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ABSTRACT

Animals receive noisy and incomplete information, from which we must learn
how to react in novel situations. A fundamental problem is that training data is
always finite, making it unclear how to generalise to unseen data. But, animals do
react appropriately to unseen data, wielding Occam’s razor to select a parsimo-
nious explanation of the observations. How they do this is called their inductive
bias, and it is implicitly built into the operation of animals’ neural circuits. This
relationship between an observed circuit and its inductive bias is a useful explana-
tory window for neuroscience, allowing design choices to be understood norma-
tively. However, it is generally very difficult to map circuit structure to inductive
bias. In this work we present a neural network tool to bridge this gap. The tool
allows us to meta-learn the inductive bias of neural circuits by learning functions
that a neural circuit finds easy to generalise, since easy-to-generalise functions
are exactly those the circuit chooses to explain incomplete data. We show that
in systems where the inductive bias is known analytically, i.e. linear and ker-
nel regression, our tool recovers it. Then, we show it is able to flexibly extract
inductive biases from differentiable circuits, including spiking neural networks.
This illustrates the intended use of our tool: understanding the role of otherwise
opaque pieces of neural functionality, such as non-linearities, learning rules, or
connectomic data, through the inductive bias they induce.

1 INTRODUCTION

Generalising to unseen data is a fundamental problem for animals and machines: you receive a set
of noisy training data, say an assignment of valence to the activity of a sensory neuron, and must fill
in the gaps to predict valence from activity, Fig. 1A. This is hard since, without prior assumptions, it
is completely underconstrained. Many explanations or hypotheses perfectly fit any dataset (Hume},
1748)), but different choices will lead to wildly different outcomes. Further, the training data is likely
noisy; how you choose to sift the signal from the noise can heavily influence generalisation, Fig. 1B.

Generalising requires prior assumptions about likely explanations of the data. For example, prior
belief that small changes in activity lead to correspondingly small changes in valence would bias you
towards smoother explanations, breaking the tie between options 1 and 2 in Fig. 1A. It is a learner’s
inductive bias that chooses certain, otherwise similarly well-fitting, explanations over others.

A) VALENCE B) VALENCE 4 C) VALENCE
A A *
P
X X TRAINING > Y | .7 \
DATA "
<
4+
X %X i F
* »

>
SENSORY NEURON ACTIVITY

SENSORY NEURON ACTIVITY

SENSORY NEURON ACTIVITY

Figure 1: Generalisation Requires Prior Assumptions. A: The same dataset is perfectly fit by
many functions. B: Different assumptions about signal quality lead to different fittings. C: Training
a 2 (shallow) or 8 (deep) layer ReLU network on the same dataset leads to different generalisations.
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The inductive bias of a learning algorithm, such as a neural network, can be a powerful route to
understanding in both Machine Learning and Neuroscience. Classically, the success of convolu-
tional neural networks can be attributed to their explicit inductive bias towards translation-invariant
classifications (LeCun et al.| [1998)), and these ideas have since been very successfully extended to
networks with a range of structural biases (Bronstein et al., [2021). Further, many network features
have been linked to implicit regularisation of the network, such as the stochasticity of SGD (Mandt
et al} [2017), parameter initialisation (Glorot & Bengiol |2010), early stopping (Hardt et al.,|2016),
or low rank biases of gradient descent|Gunasekar et al.| (2017).

In neuroscience, the inductive bias has been used to assign normative roles to representational or
structural choices via their effect on generalisation. For example, the non-linearity in neural net-
work models of the cerebellum has been shown to have a strong effect on the network’s ability
to generalise functions with different frequency content (Xie et al., [2022). Experimentally, these
network properties vary across the cerebellum, hence this work suggests that each part of the cere-
bellum may be tuned to tasks with particular smoothness properties. This is exemplary of a spate of
recent papers applying similar techniques to visual representations (Bordelon et al.| [2020; [Pandey
et al.| 2021), mechanosensory representations (Pandey et al.l 2021])), and olfaction (Harris}, 2019).

Despite the potential of using inductive bias to understand neural circuits, the approach is limited,
since mapping from learning algorithms to their inductive bias is highly non-trivial. Numerous
circuit features (learning rules, architecture, non-linearities, etc.) influence generalisation. For ex-
ample, training two simple ReLU networks of different depth to classify three data points leads
to different generalisations for non-obvious reasons, Fig. 1C. In constrained cases analytic bridges
have mapped learning algorithms to their inductive bias. In particular, the study of kernel regres-
sion, an algorithm that maps data points to a feature space in which linear regression to labels is then
performed (Sollichl |1998; [Bordelon et al.l 2020; |Simon et al., 2021)), has been influential: all the
cited examples of understanding in neuroscience via inductive bias have used this bridge. However,
it severely limits the approach: most biological circuits cannot be well approximated as performing
a fixed feature map then linearly regressing to labels!

Here, we develop a flexible neural network approach that is able to meta-learn the inductive bias of
essentially any differentiable supervised learning algorithm. It follows a meta-learning framework
(Vanschoren, 2019): an outer neural network (the meta-learner) assigns labels to a dataset, this
labelled dataset is then used in the inner optimisation to train the inner neural network (the learner).
The meta-learner is then trained on a meta-loss which measures the generalisation error of the learner
to unseen data. Through gradient descent on the meta-loss, the meta-learner meta-learns to label
data in a way that the learner finds easy to generalise. These easy-to-generalise functions form
a description of the inductive bias. In other words, if the network receives a few training points
from this function it will generalise appropriately, and generally the network will regularly use this
function to explain finite datasets.

To our knowledge, the most related work is |Li et al|(2021). Li et al. view sets of neural networks,
trained or untrained, as a distribution over the mapping from input to labels. They fit this distribution
by meta-learning the parameters of a gaussian process which assigns a label distribution to each
input. This provides an interpretable summary of fixed sets of network. In our work we do something
very different: rather than focusing on a fixed, static set of networks, we find the inductive biases of
learning algorithms via meta-learning easily learnt functions.

In the following sections we describe our scheme, and validate it by comparing to the known induc-
tive biases of linear and kernel regression. We then extend it in several ways. First, networks are
inductively biased towards areas of function space, not single functions. Therefore we learn a set of
orthogonal functions that a learner finds easy to generalise, providing a richer characterisation of the
inductive bias. Second, we introduce a framework that asks how a given design choice (architecture,
learning rule, non-linearity) effects the inductive bias. To do that, we assemble two networks that
differ only by the design choice in question, then we meta-learn a function that one network finds
much easier to generalise than the other. This can be used to explain why a particular circuit feature
is present. We again validate both schemes against linear and kernel regression. Finally we show
our tool’s flexibility in a series of more adventurous examples: we validate it on a challenging differ-
entiable learner (a spiking neural network); we show it works in high-dimensions by meta-learning
MNIST labels; and we highlight its explanatory power for neuroscience by using it to normatively
explain patterns in recent connectomic data via their inductive bias.



1
2
3

B I N RN

®

10
11

2 A NEURAL NETWORK TO META-LEARN INDUCTIVE BIASES

Our main contribution is a meta-learning framework for extracting the inductive bias of differen-
tiable learning algorithms, Fig. 2A, that we describe in this section. In the outer-loop a neural
network, the meta-learner, assigns labels to input sampled from some distribution, hence creating
the real-world function that our circuit of interest will try to learn. The inner-loop learning algo-
rithm, the learner, is the circuit whose inductive bias we want to extract; for example, a biological
sensory processing circuit that assigns valences to inputs. When provided with a training dataset
of inputs and labels the learner adjusts its parameters according to its internal learning rules. Then
the generalisation error of the trained learner is measured on a held-out test set, and this is used as
the meta-loss to train the meta-learner. This process repeats, retraining the learner at every iteration
and iteratively developing the meta-learner’s weights, until the meta-learner is labelling the data in a
way that the learner finds easy to generalise after training on a few datapoints (we used around 30).
Thus, the meta-learner has extracted a function towards which the learner is inductively biased.

As just outlined, the meta-learner will find the easiest-to-generalise function, usually the one that
assigns all inputs the same label. To avoid this trivial function, we introduce a term in the meta-loss
that forces the distribution of labels to take a particular (non-constant) form. Specifically, it measures
the Sinkhorn divergence between the meta-learner’s label distribution and a uniform distribution
from —1 to 1 (other divergences also work, Appendix B). The full pseudocode is in Algorithm|[I]
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Figure 2: Meta-Learning the Inductive Bias. A: The meta-learner labels a dataset which is used to
train the learner. Gradient descent is performed on a loss made of the learner’s generalisation error
to unseen data (L), and the Sinkhorn divergence between the meta-learner’s label distribution and
a target distribution (L), here choosen to be uniform from —1 to 1. B: The meta-learner learns a
linearly separable labelling of data sampled from a circle for a ridge regression learner. C: For a
kernel regression learner and data sampled from the surface of a sphere, the meta-learner’s labelling
is very close to the predicted spherical harmonic (99% of norm within first order harmonics).

Algorithm 1: Pseudocode for Meta-Learning the Learner’s Inductive Bias

Initialise meta-learner: fy(x)
while Step count < Total do

Generate dataset from input distribution:  ~ p(x)
Label using metalearner: z = fp(x)
Split inputs and labels into test and train datasets: Dy, & D,
Train leaner using D, giving trained learner network: g(x)
Label Dr. using trained learner: 2 = g(x)
Compute the generalisation error of the leaner: £, = >_.(z; — 2;)?
Compute the Sinkhorn Divergence of metalearner’s labels from uniform [—1, 1]: Ly
Take 6 gradient step on meta-loss: £ = L, + Lg
end




Our meta-learner must fit a function that the learner can generalise. To enable the meta-learner to
learn all functions the learner might plausibly generalise well, its function class could usefully be a
superset of the learner’s. Therefore, we choose the meta-learner’s architecture to be a slightly larger
version of the learner’s (though, beyond this, our findings appear robust, Appendix D).

We validate our scheme by meta-learning sensible functions for linear and kernel learners, whose
inductive biases are known. First, for ridge regression on data sampled from a 2D circle the meta-
learner assigns linearly separable labels, Fig. 2B; exactly the labels linear circuits easily generalise.

Next, we meta-learn kernel ridge regression’s inductive bias. Kernel regression involves projecting
the input data through a fixed mapping to a feature space (e.g. the last hidden layer of a fixed neural
network) and performing linear regression from feature space to labels. |Bordelon et al.|(2020) show
that the inductive bias of kernel regression can be understood through the kernel eigenfunctions
({v;(x)} with eigenvalue {);}). These are defined on input distribution p(x) via a kernel k(x, ')
that measures the similarity of two inputs in feature space:

/k(w,m’)vi(w’)dp(m’) = A\ (). (1)

The algorithm is inductively biased towards higher eigenvalue eigenfunctions; i.e., fewer train-
ing points are needed to reach a given generalisation error when fitting high vs. low eigenvalue
eigenfunctions. General functions can be understood by projecting onto the eigenbasis. Hence our
meta-learner, in searching for kernel regression’s easiest-to-generalise non-constant function, should
choose the highest eigenvalue eigenfunction.

To test this, we meta-learn the inductive bias of a two-layer neural network with fixed first layer
weights. We sample data uniformly from the sphere and randomly connect a large hidden layer of
ReLU neurons to the three input neurons. The elements of this random weight matrix are drawn
iid from a standard normal, and the learning algorithm performs ridge regression on the hidden
layer activities. Previous work has analytically derived the kernel for this network, and computed
it’s eigenfunctions (Cho & Saul, [2009; [Mairal & Vert, 2018)), which are spherical harmonics. The
higher the frequency of the spherical harmonics the lower its eigenvalue. Matching this, our network
meta-learns one of the set of lowest frequency spherical harmonics, Fig. 2C.

3 META-LEARNING AREAS OF FUNCTION SPACE

Having validated our tool on some simple test cases, we now extend it to find a richer characterisation
of the inductive bias. A given learning algorithm is inductively biased towards areas of function
space, not just one particular function. To gain access to this larger space, we learn a series of meta-
learners. The first of these is exactly as described above, then we iteratively introduce additional
meta-learners. To ensure each meta-learner learns a new aspect of the inductive bias we add a term
to the meta-loss that penalises the square of the dot product between the current meta-learner’s
labelling and that of all the previously trained meta-learners, Fig. 3A. On a dataset {x,, }:

Cortes = 3 (X Sl (en) ) o)

K3
for each previous meta-learners fy, () and the current meta-learner fo/(x). From the learner’s
perspective nothing has changed, at each meta-step it simply learns to fit the meta-learner that is
currently being trained. But each additional meta-learner must discover an easy-to-generalise func-
tion that is orthogonal to all previous meta-learners.

We again validate this scheme against linear and kernel regression. When tested on linear regression
of 2D data the meta-learners learn two orthogonal linearly separable labellings, then a third orthog-
onal function that the learner struggles to generalise, as expected, Fig. 3B. We then test on the same
kernel regression network we described previously. Theory predicts that the meta-learners should
learn the eigenfunctions in decreasing order of their eigenvalue, and we find that this is true to a
good approximation, Fig. 3C, learning approximations to the three first order spherical harmonics,
and then three approximations to second order spherical harmonics.

For linear classifiers (e.g. linear and kernel regression), the full set of orthogonal functions explains
the entire inductive bias. This won’t be true in general. Nonetheless, we expect the set of orthogonal
functions will still be a helpful guide to a network’s inductive bias, even for non-linear classifiers.
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Figure 3: Meta-Learning Many Functions. A: We learn many meta-learners, each of which has
to label orthogonally to all previous meta-learners. B: For a linear learner the meta-learners learn
two orthogonal linear functions and an orthogonal but hard to learn third function. C: For a kernel
learner we learn 6 meta-learners, the first 3 approximate well first order spherical harmonics (96%
norm overlap), and the next 3 second order spherical harmonics (91% norm overlap), as predicted.

4 FINDING THE EFFECT OF DESIGN CHOICES ON THE INDUCTIVE BIAS

Our work is motivated by the desire to understand how design choices in learning algorithms -
such as architecture, learning rule, and non-linearities - lead to downstream generalisation effects,
particularly in biological networks. One additional setting which we have found useful is to compare
two networks with some architectural difference between them, and learn functions that one of the
networks finds much easier to generalise than the other. In this way, we can build intuition for the
impact of design features on the inductive bias. To illustrate this we again create a meta-learner that
labels data, but this time the labels are used to train two learners. We then train the meta-learner
so that one learner (the chosen student) is much better at generalising than the other (neglected
student). This is done by minimising the generalisation errors of the chosen student minus the
neglected student, Fig. 4A. Validating this approach on well understood algorithms, we show that
it can find functions that a kernel regression algorithm is able to learn better than linear regression,
Fig. 4B, i.e. a non-linearly separable function.
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Figure 4: Meta-learning design choice impact. A: Labellings are learnt such that a chosen student
generalises much better than a neglected one. B: The meta-learner finds a non-linear labelling for
which kernel regression generalises an order of magnitude better than linear regression.

5



This illustrates some of the games that can be played in this setting. For example, you could play
a co-operative game, in which you meta-learn a function that a set of learners all find easy to gen-
eralise, and each learner could have different connectivity matrices to match the distribution in real
animals, ensuring the tool does not over-fit to some specific details. However as the losses become
more complex training becomes harder, for example this adversarial setting between chosen and
neglected student is hard to make robust if the two learners are relatively similar.

5 META-LEARNING APPLIED TO MORE COMPLEX LEARNING ALGORITHMS

So far we have developed and tested a suite of tools for extracting the inductive bias of learning algo-
rithms. We now apply our tools to networks whose inductive bias cannot be understood analytically.
Specifically: we show our method works on a challenging differentiable learner, a spiking neural
network; we validate our method on a high-dimensional MNIST example; and we illustrate how
our tool can give normative explanations for biological circuit features, by meta-learning the impact
of connectivity structures on the generalisation of a model of the fly mushroom body. Our tool is
flexible: by taking gradients through the training procedure we can meta-learn inductive biases for
networks trained using PyTorch. We will provide code on github that produces our figures, including
a basic ReLU network (Appendix [A) which should be easily adapted to networks of interest.

5.1 SPIKING NEURAL NETWORK

The brain, unlike artificial neural networks, computes using spikes. How is an open question. A
recent exciting advance in this area is the surrogate gradient method, which permits gradient based
training of spiking neural networks by smoothing the discontinuous gradient (Neftci et al., 2019
Zenke & Vogels| 2021). We make use of this development to meta-learn the inductive bias of a
spiking network, providing a challenging test case for our method.
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Figure 5: Meta-learning through a Spiking Network. A: Labellings are learnt that the spik-
ing network, with weights trained via surrogate gradient descent, finds easy to generalise. Phase
differences, A¢, are sampled uniformly and used to generate spike train by sampling from a pois-
son process with the following rates: for half the neurons r,, = = (1 + sin(t + 6,,))?, where n
is a neuron index and 6,, are uniformly sampled offsets; for the other half we add a phase shift:
rp = " (1 + sin(t + 0, + Ap))?. These populations represent sensory neurons in the two ears,
and A¢ is the interaural phase difference. This activity feeds into a population of linear-integrate-
and-fire neurons, then onwards to a readout linear-integrate neuron. The valence assigned is the sum
of the readout’s activity over time. B: We learn three orthogonal meta-learners (as in section [3)) and
find the spiking network finds it easiest to learn low frequency functions. Left: the meta-learner’s
target function. Right: the spiking network’s labelling. As can be seen, the spiking network captures
the main behaviour, but increasingly poorly at higher frequencies.
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We study a modification of a model developed for a recent tutorial (Goodman et all, 2022}, [Zenke,
2019), which is trained to assign a label to an incoming spike train. The network is a model of
an interaural phase difference detection circuit. The input spike train is parameterised by a phase
difference, A¢, that generates two sets of spike trains, one in each ear, Fig. EIA These spikes are
processed through a hidden layer of linear-integrate-and-fire neurons (LIF), before reaching a clas-
sification layer. A real-valued valence is assigned by summing the output neuron’s activity over the
trial. The meta-learning framework is as before: the meta-learner assigns valences to input phase
differences, these labels are used to train the spiking network by surrogate gradient descent, then
the meta-learner is trained to minimise the learner’s generalisation error and a distribution loss. Our
method works well, finding a simple smoothness prior, Fig. 5B.

5.2 A HIGH-DIMENSIONAL MNIST EXAMPLE

Next, we test out method on a high-dimensional input dataset. Thus far, to visualise our results,
we have only considered low dimensional input data. We demonstrate that our method continues
to work in high-dimensions by applying it to a dataset made of the 0 and 1 MNIST digits
[T998). We meta-learn a labelling of this dataset that a simple convolutional neural network finds easy
to generalise. Our meta-learner’s architecture is also a convolutional neural network whose outputs
are bounded between 0 and 1, and the meta-learner must learn an easy-to-generalise labelling with
high variance. We find that the meta-learner consistently rediscovers the MNIST digits within the
dataset, separating each digit into its own class, figure [} We return to the important question of
understanding high-dimensional inductive biases in the discussion.
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Figure 6: Meta-Learning on MNIST A: A meta-learner receives MNIST Os and 1s, and assigns
labels, bounded between 0 and 1, that have high variance and can be easily generalised by the learner.
B: 99% of digits are assigned a label, shown in title, consistent with MNIST class.

5.3 INTERPRETING CONNECTIVITY PATTERNS THROUGH THEIR INDUCED INDUCTIVE BIAS

A large maturing source of neuroscience data is (a list of which neurons connect to one another).
However, there is currently a dearth of methods for interpreting this data (Litwin-Kumar & Turagal
[2019). In this section, we show our tool can be used to give normative roles to connectomic patterns
through their induced inductive bias. We study a model of the fly mushroom body, a beautiful circuit

that fruit flies use to assign valence to odours (Aso et al.| 2014 2018]), for which connectomic
data has recently become available (Zheng et al.| 2018} [2022]).

Odorants trigger a subset of the fly’s olfactory receptors. These activations are represented in a small
glomerular population (input neurons), projected to a large layer of Kenyon cells (hidden neurons),
then onwards to output neurons that signal various dimensions of the odour’s valence, Fig.[JA. An
error signal is provided if the fly misclassifies a good odour as bad, or vice versa, allowing the fly
to update its weights and learn appropriate responses. Classically, the input-to-hidden connectivity
was assumed random; i.e., each hidden neuron connects to a few randomly selected input neurons.
However, connectomic data has shown that hidden neurons preferentially connect to some inputs,
and there are input groupings - if a hidden neuron connects to one member of a group it likely
connects to many, Fig [/ID (Zheng et al] 2018} 2022). [Zavitz et al] (2021) tested networks with
this connectivity on a battery of tasks and found that, compared to random, (1) they were better at
identifying odours that activated over-connected inputs, and (2) they generalised assigned valence
across a group (i.e. if you assign high valence to the activation of one neuron, you do the same for
other neurons in the same group).
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Figure 7: Understanding Connectivity via Inductive Bias. A: We model the fly mushroom body
as a ReLU network with one large hidden layer. Each hidden neuron is connected to two of the five
input neurons. B: The meta-learner finds the labelling the learner generalises most easily. We show
this labelling projected against each of the input neuron activities. As can be seen, the labelling
depends on only one neuron’s activity, second from left. C: In the overconnected setting each
hidden neuron still connects to two inputs, but there is a strong bias towards connecting to the first,
highlighted neuron. As a result, the meta-learner settles on a labelling that depends only on this
neuron’s activity. D: We explore the impacts of group connectivity, in which the input neurons are
divided into two groups, and hidden neurons tend to be connected to two neurons from the same
group. E: We train the meta-learner, and find that it’s labelling depends only on neurons within
the same group. The plot shows the projection of the datapoints into a subspace defined by the
two neurons in the red group. The labelling depends linearly on position within this subspace. F:
However, if the input-hidden connections are constrained to be positive, the meta-learner’s labelling
depends only on the average activity within each group, i.e. if one member of a group increases the
output, so do all members; hence, the function generalises across group members.

We used our tool to verify and develop these findings by examining the effect of different connectiv-
ity patterns on the inductive bias of a sparsely-connected model of the mushroom body, Fig.[7A. As
a baseline, fully connected networks are biased towards smooth functions, appendix [A] the simplest
being those that assign valence based on one direction in the input space: high at one end, low at
the other, like in Fig. 2B - C. However, which direction is unimportant; they’re all equally easy to
learn. Sparsity breaks this degeneracy, aligning the easiest to learn functions with the input neuron
basis, figure[7B. As such, sparse connectivity, which is ubiquitous in neuroscience, ensures the fly
is best at assigning labels based on the activity of small collections of neurons. Next, we intro-
duced the observed connectomic structure. Biasing the connectivity broke the degeneracy amongst
neuron axes. The networks were, fairly intuitively, best at generalising functions that depended on
the activity of overconnected inputs, figure[/|C, matching [Zavitz et al] (2021). Finally we introduce
connectivity groups, figure [7D. Without additional changes this does little, the neuron basis is still
preferred and, unlike [Zavitz et al.| (2021)), generalisation across inputs is not observed, figure .
Only when we additionally constrain the input-to-hidden connections to be excitatory (i.e. positive)
do we see that the circuit becomes inductively biased towards functions that generalise across groups
of inputs, figure[7F. In retrospect this can be understood intuitively: positive weights and grouped
connectivity ensure that a hidden neuron that is activated by one input will also be activated by other
group members, encouraging generalisation. This effect is removed by permitting negative weights,
which let members of the same group excite or inhibit the same hidden neuron.

Thus, we verify the findings of |Zavitz et al.[(2021]) without needing to presuppose a battery of tasks.
In doing so we highlight how our tool can be used to gain insight into the role of circuit design
choices, in particular, the importance of the neuron basis for sparsely connected networks.




6 DISCUSSION & CONCLUSIONS

We presented a meta-learning approach to extract the inductive bias of differentiable supervised
learning algorithms, which we hope will be useful in normatively interpreting the role of features of
biological networks. This approach required few assumptions beyond those that make the inductive
bias an interesting way to conceptualise a circuit in the first place. We required, first, the circuit must
be interpretable as performing supervised learning. Second, the input data must be specified. And,
third, you must specify the way the circuit learns, and be able to take gradients through this learning
process. We will discuss each of these requirements and ways they could be relaxed; regardless, it
is heartening that any circuit satisfying these will, in principle, suffice. The analytic bridge between
kernel regression and its inductive bias (Bordelon et al.|[2020; |Simon et al.,|2021)) has already found
multiple uses in biology in just a few years (Bordelon & Pehlevan, 2021} [Pandey et al., 2021} Harris,
2019; [Xie et al.| [2022), despite its stringent assumptions. We hope that relaxing those assumptions
will offer a route to allow these ideas to be applied more broadly.

The first requirement is that the learner performs supervised learning. This is often reasonable. Some
circuits contain explicit supervision or error signals, like the fly mushroom body or the cerebellum
(Shadmehr} [2020)), and generally brain areas that make predictions (i.e., all internal models), can use
their prediction errors as a learning signal. Alternatively, some circuits are well modelled as one area
providing a supervisory signal for another, as in classic systems consolidation (McClelland et al.|
1995)), or receiving supervision from a past version of themselves through replay (van de Ven et al.]
2020). Nevertheless, modelling circuits as performing supervised learning will always be an ap-
proximation, most simply due to unmodelled effects such as neuromodulation. As an illustration of
how our framework could be extended beyond supervised learning, we consider how neuromodula-
tion could be incorporated. There exist models of how neuromodulation influences circuit function,
for example by sharpening neural non-linearities (Ferguson & Cardin, |2020; |Aston-Jones & Cohen,
2005)), and these could be included in the learner model. The meta-learner could then meta-learn
two outputs, one label and one neuromodulator. It’s goal would be to meta-learn functions that
the learner finds easy to generalise with limited quantities of neuromodulatory attention applied to
specific, exemplar, training points.

Next, we could relax our second assumption, access to an input distribution, which is often lacking.
This can be avoided by using real neural data as the input. Or, if neural data is limited, generative
modelling could be used to fit the neural data distribution and new samples drawn from that distri-
bution. Finally, one could imagine a single meta-learner that creates not only the label, but also the
data. That is, the meta-learner could generate the entire dataset by transforming a noise sample into
an input-output pair. This would have to be carefully regularised to avoid trivial input distributions,
but could in principle learn the input statistics that particular networks are tuned to process.

Finally, in a slightly kooky way, we could avoid specifying the learning algorithm by interfacing
with an animal directly! Animals’ inductive biases are objects of interest in their own right, but can
also give insight into the underlying neural processing. These biases could be studied by replacing
the inner learner with a real animal that is trained on a labelled dataset from the meta-learner, then
tested on new datapoints. Since we cannot compute gradients through the computations of a living
animal, the meta-learner could be optimised using black-box optimisation procedures that rely only
on meta-loss evaluations, like the Nelder-Mead method (Singer & Nelder, 2009).

Despite our optimism for this approach, there remain challenges. Most fundamentally, sets of func-
tions that a learner easily generalises are still hard to interpret. We have shown how our tool can
provide insight for low-dimensional inputs (Fig. 2 - 5), by comparing to ground truth labels (Fig. 6),
or by projecting the learnt functions onto an appropriate basis (Fig. 7). However, to make the concept
of inductive bias more powerful, more tools are needed to interpret the resulting functions.

To conclude, the inductive bias is a promising angle from which to understand learning algorithms.
Analytic bridges between circuit design and inductive bias have already ‘explained’ the presence of
aspects of the circuit through their effect on the network’s generalisation properties in both artificial
(Canatar et al.l 2021} [Bahri et al.,[2021) and biological (Bordelon & Pehlevan, [2021}; [Pandey et al.,
20215 Harrisl [2019; (Xie et al., [2022) networks. However, these techniques require very constrain-
ing assumptions. We have dramatically loosened these assumptions and shown our meta-learning
approach can flexibly extract the inductive bias of neural circuits. We have shown its utility in
interpreting connectomic data, and we believe it will prove useful on other datasets and problems.
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A  META-LEARNING A SIMPLE BACKPROP TRAINED RELU NETWORK

A simple test of our framework is a feedfoward ReLU network with 2 hidden layers, learnt using
gradient descent. While the functions this network finds easy to generalise cannot be extracted
analytically, our tool finds that, unsurprisingly, these networks are biased towards smooth explana-
tions of the data, learning six smooth orthogonal classifications that increase in frequency and mean
squared error [§B. We include this example as the simplest PyTorch implementation of learning the
inductive bias of a network trained by gradient descent, in the hope that the code can be easily
adapted for future use.

A) L L B) BAcK-PROP TRAINED RELU LEARNER
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Figure 8: Meta-learning a Backprop Trained Network A: Schematic We meta-learn the functions
a 2-layer ReLU network trained using backprop finds easy to generalise. B: Low Frequency Bias

B USING DIFFERENT DIVERGENCE MEASURES

To persuade the meta-learner to find non-trivial functions, we include a divergence loss that forces
the meta-learner’s label distribution to take a particular form: uniform between -1 and 1. In this
section we show that the particular divergence that we use has little impact on the solutions we find
for learning the easiest-to-generalise function of the kernel learner, figure |%E . Figure EI shows that a
variety of divergence metrics can be used, sinkhorn, an energy statistic from|Székely & Rizzo|(2013),
and the maximum mean discrepancy from Gretton et al. (2012) (implementations from |Djolonga
(2020)). In each case the learnt function has over 99% norm in the space of first order spherical
harmonics, demonstrating that the meta-learner has learnt appropriately.

SINKHORN: 99% ENERGY STATISTIC: 99.5% MMD: 99.6%

LATITUDE 0.75
0
-0.75

Figure 9: We use three different divergence metrics to penalise the meta-learner’s label distribution
for deviating from uniform between -1 and 1. We add these to the meta-loss, along with the gener-
alisation error of the simple kernel learner introduced in section 2. For all three divergence metrics
the meta-learner learns a very close approximation to a first order spherical harmonic, as predicted.

LONGITUDE
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C RANDOM RE-SEEDING CANNOT REPLACE ORTHOGONALISATION

We introduced the orthogonalisation procedure in section [3] so that successive meta-learners have
to explore larger areas of function space. It is legitimate to wonder whether simply re-running the
optimisation would have had the same effect. Here we show it does not, and orthogonalisation is
needed to explore the learner’s inductive bias fully.

We re-run the meta-learner optimisation without any orthogonality terms for the kernel learner de-
scribed in section 2. In figure [T0] we find that the meta-learners find different functions, but only
approximations to the first order spherical harmonics. This makes sense, the meta-learner is tasked
with finding the easiest-to-generalise non-constant function. For this particular learner there is a
degenerate space of such functions and so re-running the meta-learner simply draws another sample
from this space of functions. However, to access the second order spherical harmonics that this
learner still learns, just worse, we need something like the orthogonality constraint.

Figure 10: Re-running the meta-learner 10 times on the kernel regression algorithm from section 2
produces approximations to the first order spherical harmonics, but no second order functions.

D IMPACT OF META-LEARNER ARCHITECTURE ON EXTRACTED FUNCTIONS

We chose the meta-learner’s architecture to be a slightly larger version of the learner’s. Our motiva-
tion for this is that we want the function class of the meta-learner to be a super-set of the learner’s,
so that it can learn all the functions the learner could plausibly generalise well.

We tested how robust our results were to architectural changes in the meta-learner. We used the
simple feedforward 2-hidden layer ReLU network as in Appendix A, trained by backpropagation,
and learnt 6 orthogonal functions that the learner finds easy to generalise. We took our meta-learner
to be a similar feedforward network of different depth from 4 to 0 hidden layers. Figure[TT]shows
that the specific choice of meta-learner didn’t matter for meta-learners with between 2 to 4 layers.
Each learnt 3 approximations to first order spherical harmonics, and 3 to second order harmonics.
But a linear learner can’t learn more than three orthogonal functions, so failed to find more than
three orthogonal generalisable functions.

13



A) ZERO LAYER META-LEARNER (1.E., LINEAR) C) THREE LAYER META-LEARNER
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Figure 11: We meta-learn 6 easy-to-generalise functions for a simple ReLU network using meta-
learners of different depths. This process fails to find more than 3 orthogonal functions when the
meta-learner is linear (A.) (note the small label spread, a symptom of a failure to learn), but meta-
learners with (B.) 2, (C.) 3, or (D.) all find qualitatively similar results
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