the support of intrinsic marginal distribution has the
geometric structure of a Riemannian manifold (Belkin & Niyogi, 2004; Belkin et al., 2006; Johnson
& Zhang, 2007; 2008)). Usually, the Laplace-Beltrami operator-based manifold regularization can be
approximated empirically by the Laplacian regularization associated with the whole training data and
the corresponding similarity (adjacent) matrix (Belkin & Niyogi, 2004; Belkin et al., 2006; Roweis
& Saul, 2000), where the similarity matrix is constructed by the principles of Gaussian fields and
harmonic functions (Zhu et al., 2003b) or the local and global consistency (Zhou et al., 2003). Typical
manifold regularization schemes include Laplacian regularized least squares (LapRLS) and Laplacian
regularized support vector machine (LapSVM) (Belkin et al., 2006). Moreover, Nie et al. considered
a flexible manifold embedding for semi-supervised dimension reduction (Nie et al., 2010), and Qiu et
al. further developed an accelerated version (called fast flexible manifold embedding (f-FME)) by
reconstructing a smaller adjacency matrix with low-rank and sparse constraints (Qiu et al., 2018).

Despite rapid progress, it is still scarce to validate the intrinsic manifold assumption (Belkin &
Niyogi, 2004; Belkin et al., 2006; Johnson & Zhang, 2007; 2008) for different types of data, e.g.,
data with redundant or even noisy variables. Moreover, the investigation for the robustness and
interpretability of manifold regularization is far below its empirical applications only concerning
the prediction accuracy. The existing manifold regularization models require that the similarity
matrices are pre-specified before the semi-supervised training procedures, where the adaptivity and
robustness of manifold learning are unexplored. For real applications, there unavoidably involve some
abundant irrelevant and even noisy variables, and the pre-specified similarity metric associated with
the whole variables can not reflect the true adjacent relations properly. The uninformative and noisy
variables often result in a large deviation in estimating manifold structure, and then seriously degrade
the prediction capability of manifold regularization methods. As illustrated in Figure 1, the clean
unlabeled data are beneficial to better fit the decision curve, while the randomly added noisy variables
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(a) Training on clean data (b) Training on noisy data (c) LapSVM on noisy data (d) S2MAM on noisy data

Figure 1: Toy examples on the impact of noisy variables in the moon dataset for LapSVM and our S2MAM. (a)
and (b) show the 2D prediction curves w.r.t the original input X1 and X2, where LapSVM is sensitive to feature
corruptions Xn. (c) and (d) present the 3D decision surfaces on corrupted data, where S2MAM is robust against
the varying noisy variable Xn. Clean moon dataset contains inputs, X1 and X2. The corrupted data involves
another noisy variable Xn ∈ N (100, 100). The used moon dataset contains 99 unlabeled points and only one
labeled point for each class. Please refer to Appendix B.8 for detailed descriptions.

obviously hurt the performance of LapSVM (See Appendix B.8 for details). The inherent reason,
resulting in the degraded performance, is the computation bias of the similarity matrix through the
whole input variables directly (Nie et al., 2019; 2021). This motivates the following open questions:

“How to alleviate the impact of redundant and even noisy variables on SSL models with manifold
regularization? How to design a new manifold regularization scheme enjoying the robustness,
interpretability, and prediction effectiveness simultaneously?"

Intuitively, we can handle the above questions by a two-stage framework, i.e., selecting the informative
variables firstly (e.g., via Lasso (Tibshirani, 1994), SpAM (Ravikumar et al., 2009)), and then
implementing the manifold regularization approaches with the refined input variables. However,
this variable selection strategy is independent of the intrinsic manifold structure and its accuracy is
difficult to be guaranteed due to the scarcity of labeled data. Inspired by meta learning for coreset
selection (Borsos et al., 2020; Zhou et al., 2022), this paper considers assigning all input variables
with masks for both labeled and unlabeled data, where merely those truly informative variables are
left for modeling and constructing the similarity matrix.

Nevertheless, there are several challenges along this way: 1) It is NP-hard to learn the discrete mask
variables taking values in {0, 1} directly. 2) The bilevel optimization usually needs the computation
on Hessian and Jacobian matrices, which leads to a heavy computation burden. 3) Most kernel-based
manifold regularization models construct the Gram matrix based on sample distance, which lacks the
result’s interpretability, e.g., screening the key variables associated with the response.

1.1 CONTRIBUTION

To address the aforementioned challenges, we inject the meta learning strategy and sparse additive
models into manifold regularized SSL framework, and formulate a new Semi-Supervised Meta
Additive Model (S2MAM) to realize automatic variable masking and sparse approximation for
high-dimensional inputs even with noisy variables.

The core technique is to update the decision function and similarity matrix simultaneously with proper
masks on input variables, where the masks of S2MAM are learned by a probabilistic meta strategy.
Moreover, an efficient implementation is employed here to solve the bilevel optimization problem,
which avoids the heavy computing burden on the implicit hypergradient calculation (Pedregosa,
2016), Neumann series and some variants with Hessian-vector or Jacobian-vector products (Lorraine
et al., 2020; Ghadimi & Wang, 2018).

The main contributions of this paper are summarized below:

• New statistical modeling. To the best of our knowledge, our S2MAM is the first meta
learning method for manifold regularized additive models, where a novel bilevel optimization
scheme is formulated for robust estimation and data-driven automatic variable selection
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Table 1: Properties of our S2MAM and related models (✓ = enjoying the given information, and × = not
available for the information).

SpAM LapRLS f-FME AWSSL PBCS S2MAM (ours)
Learning Task Supervised Semi-Supervised Semi-Supervised Semi-Supervised Supervised Semi-Supervised

Optimization Framework Single-level Single-level Single-level Single-level Bilevel Bilevel
Variable Selection ✓ × ✓ ✓ ✓ ✓

Noisy Variable Robustness × × × ✓ ✓ ✓
Convergence Analysis × × × × ✓ ✓

Generalization Analysis ✓ × × × × ✓
Computation Complexity Analysis × × × × × ✓

simultaneously. By assigning flexible masks on individual variables, the proposed S2MAM
is capable of reducing the impact of noisy variables on SSL tasks.

• Computing and Theoretical Supports. An efficient probabilistic bilevel optimization is
developed to additionally learn the discrete masks, where the policy gradient estimation and
the projection operation are employed. This computing algorithm reduces the computational
burden of discrete bilevel optimization framework and enjoys theoretical guarantees of
optimization convergence. Besides, we also establish the upper bounds of excess risk for
the baseline model of S2MAM, which implies the proposed approach can reach polynomial
decay on generalization error.

• Empirical competitiveness. Empirical results on several synthetic and real-world benchmarks
demonstrate that the proposed S2MAM can identify the truly informative variables and
realize robust prediction even facing redundant and noisy input variables.

1.2 COMPARISONS WITH THE RELATED WORKS

Semi-supervised dimensionality reduction. Recently, some efforts were made towards constructing a
flexible similarity matrix against feature corruptions for SSL with manifold regularization (Chen et al.,
2018; Nie et al., 2019). By rescaling the regression coefficients as variable weights, Chen et al. (Chen
et al., 2018) developed an efficient SSL method to obtain important variables, which is called rescaled
linear square regression. Another weighting approach in (Nie et al., 2019) is called auto-weighting
semi-supervised learning (AWSSL), which adaptively assigns continuous weights on variables to
update the similarity matrix. After the dimension reduction process, a specific classifier is employed
for downstream tasks. A robust graph learning (RGL) method (Kang et al., 2020) combined label
ranking regression and label propagation into a unified framework for weight graph construction and
semi-supervised learning. Semi-supervised adaptive local embedding learning (SALE) (Nie et al.,
2021) adaptively constructs two affinity graphs (based on labeled data and all embedding samples)
separately to explore the local and global structures. Different from these works, this paper considers
to automatically assign discrete masks 0/1 on input features (variables) for screening the truly active
variables.

Sparse additive models. Additive models (Stone, 1985; Hastie & Tibshirani, 1990), as natural
nonparametric extensions of linear models, have been burgeoning in high-dimensional data analysis
due to their attractive properties, i.e., overcoming the curse of dimensionality, the flexibility of
function approximation, and the ability of variable selection (Meier et al., 2009; Christmann & Hable,
2012; Yuan & Zhou, 2016; Chen et al., 2020). In recent years, many sparse additive models have
been proposed from various theoretical or empirical motivations, see e.g., (Lv et al., 2018; Haris
et al., 2022; Bouchiat et al., 2024; Duong et al., 2024). Naturally, the paradigm of additive models
can be applied to semi-supervised learning settings. As far as we know, there are only three papers
that touched on this topic (Culp & Michailidis, 2008; Culp et al., 2009; Culp, 2011). However, all
of them don’t consider the robustness on manifold learning against noisy variables, and ignore the
data-driven variable structure discovery. These strong restrictions on the pre-defined similarity matrix
and variable structure may result in degrading seriously of existing models under complex noise
circumstances.

Meta learning for sample/variable selection. The meta-based masking policy was developed in
(Borsos et al., 2020), where a bilevel neural network is designed for automatic supervised coreset
selection. Furthermore, its improved version with probabilistic bilevel optimization is proposed for
supervised classification (Zhou et al., 2022), especially for corrupted and imbalanced data. Indeed,
Zhou et al. (Zhou et al., 2022) also provide an example of variable selection, while it is limited to
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the supervised learning case and doesn’t concern the impact of noisy variables. To the best of our
knowledge, there has been no any endeavor before to explore the meta-based masking policy for
semi-supervised additive models.

To better highlight the novelty of our S2MAM, we summarize its properties in Table 1 compared
with several related state-of-art models including sparse additive models (SpAM) (Ravikumar et al.,
2009)), LapRLS (Belkin et al., 2006)), fast flexible manifold embedding (f-FME) (Qiu et al., 2018),
auto-weighting semi-supervised learning (AWSSL) (Nie et al., 2019) and the probabilistic bilevel
coreset selection (PBCS) (Zhou et al., 2022). Table 1 shows that the proposed S2MAM enjoys nice
properties, e.g., variable selection, robust estimation, and computing guarantees.

2 SEMI-SUPERVISED ADDITIVE MODELS

This section first introduces a manifold regularized semi-supervised additive model (Culp, 2011) as
basic model, and then formulates the S2MAM under the discrete bilevel optimization framework.
Furthermore, a probabilistic bilevel scheme solves the NP-hard discrete optimization problem.

2.1 REVISITING MANIFOLD REGULARIZED SPARSE ADDITIVE MODEL

Let X = {X (1), · · · ,X (p)} ∈ Rp be a compact input space and the output space Y ∈ R. Denote ρ
as the jointed distribution on X × Y , and ρX as the marginal distribution with respect to X induced
by ρ. The training set z = {zl, zu} involves the labeled set zl = {(xi, yi)}li=1 and the unlabeled
set zu = {xi}l+u

i=l+1, where each input xi = (x
(1)
i , · · · , x(p)

i )T ∈ Rp with x
(j)
i ∈ X (j) and output

yi ∈ R. The hypothesis space of additive models can be formulated as

F = {f : f(x) =

p∑
j=1

f (j)(x(j)), f (j) ∈ F (j)},

where x(j) ∈ X (j) and F (j) is the component function space on X (j) (Ravikumar et al., 2009).
Typical candidates of additive hypothesis space include the basis expansion space (Meier et al.,
2009; Ravikumar et al., 2009), the reproducing kernel Hilbert space (RKHS) (Raskutti et al., 2012;
Christmann & Zhou, 2016), and the neural networks-based space (Agarwal et al., 2021; Yang et al.,
2020).

This paper choosesHK(j) to form the additive hypothesis space, whereHK(j) is the RKHS associated
with Mercer kernel K(j) defined on X (j) ×X (j), j ∈ {1, . . . , p}. Equipped by component function
f (j) : X (j) → R, j ∈ {1, . . . , p}, the additive hypothesis space can be further defined as

H =
{
f =

p∑
j=1

f (j) : f (j) ∈ HK(j) , 1 ≤ j ≤ p
}

with ∥f∥2K = inf
{∑p

j=1 ∥f (j)∥2
K(j) : f =

∑p
j=1 f

(j)
}

. Indeed, H is an RKHS associated with

kernel K =
∑p

j=1 K
(j) (Christmann & Zhou, 2016). Due to the representer theorem of RKHS

(Smola & Schölkopf, 1998), the prediction function of supervised additive models in RKHS often
enjoys the parameter presentation

f(·) =
p∑

j=1

l∑
i=1

α
(j)
i K

(j)
i (x

(j)
i , ·), (1)

see e.g., (Yuan & Zhou, 2016; Christmann & Hable, 2012; Chen et al., 2020).

Given a predictor f : X → R, denote f = (f(x1), . . . , f(xl+u))
T as the prediction vector associated

with the labeled data zl and the unlabeled data zu. Let λ1, λ2 > 0 be the regularization coefficients
and let τj be the positive weight to different input variables for j = 1, · · · , p. Then the additive
model for regularized Laplacian regression can be formulated as

fz = argmin
f∈H

{
Ez(f) + λ1Ωz(f) +

λ2

(l + u)2
fTLf

}
, (2)
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where the empirical risk

Ez(f) =
1

l

l∑
i=1

(yi − f(xi))
2,

the sparse regularization

Ωz(f) = inf
{ p∑

j=1

τj∥α(j)∥2 : f =

p∑
j=1

l∑
i=1

α
(j)
i K

(j)
i (x

(j)
i , ·)

}
,

and the term fTLf is the manifold regularization (Belkin & Niyogi, 2004; Culp, 2011). Here,
L = D −W is the graph Laplacian, and diagonal matrix D satisfies Dii =

∑l+u
j=1 Wij and Wij is

the adjacent weight for inputs xi and xj , e.g., Wij = exp{−∥xi − xj∥22/µ2} with bandwidth µ.

Remark 1. If the j-th variable is not truly informative, α(j)
z = (α

(j)
z,1, . . . , α

(j)
z,l+u)

T ∈ Rl+u is

expected to satisfy ∥α(j)
z ∥2 =

√
l+u∑
i=1

∣∣∣α(j)
z,i

∣∣∣2 = 0. Thus, ℓ2,1-regularizer is employed as the penalty.

Obviously, noisy input variables may bring an inappropriate similarity matrix W . Naturally, it is
necessary to improve the robustness of (2) against noisy variables by replacing the pre-specified
similarity measure (i.e., W ,L) in manifold regularization with adaptive masking strategy.

2.2 DISCRETE BILEVEL FRAMEWORK FOR S2MAM

To reduce the negative impact of noisy variables on Laplacian regularization in (2), we introduce a
bilevel optimization framework for automatically learning the masks on variables. In particular, both
the decision function f and Laplacian matrix L are updated by the learned masks.

Denote ℓ(·) as the loss function, f(x;α) as a decision function in RKHSH with spanning parameter
α and the mask m ∈ {0, 1}p as a binary vector, where mi = 1 implies i-th variable is selected as
the informative one and otherwise ignored. The bilevel framework for directly learning the discrete
masks is formulated as follows.

Upper Level: Given the meta dataset Dmeta = {(xi, yi)}li=1, we formulate the discrete optimization

min
m∈C̃
L (α∗(m)) =

1

l

l∑
i=1

ℓ (f(xi;α
∗(m)), yi) , (3)

where the mask m is the learnable parameter in the upper level, α is the parameter of the decision func-
tion in the lower level depending on m, and C̃ = {m : mi ∈ {0, 1}, ∥m∥0 ≤ C, i = 1, 2, · · · , p} is
the feasible region of m with the size of selected variables C.

Lower Level: Based on the whole training set Dtotal involving Dmeta and unlabeled samples
{xi}l+u

i=l+1, the predictor of lower level optimization problem is

f̂(x) =

p∑
j=1

f̂ (j)(mjx
(j)) =

p∑
j=1

l∑
i=1

α
(j)
i K

(j)
i (mjx

(j)
i ,mjx

(j)), (4)

where
α̂ = argmin

α∈R(l+u)×p

R(α;m;L), (5)

with

R(α;m;L) =
1

l

l∑
i=1

ℓ(f(xi ⊙m;α), yi) + λ1

p∑
j=1

τj∥α(j)∥2 +
λ2

(l + u)2
fTLf .

Different from (2), the Laplacian matrix L in (5) is computed based on the masked similarity matrix
W with measure functionW(·, ·) and element Wij =W(xi⊙m, xj⊙m), i, j ∈ {1, 2, · · · , l+u}.
Usually, it is intractable to directly solve the above discrete bilevel problem. Fortunately, we can
formulate its continuous probabilistic form with the help of policy gradient estimation (Zhou et al.,
2022), and develop an efficient gradient-based optimization algorithm in the following Section 2.3.
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Algorithm 1: Procedure for S2MAM

Input: Labeled data zl = {(xi, yi)}li=1,
unlabeled data zu = {xi}l+u

i=l+1, step size ηt,
core size C, 1 = (1, ..., 1) ∈ Rp.
Initialization: α0, s0 = C

p · 1, m0, L0.

for t = 1 to T do
1) Update αt based on Step 1 with zl & zu
2) Update st based on Step 2 with zl
3) Update mt sampled from p(m|st)
4) Update Lt based on Step 3 with zl & zu

end for
Output: Decision function f̂ .

Algorithm 2: Projection Operation PC(a)

Input: Vector a ∈ Rp, core variables C,
Domain C = {s : 0 ⪯ s ⪯ 1, ∥s∥1 ≤ C}.

1) Computing auxiliary variable b satisfying:
1⊤ [min (1,max (0,a− b · 1))]− C = 0

2) Computing auxiliary variable c satisfying:
c← max (0, b)

3) Update a:
a∗ ← min (1,max (0,a− c · 1))

Output: PC(a) = a∗.

2.3 PROBABILISTIC BILEVEL FRAMEWORK FOR S2MAM

It is popular to transform the discrete tunning parameter space into the continuous probability space
for bilevel optimization (Zhao et al., 2023; Zhou et al., 2022). For simplicity, mi can be considered as
a Bernoulli random variable mi ∼ Bern (si), where si ∈ [0, 1] represents the probability of mi = 1.
Denote the domain on probability variable s = (s1, ..., sp) ∈ Rp as

C = {s : 0 ⪯ si ⪯ 1, ∥s∥1 ≤ C, i = 1, 2, · · · , p} .
The discrete bilevel optimization in Section 2.2 can be relaxed into the following expected form

min
s∈C

Φ(s) = Ep(m|s)L (α∗(m)) , s.t. α∗(m) ∈ argmin
α∈R(l+u)×p

R(α;m;L). (6)

Remark 2. Under the independent assumption on variable mi, we can derive its distribution
p(m | s) = Πp

i=1 (si)
mi (1− si)

(1−mi). Since Em∼p(m|s)∥m∥0 =
∑p

i=1 si, the original domain
C̃ = {m : mi ∈ {0, 1}, ∥m∥0 ≤ C, i = 1, 2, · · · , p} is transformed into C on probability s.
Remark 3. A naive idea for continuing m is to directly consider it as a dynamic weighting vector
varying in [0, 1], which would bring expensive computation costs for the hypergradient estimation.

2.4 COMPUTING ALGORITHM OF S2MAM

Initialize the decision parameter α0 = 0, mask m0 = 1, probability s0 = C
p · 1 and select Laplacian

matrix associated with original (x1, · · · , xl+u) as L0. Before each iteration, a sample batch B is
selected from the whole training set. The computing steps of probabilistic S2MAM are summarized
in Algorithm 1. The procedures for solving (6) at the t-th iteration contain:

Step 1: Computing αt with mt−1 and Lt−1 by

αt = argmin
α∈R(l+u)×p

R(αt−1;mt−1;Lt−1), (7)

with R(αt−1;mt−1;Lt−1) defined in (5). The computation algorithm for Step 1 based on the
alternating direction method of multipliers is left in Appendix E.4.

Step 2: Computing st and mt with αt:

From the probabilistic S2MAM in (6), the learning target changes from the discrete masks m into
the continuous probability s, which is updated by the policy gradient estimator (Zhou et al., 2022):

∇sΦ(s) = Ep(m|s)L (α∗(m))∇s ln p(m | s).
This computing procedure is unbiased gradient estimation and without heavy computation burden on
the inverse of the Hessian matrix or implicit differentiation.

Denote ηt as the step size for updating the upper level parameter s at the t-th step. Given αt, s can
be updated by the projected stochastic gradient descent below:

st ← PC
(
st−1 − ηtL

(
αt
)
∇s ln p(m

t−1 | st−1)
)
, (8)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

where the projection PC(s) from s to the domain C is summarized in Algorithm 2. Then, mt =
(mt

1, · · · ,mt
p) ∈ Rp follows from the Bernoulli distribution, where mt

i ∼ Bern (sti). Appendix E
states the theoretical validation of the closed-form solution in the projection computation (8).

Step 3: Updating Laplacian matrix Lt with mt:

Lt = Dt −W t, (9)

where the diagonal matrix Dt ∈ R(l+u)×(l+u) satisfies Dt
ii =

∑l+u
j=1 Wij , and Wij = exp{−∥xi ⊙

mt − xj ⊙mt∥22/µ2} with the bandwidth parameter µ > 0. The metric Wij evaluates the similarity
between samples xi and xj with the shared mask mt. Finally, we obtain the decision function in (4)
with coefficient α and mask m.

3 THEORETICAL ASSESSMENTS

For the proposed S2MAM, this section states its computing convergence and generalization analysis
for its basic model (2) in Section 2.1. All proofs are left in Appendices C&D.

3.1 COMPUTING CONVERGENCE ANALYSIS

Now we establish the theoretical guarantee of optimization convergence for the policy gradient
estimation in equation 8. The following assumption has been used widely for characterizing the
convergence behavior of projection operation algorithms (Pedregosa, 2016; Zhou et al., 2022) and
bilevel optimization with sample batch (Shu et al., 2023).

Assumption 1. Denote LB as the loss on selected sample batch B. Assume that Φ(s) is L-
smooth, constant σ > 0, there hold E[LB (α∗(m))∇s ln p(m | st) − ∇sΦ(s

t)] = 0, and
E ∥LB (α∗(m))∇s ln p(m | st)−∇sΦ(s

t)∥2 ≤ σ2.

Theorem 1. At the t-th iteration, let the step size ηt = c√
t
≤ 1

L for some constant c > 0, and denote
the gradient mapping Gt = 1

ηt (s
t − PC (s

t − ηt∇sΦ (st))). Under Assumption 1, there holds

min
1≤t≤T

E
∥∥Gt∥∥2 ≲ O

(
T− 1

2

)
.

Remark 4. Indeed, Zhou et al. (2022) demonstrates that the average gradient 1
T

∑T
t=1 E ∥Gt∥

2 of
the policy gradient estimation converges to a small constant as T →∞. With the help of refined step
size ηt = c√

t
, our results in Theorem 1 shows better convergence property w.r.t. T . The empirical

and theoretical analysis of algorithmic computation complexity is left in Appendix B.7 & E.5.

3.2 GENERALIZATION ERROR ANALYSIS

The expected risk of f : X → Y , w.r.t. Ez(f) in (2), is measured by

E(f) =
∫
X×Y

(f(x)− y)2dρ(x, y).

It is well known that

fρ =

∫
Y
ydρ(y|·)

is the minimizer of E(f) over all measurable functions, where ρ(y|x) denotes the conditional
distribution of y for given x. This work describes how fast fz defined in (2) approximates fρ as the
number of samples increases. As far as we know, this is the first theoretical endeavor to analyze the
generalization behavior of semi-supervised additive models.

Before presenting our results, we recall some necessary assumptions and definitions involved here,
which have been widely used in bounding the excess risk for supervised learning algorithms (Shi
et al., 2011; Shi, 2013; Christmann & Zhou, 2016; Wang et al., 2023; Deng et al., 2023) and SSL
models (Belkin et al., 2006; Liu & Chen, 2018; Chen et al., 2018).
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Assumption 2. (Christmann & Zhou (2016)) For any x ∈ X , there exists some M ≥ 0 such that
ρ(· | x) is almost everywhere supported on [−M,M ]. Assume fρ =

∑p
j=1 f

(j)
ρ with 0 < r ≤ 1

2 and

f
(j)
ρ = Lr

K(j)

(
g∗j
)

with some g∗j ∈ L2(ρ(X (j))) for any j ∈ {1, . . . , p}, where L2(ρ(X (j))) is the
square-integrable space on X (j) and Lr

K(j) is r-power of integral operator LK(j) : L2(ρ(X (j)))→
L2(ρ(X (j))) associated with kernel K(j).
Assumption 3. Each entry of similarity matrix W satisfies 0 ≤Wij ≤ w for positive constant w.
Assumption 4. Let Cv be a ν-times continuously differentiable function set. Assume that K(j) ∈
Cν
(
X (j) ×X (j)

)
, j ∈ {1, . . . , p}.

Define π(f)(x) = max{min{f(x),M},−M},∀f ∈ H. This truncated operator has been used
extensively for error analysis of learning algorithms, see e.g., (Steinwart et al., 2009; Shi et al., 2019).
Since E(π(f)) ≤ E(f) for any f ∈ H, here we state the upper bound of E (π (fz))− E (fρ) to get a
tighter generalization characterization for the manifold regularized additive model in (2).
Theorem 2. Let λ1 = (l+u)−∆, λ2 = λ1−r

1 for some ∆ > 0 and 0 < r ≤ 1/2. Under Assumptions
2-4, for any 0 < δ < 1/2, with confidence at least 1− 2δ, there holds

E (π (fz))− E (fρ) ≲ log(
δ

8
)O
(
l−Θ

)
,

where Θ = min{∆r, 2/(2 + ζ), r +∆(r − 1)} with ζ =


2

1+2v , v ∈ (0, 1]
2

1+v , v ∈ (1, 3/2]
1
v , v ∈ (3/2,∞)

.

Remark 5. Theorem 2 guarantees the learning rate O(l−1/4) as setting Λ=r=1/2 and v → ∞.
Besides the additional advantage of the interpretability of input variables, the basic model (2) of
S2MAM also achieves the polynomial decay rate of excess risk, which is comparable with SSL linear
models (Chen et al., 2018).

4 EXPERIMENTAL EVALUATIONS

This section validates the effectiveness of S2MAM on simulated and real-world data. All experiments
are implemented in Python. More results on images and sensitivity analysis are left in Appendix B.

4.1 BASELINES AND PARAMETER SELECTION

For the regression tasks, we compare the proposed S2MAM with sparse supervised models (Lasso
(Tibshirani, 1994) and SpAM (Ravikumar et al., 2009)), Deep Analytic Networks (DAN) (Dinh &
Ho, 2020), LapRLS (Belkin et al., 2006), co-training regressor (COREG) (Zhou & Li, 2005) and
deep SSL methods including the variational autoencoder (VAE) (Goodfellow et al., 2014) and the
semi-supervised deep kernel learning (SSDKL) (Jean et al., 2018). For simplicity, the squared loss
is selected as the loss function for SpAM and S2MAM. The supervised methods are trained with
merely labeled data. The mean squared error (MSE) and R-squared score with standard deviation
information are used as the performance criterion.

For classification, the competitors include ℓ1-SVM (Zhu et al., 2003a), SpAM (with logistic loss)
(Ravikumar et al., 2009), LapSVM (Belkin et al., 2006), f-FME (Qiu et al., 2018), AWSSL (Nie
et al., 2019), RGL (Kang et al., 2020), SALE (Nie et al., 2021), Correntropy-based Sparse Additive
Machine (CSAM) (Yuan et al., 2023), Tilted Sparse Additive Model (TSpAM) (Wang et al., 2023)
and semi-supervised neural processes (SSNP) (Wang et al., 2022a). S2MAM is equipped with the
logistic loss. The 1-nearest neighbor classifier with Euclidean distance is employed in f-FME and
AWSSL. Similarity measure Wij = exp{−∥xi − xj∥22/µ2} and accuracy criterion are exploited.

For fairness, the penalty coefficients λ1 and λ2 are tuned across [10−4, 10−3, 10−2, 10−1], which are
shared for all compared methods. Let τj = 1 for all j ∈ [1, 2, · · · , p] for additive baselines (Wang
et al., 2023). The bandwidth µ for similarity measure is selected within [10−4, 10−3, 10−2, 10−1, 1].
We repeat each experiment for 100 times and report the average accuracy as well as the standard
deviation under different data settings. The numbers of selected variables C and neighbors are shared
for all SSL baselines on different data. The parameters for the other methods were set according to
the corresponding references.
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Table 2: Average MSE ± standard deviation on synthetic regression data with different label percentages (r) and
noisy variable numbers (pn). The upper and lower tables show the results on Friedman data and additive data.

Model r = 5%, pn = 0 r = 5%, pn = 10 r = 10%, pn = 0 r = 10%, pn= 10

Unlabeled Test Unlabeled Test Unlabeled Test Unlabeled Test

Lasso - 15.579 ± 12.396 - 22.135 ± 14.442 - 8.684 ± 2.393 - 15.636 ± 7.785
SpAM - 14.791 ± 11.595 - 21.055 ± 13.744 - 8.201 ± 2.464 - 14.706 ± 7.577
DAN - 12.417 ± 7.947 - 23.350 ± 7.074 - 7.864 ± 2.017 - 17.392 ± 5.283

LapRLS 11.659 ± 5.024 11.678 ± 5.125 27.299 ± 8.549 27.588 ± 8.779 8.086 ± 2.000 8.103 ± 1.970 23.822 ± 4.498 23.918 ± 4.457
VAE 11.071 ± 7.011 11.499 ± 7.971 20.194 ± 9.477 20.860 ± 9.977 7.866 ± 3.752 7.950 ± 4.873 15.155 ± 4.950 15.809 ± 5.134

COREG 10.573 ± 6.855 10.730 ± 6.946 19.011 ± 7.644 19.644 ± 7.945 7.801 ± 3.011 7.820 ± 3.401 15.305 ± 4.117 15.914 ± 4.955
SSDKL 10.144 ± 6.917 10.744 ± 7.301 19.410 ± 7.809 19.655 ± 8.137 7.035 ± 7.155 7.195 ± 7.511 14.101 ± 4.055 14.731 ± 4.773

S2MAM (ours) 10.837 ± 4.355 11.350 ± 4.881 12.274 ± 5.101 12.941 ± 5.807 7.204 ± 2.591 7.430 ± 2.473 8.418 ± 3.140 8.701 ± 3.433
Lasso - 1.193 ± 0.437 - 2.706 ± 3.174 - 1.079 ± 0.304 - 2.102 ± 0.705
SpAM - 1.122 ± 0.422 - 2.597 ± 2.848 - 1.033 ± 0.301 - 1.955 ± 0.727
DAN - 1.217 ± 0.346 - 2.133 ± 1.294 - 1.014 ± 0.232 - 1.792 ± 0.538

LapRLS 1.025 ± 0.121 1.073 ± 0.182 3.571 ± 0.138 3.592 ± 0.171 0.986 ± 0.136 1.055 ± 0.181 3.101 ± 0.104 3.122 ± 0.166
VAE 1.117 ± 0.569 1.126 ± 0.590 1.433 ± 0.622 1.573 ± 0.662 0.991 ± 0.233 1.103 ± 0.247 1.341 ± 0.305 1.379 ± 0.337

COREG 0.959 ± 0.237 0.974 ± 0.295 1.137 ± 0.306 1.255 ± 0.411 0.937 ± 0.209 0.961 ± 0.104 1.059 ± 0.287 1.141 ± 0.388
SSDKL 0.992 ± 0.221 1.046 ± 0.269 1.312 ± 0.411 1.344 ± 0.462 0.959 ± 0.210 0.983 ± 0.233 1.247 ± 0.359 1.287 ± 0.394

S2MAM (ours) 0.982 ± 0.117 1.027 ± 0.162 1.093 ± 0.210 1.178 ± 0.281 0.944 ± 0.106 0.970 ± 0.146 0.979 ± 0.147 1.094 ± 0.240

Table 3: Average Accuracy ± standard deviation (%) on synthetic classification data with fixed label percentages
in each class (r = 5%), uninformative variable (pu) and noisy variable numbers (pn). Upper and lower tables
show the results of moon data and additive data.

Model r = 5%, pu = pn = 0 r = 5%, pu = 10, pn = 0 r = 5%, pu = 0, pn = 10 r = 5%, pu = pn = 10

Unlabeled Test Unlabeled Test Unlabeled Test Unlabeled Test

ℓ1-SVM - 83.917 ± 1.949 - 78.631 ± 6.737 - 60.183 ± 10.243 - 55.872 ± 8.377
SpAM - 84.122 ± 1.626 - 76.021 ± 5.434 - 62.307 ± 9.590 - 54.481 ± 7.808
CSAM - 85.309 ± 1.216 - 77.611 ± 4.790 - 65.698 ± 7.139 - 64.714 ± 7.211
TSpAM - 85.729 ± 1.436 - 79.183 ± 4.260 - 67.064 ± 6.833 - 65.592 ± 7.148
LapSVM 88.635± 3.307 86.395 ± 2.825 69.261 ± 6.064 69.670 ± 5.941 50.083 ± 4.989 51.011 ± 5.001 49.026 ± 1.150 50.000 ± 0.000

f-FME 89.201± 1.955 87.370 ± 2.070 71.631 ± 5.255 72.314 ± 5.061 53.083 ± 5.109 54.171 ± 5.411 51.026 ± 6.598 51.231 ± 6.919
AWSSL 93.171± 1.801 92.395 ± 1.977 87.549 ± 2.701 87.106 ± 2.844 79.810 ± 3.577 79.901 ± 3.650 77.301 ± 3.944 77.368 ± 4.050

RGL 91.127 ± 2.497 90.804 ± 2.781 88.311 ± 3.030 87.914 ± 3.152 81.706 ± 3.951 81.254 ± 4.077 79.176 ± 4.511 78.679 ± 4.989
SALE 91.104 ± 2.060 90.799 ± 2.135 88.915 ± 2.944 88.193 ± 3.029 82.791 ± 3.464 82.199 ± 3.891 80.988 ± 5.066 80.489 ± 5.066
SSNP 92.720 ± 2.184 92.437 ± 2.237 88.642 ± 2.847 88.306 ± 3.195 81.244 ± 4.230 80.859 ± 4.406 79.287 ± 5.026 79.310 ± 5.211

S2MAM (ours) 91.195± 1.919 91.877 ± 2.207 89.704 ± 2.414 88.255 ± 2.873 83.013 ± 4.097 83.454 ± 4.388 81.636 ± 4.240 81.950 ± 4.713
ℓ1-SVM - 83.914 ± 6.410 - 62.713 ± 6.098 - 62.261 ± 6.550 - 54.791 ± 6.951
SpAM - 84.150 ± 6.104 - 65.091 ± 5.917 - 64.814 ± 6.039 - 54.413 ± 6.295
CSAM - 86.597 ± 5.424 - 69.717 ± 5.101 - 65.178 ± 5.255 - 61.980 ± 5.701
TSpAM - 86.993 ± 5.340 - 71.044 ± 5.079 - 67.340 ± 4.959 - 63.145 ± 5.130
LapSVM 88.814 ± 5.398 88.850 ± 5.269 59.992 ± 5.259 60.325 ± 5.184 55.630 ± 8.213 55.957 ± 8.292 55.137 ± 8.414 55.203 ± 8.496

f-FME 89.141 ± 3.172 89.305 ± 3.359 64.495 ± 4.033 64.611 ± 4.208 59.671 ± 6.473 59.801 ± 6.655 59.311 ± 6.602 59.407 ± 6.659
AWSSL 91.259 ± 2.871 90.211 ± 3.077 83.691 ± 3.423 83.950 ± 3.519 73.701 ± 4.105 73.859 ± 4.322 72.255 ± 4.211 72.370 ± 4.428

RGL 90.422 ± 2.909 90.026 ± 3.477 84.065 ± 4.501 84.879 ± 4.711 77.726 ± 4.591 78.041 ± 4.510 75.155 ± 4.965 75.413 ± 4.708
SALE 89.717 ± 2.811 90.149 ± 2.665 85.742 ± 4.132 85.971 ± 4.018 79.071 ± 4.709 79.844 ± 4.277 77.201 ± 4.697 77.891 ± 4.431
SSNP 90.492 ± 3.059 89.871 ± 3.218 86.130 ± 3.922 85.908 ± 4.105 78.250 ± 4.294 78.062 ± 4.133 77.462 ± 4.412 77.601 ± 5.513

S2MAM (ours) 89.979 ± 3.255 90.309 ± 3.409 85.517 ± 3.481 86.015 ± 3.575 81.702 ± 3.897 81.855 ±4.055 80.012 ± 4.177 80.112 ± 4.370

4.2 EXPERIMENTS ON SYNTHETIC DATA

Semi-supervised Regression: The Friedman dataset (Friedman, 1991) owns p∗ = 5 informative
variables, and is generated by y = 10 sin(πx(1)x(2)) + 20(x(3) − 0.5)2 +10x(4) +5x(5) + ϵ, where
each x(j) ∼ U(0, 1) and ϵ ∼ N (0, 1).

The additive data (Ravikumar et al., 2009; Chen et al., 2020; Wang et al., 2023) is generated from y =∑8
j=1 f

(j)(x(j)) + ϵ, where f (1)(u) = −2 sin(2u), f (2)(u) = 8u2, f (3)(u) = 7 sinu
2−sinu , f

(4)(u) =

6e−u, f (5)(u) = u3+ 3
2 (u−1)

2, f (6)(u) = 5u, f (7)(u) = 10 sin(e−u/2), f (8)(u) = −10ϕ̃(u, 1
2 ,

4
5 ).

Here ϕ̃ stands for the normal cumulative distribution with mean of 1
2 and the standard deviation of 4

5 .
We generate n = 200 samples with p∗ = 8 (p∗ = 5) informative variables and pu = 92 (pu = 95)
uninformative variables following N (0, 1) for the additive data (the Friedman data). To illustrate the
impact of noisy variables, additional pn = 10 variables are designed as noisy variables following
N (100, 100) for simplicity. The whole dataset is then equally split into training and testing sets,
where merely 10% or 20% samples still keep their labels in the training set.

As shown in Table 2, S2MAM enjoys competitive or even the best performance over the baselines.
Under clean scenarios without corruption, some deep SSL baselines may perform slightly better,
which is understandable due to their strong approximation ability and reliance on high-quality training
data. Especially under the variable corruptions, our model owns the smallest MSE as well as standard
deviation, which implies S2MAM can identify most of the truly active variables by assigning the right
mask. As validation in Appendix B.5, these supervised baselines require larger labeled counterparts.
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Table 4: Average R-squared score ± standard deviation on UCI data ("Buzz-Regression", "Boston House",
"Ozone" and "SkillCraft") with 10% labeled training samples and 10 noisy variables for regression.

Model Buzz-Regression Boston House Ozone SkillCraft

Unlabeled Test Unlabeled Test Unlabeled Test Unlabeled Test

Lasso - 0.773 ± 0.433 - 0.526 ± 0.571 - -1.025 ± 3.630 - 0.515 ± 0.149
SpAM - 0.747 ± 0.542 - 0.530 ± 0.672 - 0.324 ± 3.395 - 0.522 ± 0.191
DAN - 0.781 ± 0.370 - 0.516 ± 0.503 - 0.511 ± 1.926 - 0.519 ± 0.134

LapRLS 0.711 ± 0.377 0.702 ± 0.392 0.522 ± 0.193 0.510 ± 0.217 0.574 ± 0.278 0.563 ± 0.304 0.504 ± 0.127 0.498 ± 0.132
VAE 0.742 ± 2.871 0.736 ± 2.951 0.546 ± 3.720 0.541 ± 2.807 0.591 ± 2.041 0.584 ± 2.259 0.529 ± 0.511 0.522 ± 0.519

COREG 0.771 ± 2.142 0.761 ± 2.216 0.565 ± 1.836 0.561 ± 1.862 0.595 ± 1.320 0.589 ± 1.452 0.538 ± 0.431 0.530 ± 0.438
SSDKL 0.764 ± 3.104 0.749 ± 3.277 0.537 ± 2.541 0.522 ± 2.679 0.602 ± 1.655 0.590 ± 1.712 0.546 ± 0.831 0.541 ± 0.840

S2MAM (ours) 0.812 ± 1.255 0.804 ± 1.278 0.621 ± 0.866 0.610 ± 0.879 0.644 ± 0.386 0.631 ± 0.397 0.558 ± 0.265 0.551 ± 0.271

Table 5: Average Accuracy ± standard deviation (%) on UCI data ("Buzz-Classification", "Breast Cancer",
"Phishing Websites" and "Statlog Heart") with 10% labeled samples and 10 noisy variables for classification.

Model Buzz-Classification Breast Cancer Phishing Websites Statlog Heart

Unlabeled Test Unlabeled Test Unlabeled Test Unlabeled Test

ℓ-1 SVM - 72.882 ± 9.734 - 74.994 ± 8.531 - 55.918 ± 5.575 - 67.251 ± 9.143
SpAM - 75.068 ± 7.455 - 79.943 ± 6.824 - 57.701 ± 5.311 - 69.989 ± 9.744
CSAM - 77.213 ± 5.622 - 81.408 ± 5.134 - 60.097 ± 4.201 - 73.319 ± 8.202
TSpAM - 79.225 ± 5.412 - 82.260 ± 5.042 - 60.471 ± 4.030 - 74.471 ± 7.207
LapSVM 70.864 ± 12.250 70.214 ± 12.738 61.553 ± 9.502 61.114 ± 9.810 51.700 ± 5.306 51.342 ± 5.395 58.025 ± 5.427 57.984 ± 5.470

f-FME 82.759 ± 5.692 82.302 ± 5.741 75.261 ± 6.740 75.204 ± 6.862 76.623 ± 3.695 76.594 ± 3.710 74.998 ± 4.217 74.903 ± 4.236
AWSSL 89.672 ± 5.310 89.155 ± 5.412 77.197 ± 6.025 77.120 ± 6.136 78.025 ± 4.257 77.989 ± 4.303 76.622 ± 4.773 76.595 ± 4.914

RGL 90.219 ± 4.916 90.020 ± 5.173 86.302 ± 5.894 86.044 ± 6.013 78.103 ± 4.271 78.011 ± 4.630 78.230 ± 4.206 78.088 ± 4.317
SALE 91.064 ± 4.617 90.671 ± 4.832 86.252 ± 4.904 86.030 ± 5.088 80.130 ± 3.977 79.878 ± 4.121 77.971 ± 4.062 77.807 ± 4.217
SSNP 90.040 ± 4.107 89.312 ± 4.383 84.195 ± 5.251 82.836 ± 5.301 80.672 ± 3.472 80.183 ± 3.711 76.595 ± 5.650 75.722 ± 4.315

S2MAM (ours) 92.618 ± 4.377 92.431 ± 4.526 88.053 ± 4.935 87.995 ± 4.947 81.992 ± 2.514 81.894 ± 2.527 79.498 ± 4.119 79.277 ± 4.171

Semi-supervised Classification: Following the experimental design in (Chen et al., 2020; Wang et al.,
2023), we consider the additive discriminant function f∗(xi) = (x

(1)
i −0.5)2+(x

(2)
i −0.5)2−0.08,

where x
(j)
i = (Wij + Ui)/2. Wij and Ui are independently from U(0, 1) for i = 1, · · · , 200,

j = 1, · · · , 100. The label satisfies yi = 0 when f(xi) ≤ 0 and 1 otherwise.

To evaluate the robustness of S2MAM, pn irrelevant variables are designed as noisy variables
following N (100, 100). After equally dividing the whole data into the training and testing sets, 5%
or 10% samples for each class from the training set are randomly selected as the labeled set. As
shown in Table 3, our method often enjoys better performance than the other baselines, especially in
the case with noisy variables.

4.3 EXPERIMENTS ON REAL-WORLD DATA

This subsection states the empirical evaluations of S2MAM on eight real-world datasets from UCI
repository (Asuncion & Newman, 2007), which have been widely used in recent SSL works (Jean
et al., 2018; Nie et al., 2019). Tables 4 for regression demonstrates that S2MAM enjoys competitive
performance and even stronger robustness against variable corruptions compared to the other baselines,
e.g., average 0.088 higher R-squared score on corrupted Boston House. Even with corrupted training
data in Table 5 for classification, S2MAM still owns better prediction accuracy and stronger stability
with the smallest variance than those supervised or semi-supervised competitors.

We state the detailed descriptions of employed data and competitors, ablation and sensitivity analysis,
and empirical results on other empirical settings in Appendixes B.1-B.4, due to the space limitation.
Interpretability visualization results and high-dimensional applications (e.g., images) with time cost
analysis are present in Appendixes B.6 & B.7, respectively.

5 CONCLUSION

This paper proposes a semi-supervised meta additive model, called S2MAM, to improve the robustness
and interpretability of manifold regularization (Belkin et al., 2006) under the redundant and noisy
input variable settings. Compared with the existing SSL with manifold regularization (Belkin et al.,
2006; Nie et al., 2019), the proposed approach is capable of realizing variable selection, interpretable
and robust estimation simultaneously. Theoretical and empirical evaluations verify its superiority
over some state-of-the-art learning models.
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Appendix

A NOTATIONS

Some used notations are summarized in Table 6.

Table 6: Notations

Notations Descriptions

p the dimension of the input
X ,Y the input space X = {X (1), · · · ,X (p)} ∈ Rp and the output space Y ⊂ R, respectively
ρ the jointed distribution on X × Y
ρX the marginal distribution with respect to X induced by ρ
l/u the number of labeled / unlabeled samples
xi; yi input xi = (x

(1)
i , · · · , x(p)

i )T ∈ Rp with x
(j)
i ∈ X (j); output yi ∈ Y

zl; zu the labeled dataset zl = {(xi, yi)}li=1; the unlabeled dataset zu = {xi}l+u
i=l+1

H the hypothesis spaceH =
{
f =

∑p
j=1 f

(j) : f (j) ∈ HK(j) , 1 ≤ j ≤ p
}

HK(j) the RKHS associated with Mercer kernel K(j) defined on X (j) ×X (j), j ∈ {1, . . . , p}
LK(j) integral operator LK(j) : L2(ρ(X (j)))→ L2(ρ(X (j))) based on the square-integrable space L2

Lr
K(j) the r-power of LK(j) associated with feature X (j) and kernel K(j)

f(·) the prediction function of supervised additive models in RKHS where
f(·) =

∑p
j=1

∑l
i=1 α

(j)
i K

(j)
i (x

(j)
i , ·)

f∗ the ground truth function
f the prediction vector f = (f(x1), . . . , f(xl+u))

T , associated with zl and zu
fz the empirical decision function of manifold regularized additive model
τj the weight of j-th variable
α the coefficient of the lower level additive model
W the similarity matrix for SSL tasks

D ; L the diagonal matrix Dii =
∑l+u

j=1 Wij ; the graph Laplacian L = D −W
m the variable mask vector m ∈ {0, 1}p
s the vector s = (s1, · · · , sp) where si stands for the probability of mi = 1

B DESCRIPTIONS FOR BENCHMARKS AND BASELINES & ADDITIONAL
EXPERIMENTAL RESULTS

In this paper, 4 synthetic data and 9 real-world data are selected in our experiments. Indeed, these
datasets have been widely used for validating additive models (Ravikumar et al., 2009; Lahiri et al.,
2016; Chen et al., 2020; Wang et al., 2023) or semi-supervised learning models (Jean et al., 2018;
Qiu et al., 2018; Nie et al., 2019; 2021; Bao et al., 2024). We briefly summarize these used datasets
and some learning methods for baselines as follows.

B.1 DATA DESCRIPTION

Denote N and p (p = p∗ + pu + pn) as the total number of samples and the dimensions in each
individual dataset, where the training set involves l labeled data and u unlabeled data, and the
remained samples are left for testing. We generate pu uninformative variables and pn noisy variables,
which are added into the truly informative variables p∗ from all samples within the dataset (including
the training and testing sets).

The datasets used in this paper include:

• Friedman data for regression. The corresponding generation function is provided in the
experiment section, which involves 200 samples, p∗ = 5 true informative features, and

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

pu = 95 uninformative features. And pn = 10 noisy features are also considered to better
highlight the robustness. Denote ϵ as the Gaussian noise N (0, 1), the output y is generated
by

f(X) = 10 sin
(
πX(1)X(2)

)
+ 20

(
X(3) − 0.5

)2
+ 10X(4) + 5X(5) + ϵ.

• Synthetic additive data for regression. It involves N = 200 samples, p∗ = 8 true informative
features, and pu = 92 uninformative features. We also consider adding pn = 10 noisy
features following N (100, 100) into the whole dataset,

Y = f∗(X) + ϵ =

8∑
j=1

f (j)(X(j)) + ϵ, (10)

where f (1)(u) = −2 sin(2u), f (2)(u) = 8u2, f (3)(u) = 7 sinu
2−sinu , f (4)(u) =

6e−u, f (5)(u) = u3 + 3
2 (u − 1)2, f (6)(u) = 5u, f (7)(u) =

10 sin(e−u/2), f (8)(u) = −10ϕ̃(u, 1
2 ,

4
5

2
). Notably, in order to validate the addi-

tive models on testing sets, the Gram matrices or new splined features for testing sets are
required to be generated.

• Synthetic additive data for classification. It involves N = 200 samples, p∗ = 2 informative
features, pu = 98 uninformative redundant features following N (0, 1) and pn = 10 noisy
features following N (100, 100), and the output

f∗(xi) = (x
(1)
i − 0.5)2 + (x

(2)
i − 0.5)2 − 0.08,

where x(j)
i = (Wij+Ui)/2. Wij and Ui are independently from U(0, 1) for i = 1, · · · , 200,

j = 1, · · · , 100. The label satisfies yi = 0 when f(xi) ≤ 0 and 1 otherwise. This synthetic
data for classification has been widely used in some existing research for evaluating the
performance of additive models (Chen et al., 2020; Wang et al., 2023)

• Synthetic Moon data for classification. It involves two classes with totally 200 samples,
p∗ = 2 informative features, pu = uninformative redundant features, and pn = additional
noisy features. This data has been widely used for estimating the model’s capability for
correctly identifying different categories (Qiu et al., 2018; Nie et al., 2019; 2021).

• Four datasets from the UCI repository for regression.
1) Buzz prediction on Twitter dataset for regression. It involves totally 38393 samples,
p∗ = 77 original features, and additional pn = 10 noisy features. This dataset helps to
predict the mean number of active discussions.
2) Boston Housing Price dataset for regression. It involves merely 506 samples, p∗ = 13
original features, and additional pn = 10 noisy features. This dataset has been widely used
for estimating the performance of regression models.
3) Ozone Level Detection dataset for regression. It includes N = 2536 instances with
p∗ = 73 attributes, which aims to forecast the ground ozone pollution using the given
features. We also add pn = 10 noisy features into the original dataset.
4) SkillCraft Master dataset for regression. The dataset is made of N = 3395 observations
and p∗ = 19 input variables. And pn = 10 noisy features are further added to the original
dataset.

• Four datasets from the UCI repository for classification.
1) Predicting Buzz Magnitude in Social Media dataset for classification. It involves N =
38393 instances with p∗ = 77 original features. We further add pn = 10 noisy features into
the original datasets for comparing the robustness of these baselines.
2) Breast Cancer Wisconsin dataset for classification. There are 569 instances and p∗ = 29
original input features. pn = 10 noisy features following N (100, 100) are further added
into the original dataset.
3) Phishing Websites dataset for classification. It contains 31 columns, with 30 features and
1 target. The dataset has 2456 observations.
4) Statlog (Heart) dataset for classification. It involves N = 270 instances with p∗ = 13
input features. Noisy features are further added for comparison.
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• The image data from the COIL20 image library, which originally contains 20 objects,
for classification. For simplicity, the 12th and 13th digits are selected, where there are
N = 72 instances for each digit and p∗ = 16384 original features (gray images with the
size of 128*128). This dataset has been used for evaluating the prediction performance of
semi-supervised learning models on feature reduction (Nie et al., 2019; 2021).

Above real-world datasets have undergone preliminary data cleaning, where those entries with empty
values are filled with mean values, or even removed when major features are missing (ratio of missing
features ≥ 20%).

B.2 BASELINES & PARAMETER SETTINGS

B.2.1 REGRESSION TASKS

The baselines for regression tasks include:

• Lasso (Tibshirani, 1994), is a type of supervised linear regression model that is used for
variable selection with sparsity-induced regularization. The regularization parameter λ is
tuned across [10−4, 10−3, 10−2, 10−1, 1].

• SpAM (Ravikumar et al., 2009), is an additive supervised nonparametric model for high-
dimensional nonparametric regression and classification tasks. The regularization parameter
λ is tuned across [10−4, 10−3, 10−2, 10−1, 1].

• DAN (Dinh & Ho, 2020) is designed to identify a subset of relevant features in deep
learning models. The core technology involves the use of the adaptive group Lasso selection
procedure with group Lasso as the base estimator, which is proven to be selection-consistent
for a wide class of networks.

• LapRLS (Belkin et al., 2006), learns a semi-supervised linear model using the labeled
data by minimizing a regularized least squares objective function. The regularization term
incorporates the graph Laplacian matrix, which captures the smoothness assumption that
similar points should have similar labels. The regularization parameters λ1 and λ2 are both
tuned across [10−4, 10−3, 10−2, 10−1, 1].

• Variational autoencoder (VAE) (Goodfellow et al., 2014), is designed as a semi-supervised
generative model by first learning an unsupervised embedding of the data and then using the
embeddings as input to a supervised multilayer perceptron.

• Co-training regressor (COREG) (Zhou & Li, 2005), is a co-training algorithm for regression
tasks that uses two k-NN regressors with different distance metrics. During the training
process, each regressor generates labels for each other.

• Semi-supervised deep kernel learning (SSDKL) (Jean et al., 2018), is a semi-supervised
regression model based on minimizing predictive variance in the posterior regularization
framework. It combines the hierarchical learning of networks with the probabilistic modeling
capabilities of Gaussian processes.

For fairness, a network with a [d− 100− 50− 50− 2] structure is employed here for the downstream
regression task. Following (Jean et al., 2018), the same base network is shared for all deep semi-
supervised models including VAE and SSDKL. The learning rates for neural network and Gaussian
process are 10−3 and 10−1, respectively. The training process of VAE, COREG, and SSDKL follows
the settings in (Jean et al., 2018). Besides, the bandwidth µ for the Gaussian similarity function
(Wij = exp{−∥xi−xj∥22/µ2}) is also tuned across [10−4, 10−3, 10−2, 10−1, 1] for all SSL methods
for computing the similarity and Laplacian matrices. Notice that the similarity matrix for S2MAM is
calculated by Wij = exp{−∥xi⊙m−xj⊙m∥22/µ2} with learned mask m, i, j ∈ {1, 2, · · · , l+u}.
In practice, the proportion of labeled points in a single batch is consistent with the settings in the
whole training set to avoid empty labeled sets or inconsistency among each batch.

B.2.2 CLASSIFICATION TASKS

The baselines for classification tasks include:
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• ℓ1-SVM (Zhu et al., 2003a), is a supervised classification model with ℓ1 sparse regu-
larization based on the classical SVM. The regularization parameter λ is tuned across
[10−4, 10−3, 10−2, 10−1, 1].

• SpAM (induced by logistic loss) (Ravikumar et al., 2009), is equipped with logistic loss
for classification, which has been introduced above. Its regularization parameter λ is tuned
across [10−4, 10−3, 10−2, 10−1, 1].

• LapSVM (Belkin et al., 2006), utilizes the concept of graph Laplacian, which captures the
underlying manifold structure of the data. The objective of LapSVM is to find a decision
boundary that not only separates the labeled data accurately but also respects the smoothness
assumption captured by the graph Laplacian. The regularization parameters λ1 and λ2 are
both tuned across [10−4, 10−3, 10−2, 10−1, 1]

• f-FME (Qiu et al., 2018), is an improved version of classical flexible manifold embedding
(FME) by employing additional anchor graphs to reduce the time cost and computation
burden of FME.

• AWSSL (Nie et al., 2019), is a semi-supervised learning model which constructs an adaptive
graph for propagating label information and using special strategies for ranking the impor-
tance of variables. An auto-weighting matrix is learned to select informative variables from
both labeled and unlabeled data.

• RGL (Kang et al., 2020) constructs a graph from the pristine data derived from restored
technology, subsequently utilizing this resilient graph to improve the performance of semi-
supervised classification tasks.

• SALE (Nie et al., 2021) merges the processes of adaptive graph formation and label dissem-
ination into a singular optimization framework, simultaneously developing an automatic
weighting matrix that discerns and emphasizes significant variables across the entire dataset.

• CSAM (Yuan et al., 2023) exploits the robust error metric based on statistical correntropy
measure, which forms a robust additive model for classification with noisy labels.

• TSpAM (Wang et al., 2023) builds a robust additive model with the tilted empirical risk. It’s
capable of robust estimation and imbalanced classification. Notably, an efficient random
Fourier features approach is used to accelerate the kernel-based computation.

• SSNP (Wang et al., 2022a) integrates neural processes with semi-supervised learning for
image classification tasks. The innovation lies in adapting NPs, a probabilistic model that
approximates Gaussian Processes, to the SSL framework. The CNN structure is slightly
modified to satisfy 1D value-based inputs.

For simplicity, the parameter τj = 1 for all j ∈ {1, 2, · · · , p}. The regularization parameters for
regularized models are all tuned across [10−4, 10−3, 10−2, 10−1, 1]. As introduced in (Qiu et al.,
2018; Nie et al., 2021; Bao et al., 2024), the 1-nearest neighbor (1NN) classifier with Euclidean
distance is suggested to evaluate classification accuracy after dimension reduction. The number of
selected variables C is shared for S2MAM and those baselines for dimension reduction.

Inspired by (Qiu et al., 2018; Nie et al., 2021), the PCA method is used to preserve 95% of the
information for each dataset. To avoid singular solutions or unfair comparisons, each experiment has
been repeated 20 times and the similarity (weight) graph is constructed following (Nie et al., 2019;
2021; Bao et al., 2024) for those baselines with Laplacian matrix. Each dataset is divided into training
and testing sets with a ratio of 1 : 1. Then we select l samples from each class as the labeled set, and
the left training samples are considered the unlabeled set. The optimal parameters are selected by
the leave-one-out cross-validation, due to the rarity of labeled samples. The parameters for the other
methods were set according to their corresponding references (Jean et al., 2018).

B.3 ABLATION ANALYSIS

To better show the effects of the manifold regularization term, the probabilistic bilevel optimization
method, and the additive modeling strategy, we first illustrate the relationship between the three
models in Figure 2:

• Manifold Regularized Sparse Additive Model in Section 2.1,
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Masking Continuing

Model 1
Manifold Regularized Sparse 
Additive Model in Eq.(1)(2)

Model 2
Discrete S2MAM in Eq.(3)(4)

Model 3
Probabilistic S2MAM in Eq.(6)

Sensitive to noisy features NP hard optimization

Assign maskUpdate model

Directly update discrete mask        Update continuous probability

Robustness & Optimization efficiency

Assign maskUpdate model

Figure 2: Connections among three models introduced in Section 2.

• Discrete Bilevel Framework for S2MAM in Section 2.2,
• Probabilistic Bilevel Framework for S2MAM in Section 2.3.

We’ve further conducted extended ablation experiments by:

• removing the manifold regularization term (fTLf ), named Supervised Meta Additive Model
(SMAM);

• removing the upper-level problem (bilevel optimization), called Semi-supervised Additive
Model (S2AM);

• removing the additive strategy, named Semi-supervised Meta-based Model (S2MM).

The experiments on the synthetic Friedman data are shown below:

Table 7: Extended ablation experiments by 1) removing the manifold regularization term; 2) removing the
upper-level problem (bilevel optimization); 3) removing the additive strategy.

Models r = 10% and pn = 0 r = 10% and pn = 10
1) SMAM 8.319±2.740 10.291±3.511
2) S2AM 8.041±1.862 21.328±4.108
3) S2MM 7.861±2.611 8.913±3.811
S2MAM 7.820±2.473 8.701±3.433

From the results in the above table, one can see that 1) SMAM has the worst performance with
few labeled samples and even noisy variables. 2) Without feature corruptions, SSAM has similar
performance to S2MAM. Otherwise, SSAM breaks down. 3) Both SSMM and S2MAM are robust to
feature corruptions. And S2MAM performs slightly better than SSMM.

It implies that 1) the manifold regularization helps to use the unlabeled samples to learn better
prediction functions; 2) the employed bilevel scheme for automatically assigning variable masks is
vital to deal with noisy variables; 3) the additive strategy can improve the non-linear approximation
ability. And SSMM fails to illustrate the prediction curve of each input variable, since the additive
model is important for improving interpretability.

Remark 6. The above results also suggested that, after filtering out effective features using S2MAM,
the extracted data can be applied to downstream tasks under an adaptive bandwidth strategy, which
can adapt to complex data distributions like imbalanced categories.

B.4 EMPIRICAL VALIDATION ON SENSITIVITY & CONVERGENCE

B.4.1 IMPACT OF THE NUMBER OF LABELED SAMPLES

Based on the synthetic additive regression data, we first give the sensitivity analysis for the proposed
S2MAM on the size of the training set n involving l labeled samples and u unlabeled ones.

As shown in Figures 3, we find that larger size of labeled training data helps to improve the perfor-
mance of semi-supervised model, which is consistent with our theoretical findings on the generaliza-
tion error bounds, as well as some existing conclusions of statistical learning theory for supervised
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Figure 3: Average prediction MSE with standard deviation with different numbers of labeled samples. (a),
(b) and (c) represent the results of the unlabeled training set, labeled training set as well as the testing set,
respectively.
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Figure 4: Average prediction MSE with different settings of λ1. (a), (b) and (c) represent the results of the
unlabeled training set, labeled training set as well as the testing set, respectively.
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Figure 5: Average prediction MSE with different settings of λ2. (a), (b) and (c) represent the results of the
unlabeled training set, labeled training set as well as the testing set, respectively.

learning (Christmann & Zhou, 2016; Chen et al., 2020) and semi-supervised learning (Liu & Chen,
2018).

B.4.2 IMPACT OF REGULARIZATION COEFFICIENTS AND GAUSSIAN KERNEL BANDWIDTH

Here we focus on the impact of regularization coefficients λ1, λ2 as well as the Gaussian kernel
bandwidth on the prediction performance.
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Figure 6: Average prediction MSE with different settings of Gaussian kernel bandwidth for computing similarity
matrix. (a), (b) and (c) represent the results of the unlabeled training set, labeled training set as well as the testing
set, respectively.

Initially, we set λ1 = λ2 = 10−3 as default. By changing merely a single parameter and fixing the
left one, we draw the sensitive curves in Figures 4, 5, and 6. From practical experiments, we find
that too large λ1 may introduce too much sparsity, where truly informative variables could also be
assigned with quite small weights. And λ2 directly determines the bias degree of the model towards
unlabeled samples. And the kernel bandwidth controls the similarity matrix, where too small or too
large ones can hinder the presentation of similarity between labeled and unlabeled samples. Properly
selected parameters guide the model to better investigate information from unlabeled data.

B.4.3 IMPACT OF SELECTED CORE SIZE C

Now we start to analyze the sensitivity of core size C on the performance. Following similar settings
as in the last subsection, the sensitive curves on varying C with the Friedman regression data and
synthetic additive regression data are plotted in Figure 7. The labeled rate is 5% in the training set.
The average MSE and standard deviation after 20 repeated experiments are reported.
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Figure 7: Average prediction MSE with different settings of parameter C. The left and right panels present the
results on Friedman data (with 5/95/10 informative/redundant/noisy features) and synthetic additive regression
data (with 8/92/10 informative/redundant/noisy features), respectively.

The empirical results show that, the size of core variables C is also a crucial parameter of S2MAM to
assign proper masks on informative variables. In some high-dimensional real-world data without
prior knowledge of truly useful variables, the binary (half-interval) searching method is suggested for
setting C. Moreover, developing another level of problem to automatically search the proper C is
also an interesting and meaningful direction, while the computation cost might be also increasing.
Empirically, the coreset size C for useful variables could be set slightly larger than ground truth due
to the sparsity constraint with ℓ-1 regularization. Besides, too large C may introduce more useless
variables or even noisy variables, which could degrade the prediction performance.
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When it comes to determining the value of C within the confines of the constraint set Cs, which is
defined by:

Cs = {s : 0 ⪯ si ⪯ 1, ∥s∥1 ≤ C, i = 1, 2, · · · , p} ,

we take the overall dimension d as the starting point, setting C equal to d. To streamline the process,
in the initial stage, we identify the most suitable value for C, denoted as Ĉ, by examining a sequence
that starts at d and decreases by factors of two down to 1, i.e., [d, d/2, d/4, . . . , 2, 1]. Fortunately, our
practical tests have shown that S2MAM is capable of pinpointing the correct dimensions with high
accuracy right from the outset, thereby significantly easing the burden of manually identifying key
features.

B.4.4 CONVERGENCE OF UPPER LEVEL PROBLEM

Then we analyze the convergence performance of the mask learner in the upper level by drawing the
curve of the upper-level objective function value with respect to the iteration t in Figure 8.
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Figure 8: Convergence curve of the upper level problem of S2MAM.

The synthetic additive regression data with noisy feature corruptions is used here. With less than
100 iterations, our method almost realizes convergence. However, compared to some existing SSL
methods, the proposed S2MAM may introduce more computation and space complexity due to the
additional computation on the masks.

B.5 ADDITIONAL SEMI-SUPERVISED REGRESSION & CLASSIFICATION ON UCI DATASET

Here we further present the additional empirical results of some baselines and S2MAM on SSL
learning problems. Following similar strategies for hyperparameter selection, we conduct more
experiments on these eight UCI datasets by assigning a few data with true labels as well as some
samples without labels, and regarding the remaining points as testing sets. To better highlight the
robustness of S2MAM against noisy variables, the original input X is corrupted by 10 noisy variables
following N (100, 100).

Tables 8 and 9 illustrate the experimental results on UCI data sets by changing the number of labeled
training samples l, unlabeled training samples u, and noisy variables pn. Due to the fact that the data
sizes of different classes could be different, we fixed the size of training samples and merely changed
the labeled data size. The remaining samples are the unlabeled data sets. Because some datasets are
extremely large, we repeat each method 100 times on each dataset, and list the average results as well
as the standard deviation information.

Besides, one can see that these algorithms almost perform better with the increasing number of
labeled samples. Instead of the MSE and accuracy results, we further consider the R-squared score as
the criterion to measure the performance of these methods on complex real-world data (involving a
few labeled samples and unknown noises). Moreover, our proposed S2MAM enjoys competitive or
even better performance than these supervised or semi-supervised baselines, especially when the data
is additionally corrupted by noisy variables.
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Table 8: Average R-squared score ± standard deviation on UCI data. The four tables from top to bottom
represent the regression results under settings of {l = 50/20/10/50, u = 450/180/40/450, pn = 0}, {l =
50/20/10/50, u = 450/180/40/450, pn = 10}, {l = 100/40/20/100, u = 400/160/30/400, pn = 0}
and {l = 100/40/20/100, u = 400/160/30/400, pn = 10}, respectively.

Model Buzz-Regression Boston House Ozone SkillCraft

Unlabeled Test Unlabeled Test Unlabeled Test Unlabeled Test

Lasso - -0.146 ± 12.345 - 0.045 ± 3.135 - 0.324 ± 0.822 - 0.467 ± 0.220
SpAM - 0.559 ± 1.969 - 0.322 ± 3.693 - 0.340 ± 0.278 - 0.504 ± 0.173

LapRLS 0.631 ± 0.236 0.632 ± 0.240 0.513 ± 0.196 0.482 ± 0.219 0.557 ± 0.178 0.550 ± 0.192 0.509 ± 0.125 0.506 ± 0.141
VAE 0.659 ± 2.406 0.641 ± 2.711 0.525 ± 1.213 0.519 ± 1.301 0.562 ± 1.043 0.557 ± 1.260 0.512 ± 0.460 0.504 ± 0.475

COREG 0.691 ± 1.733 0.684 ± 1.851 0.565 ± 0.981 0.557 ± 1.020 0.573 ± 0.958 0.566 ± 1.030 0.540 ± 0.376 0.532 ± 0.386
SSDKL 0.717 ± 2.307 0.709 ± 2.434 0.534 ± 2.107 0.527 ± 2.195 0.569 ± 1.424 0.562 ± 1.472 0.524 ± 0.560 0.512 ± 0.581

S2MAM (ours) 0.712 ± 1.055 0.704 ± 1.240 0.563 ± 0.737 0.559 ± 0.802 0.568 ± 0.194 0.563 ± 0.207 0.542 ± 0.217 0.535 ± 0.240
Lasso - -3.364 ± 137.251 - -0.358 ± 3.329 - -0.719 ± 4.627 - 0.322 ± 0.564
SpAM - 0.364 ± 2.596 - -0.023 ± 0.370 - -0.028 ± 0.078 - 0.375 ± 0.438

LapRLS 0.581 ± 0.244 0.574 ± 0.251 0.473 ± 0.223 0.461 ± 0.247 0.362 ± 0.347 0.357 ± 0.378 0.485 ± 0.138 0.477 ± 0.146
VAE 0.573 ± 3.107 0.566 ± 3.211 0.492 ± 4.683 0.487 ± 4.820 0.485 ± 2.177 0.463 ± 2.305 0.503 ± 0.870 0.494 ± 0.891

COREG 0.595 ± 2.422 0.581 ± 2.507 0.511 ± 3.328 0.509 ± 3.511 0.492 ± 1.560 0.481 ± 1.633 0.517 ± 0.644 0.512 ± 0.671
SSDKL 0.517 ± 3.924 0.504 ± 3.955 0.502 ± 3.730 0.501 ± 3.795 0.483 ± 1.866 0.475 ± 1.947 0.511 ± 1.104 0.506 ± 1.193

S2MAM (ours) 0.687 ± 1.401 0.673 ± 1.534 0.549 ± 0.947 0.541 ± 0.982 0.529 ± 0.471 0.517 ± 0.492 0.523 ± 0.424 0.520 ± 0.439
Lasso - 0.817 ± 0.115 - 0.552 ± 0.309 - 0.619 ± 0.331 - 0.524 ± 0.141
SpAM - 0.804 ± 0.177 - 0.554 ± 0.335 - 0.631 ± 0.314 - 0.529 ± 0.102

LapRLS 0.841 ± 0.149 0.822 ± 0.205 0.612 ± 0.161 0.607 ± 0.170 0.650 ± 1.273 0.642 ± 1.311 0.536 ± 0.102 0.531 ± 0.125
VAE 0.817 ± 0.346 0.812 ± 0.355 0.631 ± 0.971 0.627 ± 0.990 0.664 ± 0.913 0.657 ± 0.930 0.542 ± 0.310 0.538 ± 0.318

COREG 0.881 ± 0.311 0.869 ± 0.320 0.646 ± 0.730 0.642 ± 0.762 0.673 ± 0.731 0.662 ± 0.760 0.548 ± 0.261 0.541 ± 0.275
SSDKL 0.911 ± 0.395 0.905 ± 0.418 0.634 ± 1.625 0.627 ± 1.692 0.679 ± 1.105 0.670 ± 1.231 0.569 ± 0.462 0.560 ± 0.471

S2MAM (ours) 0.901 ± 0.211 0.891 ± 0.180 0.650 ± 0.510 0.641 ± 0.522 0.677 ± 0.143 0.672 ± 0.159 0.563 ± 0.135 0.558 ± 0.146

Lasso - 0.773 ± 0.433 - 0.526 ± 0.571 - -1.025 ± 3.630 - 0.515 ± 0.149
SpAM - 0.747 ± 0.542 - 0.530 ± 0.672 - 0.324 ± 3.395 - 0.522 ± 0.191

LapRLS 0.711 ± 0.377 0.702 ± 0.392 0.522 ± 0.193 0.510 ± 0.217 0.574 ± 0.278 0.563 ± 0.304 0.504 ± 0.127 0.498 ± 0.132
VAE 0.742 ± 2.871 0.736 ± 2.951 0.546 ± 3.720 0.541 ± 2.807 0.591 ± 2.041 0.584 ± 2.259 0.529 ± 0.511 0.522 ± 0.519

COREG 0.771 ± 2.142 0.761 ± 2.216 0.565 ± 1.836 0.561 ± 1.862 0.595 ± 1.320 0.589 ± 1.452 0.538 ± 0.431 0.530 ± 0.438
SSDKL 0.764 ± 3.104 0.749 ± 3.277 0.537 ± 2.541 0.522 ± 2.679 0.602 ± 1.655 0.590 ± 1.712 0.546 ± 0.831 0.541 ± 0.840

S2MAM (ours) 0.812 ± 1.255 0.804 ± 1.278 0.621 ± 0.866 0.610 ± 0.879 0.644 ± 0.386 0.631 ± 0.397 0.558 ± 0.265 0.551 ± 0.271

Table 9: The average Accuracy ± standard deviation (%) on UCI data. The upper and lower tables represent
the results under {l = 50/50/50/20, u = 450/250/250/130, pn = 0} and {l = 50/100/100/50, u =
450/200/200/100, pn = 10}, respectively.

Model Buzz-classification Breast Cancer Phishing Websites Statlog Heart

Unlabeled Test Unlabeled Test Unlabeled Test Unlabeled Test

ℓ-1 SVM - 90.792 ± 4.287 - 91.957 ± 2.966 - 73.874 ± 4.527 - 82.127 ± 7.906
SpAM - 91.021 ± 3.022 - 92.358 ± 2.962 - 76.637 ± 4.204 - 82.143 ± 8.439

LapSVM 92.171 ± 2.957 92.019 ± 3.031 93.229 ± 2.415 93.102 ± 2.493 82.268 ± 3.481 82.144 ± 3.546 84.736 ± 4.622 84.622 ± 4.640
f-FME 96.387 ± 2.254 96.149 ± 2.293 94.903 ± 2.281 94.622 ± 2.341 87.530 ± 4.503 87.492 ± 4.670 85.903 ± 3.379 85.811 ± 3.401

AWSSL 96.507 ± 3.513 96.540 ± 3.562 94.942 ± 1.955 94.903 ± 1.986 85.297 ± 2.248 85.166 ± 2.317 86.120 ± 3.213 86.089 ± 3.266
S2MAM (ours) 96.784 ± 2.908 96.713 ± 2.930 95.007 ± 1.748 94.916 ± 1.803 88.343 ± 3.840 88.286 ± 3.867 86.095 ± 4.376 86.011 ± 4.409

ℓ-1 SVM - 72.882 ± 9.734 - 74.994 ± 8.531 - 55.918 ± 5.575 - 67.251 ± 9.143
SpAM - 75.068 ± 7.455 - 79.943 ± 6.824 - 57.701 ± 5.311 - 69.989 ± 9.744

LapSVM 70.864 ± 12.250 70.214 ± 12.738 61.553 ± 9.502 61.114 ± 9.810 51.700 ± 5.306 51.342 ± 5.395 58.025 ± 5.427 57.984 ± 5.470
f-FME 82.759 ± 5.692 82.302 ± 5.741 75.261 ± 6.740 75.204 ± 6.862 76.623 ± 3.695 76.594 ± 3.710 74.998 ± 4.217 74.903 ± 4.236

AWSSL 89.672 ± 5.310 89.155 ± 5.412 77.197 ± 6.025 77.120 ± 6.136 78.025 ± 4.257 77.989 ± 4.303 76.622 ± 4.773 76.595 ± 4.914
S2MAM (ours) 92.618 ± 4.377 92.431 ± 4.526 88.053 ± 4.935 87.995 ± 4.947 81.992 ± 2.514 81.894 ± 2.527 79.498 ± 4.119 79.277 ± 4.171

As shown in Tables 2 and 9, S2MAM realizes the competitive or even best performance under most
settings, especially with corrupted features. However, when the synthetic data is clean (without noisy
variables), some deep SSL methods (COREG and SSDKL) may perform better than S2MAM.

This is understandable, as the proposed S2MAM is built on kernels and deep neural networks usually
have stronger fitting ability under clean data (Ghorbani et al., 2020; Agarwal et al., 2021; Yang et al.,
2020). These deep SSL methods and the well-trained S2MAM use all the informative input variables.
While still enjoying competitive prediction accuracy w.r.t. Deep SSL methods, S2MAM further
provides explainable predictions; please refer to Fig.7 with visual examples on Page 23, where there
may exist a tradeoff between interpretability and accuracy (Rudin, 2019).

We further consider more settings of noisy variables, e.g., N (0, 100), N (50, 100), Student T distri-
bution (with freedom of 2/5/10) and Chi-square noise (with freedom of 2/5/10), where the results
are analogous to the setting (Xn ∈ N (100, 100)). Thus the extremely large random noise following
N (100, 100) is employed throughout the whole paper for simplicity and consistency.

In order to make a comprehensive comparison, we further consider the data settings of 5%/50%
labeled samples and pn = 0/100 noisy features on the synthetic additive data. The results are
summarized in Table 10. The empirical results show that:
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Table 10: Average Accuracy ± standard deviation (%) on synthetic additive data with label percentages in each
class (r = 5%/50%) and noisy variable numbers (pn = 0/100).

Model r = 5%, pn = 0 r = 5%, pn = 100 r = 50%, pn = 0 r = 50%, pn = 100

Unlabeled Test Unlabeled Test Unlabeled Test Unlabeled Test

ℓ1-SVM - 83.914 ± 6.410 - 53.471 ± 8.427 - 93.644 ± 5.171 - 88.474 ± 6.209
SpAM - 84.150 ± 6.104 - 51.308 ± 7.242 - 94.020 ± 4.255 - 90.201 ± 5.330
CSAM - 86.597 ± 5.424 - 56.410 ± 8.781 - 94.973 ± 4.955 - 91.210 ± 5.237
TSpAM - 86.993 ± 5.340 - 56.811 ± 7.570 - 95.031 ± 4.601 - 91.244 ± 5.197
LapSVM 88.814 ± 5.398 88.850 ± 5.269 37.174 ± 10.244 38.208 ± 10.959 93.899 ± 4.860 94.101 ± 4.571 41.177 ± 9.814 41.490 ± 9.202

f-FME 89.141 ± 3.172 89.305 ± 3.359 60.276 ± 8.427 59.771 ± 8.610 94.505 ± 2.871 94.893 ± 2.747 71.038 ± 7.979 70.875 ± 8.201
AWSSL 91.259 ± 2.871 90.211 ± 3.077 62.707 ± 8.660 62.842 ± 8.290 95.410 ± 3.229 95.601 ± 3.073 69.071 ± 7.759 69.368 ± 7.831

RGL 90.422 ± 2.909 90.026 ± 3.477 64.371 ± 8.391 65.011 ± 8.140 95.973 ± 2.417 96.027 ± 2.289 71.462 ± 7.141 71.511 ± 7.062
SALE 89.717 ± 2.811 90.149 ± 2.665 65.805 ± 8.106 65.887 ± 8.010 95.402 ± 2.311 95.427 ± 2.268 71.855 ± 6.947 71.913 ± 6.850

S2MAM (ours) 89.979 ± 3.255 90.309 ± 3.409 73.420 ± 6.177 73.641 ± 6.020 95.941 ± 2.031 96.147 ± 1.954 76.518 ± 5.326 76.560 ± 5.244

• At a 5% labeling rate, S2MAM is capable of assigning suitable masks, effectively utilizing
the input from 95% unlabeled data to boost the model’s predictive accuracy.

• At a 50% labeling rate, these supervised baselines usually maintain better sparse regression
estimators than S2MAM. The empirical observations are natural since the labeled data
under this setting is often enough to find the predictor, and supervised methods should be
suggested.

B.6 INTERPRETABILITY AND VISUALIZATION

Notably, additive models, including our proposed S2MAM, own strong interpretability, where the
component function of each input variable can be explicitly formulated and directly visualized. Here
we also give an example with our synthetic additive regression data, where the ground truth function
is merely relevant to the first eight input variables:

Y = f∗(X) + ϵ =

8∑
j=1

f (j)∗(X(j)) + ϵ, (11)

where f (1)∗(u) = −2 sin(2u), f (2)∗(u) = 8u2, f (3)∗(u) = 7 sinu
2−sinu , f (4)∗(u) =

6e−u, f (5)∗(u) = u3 + 3
2 (u− 1)2, f (6)∗(u) = 5u, f (7)∗(u) = 10 sin(e−u/2), f (8)∗(u) =

−10ϕ̃(u, 1
2 ,

4
5

2
).
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Figure 9: Visualization of the first two components. f∗ : ground truth; f̂ : results predicted by S2MAM.

For simplicity, we present the prediction components of f̂ (1) and f̂ (2) as well as their ground truth
f (1)∗ and f (2)∗ in Figure 9. We generate the input uniformly among [−1, 1], which is further
transformed into the Gram matrix of the corresponding component (K(1) and K(2)). By multiplying
with the model coefficients α(1) and α(2), one can directly obtain the outputs. As shown in Figure 9,
the prediction results of S2MAM for each input variable are close to the ground truth, which better
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validates the effectiveness. And the other components can also be formulated or visualized, we omit
it here.

Remark 7. In some relevant works, the high-dimensional observations can be regarded as the
mixture of hidden information from an unknown manifold and ambient noise (Yao et al., 2024). In
many realistic settings, including redundant useless, or noisy variables, the real-world data can be
also corrupted by some noisy labels. In order to achieve robustness against such corruptions, a
commonly considered approach is to replace the loss function with a robust one (e.g., the widely
used robust Huber loss function (Wang et al., 2022b) for regression tasks). Simple modifications
may help to improve the models’ robustness against noisy labels. Extensions of S2MAM from other
perspectives are interesting directions in the future study.

B.7 EXTENSION TO IMAGE DATA

Inspired by some supervised (Su et al., 2023) and semi-supervised works (Qiu et al., 2018; Nie et al.,
2019; Kang et al., 2020; Nie et al., 2021), an interesting approach for dealing with high-dimensional
data like images is to extract the variable vectors first.

Following (Bao et al., 2024), we first use a CNN to learn the vectors with 32 features for each
image, which realizes rough dimensional reduction. However, this step may not remove those
irrelevant or even noisy variables. Thus, it’s still necessary to employ robust methods before building
semi-supervised models. Similar preprocessing methods for dimensional reduction also apply to
larger (image) datasets. The extended experimental results on classifying the 12-th and 13-th objects
in COIL20 image data (download from https://www.cs.columbia.edu/CAVE/software/softlib/coil-
20.php) after dimensional reduction are present as follows.

Firstly, we directly conduct experiments on the clean process COIL20 feature matrix. The results are
present in Table 11. Secondly, following the settings in (Bao et al., 2024), to simulate pixel-level
corruption in images, we manually add 5 noisy variables following N (100, 100) to the processed 32
dimensions, where the results are left in Table 12.

For the following classification task, the supervised competitors include linear ℓ1-SVM (Zhu et al.,
2003a), SpAM (Ravikumar et al., 2009), CSAM (Yuan et al., 2023) and TSpAM (Wang et al., 2023).
And the semi-supervised baselines include LapSVM (Belkin et al., 2006), f-FME (Qiu et al., 2018),
AWSSL (Nie et al., 2019), RGL (Kang et al., 2020) and SALE (Nie et al., 2021).

Table 11: Extended experiments with average accuracy, standard deviation (SD), and training time cost (minutes)
on image data. Merely 30% samples are labeled. Both ℓ1-SVM and LapSVM adopt the gradient optimization.

ℓ1-SVM SpAM CSAM TSpAM LapSVM f-FME
Accuracy 67.329 69.917 73.577 72.230 81.092 85.518

SD 0.583 0.709 0.622 0.616 0.417 0.408
Time Cost 0.2 0.9 2.3 2.5 0.6 1.5

AWSSL RGL SALE SSNP S2MAM
Accuracy 86.821 83.416 87.235 83.370 86.833

SD 0.430 0.527 0.616 0.429 0.501
Time Cost 2.7 3.1 2.2 4.1 9.6

Table 12: Extended experiments with average accuracy ± standard deviation on (the 12-th and 13-th objects of)
the corrupted COIL20 image data, which involves 5 noisy variables. For simplicity, the competitors used here
are all designed for SSL.

LapSVM f-FME AWSSL RGL SALE SSNP S2MAM
57.026 ± 7.192 76.464 ± 4.106 74.034 ± 3.226 74.217 ± 3.011 75.109 ± 4.049 77.629 ± 4.310 78.917 ± 3.601

From the above results in Tables 11 and 12, our proposed S2MAM provides competitive and robust
prediction performance under clean or corrupted data. However, S2MAM brings more computation
cost. This is mainly caused by:

1) The bilevel optimization requires more iterations to learn the additional masks;
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2) The additive scheme expands the data dimensions to provide interpretable feature-wise contribu-
tions.

In order to reduce the computation burden of bilevel optimization, this paper adopts the optimization
from (Zhou et al., 2022) with the probabilistic formulation and policy gradient estimation.

To further accelerate the computation process, the random Fourier acceleration technique (Rahimi
& Recht, 2007) can be exploited to approximate the additive kernel (Gram) matrix, which has been
previously validated to be effective for additive models (Wang et al., 2023).

B.8 EXPLANATION FOR TOY EXAMPLE IN FIGURE 1

To better illustrate the negative impact of noisy variables on SSL models, we conduct semi-supervised
binary classification experiments on moon data (Nie et al., 2019). For simplicity, here we generate
totally 200 samples involving 99 unlabeled points and 1 labeled point for each class. The original
moon data involves two inputs (X and y) and a single label (−1 or 1). In order to highlight
the robustness, we further add a noisy input variable (Xn ∈ N (100, 100)). Thus the corrupted
sample involves three inputs and a single output, where the i-th sample includes input variables
xi = (Xi, yi, (Xn)i) and true label -1 or 1.

As shown in Figure 1, both LapSVM and our proposal S2MAM perform well on the clean moon data
without corruptions in Figure 1 (a). In the 2D plot in Figure 1 (b) and 3D plot in Figure 1 (d), the
noisy variable directly causes negative impact on the Laplacian matrix W, whose calculation relies
on all input variables Wij = exp{−∥xi − xj∥/2µ2} with bandwidth µ.

And as present in Figure 1 (d), our proposed S2MAM, with learned mask m = (1, 1, 0) assigned on
inputs (X, y,Xn), is robust with masked similarity Wij = exp{−∥m⊙ xi −m⊙ xj∥/µ2}, since
noisy variable Xn is suppressed with mask 0.

B.9 VISUALIZED LEARNING PROCESS OF S2MAM

Here we further present the visualization for the learning process of S2MAM, which shows the
importance of assigning proper masks for (high-dimensional) semi-supervised modeling.
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Figure 10: 2d tSNE visualization for masked Breast Cancer data corrupted by 10 noisy features during the
training process of S2MAM at epoch 0, 50 and 100, respectively. Dots with different colors represent different
classes.

In Figure 10, we present the visualization of masked Breast Cancer data based on the tSNE technique
(Van der Maaten & Hinton, 2008), where the masks are updated gradually and almost could reach the
ground truth after 100 epochs.

C GENERALIZATION ERROR ANALYSIS (PROOF OF THEOREM 2)

To better illustrate the proof process, we summarize the major steps and lemmas in the following
Figure 11.
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Figure 11: Sketch of the theoretical proofs for generalization bound.

C.1 ERROR DECOMPOSITION

Now we are in the position to recall the semi-supervised algorithm with ℓ2 regularizer in the additive
hypothesis space

fz = argmin
f∈H

{
Ez(f) + λ1Ωz(f) +

λ2

(l + u)2
fTLf

}
. (12)

For simplicity, the semi-supervised regression task with squared loss under a kernel-based frame-
work is considered here. Denote z = {zl, zu} as the labeled data zl = {xi, yi}li=1 and un-
labeled data zu = {xi}l+u

i=l+1 together. Denote f = (f (x1) , . . . , f (xl+u))
T , which involves

the prediction of both the labeled and unlabeled data. λ1 > 0 and λ2 > 0 are regulariza-
tion parameters. Series {τj}pj=1 are weights to different input variables. For feasibility, de-

fine the Gram matrix Ki =
(
K

(1)
i , . . . ,K

(p)
i

)T
∈ R(l+u)×p, K(j) =

(
K

(j)
1 , . . . ,K

(j)
l+u

)T
∈

R(l+u)×(l+u) with K
(j)
i =

(
K(j)(x

(j)
1 , x

(j)
i ), . . . ,K(j)(x

(j)
l+u, x

(j)
i )
)T
∈ Rl+u and the coefficient

α =
(
α(1), . . . ,α(p)

)T ∈ R(l+u)×p with α(j) =
(
α
(j)
1 , . . . , α

(j)
l+u

)T
∈ Rl+u.

The manifold regularized additive model in Eq.(12) can be formulated as

fz = argmin
f=

∑p
j=1 f(j)∈H

{
Ez(f) + λ1Ωz(f) +

λ2

(l + u)2
fTLf

}
, (13)

where

Ez(f) =
1

l

l∑
i=1

(f(xi)− yi)
2
=

1

l

l∑
i=1

 p∑
j=1

(K
(j)
i )Tα(j) − yi

2

. (14)

If the j-th variable is not truly informative, we expect that α̂(j)
z =

(
α̂
(j)
z,1, . . . , α̂

(j)
z,l+u

)T
∈ Rl+u

satisfies
∥∥∥α̂(j)

z

∥∥∥
2
=

(∑l+u
i=1

∣∣∣α̂(j)
z,i

∣∣∣2)(1/2)

= 0. Inspired by this, we introduce the ℓ2,1-regularizer

Ωz(f) = inf


p∑

j=1

τj

∥∥∥α(j)
∥∥∥
2
: f =

p∑
j=1

l+u∑
i=1

α(j)K(j)
(
x
(j)
i , ·

)
, α(j) ∈ Rl+u

 (15)

as the penalty to address the sparsity of the output functions.

Suppose that ρ is a fixed (but unknown) probability distribution on Z := X × Y . Define f (j) =
(K(j))Tα(j). Similarly, now we introduce a regularizing function as

fλ = argmin
f=

∑p
j=1 f(j)∈H

{E(f) + λ1Ω(f) + λ2 ⟨f, Lωf⟩2} , (16)
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where

E(f) =
∫
z

(f(x)− y)2dρ, (17)

and

Ω(f) =

p∑
j=1

τj∥f (j)∥2K(j) . (18)

Before presenting the error analysis, we give some basic definitions throughout this paper.

Definition 1. Define κ = supj,u

(
K(j)(u, u)

)1/2
< ∞. For fz defined above, there holds

∥fz∥K ≤ κ

p∑
j=1

l+u∑
i=1

∣∣∣α(j)
z,i

∣∣∣ ≤ κ

p∑
j=1

(
l+u∑
i=1

1
1− 1

q

)1− 1
q
(

l+u∑
i=1

∣∣∣α(j)
z,i

∣∣∣q) 1
q

≤ κ
√
l + u

p∑
j=1

∥∥∥α(j)
z

∥∥∥
2
, (19)

where the last inequality is obtained from the Hölder inequality with positive constant q = 2.

Remark 8. Based on the definition of κ and Ωz(f), we can further obtain ∥f∥∞ ≤ κ∥f∥K for any
f ∈ HK (Mukherjee et al., 2006; Chen et al., 2018).

Definition 2. Define an operator Lω : L2
ρX

→ L2
ρX

by (Lωf) (x) = f(x)p(x) −∫
X
K (x, x′) f (x′) dρX (x′), with p(x) =

∫
X
K (x, x′) dρX (x′). Then we have

⟨f, Lωf⟩2 =
1

2

∫∫
(f(x)− f (x′))

2
W (x, x′) dρX(x)dρX (x′) .

Definition 3. For any measurable function f : X → R, define the following clipping function:

π(f) =

{
M f(x) > M
−M f(x) < −M
f(x) otherwise

. (20)

Theorem 3. Let fz be defined by (12) and π(f) defined in (20). Then for λ > 0, we have

E (π (fz))− E (fρ) ≤ D(λ) + S(s, λ) +H(s, λ) +M(s, λ), (21)

where the regularization error, sample error, hypothesis error, and manifold error can be defined
respectively as

D(λ) = E (fλ)− E (fρ) + λ1

p∑
j=1

τj

∥∥∥f (j)
λ

∥∥∥2
K(j)

+ λ2

p∑
j=1

〈
f
(j)
λ , Lωf

(j)
λ

〉
2
,

S(z, λ) = E (π (fz))− Ez (π (fz)) + Ez (fλ)− E (fλ),

H(z, λ) = Ez (π (fz)) + λ1Ω (fz) +
λ2

(l + u)2

p∑
j=1

(f (j)z )TLjf
(j)
z

−

Ez (fλ) + λ1

p∑
j=1

τj∥f (j)
λ ∥

2
K(j) +

λ2

(l + u)2

p∑
j=1

(f
(j)
λ )TLjf

(j)
λ

 ,

M(z, λ) =
λ2

(l + u)2

p∑
j=1

(f (j)z )TLjf
(j)
z − λ2

p∑
j=1

〈
f
(j)
λ , Lωf

(j)
λ

〉
2
.

(22)
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Proof. Based on the definition of fz and π(f), we have

E (π (fz))− E (fρ)

≤E (π (fz))− E (fρ) + λ1Ω(fz) +
λ2

(l + u)2

p∑
j=1

(f (j)z )TLjf
(j)
z

≤E (π (fz))− Ez(π (fz)) + Ez(π (fz)) + λ1Ω((fz)) +
λ2

(l + u)2

p∑
j=1

(f (j)z )TLjf
(j)
z

−

{
Ez (fλ) + λ1

p∑
j=1

τj∥f (j)
λ ∥2K(j) + λ2

p∑
j=1

〈
f
(j)
λ , Lωf

(j)
λ

〉
2

}

+

{
Ez (fλ) + λ1

p∑
j=1

τj∥f (j)
λ ∥2K(j) + λ2

p∑
j=1

〈
f
(j)
λ , Lωf

(j)
λ

〉
2

}

− E (fλ) + E (fλ)− E (fρ) +
λ2

(l + u)2

p∑
j=1

(f
(j)
λ )TLjf

(j)
λ − λ2

(l + u)2

p∑
j=1

(f
(j)
λ )TLjf

(j)
λ

≤E (fλ)− E (fρ) + λ1

p∑
j=1

τj

∥∥∥f (j)
λ

∥∥∥2
K(j)

+ λ2

p∑
j=1

〈
f
(j)
λ , Lωf

(j)
λ

〉
2︸ ︷︷ ︸

D(λ)

+ E (π (fz))− Ez (π (fz)) + Ez (fλ)− E (fλ)︸ ︷︷ ︸
S(z,λ)

+ Ez (π (fz)) + λ1Ω(fz) +
λ2

(l + u)2

p∑
j=1

(f (j)z )TLjf
(j)
z −

{
Ez (fλ) + λ1

p∑
j=1

τj∥f (j)
λ ∥2K(j) +

λ2

(l + u)2

p∑
j=1

(f
(j)
λ )TLjf

(j)
λ

}
︸ ︷︷ ︸

H(z,λ)

+
λ2

(l + u)2

p∑
j=1

(f
(j)
λ )TLjf

(j)
λ − λ2

p∑
j=1

〈
f
(j)
λ , Lωf

(j)
λ

〉
2︸ ︷︷ ︸

M(z,λ)

,

whereD(λ), S(z, λ),H(z, λ) andM(z, λ) stand for the regularization error, sample error, hypothesis
error, and manifold error, respectively. The proof is completed.

C.2 BOUNDING REGULARIZATION ERROR D(λ)

In this section, we give the theoretical results under specific assumptions on fρ for bounding the
regularization error of manifold regularized additive models. Inspired by the supervised work
(Christmann & Zhou, 2016), we give some necessary assumptions and lemmas before deriving the
bound under the additive space.

As defined in Section 2, we denote ρX as the marginal distribution with respect to X . Here we further
introduce ρX (j) for X (j), which is the j-th component of X (Christmann & Zhou, 2016; Chen et al.,
2020). For completeness, we restate the settings in Assumption 2.

Assumption 5. Assume fρ ∈ L∞ (ρX ) and fρ = f
(1)
ρ +f

(2)
ρ + . . .+f

(p)
ρ where for some 0 < r ≤ 1

2

and for each j ∈ {1, . . . , p}, the j-th component function f
(j)
ρ : X (j) → R is a mapping: f

(j)
ρ =

Lr
K(j)

(
g∗j
)

with some g∗j ∈ L2 (ρX (j)).

The case r = 1
2 of Assumption 5 means each f

(j)
ρ lies in the RKHS K(j). Here the operator LK is

defined by

LK(f)
(
X(1), . . . , X(p)

)
=

∫
X

 p∑
j=1

K(j)
(
X(j), X(j)′

) f
(
X(1)′, . . . , X(p)′

)
dρX

(
X(1)′, . . . , X(p)′

)
.
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Lemma 1. (Christmann & Zhou, 2016) Let j ∈ {1, . . . , p} and 0 < r ≤ 1
2 . Assume the j-th

component function f
(j)
ρ = Lr

K(j)

(
g∗j
)

for some g∗j ∈ L2 (ρX (j)). Define an intermediate function

f
(j)
λ on X (j) by

f
(j)
λ = (LK(j) + λI)

−1
LK(j)

(
f (j)
ρ

)
.

Then we have ∥∥∥f (j)
λ − f (j)

ρ

∥∥∥2
L2(ρX(j))

+ λ
∥∥∥f (j)

λ

∥∥∥2
K(j)
≤ λ2r

∥∥g∗j∥∥2L2(ρX(j))
.

Proposition 1. Under Assumption 5 and λ2 = λ1−r
1 where 0 < r ≤ 1/2, we have

D(λ) ≤ Cλr
1 ∀0 < λ1 ≤ 1,

where C is the constant given by

C =

p∑
j=1

(
L
∥∥g∗j∥∥L2(ρX(j))

+

(
2ωκ2 +max

j
{τj}

)∥∥g∗j∥∥2L2(ρX(j))

)
.

Proof. Observe that f (j)
λ ∈ HK(j) and

∑p
j f

(j)
λ ∈ HK . By the definition of the regularization error,

we have

D(λ) = E (fλ)− E (fρ) + λ1

p∑
j=1

τj

∥∥∥f (j)
λ

∥∥∥2
K(j)

+ λ2

p∑
j=1

〈
f
(j)
λ , Lωf

(j)
λ

〉
2

Denote

D1(λ) = E (fλ)− E (fρ) + λ1

p∑
j=1

τj

∥∥∥f (j)
λ

∥∥∥2
K(j)

.

By Theorem 1 of (Christmann & Zhou, 2016), based on the additive hypothesis with p components
in Assumption 1 and the L-Lipschitz property, we can rewrite

E (fλ)− E (fρ) = E
(
f
(1)
λ + · · ·+ f

(p)
λ

)
− E

(
f (1)
ρ + · · ·+ f (p)

ρ

)
≤ L

p∑
j=1

∫
X (j)

∣∣∣f (j)
λ

(
X(j)

)
− f (j)

ρ

(
X(j)

)∣∣∣ dρX (j)

(
X(j)

)
≤ L

∥∥∥f (j)
λ − f (j)

ρ

∥∥∥
L2(ρX(j))

.

With Lemma 1, we can further derive that∥∥∥f (j)
λ − f (j)

ρ

∥∥∥2
L2(ρX(j))

≤ λ2r
1

∥∥g∗j∥∥2L2(ρX(j))
,

and
λ1

∥∥∥f (j)
λ

∥∥∥2
K(j)
≤ λ2r

1

∥∥g∗j∥∥2L2(ρX(j))
.

Thus we have

D(λ) ≤ D1(λ) + λ2

p∑
j=1

〈
f
(j)
λ , Lωf

(j)
λ

〉
2
,

where 0 ≤ λ1 ≤ 1, 0 < r ≤ 1/2 and

D1(λ) ≤
p∑

j=1

(
Lλr

1

∥∥g∗j∥∥L2(ρX(j))
+ λ2r

1 max
j
{τj}

∥∥g∗j∥∥2L2(ρX(j))

)

≤ λr
1

p∑
j=1

(
L
∥∥g∗j∥∥L2(ρX(j))

+ max
j
{τj}

∥∥g∗j∥∥2L2(ρX(j))

)
.
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From the fact that (fλ(x)− fλ (x
′))

2
W (x, x′) ≤ 4ω ∥fλ∥2∞ and ∥fλ∥∞ ≤ κ ∥fλ∥K . With the

definition of ⟨f, Lωf⟩2 = 1
2

∫∫
(f(x)− f (x′))

2
W (x, x′) dρX(x)dρX (x′) and the inequalities

above, we have

∥fλ∥2K ≤
p∑

j=1

∥∥∥f (j)
λ

∥∥∥2
K(j)
≤ λ2r−1

1

p∑
j=1

∥∥g∗j∥∥2L2(ρX(j))
.

By setting λ2 = λ1−r
1 where 0 < r ≤ 1/2, we can derive

λ2 ⟨fλ1
, Lωfλ1

⟩2 ≤ 2ωκ2λ2λ
2r−1
1

p∑
j=1

∥∥g∗j∥∥2L2(ρX(j))
≤ 2ωκ2λr

1

p∑
j=1

∥∥g∗j∥∥2L2(ρX(j))
.

Combining the above inequalities, then the desired bound is derived.

C.3 BOUNDING SAMPLE ERROR S(z, λ)

In this section, we aim to bound the sample error term, which could be written as

S(z, λ) = S1(z, λ) + S2(z, λ),

where
S1(z, λ) = {E (π(fz))− E (fρ)} − {Ez (π(fz))− Ez (fρ)} (23)

and
S2(z, λ) = {Ez (fλ)− Ez (fρ)} − {E (fλ)− E (fρ)} . (24)

Before bounding above S1(z, λ) and S2(z, λ), we introduce the following definitions and lemmas.

Definition 4. Define the ball Br associated with the function spaceHK as

Br = {f ∈ HK : ∥f∥K ≤ r} .

Definition 5. Let Cv be a ν-times continuously differentiable function set. Then, for K(j) ∈
Cν
(
X (j) ×X (j)

)
, j ∈ {1, . . . , p}, define

ζ =


2

1+2v , v ∈ (0, 1]
2

1+v , v ∈ (1, 3/2]
1
v , v ∈ (3/2,∞).

Now, we introduce the empirical covering number to measure the capacity of Br.

Definition 6. Let F be a set of measurable functions on X and x = {x1, x2, . . . , xn} ⊂ X . The

ℓ2-empirical metric for f1, f2 ∈ F is d2,x (f1, f2) =
√

1
n

∑n
i=1 (f1 (xi)− f2 (xi))

2. Then the
ℓ2-empirical covering number of F is defined as

N2(F , ϵ) = sup
n∈N

sup
x
N2,x(F , ϵ),∀ϵ > 0,

where

N2,x(F , ϵ) = inf

{
m ∈ N : ∃

{
f (j)

}m

j=1
⊂ F , s.t.,F ⊂

⋃
m
j=1

{
f ∈ F : d2,x

(
f, f (j)

)
< ϵ
}}

.

Indeed, the empirical covering number of Br has been investigated extensively in learning theory
literature (Steinwart & Christmann, 2008; Shi et al., 2011; Shi, 2013; Guo & Zhou, 2013; Chen et al.,
2020).

The following concentration inequality established in (Wu et al., 2007) is used for our sample error
estimation.
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Lemma 2. (Wu et al., 2007) Let G be a measurable function set on Z . Assume that there are
constants B, c, a > 0 and θ ∈ [0, 1] such that ∥g∥∞ ⩽ B,Eg2 ⩽ c(Eg)θ for each g ∈ G. If for
0 < ζ < 2, logN2(G, ϵ) ⩽ aϵ−ζ ,∀ϵ > 0, then for any δ ∈ (0, 1) and i.i.d observations {zi}ni=1 ⊂ Z ,
there holds

Eg − 1

n

n∑
i=1

g (zi) ⩽
1

2
γ1−θ(Eg)θ + Cζγ + 2

(
c log(1/δ)

n

) 1
2−θ

+
18B log(1/δ)

n
,∀g ∈ G

with confidence at least 1− δ, where Cζ is a constant depending only on ζ and

γ = max
{
c

2−ζ
4−2θ+ζθ (a/n)

2
4−2θ+ζθ , B

2−ζ
2+ζ (a/n)

2
2+ζ

}
.

Lemma 3. Let ξ be a random variable on a probability space Z satisfying |ξ(z)− Eξ| ≤Mξ for
some constant Mξ and variance σξ. Then, for any δ ∈ (0, 1), there holds

1

n

n∑
i=1

ξ (zi)− Eξ ≤ 2Mξ log(1/δ)

3n
+

√
2σ2

ξ log(1/δ)

n

with confidence at least 1− δ.

C.3.1 BOUNDING S1(z, λ)

in equation 23.
Proposition 2. If for 0 < ζ < 2, logN2(G, ϵ) ⩽ aϵ−ζ ,∀ϵ > 0, then for any δ ∈ (0, 1) and i.i.d
observations {zi}l+u

i=1 ⊂ Z , under Assumptions 2, 3 and 4, there holds

S1(z, λ) ⩽
1

2
(E(π(fz))− E(fρ)) + Cζγ +

32M2 log(4/δ)

l + u
+

144M2 log(4/δ)

l + u
,∀g ∈ G

with confidence at least 1− δ/4, where Cζ is a constant depending only on ζ and

γ = max
{
(16M2)

2−ζ
2+ζ (Cζp

1+ζ(4Mr)ζ/(l + u))
2

2+ζ , (8M2)
2−ζ
2+ζ (Cζp

1+ζ(4Mr)ζ/(l + u))
2

2+ζ

}
.

Proof. Step 1: Bounding fz.

Since fz is dependent on the training sample set z, we first need to find a function set containing fz.

λ1

p∑
j=1

τj∥α(j)
z ∥2 = λ1Ωz(fz) ≤ Ez (fz) + λ1Ωz(fz) +

λ2

(l + u)2

p∑
j=1

(f (j)
z )TLjf

(j)
z ≤ Ez(0) ≤M2.

Hence we have
p∑

j=1

∥α(j)
z ∥2 ≤

M2

λ1 minj τj
.

Furthermore, based on Cauchy inequality, we can obtain

∥fz∥K =

∥∥∥∥∥∥
p∑

j=1

l+n∑
i=1

α
(j)
z,iK

(j)
(
x
(j)
i , ·

)∥∥∥∥∥∥
K

≤ κ

p∑
j=1

l+u∑
i=1

|α(j)
z,i | ≤ κ

p∑
j=1

√
l + u

√√√√l+u∑
i=1

∥α(j)
z,i∥2

= κ
√
l + u

p∑
j=1

∥α(j)
z ∥2.

Therefore, fz belongs to Br with r = κ
√
l + u

∑p
j=1 ∥α

(j)
z ∥2 ≤ κ

√
l+uM2

λ1 minj τj
.

Step 2: Bounding S1(z, λ) in equation 23.
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Consider the function set

G =
{
g(z) = (y − π(f)(x))2 − (y − fp(x))

2
, f ∈ Br, z = (x, y) ∈ Z

}
.

For any f1, f2 ∈ Br, we have

g(z1)− g(z2) = (y − π(f1)(x))
2 − (y − π(f2)(x))

2

≤ |(2y − π(f1)(x)− π(f2)(x))(π(f1)(x)− π(f2)(x))|
≤ 4M |π(f1)(x)− π(f2)(x)|.

Hence for each K(j) ∈ Cv(xj , xj), j = 1, · · · , p, we have

logN2(G, ϵ) ⩽ logN2

(
Br,

ϵ

4M

)
⩽ logN2

(
B1,

ϵ

4Mr

)
⩽ Csp

1+ζ(4Mr)ζϵ−ζ , (25)

where ζ is defined in Definition 5, and the last inequality follows from the covering number bounds
forHK(j) with K(j) ∈ Cv (see (Shi, 2013; Shi et al., 2011; Wang et al., 2021)).

Considering 0 ≤ (y − π(f)(x))2 ≤ 4M2 and 0 ≤ (y − fρ(x))
2 ≤ 4M2, we have

|g(z)| ≤ 8M2, |g(z)− E(g)| ≤ 16M2,

and
Eg2 =

∫
(2y − π(f)(x)− fp(x))

2
(π(f)(x)− fp(x))

2
dρ ⩽ 16M2E(g).

By applying Lemma 2 with a = Cζp
1+ζ(4Mr)ζ , B = 8M2, c = 16M2 and θ = 1, Cζ is the

constant depending only on ζ.

Therefore, we have the desired results for bounding S1 with confidence of 1− δ/4.

C.3.2 BOUNDING S2(z, λ) IN EQUATION 24

Proposition 3. Let Assumptions 2 and 3 hold, then for any δ > 0, there holds

S2(z, λ) ≤
2Mξ log(4/δ)

3(l + u)
+

√
2V ar(ξ)2 log(4/δ)d

l + u

≤
4
(
3M + κ

√
D(λ)

λ1 minj{τj}

)2
log(4/δ)

3(l + u)
+

√
2 log(4/δ)

l + u

(
3M + κ

√
D(λ)

λ1 minj{τj}

)3

D(λ)

with confidence at least 1− δ/4.

Proof. From the definition of D(λ) and fλ, we can deduce that

∥fλ∥2K ≤
D(λ)

λ1 minj{τj}
,

and

∥fλ∥∞ ≤ κ∥fλ∥K ≤ κ

√
D(λ)

λ1 minj{τj}
.

Denote ξ(z) = (y − fλ(z))
2 − (y − fρ(x))

2, we have

|ξ(z)| = |2y − fλ(x)− fρ(x)| · |fλ(x)− fρ(x)| ≤

(
3M + κ

√
D(λ)

λ1 minj{τj}

)2

:= d

Then
|ξ(z)− Eξ| ≤ 2d := Mξ,
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and

Eξ2 =

∫
|2y − fλ(x)− fρ(x)|2 · |fλ(x)− fρ(x)|2dρx

≤

(
3M + κ

√
D(λ)

λ1 minj{τj}

)2

∥fλ(x)− fρ(x)∥2ρx

≤ d(E(fλ)− E(fρ))
≤ dD(λ).

Moreover,

Var(ξ) ≤ E(ξ2) ≤ dD(λ).

Applying the one side Bernstein inequality in Lemma 3 with Mξ = 2d, V ar(ξ) ≤ dD(λ) and

d =
(
3M + κ

√
D(λ)

λ1 minj{τj}

)2
, we get

S2(z, λ) ≤
2Mξ log(4/δ)

3(l + u)
+

√
2V ar(ξ)2 log(4/δ)d

l + u

≤
4
(
3M + κ

√
D(λ)

λ1 minj{τj}

)2
log(4/δ)

3(l + u)
+

√
2 log(4/δ)

l + u

(
3M + κ

√
D(λ)

λ1 minj{τj}

)3

D(λ)

with confidence at least 1− δ/4.

The desired upper bound of S is obtained by combining the above estimations for S1 and S2.

C.4 BOUNDING HYPOTHESIS ERROR H(z, λ)

Before boundingH(z, λ), we first introduce the auxiliary function

fz,λ = argmin

1

l

l∑
i=1

(yi − f(xi))
2 + λ1

p∑
j=1

τj∥f (j)∥2K(j) +
λ2

(l + u)2
fTLwf

 , (26)

which enjoys the representation

fz,λ(xi) =

p∑
j=1

(K
(j)
i )T α̂(j)

z .

Here K
(j)
i = (K(j)(x

(j)
1 , x

(j)
i ),K(j)(x

(j)
2 , x

(j)
i ), · · · ,K(j)(x

(j)
l+u, x

(j)
i )) ∈ Rl+u and α̂

(j)
z =

(α̂
(j)
z,1, · · · , α̂

(j)
z,l+u) ∈ Rl+u.

Remark 9. Based on the assumptions of boundedness (Assumption 2), we can naturally assume that
the introduced function fz,λ in (26) has a bounded output. That is, ∥fz,λ∥∞ ≤ ∞ and ∥f (j)z,λ∥∞ ≤ ∞.

Inspired by Lemma 4 of (Chen et al., 2020) and Lemma 5 of (Wang et al., 2023), we further build the
following key lemma for deriving the upper bound of hypothesis error.

Lemma 4. For fz,λ defined in (26), there exists

τj∥α̂(j)
z ∥2 ≤

M + ∥fz,λ∥∞
λ1

√
l

+
λ2w∥f (j)z,λ∥∞
λ1(l + u)

.
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Proof. Based the definition of fz,λ, we can deduce that

∂fz,λ
∂α(j)

=
2

l

l∑
i=1

(yi − fz,λ(xi)(−(K(j)
i )T )) + 2λ1τj(α̂

(j)
z )TK(j) +

λ2Ljf
(j)
z,λK

(j)

(l + u)2

=
2

l

y1 − fz,λ(x1), · · · , yl − fz,λ(xl)︸ ︷︷ ︸
l Items

, 0, · · · , 0︸ ︷︷ ︸
u Items


T

(−K(j)) + 2λ1τj(α̂
(j)
z )TK(j)

+
2λ2Ljf

(j)
z,λK

(j)

(l + u)2
,

where K(j) = (K(j)(x
(j)
a , x

(j)
b ))l+u

a,b=1 ∈ R(l+u)×(l+u).

When satisfying ∂fz,λ
∂α(j) = 0, we have

τj(α̂
(j)
z )T =

1

lλ1
(y1 − fz,λ(x1), · · · , yl − fz,λ(xl), 0, · · · , 0)T −

λ2Ljf
(j)
z,λ

λ1(l + u)2
.

Then it follows for any j ∈ {1, · · · , p},

τj∥α̂(j)
z ∥2 ≤

1

lλ1

√√√√ l∑
i=1

(yi − fz,λ(xi))2 +
λ2

λ1(l + u)2
∥Ljf

(j)
z,λ∥2

≤ M + ∥fz,λ∥∞
λ1

√
l

+
λ2w

λ1(l + u)3/2
∥f (j)z,λ∥∞,

where Ljf
(j)
z,λ could also be rewritten as the sum of l + u components.

Based on the above conclusions, we give the proof for boundingH(z, λ).
Proposition 4. The hypothesis errorH(z, λ) defined in Theorem 3 could be bounded by

H(z, λ) ≤ p

(
(M + ∥fz,λ∥∞)√

l
+

λ2w∥fz,λ∥∞
(l + u)3/2

)
,

where fz,λ is defined in equation 26.

Proof. Recall the definitions of fz, fλ and fz,λ, we have

Ez(fz) ≤ Ez (fz) + λ1Ω(fz) +
λ2

(l + u)2

p∑
j=1

(f (j)z )TLjf
(j)
z

≤ Ez (fz,λ) + λ1Ω(fz,λ) +
λ2

(l + u)2

p∑
j=1

(f
(j)
z,λ)

TLjf
(j)
z,λ,

and

Ez (fz,λ) + λ1

p∑
j=1

τj∥f (j)
z,λ∥

2
K(j) +

λ2

(l + u)2

p∑
j=1

(f
(j)
z,λ)

TLjf
(j)
z,λ

≤Ez (fλ) + λ1

p∑
j=1

τj∥f (j)
λ ∥

2
K(j) +

λ2

(l + u)2

p∑
j=1

(f
(j)
λ )TLjf

(j)
λ .
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Then based on the definition ofH(z, λ), we can derive that

H(z, λ) =Ez (π(fz)) + λ1Ω(fz) +
λ2

(l + u)2

p∑
j=1

(f (j)z )TLjf
(j)
z

−

Ez (fλ) + λ1

p∑
j=1

τj∥f (j)
λ ∥

2
K(j) +

λ2

(l + u)2

p∑
j=1

(f
(j)
λ )TLjf

(j)
λ


≤Ez (fz,λ) + λ1Ω(fz,λ) +

λ2

(l + u)2

p∑
j=1

(f
(j)
z,λ)

TLjf
(j)
z,λ

−

Ez (fz,λ) + λ1

p∑
j=1

τj∥f (j)
z,λ∥

2
K(j) +

λ2

(l + u)2

p∑
j=1

(f
(j)
z,λ)

TLjf
(j)
z,λ


≤λ1Ω(fz,λ),

and based on Lemma 4, we have

λ1Ω(fz,λ) = λ1

p∑
j=1

τj∥α̂(j)
z ∥2 ≤ p

M + ∥fz,λ∥∞√
l

+

λ2w max
j=1,··· ,p

∥f (j)z,λ∥∞

(l + u)3/2

 .

The desired results can be obtained by combining the above inequalities.

C.5 BOUNDING MANIFOLD ERRORM(z, λ)

Recall the definition ofM(z, λ), we have

M(z, λ) =
λ2

(l + u)2

p∑
j=1

(f
(j)
λ )TLjf

(j)
λ − λ2

p∑
j=1

〈
f
(j)
λ , Lωf

(j)
λ

〉
2
.

The manifold error can be derived by bounding each of the terms with a reasonable assumption that
the random variables on similarity measureW(·, x), fλ(x)W(·, x) as well as f2

λ(x)W(x, ·) lie in the
additive space of RKHS. Thus we further divide the manifold error into the following 4 parts:

M(z, λ) =M1(z, λ) +M2(z, λ) +M3(z, λ) +M4(z, λ),

where

M1(z, λ) =
λ2

l + u

l+u∑
i=1

(
1

l + u

l+u∑
k=1

f2
λ(xk)W(xk, xi)−

∫
f2
λ(x)W(x, xi)dρX (x)

)
, (27)

M2(z, λ) = λ2

∫
f2
λ(x)

(
1

l + u

l+u∑
i=1

W(x, xi)−
∫
W(x, x′)dρX (x′)

)
dρX (x), (28)

M3(z, λ) =
λ2

l + u

l+u∑
i=1

fλ(xi)

(∫
fλ(x)W(x, xi)dρX (x)− 1

l + u

l+u∑
k=1

fλ(x)W(xk, xi)

)
, (29)

and

M4(z, λ) = λ2

∫
fλ(x)

(∫
fλ(x

′)W(x, x′)dρX (x′)− 1

l + u

l+u∑
i=1

fλ(xi)W(x, xi)

)
dρX (x).

(30)

To analyze the above 4 terms to bound the manifold error, we introduce the following techniques.
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Lemma 5. (Smale & Zhou, 2007) Let ξ be a random variable on Z in a Hilbert space H, which
satisfies ∥ξ∥ ≤Mξ. Denote Var(ξ)= σ2

ξ = E(∥ξ∥2). Then for any δ ∈ (0, 1), there holds

∥ 1

l + u

l+u∑
i=1

[ξi − E(ξ)]∥ ≤
2Mξ log(

2
δ )

l + u
+

(
2σ2

ξ log(
2
δ )

l + u

) 1
2

with confidence 1− δ.
Proposition 5. For all δ ∈ (0, 1), with confidence at least 1− δ, there holds

M(z, λ) ≤ 8wλ2κ
2D(λ) log(8/δ)

λ1 minj{τj}
(l + u)−

1
2 .

Proof. Step 1: BoundingM1(z, λ) in equation 27. Based on the definition of fλ, we have

∥f2
λ(x)W(x, ·)∥ ≤ w∥fλ∥2∞

since ∥fλ∥∞ ≤ κ∥fλ∥K ≤ κ
√

D(λ)
λ1 minj{τj} .

Thus we have

Mξ = ∥f2
λ(x)W(x, ·)∥ ≤ wκ2D(λ)

λ1 minj{τj}
.

and

σ2
ξ = E[∥f2

λ(x)W(x, ·)∥2] ≤ w2κ4D2(λ)

λ2
1 minj{τj}2

.

Applying Lemma 5, we can derive that

M1(z, λ) ≤ λ2

2 log(8δ )

l + u

wκ2D(λ)
λ1 minj τj

+

√
2 log(8δ )

l + u

wκ2D(λ)
λ1 minj{τj}


≤ λ2wκ

2D(λ)
λ1 minj τj

2 log(8δ )

l + u
+

√
2 log(8δ )

l + u


≤

4λ2wκ
2D(λ) log(8δ )√

l + uλ1 minj τj

with confidence of 1− δ/4.

Step 2: BoundingM2(z, λ) in equation 28. Note that ∥W(·, x)∥ ≤ w, E[∥W(·, x)∥2] ≤ w2.

Then, with confidence of 1− δ
4 , we have

M2(z, λ) ≤ λ2

∫
f2
λ(x)w

(
2 log(8/δ)

l + u
+

√
2 log(8/δ)

l + u

)
dρX (x)

≤ λ2w

(
2 log(8/δ)

l + u
+

√
2 log(8/δ)

l + u

)∫
f2
λ(x)dρX (x)

≤ λ2w
4 log(8/δ)√

l + u

wκ2D(λ)
λ1 minj τj

≤ 4λ2wκ
2D(λ)√

l + uλ1 minj τj
log(

8

δ
).

Step 3: BoundingM3(z, λ) in equation 29. It is easy to deduce that

∥fλ(x)W(·, x)∥ ≤ wκ

√
D(λ)

λ1 minj τj
,
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and

E[∥fλ(x)W(·, x)∥2] ≤ w2κ2 D(λ)
λ1 minj τj

.

Then, with confidence of 1− δ
4 , we can derive that

M3(z, λ) =
λ2

l + u

l+u∑
i=1

fλ(xi)

(∫
fλ(x)W(x, xi)dρX (x)− 1

l + u

l+u∑
k=1

fλ(x)W(xk, xi)

)

≤ λ2

l + u

l+u∑
i=1

fλ(xi)wκ

√
D(λ)

λ1 minj τj

2 log(8δ )

l + u
+

√
2 log(8δ )

l + u


≤ λ2wκ

2 D(λ)
λ1 minj τj

4 log(8δ )√
l + u

≤ 4λ2wκ
2D(λ)√

l + uλ1 minj τj
log(

8

δ
).

Step 4: BoundingM4(z, λ) in equation 30. Finally, we can deduce that with confidence of 1− δ/4,

M4(z, λ) ≤ λ2

∫
fλ(x)wκ

√
D(λ)

λ1 minj τj

2 log( 8δ )

l + u
+

√
2 log(8δ )

l + u

 dρX (x)

≤ λ2wκ

√
D(λ)

λ1 minj τj
2
2 log(8δ )√

l + u

∫
fλ(x)dρX (x)

≤ 4λ2wκ
2D(λ)√

l + uλ1 minj τj
log(

8

δ
).

The desired result follows by combining the above estimations.

C.6 PROOF OF THEOREM 2

Then we summarize the above conclusions and analyze the learning rate under mild assumptions.
Proposition 6. Let Assumptions 2-4 be ture. For any δ ∈ (0, 1/2), the following conclusion holds
with confidence 1− 2δ there holds

E (π (fz))− E (fρ)
≤ D(λ) + S(z, λ) +H(z, λ) +M(z, λ)

≤ Crλ
r
1 +

1

2
(E(π(fz))− E(fρ)) + Cζγ +

32M2 log(4/δ)

l + u
+

144M2 log(4/δ)

l + u

+
4
(
3M + κ

√
D(λ)

λ1 minj{τj}

)2
log(4/δ)

3l
+

√
2 log(4/δ)d

l

(
3M + κ

√
D(λ)

λ1 minj{τj}

)2

D(λ)

+p

(
(M + ∥fz,λ∥∞)√

l
+

λ2w∥f (j)z,λ∥∞
(l + u)3/2

)
+

16λ2wκ
2D(λ)√

l + uλ1 minj τj
log(

8

δ
),

where

Cr =

p∑
j=1

(
L
∥∥g∗j∥∥L2(ρX(j))

+

(
2ωκ2 +max

j
{τj}

)∥∥g∗j∥∥2L2(ρX(j))

)
,

γ = max
{
(16M2)

2−ζ
2+ζ (Cζp

1+ζ(4Mr)ζ/(l + u))
2

2+ζ , (8M2)
2−ζ
2+ζ (Cζp

1+ζ(4Mr)ζ/(l + u))
2

2+ζ

}
,

Cζ is a constant, 0 < r ≤ 1/2, 0 < ζ < 2 and fz,λ is defined in equation 26.
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Proof. The above results can be obtained by directly combining the results of Theorem 3 and
Propositions 1-5.

Now, we present the proof of Theorem 2.

Proof. Let λ1 = (l + u)−∆ and λ2 = λ1−r
1 = (l + u)−∆(1−r), where 0 < r ≤ 1/2. According to

Proposition 6, we have

E (π (fz))− E (fρ)
≤C1(l + u)−∆r + C2(l + u)−2/(2+ξ) + C3 log(4/δ)(l + u)−1

+ C4 log(4/δ)(l + u)∆(1−r)−r + C5

√
log(4/δ)(l + u)∆(1−2r)−1/2 + C6(l + u)−1/2

+ C7(l + u)−∆(1−r)−3/2 + C8 log(8/δ)(l + u)−2∆−1/2

≤C9 log(8/δ)
(
(l + u)−∆r + (l + u)−2/(2+ξ) + (l + u)−1 + (l + u)∆(1−r)−r

+(l + u)∆(1−2r)−1/2 + (l + u)−1/2 + (l + u)−∆(1−r)−3/2 + (l + u)−2∆−1/2
)

≤C10 log(8/δ)(l + u)−Θ

where

Θ = min{∆r, 2/(2+ζ), 1, r+∆(r−1),∆(2r−1)+1/2, 1/2} = min{∆r, 2/(2+ζ), r+∆(r−1)},
and ∆ > 0, 0 < r ≤ 1/2, 0 < ζ < 2. And C1, · · · , C10 are positive constants independently of
l, u, δ and r.

D CONVERGENCE ANALYSIS (PROOF OF THEOREM 1)

As described in the main paper, the masks on all features are learned at the upper level of S2MAM,
where a project operation for limiting informative variables is employed. Thus we mainly focus on
the corresponding convergence performance of the upper level of S2MAM.

Notice that the update rule for variable s in practice can be formulated by

st+1 = PC
(
st − ηtLB (α∗(m))∇s ln p

(
m | st

))
, (31)

where LB is the loss on selected sample batch B.

Furthermore, denote the update rules with stochastic and deterministic gradient mappings as

st+1 = st − ηtĜt = PC
(
st − ηtLB (α∗(m))∇s ln p

(
m | st

))
,

st+1 = st − ηtGt = PC
(
st − ηt∇sΦ

(
st
))

.

That is to say,

Ĝt = 1

ηt
(
st − PC

(
st − ηtLB (α∗(m))∇s ln p

(
m | st

)))
=

1

ηt
(
st − st+1

)
,

Gt = 1

ηt
(
st − PC

(
st − ηt∇sΦ

(
st
)))

.

Firstly, we recall some necessary assumptions and definitions for projection operation, which have
been used in existing works on algorithmic convergence analysis on projection optimization for
single-level problems (Bauschke et al., 2012) and bilevel ones (Pedregosa, 2016).

Inspired by some research on bilevel optimization problems (Pedregosa, 2016; Shu et al., 2023; Zhao
et al., 2023) with mini-batch settings, this paper adopts the independently and identically distributed
(i.i.d.) random variables induced by the mini-batch. Notice that ξ(t) = LB (α∗(m))∇s ln p(m |
st) − ∇sΦ(s

t) for t ∈ [1, 2, · · · , T ] are i.i.d random variables with finite variance σ2, since the
mini-batch are drawn i.i.d with a finite number of samples. Furthermore, E

[
ξ(t)
]
= 0 since samples

are drawn uniformly at random.
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Lemma 6. Given a compact convex set C ⊂ Rd and let PC(·) be the projection operator on C, then
for any u ∈ Rd and v ∈ Rd, we have

∥PC(u)− PC(v)∥2 ≤ (u− v)⊤ (PC(u)− PC(v))

Lemma 7. Given a compact convex set C ⊂ Rd and let PC(·) be the projection operator on C, then
for any c ∈ C and u ∈ Rd,v ∈ Rd, we have

∥PC(c+ u)− PC(c+ v)∥ ≤ ∥u− v∥.

Remark 10. Considering c = st, u = ηtLB (α∗(m))∇s ln p(m | st) and v = ∇sΦ(s
t), we can

easily obtain that

∥Ĝt − Gt∥ ≤ ∥LB (α∗(m))∇s ln p(m | st)−∇sΦ(s
t)∥ := ∥ξ(t)∥.

In the following, we present the corresponding proof for Theorem 1.

Proof. Inspired from Theorem 2 in (Pedregosa, 2016), the following holds with Lemma 6 by setting
u = st and v = st − ηtgt,

∥st−st+1∥2 ≤ ηt(LB (α∗(m))∇s ln p(m | st))T (st−st+1) = ηt(LB (α∗(m))∇s ln p(m | st))T Ĝt.

Thus we have
∥Ĝt∥2 ≤

〈
LB (α∗(m))∇s ln p(m | st), Ĝt

〉
.

Recall the random variable ξ(t) = LB (α∗(m))∇s ln p(m | st) − ∇sΦ(s
t) for t ∈ [1, 2, · · · , T ].

Based on the definitions of the stochastic gradient mapping Ĝt and the L smoothness of Φ, we have

Φ
(
st+1

)
− Φ

(
st
)
≤ L

2

∥∥st+1 − st
∥∥2 − 〈∇sΦ

(
st
)
, st − st+1

〉
=

L(ηt)2

2

∥∥∥Ĝt∥∥∥2 − ηt
〈
LB (α∗(m))∇s ln p(m | st)− ξ(t), Ĝt

〉
=

L(ηt)2

2

∥∥∥Ĝt∥∥∥2 − ηt
〈
LB (α∗(m))∇s ln p(m | st), Ĝt

〉
+ ηt

〈
ξ(t), Ĝt

〉
≤ (

L(ηt)2

2
− ηt)

∥∥∥Ĝt∥∥∥2 + ηt
〈
ξ(t),Gt

〉
+ ηt

〈
ξ(t), Ĝt − Gt

〉
≤ (

L(ηt)2

2
− ηt)

∥∥∥Ĝt∥∥∥2 + ηt
〈
ξ(t),Gt

〉
+ ηt∥ξ(t)∥2

≤ (L(ηt)2 − 2ηt)(
∥∥Gt∥∥2 + ∥ξ(t)∥2) + ηt

〈
ξ(t),Gt

〉
+ ηt∥ξ(t)∥2

where the last line is obtained with Lemma 7 and
∥∥∥Ĝt∥∥∥2 ≤ 2(∥Gt∥2 +

∥∥ξ(t)∥∥2).
By summing up from t = 1 to T , we derive that

T∑
t=1

(
2ηt − L(ηt)2

) ∥∥Gt∥∥2 ≤ Φ
(
s1
)
−Φ

(
sT+1

)
+

T∑
t=1

(
ηt
〈
ξ(t),Gt

〉
+ (L(ηt)2 − ηt)

∥∥∥ξ(t)∥∥∥2) .

Since ηt = c√
t
≤ 1

L , we have 2ηt − Lηt ≥ ηt ≥ 0. Denote (ηt)′ = min{ηt, t = 1, · · · , T} = c√
T

.

Then we can derive
T∑

t=1

(
2ηt − L(ηt)2

)
≥

T∑
t=1

ηt,

and
1∑T

t=1 (2η
t − L(ηt)2)

≤ 1∑T
t=1 η

t
≤ 1

T (ηt)′
=

1

c
√
T
.
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Under the assumptions on E[ξ(t)] = 0 and E∥ξ(t)∥2 ≤ σ2, we have

min
1≤t≤T

E
∥∥Gt∥∥2 ≤ ∑T

t=1

(
2ηt − L(ηt)2

)
∥Gt∥2∑T

t=1 (2η
t − L(ηt)2)

≤
Φ
(
s1
)
− Φ

(
sT+1

)
+
∑T

t=1(L(η
t)2 − ηt)σ2

c
√
T

≤
Φ
(
s1
)
− Φ

(
sT+1

)
c
√
T

,

where last inequality is obtained by ηt ≤ 1/L and L(ηt)2 − ηt ≤ 0.

Finally, it can be obtained that

min
1≤t≤T

E
∥∥Gt∥∥2 ≲ O

(
1√
T

)
.

Remark 11. Zhou et.al. Zhou et al. (2022) demonstrate that with assumed variance σ, smoothness
parameter ℓ and learning rate η ≤ 2

ℓ , the average gradient 1
T

∑T
t=1 E ∥Gt∥

2 converges to a small
constant 8−2ℓη

2−ℓη σ2, when T →∞.

Differently, we further adopt the learning rate η = c
t ≤

1
L (c > 0), and new inequalities to further

derive an improved convergence rate, O( 1√
T
), which converges to zero with T →∞.

E OPTIMIZATION DETAILS

E.1 DISCRETE MASKS m TO CONTINUOUS PROBABILITY s

As introduced in (Zhou et al., 2022), the probabilistic bilevel problem indeed is a tight relaxation
(although not equivalent) of the original discrete problem. For completeness, we summarize the
reasons for such transformation:

• The discrete masks m = 0/1 can be represented as a particular stochastic one by letting
si = 0/1, thus we have mins∈C Φ(s) ≤ minm∈C̃ Φ̃(m);

• The constraint on s with ℓ-1 regularization within [0, 1] guides the most components of the
optimal s either 0 or 1, which has already been empirically validated in (Zhou et al., 2022);

• The new probabilistic form can be optimized directly with the gradient-based method as
follows,

∇sΦ(s) = ∇sEp(m|s)L (α∗(m))

= ∇s

∫
L (α∗(m)) p(m | s)dm

=

∫
L (α∗(m))

∇sp(m | s)
p(m | s)

p(m | s)dm

=

∫
L (α∗(m))∇s ln p(m | s)p(m | s)dm

= Ep(m|s)L (α∗(m))∇s ln p(m | s),
which obviously reduced the computation cost of bilevel problems.

E.2 PROJECT OPTIMIZATION FROM PROBABILITY s TO DOMAIN C

Inspired from existing works (Zhao et al., 2023; Zhou et al., 2022), the algorithm for project operation
from probability s to domain C is realized with projection operation PC(s), which is summarized in
Algorithm 2. Indeed, the Lagrangian multiplier as well as the bisection method are employed for
designing this algorithm with closed form solution. The theoretical guarantee for learning masks
on all samples m ∈ RN can be found at (Zhou et al., 2022). Moreover, this paper focuses on the
masks on all variables m ∈ Rp. For completeness, we present the corresponding theoretical proof as
follows.
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Proof. Given variable a ∈ Rp, in order to project a to set C, we introduce the following problem
with constraints:

min
s∈Rp

1

2
∥s− a∥2, s.t.1Ts ≤ C and 0 ≤ si ≤ 1,

where 1 = (1, 1, · · · , 1) ∈ Rp and s is the ideal output after projection.

The above problem can be resolved by the commonly used Lagrangian multiplier method formulated
with:

L(s, b) =
1

2
∥s− a∥2 + b

(
1⊤s− C

)
=

1

2
∥s− (a− b1)∥2 + b

(
1⊤a− C

)
− n

2
b2. (32)

where the auxiliary variable b ≥ 0 and 0 ≤ si ≤ 1.

To minimize above problem equation 32 with respect to s, we can derive that s̃ = 1a−b1≥1 + (a−
b1)1>a−b1>0.

Then we can develop two auxiliary functions as follows:

g(b) = L(s̃, b) =
1

2
∥[a− b1]− + [a− (b+ 1)1]+∥2 + b

(
1⊤a− s

)
− n

2
b2

=
1

2
∥[a− b1]−∥2 +

1

2
∥[a− (b+ 1)1]+∥2 + b

(
1⊤a− s

)
− n

2
b2, for b ≥ 0,

and

g′(b) = 1⊤[b1−a]++1⊤[(b+1)1−a]−+
(
1Ta− s

)
−nb = 1⊤ min(1,max(0,a−b1))−C, for b ≥ 0.

Finally, with the monotone decreasing property of g′(b), a bisection method is exploited to solve the
equation g′(b) = 0 with solution b∗. Because g(b) increases in (−∞, b∗] and decreases in [b∗,+∞),
we can conclude that the maximum of g(b) is obtained at 0 if b∗ ≤ 0 and b∗ if b∗ > 0.

Finally, by setting c∗ = max (0, b∗), we have the output

s∗ = 1a−c∗1≥1 + (a− c∗1)1>a−c∗1>0 = min (1,max (0,a− c∗1)) .

E.3 OPTIMIZATION FOR UPPER-LEVEL PROBLEM

The detailed optimization steps for probabilistic S2MAM have been already introduced in Section
2.4, which has been further summarized in Algorithm 1. Notably, this policy gradient estimation
approach obviously improves the algorithmic efficiency by reducing the computation process on the
hypergradient of bilevel optimization problems.

E.4 OPTIMIZATION FOR LOWER-LEVEL PROBLEM

Based on the principle of the Alternating Direction Method of Multipliers (ADMM), an optimization
algorithm is designed for solving the manifold regularized sparse additive problem at the lower level.
For simplicity, merely the regression task with squared loss is present here.

Here we generate the Gram matrix over labeled and unlabeled points K =
(
K(1), . . . ,K(p)

)
∈

R(l+u)×(l+u)p with masked input m ⊙ xi where i ∈ [1, 2, · · · , l + u], the model coefficient α =(
α(1)T , . . . α(p)T

)T
∈ R(l+u)p, and the label vector Y = (y1, . . . , yl, 0, . . . , 0)

T ∈ Rl+u. Then, the
lower-level problem can be reformulated as

α∗ = arg min
α∈R(l+u)p

1

l
(Y −JKα)T (Y −JKα)+λ1

p∑
j=1

τj

∥∥∥α(j)
∥∥∥
2
+

λ2

(l + u)2
αTKLKα, (33)

where the matrix J = diag(1, . . . , 1, 0, . . . , 0) is an (l+ u)× (l+ u) diagonal matrix with the first l
diagonal entries as 1 and the rest as 0 (Belkin et al., 2006).
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By introducing the auxiliary variable ϑ =
(
ϑ(1)T , . . . , ϑ(p)T

)T
∈ R(l+u)p, ϑ(j) =(

ϑ
(j)
1 , . . . , ϑ

(j)
l+u

)
∈ Rl+u, equation 33 can be rewritten as:

min
α,ϑ

1

l
(Y −JKα)T (Y −JKα)+λ1

p∑
j=1

τj

∥∥∥ϑ(j)
∥∥∥
2
+

λ2

(l + u)2
αTKLKα, s.t. α−ϑ = 0. (34)

Hence, by introducing the auxiliary variable ϑ ∈ R(l+u)p and the Lagrange multiplier Λ ∈ R(l+u)p,
the scaled augmented Lagrangian function of the primal problem equation 33 is

L(α, ϑ,Λ) =
1

l
(Y − JKα)T (Y − JKα) + λ1

p∑
j=1

τj

∥∥∥ϑ(j)
∥∥∥
2

+
λ2

(l + u)2
αTKLKα+

ϱ

2
∥α− ϑ− Λ∥22 −

ϱ

2
∥Λ∥22,

(35)

where ϱ > 0 is a positive penalty coefficient.

Given initialized parameters (α0, ϑ0, Λ0) and convergence criterion ϵ, the manifold regularized
additive regression problem with squared loss can be solved by the following iterative steps:

(1) Fix ϑt and Λt, and update the model coefficient αt+1:

αt+1 = argmin
α

1

l
(Y − JKα)T (Y − JKα) +

λ2

(l + u)2
αTKLKα+

ϱ

2
∥α− ϑt − Λt∥22.

αt+1 can be calculated by the derivative of the objective function, which vanishes at the minimizer:
1

l
(Y − JKα)T (−JK) +

(
λ2

(l + u)2
KLK+ ϱ(α− ϑt − Λt)T

)
α = 0.

(2) Fix αt+1 and Λt, and update the auxiliary variable ϑt+1:

ϑt+1 = argmin
ϑ

1

2
∥αt+1 − ϑ+ Λt∥22 +

λ1

ϱ

p∑
j=1

τj

∥∥∥ϑ(j)
∥∥∥
2
. (36)

With fixed αt+1 and Λt, equation 36 is equivalent to the following p subproblems:

(ϑ(j))t+1 = argmin
ϑ(j)

1

2

∥∥∥(α(j))t+1 − ϑ(j) + (Λ(j))t
∥∥∥2
2
+

λ1τj
ϱ

∥∥∥ϑ(j)
∥∥∥
2
.

Thanks to the soft thresholding operators (Boyd et al., 2011; Chen et al., 2020), we have

(ϑ(j))t+1 = Sλ1τj/ϱ

(
(α(j))t+1 + (Λ(j))t

)
, j = 1, . . . , p,

where the soft thresholding operator S stands for
Sk(a) = (a− k/∥a∥2)+ a.

(3) Fix αt+1 and ϑt+1, and update the Lagrange multiplier Λt+1 :

Λt+1 = Λt + αt+1 − ϑt+1.

Denote the objective function of lower level problem asR(α) (standing forR(α;m;L)) parame-
terized by model coefficient α (and mask m learned by upper level problem, the Laplacian matrix
L). The above three iterative steps form a loop until the following convergence conditions are met at
(t+ 1)-th iteration:

|R(αt+1)−R(αt)| ≤ ϵ. (37)
Then the updating process stops and the output αt+1 can be considered as the desired model coefficient.
Moreover, inspired by (Chen et al., 2020; Yuan et al., 2023), the early-stop condition in equation 37
could also be set as

∥αt+1 − αt∥∞ ≤ ϵ and ∥αt+1 − ϑt+1∥∞ ≤ ϵ.
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E.5 COMPUTATION COMPLEXITY ANALYSIS

With the ϵ-stationary point defined in (Ji et al., 2021; Chu et al., 2024; Zhang et al., 2024), we
conclude that the optimization for the upper problem requires at most T = O(ϵ−2

1 ) iterations before
reaching ϵ1-stationary based on Theorem 1. The lower level requires O(K(l + u)) steps on gradient
computations and O(p(l + u)) assigning masks per outer iteration. Notice that K is the inner
iteration and p is the input dimension. The lower problem optimized by ADMM (Culp, 2011; Culp &
Michailidis, 2008) enjoys the sublinear convergence rate O(1/K) w.r.t. Nash Point with threshold
1/K ≲ ϵ2 when the lower problem satisfies the convexity condition. Please refer to (Wang & Zhao,
2022) for the corresponding proof of general ADMM optimization.

In summary, the computation complexity of S2MAM reaches O
(

p(l+u)
ϵ21ϵ2

)
, which is competitive

with some latest bilevel algorithms(Liu et al., 2022; Xiao et al., 2023). Empirically, please refer to
Appendix B.4 for convergence analysis and Appendix B.7 for some experimental comparisons on
training time cost.

F LIMITATIONS AND DISCUSSIONS

This paper proposes a new bilevel manifold regularization for semi-supervised learning tasks with
an automatic feature masking mechanism. Theoretically, we establish its foundations of learning
theory including the computing convergence and the generalization error analysis. As far as we
know, this is the first work for bounding the excess risk of semi-supervised additive model. And our
results show better convergence performance than (Zhou et al., 2022). Empirically, we verify the
effectiveness of the proposed approach on synthetic datasets and real-world datasets. We designed
the novel optimization algorithm for the proposed manifold regularized sparse additive model (see
Appendix E.4). In the implemented codes, we further provide the settings of spline-based additive
models.

However, there still exist some limitations including the computational difficulties on large-scale
datasets and the assumption of bounded output. Fortunately, as introduced in Appendix B.7, S2MAM
can also deal with high-dimensional data with data preprocessing. An interesting approach for dealing
with high-dimensional data like images is to extract the feature vectors first, which has been widely
employed in some supervised (Su et al., 2023) and semi-supervised works (Qiu et al., 2018; Nie et al.,
2019; Kang et al., 2020; Nie et al., 2021). And the random Fourier technique (Rahimi & Recht, 2007;
Wang et al., 2023) could be further considered to accelerate the computation process. Theoretically,
the bounded condition of the response can be relaxed to include the unbounded output, e.g., replacing
it by the 1 + ϵ moment bounded assumptions (Feng, 2021; Feng & Wu, 2022)). The neural additive
modeling strategy (Agarwal et al., 2021; Yang et al., 2020) is also another interesting and effective
direction to better improve the non-linear approximation ability and prediction performance of
S2MAM. In addition, the current generalization analysis just focuses on the basic model of S2MAM,
which can be further improved to match the bilevel manifold regularization tightly.
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