Efficient Training of Minimal and Maximal Low-Rank
Recurrent Neural Networks

Anushri Arora Jonathan W. Pillow
Department of Computer Science Princeton Neuroscience Institute
Princeton University Princeton University
aal698@princeton.edu pillow@princeton.edu
Abstract

Low-rank recurrent neural networks (RNNs) provide a powerful framework for
characterizing how neural systems solve complex cognitive tasks. However, fitting
and interpreting these networks remains an important open problem. In this paper,
we develop new methods for efficiently fitting low-rank RNNs in “teacher-training”
settings. In particular, we build upon the neural engineering framework (NEF), in
which RNNs are viewed as approximating an ordinary differential equation (ODE)
of interest using a set of random nonlinear basis functions. This view provides
geometric insight into how the choice of neural nonlinearity (e.g. tanh, ReLU) and
the distribution of model parameters affects an RNN’s representational capacity.
We show that this perspective leads to an online training method that achieves
higher accuracy with smaller networks than previous methods such as FORCE, and
outperform backprop-trained networks of similar size while requiring substantially
less training time. We then consider the problem of finding minimal and maximal
low-RNNs for approximating a target dynamical system. We show that a variant
of orthogonal matching pursuit (OMP) can be used to find the smallest RNN for
a dynamical system of interest. At the other extreme, a dual space formulation
allows for efficient fitting of infinite low-rank RNNSs, which provide a Gaussian
Process (GP) prior over dynamical systems. We use the resulting GP marginal
likelihood to optimize the hyperparameters governing neural activation functions,
which leads to improved training performance even for finite RNNs. Finally, we
describe active learning methods for low-rank RNNs, which speed up training
through the selection of maximally informative activity patterns.

1 Introduction

Recurrent neural networks (RNNs) are a popular tool for characterizing the computational properties
of neural populations and the dynamics underlying complex cognitive tasks [[1H6]. Previous work has
proposed a variety of methods for training RNNs to implement a dynamical system or generate a
target signal of interest, including reservoir computing [[7, [8], FORCE [9, [10]], and back-propagation
[L1H13]]. However, trained RNNs remain difficult to interpret. Common approaches tend to use
search methods to identify fixed points or “slow points”, and then use dimensionality-reduction
methods to visualize projected flow fields around these points [12}|14]]. However, fixed-point finding
algorithms are difficult to apply to high-dimensional systems, and it is often unclear how accurately
low-D projections reflect a network’s true dynamics [2} [15].

To overcome these difficulties, recent work has focused on “low-rank RNNs”, in which the recurrent
weight matrix is constrained to have low rank [3, 16,16} [17]. This literature has shown that a wide
variety of tasks can be implemented in low-rank RNNs, which exhibit dynamics whose dimension is
limited by the rank of the recurrent weight matrix and number of input dimensions.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

A parallel arm of research has focused on methods for embedding low-dimensional quantities into
high-dimensional network activity [[18423]]. Of particular relevance to our work is the Neural Engi-
neering Framework (NEF) which provides an analytical method for determining connection weights
between neurons that implement a desired function or dynamical system. This is achieved via
distributed representations, where each neuron characterizes the target function through a random
nonlinear projection, forming diverse tuning curves across the population. Network connection
weights are then obtained by finding the optimal linear combination of these nonlinear projections
via least-squares regression, enabling complex function approximation.

This approach is closely related to sparse linear approximation methods that seek to use an overcom-
plete library of basis functions to fit the ODEs [24, 25]]. For instance, SINDY proposes using sparse
regression over a pre-specified polynomial basis to reconstruct a system’s dynamics [26]. Moving-
window approaches [27] employ a sliding-horizon scheme: solving a constrained optimization at
each time window, and using statistical tests to prune irrelevant basis functions, thereby maintaining
parsimony over time. More recently, [28] considered linear splines as basis functions, preserving
network expressivity while yielding analytically tractable update rules that improve interpretability.
However, these methods rely on explicit parametric representations of the system dynamics. In
contrast, neural-network Gaussian processes (NNGPs) offer a nonparametric alternative, encoding
priors over function classes defined by infinite-width neural networks [29H31]]. While this has tradi-
tionally been limited to feedforward networks, recent work has extended it to recurrent settings via
untied-weight constructions [32H34].

Here we present a unified framework for designing and training low-rank RNNs that implement a
target dynamical system of interest. We begin with an offline method based on NEF, where each
neuron acts as a nonlinear basis function and least-squares regression embeds a known ODE into
the network. This yields a geometric view of universal approximation, illustrating how nonlinearity
choices (tanh vs ReLLU) shape representational capacity. We then extend this to an online setting
using a recursive least-squares update, and show that our method outperforms FORCE and BP in
network accuracy and convergence speed. Next, we address the critical question of basis selection:
using a variant of orthogonal matching pursuit (OMP), we identify the minimal set of basis functions
needed to implement a given dynamics. We then consider infinite low-rank RNNs, which converge
to a Gaussian process (GP), enabling principled initialization by maximizing the marginal likeli-
hood over hyperparameters governing neural activation functions. Finally, we introduce an active
learning strategy to efficiently select informative datapoints, further reducing training time and data
requirements ﬁ

2 Background: low-rank recurrent neural networks

Consider a population of d rate-based neurons with membrane potentials x = [x1,...,74] and
firing rates ¢(x) = [¢(x1), ..., ¢(zq)] T, where ¢(-) is a scalar nonlinearity mapping the membrane
potential to firing rate (e.g., sigmoid, tanh, ReL.U). The dynamics of a generic RNN are given by a
vector ordinary differential equation and a linear output:

x=-x+J¢p(x)+ Bu, z=Wop(x) (1

where J € R%*? is the recurrent weight matrix, B € R4¥din the input matrix, u is a d;,,-dimensional
input signal, and W € R%u:*4 a readout matrix. This network becomes a low-rank RNN if the
recurrent weight matrix J has reduced rank r < d, thus factorizing as:

J=MNT = Zminj, where {M, N € R¥*"})
=1

Here m;, n; are columns of M, N respectively. In this case, the network state x(¢) evolves within a
subspace of at most r + d;,, dimensions [3,|6], with activity in the remaining dimensions decaying
due to the term (—x). Thus, the network state vector can be expressed as:

x(t) = Mk(t) + Bv(t), 3)

where k(t) represents latent recurrent activity and v(t) denotes low-pass filtered inputs [6] [17].
Finally, & = F'(k, u) represents the differential equation that governs the low-dimensional recurrent
dynamics, where F' is a nonlinear function of the latent state « and input u.

'Code: https://github.com/anushril0/Efficient-Training-of-Minimal-and-Maximal-Low-Rank-RNNs.git

3 An alternate view of low-rank RNNs

Standard approaches to training low-rank RNNs involves optimizing the parameters { N, M, B, W'}
via back-propagation [[17]. Here we consider an alternative approach, which amounts to solving a
least squares regression problem with a set of random nonlinear basis functions.

We begin by considering the problem of embedding an arbitrary low-dimensional dynamical system
into a low-rank RNN. Specifically, we wish to set the model parameters so that z obeys the dynamics
of an particular “target” ODE:

z=g(z) 4)
for some function g. We will then identify this output with the latent vector defining the network’s
activity in the recurrent subspace: z(t) = k(t). This implies that the dimensionality of the output is
equal to the rank of the network, » = d,,;, and constrains the output weights to be the projection
operator onto the column space of M, thatis, W = M (M " M)~!. (If the target output is lower
dimensional than the rank of the network r, we can truncate z to take only its first d,,; elements).

We are then left with the problem of setting the network weights M, IV, and input weights B so that
the latent vector z(t) evolves according to (eq. E]) For simplicity, consider the rank-1 case where z is
scalar. This corresponds to an RNN weight matrix ./ = mn . Assume that the input is also scalar,
and that the input vector b € R¢ is orthogonal to m (although we relax this constraint in ST . The
network state can then be decomposed as a time-varying linear combination of m and b [[16} 16, [17]]
(eq.B):

x(t) = mz(t) + bv(t), Q)
where v (t) represents the low-pass filtered input, resulting from the linear dynamical system v =

—v + u(t). The fact that m and b are orthogonal means that we can write the dynamics that govern
the latent variable explicitly as:

z2=—z+n' ¢(mz+ bv) (6)
a result shown previously in [17], and which is schematized in Fig.[I] Our goal of embedding an
arbitrary ODE ¢(z) into the network can be now viewed as setting the model parameters so that

9(z) +z ~ n'¢(mz +bv))

To achieve this, note that the right-hand-side can be viewed as a linear combination of terms
¢(m;z + b;v) with weights n;, for ¢ € {1,...,d}. Each of these terms can be viewed as a nonlinear
basis function in z. If ¢ is the hyperbolic tangent function, each such term is a shifted, scaled tanh
function in z, where m; is the slope and b;v is the offset. This means that we can view the problem
of embedding ¢(z) into a low-rank RNN as the problem of setting m and b to build an appropriate
set of basis functions, and setting n so that the linear combination of basis functions approximates
g(z) + z. This approach formalizes the connection between low-rank RNNs and the NEF [18], 21]],
and shows that a low-rank RNN corresponds to a neural ODE with a single hidden layer [35H37]).

Already, this perspective makes an important limitation clear: if the inputs v(t) are zero, the basis
functions are all odd-symmetric (that is, g(m;z) = —g(—m;z) for all z), crossing the origin only at
zero. (see Fig.[T[C). Because —z is also odd-symmetric, and the linear combination of odd-symmetric
functions is odd-symmetric, this means that in the absence of inputs, the network can only capture the
odd-symmetric component of g(z). A low-rank RNN is therefore not a universal approximator unless
it has inputs, or equivalently, different biases or offsets to each neuron (similar to general RNNs). If
the ¢ is instead taken to be ReLU, the problem is even more severe: each basis function is a linear
function with non-zero slope on either z > 0 or z < 0. Thus the network can only approximate g(z)
that are piecewise linear functions broken at the origin. (SI Fig. [7).

If we set the filtered input to be the constant v = 1, we see that the problem of embedding an arbitrary
ODE in a low-rank RNN amounts to fitting the ODE in a basis of shifted and scaled basis functions
in z. To achieve this, we propose to sample the scales (elements of m) and offsets (elements of b) to
obtain a random basis, and then fit n by least-squares regression, namely:

n= (¢(Zg7‘ime + bT)T¢(Zgrime + bT))_l(b(Zgrime + bT)T(Q(ng‘d) + Zgrid) (8)

where z,.;4 denotes a grid of points at which we wish to fit g(z). Note that we could use weighted
least squares if we care more about accurately approximating certain regions of g(z), or add a small

A low-rank RNN: B latent space view

basis functions (no input) E basis functions (w/ input)
standard view —

u; input V; integrated input %
(@) R =
o) n’ m m n' SOSX =
Q o) a() N
S—s — = Y
o) z z z E
O latent latent z derivative \ - }ﬁ'}%eé?s%E
O \
X x X

activity x derivative activity
basis functions

. T . T .7 N
Xx=-x+nm ¢(x)+bu z=-z+n'¢(mz+ bv)

Figure 1: Two equivalent views of low-rank RNNs. (A) Standard view of rank-1 RNN with § neurons
x and 1 latent dimension z. (B) Alternate view of the same network, now framed in terms of the
dynamics of latent z. This shows that a low-rank RNN is equivalent to a neural ODE with a single
hidden layer [33]]. (C) Basis functions obtained by sampling slope parameters m; ~ N (0, 1), but
without input (v, = 0). (D) Attempting to fit an example ODE using this basis recovers only the
odd-symmetric component, since all basis functions are odd symmetric. (E) Adding inputs allows
basis functions have random horizontal offsets. Here we sampled the input weights b; ~ N(0, 1)
and set input v; = 1. (Note that this could also be obtained by using per-neuron “biases”). (F) Least
squares fitting of n using the basis from (E) provides good fit to the target ODE.

ridge penalty if the design matrix (whose columns are given by the basis functions evaluated at z4,;4)
is ill-conditioned.

Fig.[T]shows an illustration of this approach for an example ODE, here chosen to be a cubic polynomial
with two stable fixed points and one unstable fixed point. Note that the network cannot approximate
¢(z) when the inputs are set to zero (Fig. -D), but can do so with near-perfect accuracy when both
the m vector and the (constant) inputs b are drawn from a Gaussian distribution (Fig. EE-F).

3.1 Multi-dimensional dynamical systems

We can apply this same regression-based approach to higher-dimensional nonlinear dynamical
systems, where rank » = dim(z) > 1. In two dimensions, the basis functions are given by
¢(mq;21 +ma;2z2 +b;), which are scaled, shifted tanh functions with a random orientation (Fig.).
Approximating a 2D dynamical system with a rank-2 RNN can then be written as the problem of
fitting two different nonlinear functions g1 (z) and g»(z) using two different linear combinations of
the same 2D basis functions:

_|a@] o _[a] . [n{é(Mz+D) 9

g(Z) |:92 (Z):| |:22:| + |:Il;—¢(MZ + b)) ()
where M = [mymy] is a d X 2 matrix whose columns define the slope and orientation of each basis
function, b is once again a column vector of offsets, and we have assumed constant input (v = 1).
Note once again that if we do not include inputs, the basis functions are all radially odd-symmetric

around the origin. Thus, once again, the RNN will only be able to capture radially odd-symmetric
9(z), and is not a universal approximator unless we include nonzero offsets bv # 0.

To embed a given multi-dimensional ODE ¢(z) into a low-rank RNN, we once again generate a
random basis by sampling the elements of M € R4*2 and b € R? from a Gaussian distribution. The
problem factorizes into learning each column vector n; for each dimension of the g, we have:

;= (0(ZgriaM " + D7) ¢(ZgriaM T +07) T d(ZgriaM " +bT) T (9(Zgria) + Zgria), (10)
for ¢ = 1,2. This differs from the 1D case above only in that Zg,.;4 is now a r-column matrix of
grid points, where each row contains the coordinates of a single point in z. Note that these grid
points need not be uniformly sampled; we could sample them from an arbitrary distribution, or use a
collection of points from simulating the ODE from a variety of starting points (SI [E.2).

Fig. 2] shows an application to an example 2-dimensional nonlinear ODE, in this case containing a
stable limit cycle. Note that this 2D system is highly nonlinear and not radially odd-symmetric, so
once again, embedding the system in a low-rank RNN fails if we do not include inputs (or per-neuron

biases, SI [A.2).

A example 2D basis functions B target flow field target dz1/dt target dzo/dt
. Z M l
' - l - C fitted RNN flow field fitted dz1/dt fitted dzo/dt

snan O HE

D simulated activity of 10 example RNN units
1+

2

— —

activity ¢(x)

- 21 = — RNNZz

z RNN z:
1 -2[’ 2 ~2 ‘
0 5 tmes) © 15 0 5 tmes) © 15

Figure 2: Embedding a 2-dimensional nonlinear ODE into a rank-2 RNN. (A) Example basis functions
obtained by sampling M and b coefficients from a zero-mean Gaussian, producing randomly oriented,
scaled, and shifted hyperbolic tangent functions. (B) A target two-dimensional nonlinear dynamical
system, containing a stable limit cycle on a circle of radius one, represented as a flow field (left),
or by its component functions g;(z) = % and go(z) = % (right). (C) Least squares fitting of
weight vectors n; and ny produces a near perfect match to the target flow field, and functions g; and
g2. (D) Output firing rates ¢(x;) for 10 example units (i.e ¢ € {1,...,10}) during the red example
trajectory shown in panel C. (E) Simulated trajectories from the true ODE (blue trace in panel B)
and latent variable of the fitted RNN (red trace from panel C), plotted as a function of time, showing
good agreement between the target ODE and the RNN output. Note that fitting was closed-form, and
did not require backprop-through-time.

4 Comparison with backpropagation (BP) and FORCE

Recursive least squares for online fitting: The previous sections present an offline learning approach
for n via a basis design matrix composed of all points on the grid (z) at which the target ODE (g(z))
is evaluated. Here, we adapt this framework to online learning—a format used by most state-of-
the-art RNN training algorithms. In online learning, at each timestep ¢ € [1,2, - - - T, the network
generates an output ¢ which should match the target trajectory state z;*. Given M target trajectories:
zt.,i € [1,2,- - - M], the objective is to minimize prediction error between network outputs and target
states.

We note, our NEF approach can be modified for such a setting via online recursive updates to
the weight vector n. This translates to a recursive least-squares (RLS) optimization scheme (SI-
Algorithm [T]summarizes our implementation).

Comparison: To evaluate the performance of our method in online learning settings, we compare
against two widely-used training algorithms for RNNs: FORCE learning(9} and BP. Each baseline
is a trajectory-tracking framework, where the goal is to learn vector field dynamics from simulated
low-dimensional trajectories.

We first evaluate on the classical sine wave generation task, originally used to benchmark FORCE
[9]. Our rank-2 networks, with targets comprising both the sine signal and its cumulative integral,
consistently outperform FORCE-trained full-rank networks (weights were drawn from N (0, é))
across all tested network sizes (Fig.[3] A). Notably, our approach achieves lower MSE while requiring
fewer neurons than FORCE, which needs larger networks to suppress chaotic activity to accurately
reproduce oscillatory dynamics (for additional comparisons with FORCE see SI [E3).

We next evaluate on a binary decision-making task modeled by a bistable attractor ODE. Both our
method and networks trained with BP, learn from teacher trajectories that start at random initial

A Comparison against FORCE on sine wave task
Train Loss True vs Target Reconstruction (N=32)

L
i chquR gnEllne Method A B Target
& A Figure 3: (A) Training error
"'%JJ LRARS RS as a function of network size
10° ! hp A /\ M for RNNs trained via FORCE
a VA d hod on the si
i \}H\j!‘ I WHI\/\ J an ourmetlo on the sine-
el U VUVVVY ; wave task. Right panel shows
Number of neurons Time qualitative reconstruction for
B Comparison against backprop on decision-making task: bi-stable attractor

a network with 32 neurons.
(B) Train and test error for
RNNSs trained to perform a bi-
nary decision-making task us-
ing bi-stable attractor dynam-
ics [38,139].

Train Loss Test Loss

Our method
——

gank 1)
(our method)

5 (full rank)
10 (full rank)

5 (rank 1)

n
n
ul

conditions and converge to one of two fixed points (training details: SI [E). As shown in Figure[3|B,
our approach achieves lower test error across comparable network sizes than both full-rank and
low-rank BP-trained networks. Furthermore, our RLS-based approach converges with substantially
reduced training time. These results highlight the efficiency of our framework for capturing structured
low-dimensional dynamics.

5 Finding the smallest RNN for a given dynamical system

Thus far, we’ve introduced both offline and online methods for fitting low-rank RNNs to target
dynamics, assuming access to a predefined set of nonlinear basis functions. This naturally leads to
a fundamental question: how should this basis set be chosen? Equivalently, what is the minimal
network size required to accurately approximate a given dynamical system? To address this, we now
return to the offline setting, where the full target dynamics g(z) are known in advance and z is a scalar.
Our goal is to identify the smallest low-rank RNN—i.e., the minimal number of neurons d’ < d,
that can accurately implement the function ¢(z). Formally, we pose this as a sparse approximation
problem: find a minimal subset of basis functions ®(m, b) and corresponding weights n such that
the network can faithfully reproduce the dynamics. Mathematically, this implies selecting the best d’
entries from ®(m, b), to create a basis:

¢(mi1z+bi1)
(I)d/(m,b): : R where{il,...,id/}§{1,2,...,d}.

(rb(mid/ z + bid/)
Then, a linear weighting [ng n’] is learned using least squares regression, where:

g(z) ~ —ng*z+n' dy(m,I) where {n' =1 x d’ vector} (11)

To achieve the desired optimization of approximating ¢(z), we begin with a large enough ®(m, b)
obtained by sampling from a uniform grid of values for (m, b). We then follow an iterative approach,
wherein at each iteration ¢, we greedily pick a basis function 7; with the highest alignment to the
current residual estimate of g(z). This is done via an adaptation of the well-established orthogonal
matching pursuit (OMP) framework. A more detailed description of this process is provided in SI-
Algorithm 2]

It is worth noting, changing the original basis set (m, b) to ®'(m, b), could result in the algorithm
converging to a different minima (global minima in ®’(m, b) could be different from global minima

in ®(m, b)). However, if the basis sets are equivalent, we observe similar performance across
simulations (SI- Fig[T3)).

We also introduce a continuous extension of this framework [40,41]]. Unlike standard OMP, which
selects from a discrete set of basis functions, continuous-OMP refines each selected basis function by

A (scaled) basis functions selected during OMP

1 neuron 3 neurons 5 neurons 10 neurons
. . . approximation error

OMP
Continuous OMP

\ \ 12345678910
RNN neurons

Figure 4: Finding the smallest RNN for a particular nonlinear dynamical system using orthogonal
matching pursuit (OMP). (A) Scaled basis functions selected after 1, 3, 5, and 10 iterations of OMP,
along with the linear decay term —z for an example ODE (shown below). (B) Target ODE (black)
and RNN fit after each step of OMP. (C) Mean squared error (MSE) between target ODE and RNN
approximation as a function of the number of RNN neurons added by OMP, and our continuous OMP
(COMP) method.

optimizing its parameters. Specifically, after each greedy selection, we optimize the corresponding
(m, b) values by performing gradient descent on the ordinary least-squares objective (Eqn . Thus
we search a continuous space of basis functions rather than being limited to a predefined discrete set,
offering greater flexibility in finding the optimal representation of g(z).

In Fig[d] we apply this method to a simulated 1D ODE, with two stable fixed points and one unstable
fixed point. The first row shows the greedily-added basis functions, multiplied by their corresponding
learned linear weightings. The bottom row shows their linear combination against the true underlying
ODE. Through this iterative process, we observe with just 5 neurons our network almost perfectly
reconstructs the target ODE. Finally, we note our COMP method of optimization allows for fine-
tuning of the basis functions’ parameters, therefore leading to more accurate approximations with
fewer neurons (Fig. [C shows sharper drops in MSE for fewer neurons). We also apply this method
to higher dimensional dynamics (SI [D).

Critically, previous work (e.g., [39, [17]) have similar dynamics which are learned using BP with
much larger networks (typically 512 neurons). Our method instead provides an empirical framework
to find the minimum number of neurons needed to fit dynamics within estimated margins of error.

6 Infinite low-rank RNNs

So far we have taken a “primal space” view of fitting low-rank RNNs, in which we optimize the
linear weights IV over a fixed nonlinear basis in order to fit a dynamical system of interest. In this
section we will instead rely on a dual space view in order to optimize the distribution of nonlinear
basis functions employed in this representation. This view will in turn allow us to consider low-rank
RNNs where the number of units goes to infinity.

For simplicity, we focus on a rank—1 network with constant filtered input (v) given by:

d
9(2) = > _m; p(m;z + b;v) (12)

i=1

Rather than fixing d and optimizing the parameters {n, m, b} directly as we’ve done previously, in
this section we instead take a bayesian perspective by placing prior distributions over the network
weights. This in turn also makes g(z) a random variable, through which we can then characterize
the distribution over functions expressible by the network. More precisely, instead of solving the
regression problem in the primal form (Eqn(g), the dual space view considers the similarity between
inputs z and z’ in feature space denoted by the covariance kernel depicted in Eqn

K(z,2") = E(mp) [qb(mTz +b'v)p(m'z + bTv)] (13)

Furthermore, the Central Limit Theorem ensures that in the limit of infinite basis functions (or

neurons) d — oo, the network output converges to a Gaussian Process: g(z) 4 GP(0, K), thus
revealing that an infinitely wide low-rank RNN is exactly equivalent to a GP over state dynamics.
Additionally, the specific form of the induced kernel is parameterized by the choice of nonlinearity ¢
and the distribution over (m, 7). Specifically, when ¢ = erf(-) and the weights (m, b) ~ N (0, %),
we recover the well known arcsin analytic kernel [31]:

N2 e —1 2252
Ks(z,2") = £ sin <\/(1+2zTZZ)(1+2z’TEz’)> (14)

where the kernel hyperparameters ¥ = {02,, 07, 0/, }, characterize the distribution of this basis.

Thus, given noisy observations of the form y; = g(z;) + €, with € ~ N(0,02), we perform GP
regression and maximize the log marginal likelihood:

logp(y |z, %) = —%yT(Kg + afl[)*ly - %log ||Kg + ai[“ — % log 27r.

Optimizing this objective over X selects a basis distribution that is statistically aligned with the data.
Figure [5] compares GP regression fits under two such choices. Panel A shows the result using a
standard normal prior over (m, b), as is common in the literature [3} [16} [6} [17]; the fit is poor and
uncertainty remains high, especially away from the training points. Panel B shows the result after
optimizing X: the posterior mean better matches the target function, and uncertainty is markedly
reduced. This improvement stems from a data-adaptive kernel matrix that more faithfully captures
the structure of the underlying dynamics. Finally, we train finite rank-1 networks using backprop-
through-time (BPTT) and our online method (RLS) on trajectories generated from the ODE depicted
in Panels A and B. We demonstrate that in both cases, GP-optimized bases yield lower training MSE
than standard-normal bases (Panel C). These findings represent averages over 5 seeds of initialization;
for additional training details see SI [E-2]

Together, these results underscore the sensitivity of low-rank models to their initialization and show
how a principled, inference-based approach can mitigate this sensitivity without relying on extensive
trial and error.

A 0.15 GP covariance (standard) C
target ODE Train Error: Optimized basis vs Standard Normal
posterior predictive
% o] BPTT standard basis ~ BPTT opt basis
it 1 . .
¢ 10 RLS standard basis RLS opt basis
observations
[0}
-0.15 8l S
-8 8 8 o
: g
B 0.15 GP covariance (optimized) u_‘:"
posterior predictive 7]
(optimized GP hyperparams) =1

5 10 50
Number of neurons

-8 P 8 -8 2 8

Figure 5: Low-rank RNN as a Gaussian process. (A) Targed ODE and posterior predictive
distribution for an infinite RNN given a set of observations (red small). Here the GP covariance
function (right) assumes a standard normal prior over basis parameters m and b. (B) Infinite RNN
predictive distribution with optimized GP covariance hyperparameters (values obtained: o2, =
0.6, af = 4.5,0.,5 = 0.01), and resulting GP covariance (right). (C) Comparison of networks
trained by initialization from optimal basis distribution vs the standard normal distribution. Rank 1
networks trained with BPTT & our online method (RLS) achieve lower train MSE. Standard basis
implies network parameters were initialized via standard normal distributions. Opt basis corresponds
to intializing network weights with the GP found hyper-parameters.

7 Active learning for low-rank RNNs

Another consequence of the dual space view is that it naturally suggests an active learning strategy
for sample-efficient fitting of low-rank RNNs. That is, if we can measure the ODE at a limited
number of locations in latent space z and input space v, where should we take those measurements?
Here we build on previous work on adaptive experimental design that proposed selecting inputs
that maximize information gain about the parameters of interest [42H45]]. If we assume independent
Gaussian noise in our measurements of dz/dt, then the maximally informative location (z, v) is the
one that maximizes our uncertainty about the weights n, which in turn corresponds to the maximal
eigenvector of the posterior covariance.

Given the design matrix ® = ¢(mz + bv) and target vector y = g(z) + z, the posterior covariance
over n under a Gaussian prior is proportional to:

S=(0Td+), (15)

where A is the ratio of measurement noise variance to prior variance. For a candidate data-point (z, v)
the predictive distribution is Gaussian with variance:

02(z,v) = ¢(mz+bv) " E ¢(mz + bo) (16)
The most informative point for the next trial is the maximizer of the predictive variance:
(z*,0*) = argmax ¢(mz +bv) (&' +) 71¢(mz + bu), (17)
(z,0)€D

which corresponds to the point in (z, v) space with maximal projection onto the top eigenvector of X.
Intuitively, (T7) targets regions where current uncertainty is maximal, therefore yielding the highest
expected information gain per data point. Each selected point is added to the dataset, and the linear
weight n, is updated using the posterior mean given the data collected so far.

We illustrate this process in Fig. [6|for a system with non-normal dynamics. The heat map represents
02(z,v), while red arrows depict the estimated vector field after each active data acquisition. Initially,
uncertainty is highest in unexplored regions (yellow); as more samples are acquired, the learned
dynamics converge rapidly to the true ODE. Furthermore, it is worth noting that within this setting
we can also compute the minimum number of samples required to obtain a desired MSE; this
bound depends on the dimensionality of the kernel function over the support of our system (i.e., the
eigenspectrum of ® " ® over a grid of z,v € [—1, +1]), and the level of observational noise [46].

In conclusion, by exploiting the closed-form posterior in the dual (kernel) space, we obtain a
computationally efficient and statistically grounded acquisition rule that significantly reduces the
number of samples required to fit the system dynamics.

, A tue ODE B erorinRNNfit € after 1 measurement after 3 measurements .
poin
\\\\\\\\\\\ 1 selected
NONNNNNNNNNN 0 .
LT T T Y YR WA MR NN high
L W W U N T U U W W

»»»»»»»»»»

information
gain

-1 1 1 2 3 4 5
z # measurements

Figure 6: Active learning for low-rank RNNs. (A) Target ODE flow field over latent z and input
v, reflecting non-normal dynamics. (B) Mean squared error of rank-1 RNN approximation as a
function of the number of active learning measurements. (C) Fitted ODE (red arrows) after 1 (left)
and 3 (right) measurements selected using active learning. Heatmap shows the predictive variance
(heatmap) used to compute the most informative point for the next trial (yellow dot).

8 Discussion

In this paper we have introduced several novel methods for low-rank RNNs, including: (1) an
online learning rule for training RNNs that substantially outperforms FORCE and backprop; (2)

methods for finding minimal RNNs (i.e., RNNs with the fewest units) using an extension of OMP; (3)
infinite low-rank RNNs using the equivalent Gaussian Process; and (4) active learning methods for
identifying the most informative points in state space to quickly learn an approximation to an ODE
of interest. Note that the third contribution provides a novel solution to the problem of optimizing
the nonlinear basis functions, that is, optimizing the distribution over M and B parameters so that
the model can accurately implement an ODE of interest. We propose maximum marginal likelihood
of the equivalent GP kernel hyperparameters can thus be used to obtain improved initializations for
low-rank RNNs, even in finite models that are ultimately trained with gradient based methods.

These results also open up several promising directions for future work. We have focused on the
problem of embedding an ODE of interest; an important related problem is to infer low-rank networks
underlying high-dimensional neural observations, a problem recently considered in [37]. Second,
our active learning method assumed the ability to sample arbitrary locations in latent space, which is
unrealistic in practice. A promising future direction is to develop control theoretic methods to find
maximally informative inputs to the system [44]. Finally, we examined GPs equivalent to infinite
RNNs for specific choices of nonlinearity (namely erf, which we explored here, or ReLU [47]),
but designing kernels that best approximate the data and then extending these kernel functions to
closed-form analytic solutions remains an open problem [48]].

Altogether, our contributions establish a theoretical and practical foundation for designing inter-
pretable and sample-efficient low-rank RNNs, with broad applicability in both machine learning and
neuroscience.

10

References

(1]

2

—

3

—

[4

—

(5]

[6

—_

[7

—

[8

—

[9

[

(10]

(1]

(12]

(13]

(14]

[15]

(16]

(17]

(18]

(19]

(20]

Paul Miller, Carlos D Brody, Ranulfo Romo, and Xiao-Jing Wang. A recurrent network model of
somatosensory parametric working memory in the prefrontal cortex. Cerebral Cortex, 13(11):1208-1218,
2003.

Omri Barak. Recurrent neural networks as versatile tools of neuroscience research. Current opinion in
neurobiology, 46:1-6, 2017.

Francesca Mastrogiuseppe and Srdjan Ostojic. Linking connectivity, dynamics, and computations in
low-rank recurrent neural networks. Neuron, 99(3):609-623, 2018.

R. Schaeffer, M. Khona, L. Meshulam, International Brain Laboratory, and Ila R. Fiete. Reverse-engineering
recurrent neural network solutions to a hierarchical inference task for mice. bioRxiv, pages 2020-06, 2020.

Lea Duncker and Maneesh Sahani. Dynamics on the manifold: Identifying computational dynamical
activity from neural population recordings. Current opinion in neurobiology, 70:163-170, 2021.

Alexis Dubreuil, Adrian Valente, Manuel Beiran, Francesca Mastrogiuseppe, and Srdjan Ostojic. The role
of population structure in computations through neural dynamics. Nature neuroscience, 25(6):783-794,
2022.

Herbert Jaeger. The “echo state” approach to analysing and training recurrent neural networks. Bonn,
Germany: German National Research Center for Information Technology GMD Technical Report, 148:34,
2001.

Wolfgang Maass, Thomas Natschldger, and Henry Markram. Real-time computing without stable states: A
new framework for neural computation based on perturbations. Neural Computation, 14:2531-2560, 2002.

David Sussillo and L. F. Abbott. Generating coherent patterns of activity from chaotic neural networks.
Neuron, 63(4):544-557, Aug 2009. doi: 10.1016/j.neuron.2009.07.018. URL http://dx.doi.org/10!
1016/j.neuron.2009.07.018|

Brian DePasquale, Christopher J. Cueva, Kanaka Rajan, G. Sean Escola, and L. F. Abbott. full-force: A
target-based method for training recurrent networks. PLOS ONE, 13(2):1-18, 02 2018. doi: 10.1371/
journal.pone.0191527. URL https://doi.org/10.1371/journal.pone.0191527,

Barak A Pearlmutter. Dynamic recurrent neural networks. 1990.

David Sussillo and Omri Barak. Opening the black box: low-dimensional dynamics in high-dimensional
recurrent neural networks. Neural computation, 25(3):626-649, 2013.

Timothy P Lillicrap and Adam Santoro. Backpropagation through time and the brain. Current opinion in
neurobiology, 55:82-89, 2019.

Valerio Mante, David Sussillo, Krishna V Shenoy, and William T Newsome. Context-dependent computa-
tion by recurrent dynamics in prefrontal cortex. Nature, 503(7474):78-84, 2013.

Alex H Williams, Erin Kunz, Simon Kornblith, and Scott Linderman. Generalized shape metrics on neural
representations. Advances in Neural Information Processing Systems, 34:4738—4750, 2021.

Manuel Beiran, Alexis Dubreuil, Adrian Valente, Francesca Mastrogiuseppe, and Srdjan Ostojic. Shaping
dynamics with multiple populations in low-rank recurrent networks. Neural Computation, 33(6):1572—
1615, 2021.

Adrian Valente, Jonathan W Pillow, and Srdjan Ostojic. Extracting computational mechanisms from neural
data using low-rank rnns. Advances in Neural Information Processing Systems, 35:24072-24086, 2022.

Chris Eliasmith and Charles H Anderson. Neural engineering: Computation, representation, and dynamics
in neurobiological systems. MIT press, 2003.

Terrence C Stewart. A technical overview of the neural engineering framework. University of Waterloo,
110, 2012.

Martin Boerlin, Christian K. Machens, and Sophie Deneve. Predictive coding of dynamical variables

in balanced spiking networks. PLoS Comput Biol, 9(11):¢1003258, 11 2013. doi: 10.1371/journal.pcbi.
1003258. URL http://dx.doi.org/10.1371%2F journal.pcbi.1003258.

11

http://dx.doi.org/10.1016/j.neuron.2009.07.018
http://dx.doi.org/10.1016/j.neuron.2009.07.018
https://doi.org/10.1371/journal.pone.0191527
http://dx.doi.org/10.1371%2Fjournal.pcbi.1003258

[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

[35]

(36]

(37]

(38]

[39]

[40]

[41]

Omri Barak and Sandro Romani. Mapping low-dimensional dynamics to high-dimensional neural activity:
A derivation of the ring model from the neural engineering framework. Neural Computation, 33(3):
827-852,2021.

Larry F Abbott, Brian DePasquale, and Raoul-Martin Memmesheimer. Building functional networks of
spiking model neurons. Nature neuroscience, 19(3):350-355, 2016.

Alireza Alemi, Christian Machens, Sophie Deneve, and Jean-Jacques Slotine. Learning nonlinear dynamics
in efficient, balanced spiking networks using local plasticity rules. In Proceedings of the AAAI conference
on artificial intelligence, volume 32, 2018.

Markus Heinonen, Cagatay Yildiz, Henrik Mannerstrom, Jukka Intosalmi, and Harri Lihdesméki. Learning
unknown ode models with gaussian processes. In International conference on machine learning, pages

1959-1968. PMLR, 2018.

Harish S Bhat, Majerle Reeves, and Ramin Raziperchikolaei. Estimating vector fields from noisy time
series. In 2020 54th Asilomar Conference on Signals, Systems, and Computers, pages 599-606. IEEE,
2020.

Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Sparse identification of nonlinear dynamics with
control (sindyc). IFAC-PapersOnLine, 49(18):710-715, 2016.

Fernando Lejarza and Michael Baldea. Data-driven discovery of the governing equations of dynamical
systems via moving horizon optimization. Scientific reports, 12(1):11836, 2022.

Manuel Brenner, Florian Hess, Jonas M Mikhaeil, Leonard F Bereska, Zahra Monfared, Po-Chen Kuo,
and Daniel Durstewitz. Tractable dendritic rnns for reconstructing nonlinear dynamical systems. In
International conference on machine learning, pages 2292-2320. Pmlr, 2022.

Christopher Williams. Computing with infinite networks. Advances in neural information processing
systems, 9, 1996.

Radford M Neal and Radford M Neal. Priors for infinite networks. Bayesian learning for neural networks,
pages 29-53, 1996.

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington, and Jascha
Sohl-Dickstein. Deep neural networks as gaussian processes. arXiv preprint arXiv:1711.00165, 2017.

Greg Yang. Wide feedforward or recurrent neural networks of any architecture are gaussian processes.
Advances in Neural Information Processing Systems, 32, 2019.

Greg Yang. Scaling limits of wide neural networks with weight sharing: Gaussian process behavior,
gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760, 2019.

Xiang Sun, Seongyoon Kim, and Jung-II Choi. Recurrent neural network-induced gaussian process.
Neurocomputing, 509:75-84, 2022.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential
equations. Advances in neural information processing systems, 31, 2018.

Arthur Pellegrino, N Alex Cayco Gajic, and Angus Chadwick. Low tensor rank learning of neural dynamics.
Advances in Neural Information Processing Systems, 36:11674—11702, 2023.

Matthijs Pals, A Erdem Sagtekin, Felix Pei, Manuel Gloeckler, and Jakob H Macke. Inferring stochastic
low-rank recurrent neural networks from neural data. arxiv [cs. 1g], 2024.

Kong-Fatt Wong and Xiao-Jing Wang. A recurrent network mechanism of time integration in perceptual
decisions. Journal of Neuroscience, 26(4):1314-1328, 2006.

Thomas Zhihao Luo, Timothy Doyeon Kim, Diksha Gupta, Adrian G Bondy, Charles D Kopec, Verity A
Elliot, Brian DePasquale, and Carlos D Brody. Transitions in dynamical regime and neural mode underlie
perceptual decision-making. bioRxiv, pages 2023-10, 2023.

Chaitanya Ekanadham, Daniel Tranchina, and Eero P Simoncelli. Recovery of sparse translation-invariant
signals with continuous basis pursuit. /EEE transactions on signal processing, 59(10):4735-4744, 2011.

Karin C Knudson, Jacob Yates, Alexander Huk, and Jonathan W Pillow. Inferring sparse representations
of continuous signals with continuous orthogonal matching pursuit. Advances in neural information
processing systems, 27, 2014.

12

[42]

[43]

[44]

[45]

[46]

[47]

(48]

David J.C. MacKay. Information-based objective functions for active data selection. Neural Computation,
4(4):590-604, 1992.

Hendrik Kuck, Nando de Freitas, and Arnaud Doucet. Smc samplers for bayesian optimal nonlinear design.
In 2006 IEEE Nonlinear Statistical Signal Processing Workshop, pages 99-102. IEEE, 2006.

Horia Mania, Michael I. Jordan, and Benjamin Recht. Active learning for nonlinear system identification
with guarantees. Journal of Machine Learning Research, 23(32):1-30, 2022. URL http://jmlr.org/
papers/v23/20-807 .htmll

Aditi Jha, Zoe C Ashwood, and Jonathan W Pillow. Active learning for discrete latent variable models.
Neural computation, 36(3):437-474, 2024.

Kathryn Chaloner and Isabella Verdinelli. Bayesian experimental design: A review. Statistical science,
pages 273-304, 1995.

Youngmin Cho and Lawrence Saul. Kernel methods for deep learning. Advances in neural information
processing systems, 22, 2009.

James Benjamin Simon, Sajant Anand, and Mike Deweese. Reverse engineering the neural tangent kernel.
In International Conference on Machine Learning, pages 20215-20231. PMLR, 2022.

13

http://jmlr.org/papers/v23/20-807.html
http://jmlr.org/papers/v23/20-807.html

NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS paper checklist',
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have elaborated on all claims made in the abstract and introduction in the
main paper, and they reflect the paper’s contributions accurately

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

14

Justification: We discuss limitations in the discussion/conclusion section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer:[NA] .
Justification: We do not have any theorems or lemmas, as this is not a theory paper
Guidelines:

* The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided details of all parameters and modeling details in the main
paper.
Guidelines:

15

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: We will release code with the final version of the manuscript. However, we
provide sufficient details to replicate our framework.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Our paper focuses on a closed form solution via regression and are repro-
duce using the classical ridge regression solution, thereby not requiring any specific error
bars/solvers. We provide details on initial conditions which allow reproducing our results.
Additionally, for networks trained via BP we provide necessary details on the task and data
used, with additional training details (epochs trained etc) in the supplement.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Our paper focuses on a closed form solution via regression and are repro-
duce using the classical ridge regression solution, thereby not requiring any specific error
bars/solvers. We provide details on initial conditions which allow reproducing our results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

17

9.

10.

11.

Answer: [Yes]
Justification: We provide details in the main/supplement.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: This paper adheres to the NeurIPS code of conduct.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: We do not envision any societal impact of this work
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

18

https://neurips.cc/public/EthicsGuidelines

12.

13.

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The answer NA means that the paper does not use existing assets
Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: The answer NA means that the paper does not use new assets
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

» At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

19

paperswithcode.com/datasets

14.

15.

16.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method did not involve LLMS for any important, original or non-
standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Choice of nonlinearity

If we consider a network with a rectified-linear instead of a tanh nonlinearity, the restrictions on
the network’s representational capacity in the absence of inputs are even more severe (Fig.[7). In
this case, the basis functions are all scaled and axis-flipped relu functions that intersect the x axis at
x = 0. Thus they can only represent piecewise linear functions composed of two pieces with a knot
at zero. Adding inputs (or per-neuron biases) allows the network to have universal approximation
capabilities.

A basis functions (no input) C basis functions (w/ input)
1

N
£
<
0
-2
V4 z
B target ODE D
N = = fitin basis
5 5
o) o /\
N O N O
© © \
-5 5
-2 0 2 -2 0 2
z z

Figure 7: Representational capacity of a 1D low-rank RNN with rectified-linear (relu) nonlinearity.
(A) Set of basis functions obtained by taking random coeffients m; ~ A(0, 1) but without input
(v¢ = 0). (B) Attempting to fit an example ODE using this basis recovers only a piecewise linear fit
with a kink at zero. (C) By adding inputs, basis functions have random offset as well as slope. Here
we set v, = 1 and sampled the input vector coefficients b; ~ A/(0,1). (D) Least squares fitting of n
in the random basis from (C) provides a high-accuracy approximation to the target ODE.

A.1 Comparison of activation functions in estimating ODEs

In this section, we explore the low-rank RNN’s ability to approximate different types of dynamics
(i.e function classes), with different activation functions (i.e basis functions). Our discussion above
highlights how relu units can approximate functions through piecewise linear components. Non-zero
inputs create basis functions which can be used to compose ODEs with "knots" at the shifted offsets.
Alternatively, through our discussion in Section[3] we note tanh units provide smooth non-linear basis
functions. The non-zero inputs create shifted basis functions, which perform a similar role, with
smooth compositions. Following this intuition, if an ODE consists of smooth non-linear components
it can be hypothesized that tanh units would have higher performance. Whereas, if the ODE consists
of piecewise linear dynamics, relu units would prove to be more optimal. To validate this, we
simulate two such ODEs in Fig.[8] Trivially, in the case of large enough number of basis functions,
networks comprising of relu or tanh units can approximate any function (i.e they behave as universal
approximators). However, to assess performance, we estimate the smallest networks in both cases
that can fit the ODE within a pre-defined margin of error. As expected, the ODE with smoother
non-linearities can be fit with smaller tanh networks than relu networks (the opposite is true for
piecewise linear ODEs).

21

ODE 1

Comparison of activation functions tanh relu

. 5neurons % 12 neurons
2 S
10 s :’:;
= T
w MSE tanh ’
MSE rel
@ o target ODE
= fitin basus/\ /\\ /\
1 § \
10
MSE,.n=5
5 12 6
B _ o _ ODE 2
Comparison of activation functions tanh tanh relu
A 4 neurons 25 neurons 4 neurons
10 _—
= L\@?:‘?ﬁ"x
MSE tanh = - .
L MSE relu e
= target ODE
fit in basis
5
S
-6 MSE, n=4
10 0
25 0 0
Number of neurons z z z

Figure 8: Performance comparison of tanh v/s relu in approximating different ODEs. (A) Depicts an
ODE with two stable fixed points and one unstable fixed points (better fit with a tanh non-linearity).
(B) Depicts an ODE with a shifted knot and two linear components (better fit with a RELU non-
linearity). First column represents MSE (for a network with tanh and relu activations) as a function of
the number of neurons in network. Neurons are added using OMP. The top row of the right column
shows scaled basis functions selected via OMP. The bottom row shows fits (orange) of the target
ODE (black) at the marked iterations of OMP.

A.2 Absence of inputs for limit cycle

Section[3.1]depicts a limit cycle embedded into the low-rank RNN using our framework. The specific
ODE of our non-linear and non-symmetric system is give as -

d 1— (22 + 23

ar M 20— 21 — 0.35
dt 2+zi4e

d 1— (22 +22

dy _ (1 (5 +21) 2+ 20405
dt 22+ +4e

where € is a small constant added for numerical stability. The constant values in each dimension
make the underlying ODE non odd-symmetric.

In this section we show the inability of an RNN without inputs to appropriately approximate this
function. In Fig.[9] the first column represents contour plots of the target ODE for each dimension.
The overlayed vertical and horizontal dashed red lines depict X = z; = 0,Y = 25 = 0 respectively.
Note, there is a slight (left and upwards) shift in the contour plots, indicating the non-radial symmetry.
This is introduced by adding a constant negative decay in z; and a positive correction in 2z5. The
second and third columns represents the fitted ODEs for an RNN with and without inputs respectively.
It can be observed the RNN without inputs is unable to create offsets in any dimension, thus failing at
recovering the underlying ODE. To further highlight this we simulate a sample trajectory from the
polar coordinates of a limit cycle (detailed in Section[3.1) in the last row of Fig.[9} As expected, the
low-rank RNN with inputs almost perfectly overlaps the trajectory, unlike the low-rank RNN without
inputs.

22

Target dz1/dt Fitted dz1/dt with inputs Fitted dz1/dt without inputs

w

Target dz2/dt Fitted dz2/dt with inputs Fitted dz2/dt without inputs

Sample Trajectory

RNN with inputs \ RNN without inputs

True z2
RNN z1 RNN z2

Figure 9: Influence of inputs in capturing non-symmetrical limit cycle

B Online recursive least square (RLS) algorithm

Here we provide additional details on our recursive least-square algorithm. Specifically, for an
observed target trajectory {z;};_,, with the initial state z:

Algorithm 1 Online RLS for Low-Rank RNNs

1: Inputs: target trajectory {z; }L_,, step size dt.

2: Initialize: Basis parameters: m, bias b, weights n < 0, Precision P + A1

3: fort =1to71 do

4: Basis vector ¢y < ¢(mz, + b)

5 Zi —Zy—1
dt

6: Prediction §; < n' ¢, — z,

7. Errore; < y; — U

8

9:

0:

1:

Target derivative y, < (finite difference)

L
1+¢/ P,
Weight update n < n + k; e;
Covariance update P < P — k; ¢, P
end for

Gain k; <

C General formulation & application to binary decision making task

We apply our framework to a specific group of binary decision making tasks commonly observed
in systems neuroscience. In this task, a rat accumulates evidence of auditory pulses over time from
clicks on its left and right side. At the end of the stimulus period, the rat must turn to the side which
produced more clicks, and is rewarded for inferring this correctly. It has been shown that multiple
underlying dynamical portraits could represent this behavior [39]]. We thus show applicability of our
method by using it to recover the autonomous and input driven dynamics on four separate synthetically
generated dynamic portraits linked to this task [39]]. Here, intuitively, the input dynamics encode

23

for the accumulation of evidence based on the clicks, and a final decision to turn is made once the
accumulation value reaches a specific attractor in the network. For instance, if the instrinsic dynamics
encode a bi-stable attractor, each of the end points represent a specific decision, and the inputs move
the dynamics along a line between them [38]. Additionally, consistent with previous studies, we
model our simulations to provide equal weights to left and right clicks but with opposite magnitudes.

We model four flow fields representing intrinsic dynamics, namely a bi-stable attractor, a line attractor,
a non-canonical line attractor and the flow field inferred from [39]. More formally, they are given as
follows -

Bistable attractors:
dz; = 1021 (0.7 + 21)(0.7 — 21)dt + cudt

dzg = —102odt
Classic DDM - line attractor:
dey — {cudt z1 € (—0.7,0.7)
1021(0.7 — 21)(0.7 + 21)dt 2z ¢ (—0.7,0.7)
dzg = —302o (18)

Non-canonical line attractor:
dz1 = 5zo
dzg = —bHzodt + cudt
Unsupervised model:
dz1 = 521(0.85 4 21)(0.85 — z1)dt + cudt
dze = 5(0.5|z1] + 0.1) (21 — 1.222)

Here, z1, 2o, represent the two latent dimensions, u represents the magnitude of the input clicks, and
c represents if its positive or negative.

Critically, we observe the input dynamics lie in a dimension parallel to the recurrent activity. Or
alternatively, drive the system in the dimensionality spanned by the recurrent activity. We thus present
a general formulation of our equations to model these input dynamics. Following Eqn[3] for a scalar
z, we now not only observe orthogonal (b = b,.,,) neuron specific inputs, but additional input
dynamics that influence the recurrent activity (b, spans the same direction as m), thus updating

Eqn[5]as :
X(t) = mz(t) + bparvpaT'(t) + bperpvperp(t)a (19)

where {V,q,(t), Vperp(t)} represent the low-pass filtered inputs which drive activity along and
perpendicular to the recurrent dimensions respectively.

Our goal of embedding the ODE ¢(z) into the network can now be viewed as setting the model
parameters so that

g(z) +z ~ n'¢(mz+ bparVpar(t) + bperpperp(t)) (20)

This allows us to follow a similar setup to our discussions in Sec. 3, with the exception that auditory
inputs are applied along by, or b = by, or both.

As shown in Fig each row represents one of the above dynamical regimes. The first column
represents the dynamics along 27, or 22, and the RNN fitted version. Next, we model two right (or
positive) clicks at ¢ = 0.5 and ¢t = 1 second and a single left (negative) click at ¢ = 2.5 second. The
second column represents the ODE when we start from (z = 0), pushed by these input dynamics,
for our fitted RNN dynamics (Eqn|6) against the true ODE (computed using Euler method). Lastly,
we also recover the underlying flow fields, as indicated by the last column. In Fig[TT] we embed a
non-canonical line-attractor in which input axis is perpendicular to the line attractor and non-normal
dynamics give rise to movement along the line attractor. We successfully embedded all three of these
systems with rank 1 RNNs. Lastly, we also embed a system with rotational dynamics between fixed
points with integration along the diagonal between them. This is done through a rank 2 RNN with
inputs along each of the directions spanned by b, (Fig.|11|B). This proves the flexibility of our
framework in embedding dynamics associated with neuroscience tasks.

24

A Bi-Stable Attractor

1D Flow Field Auditory inputs driving trajectory 2D Flow Field learnt by 1D RNN
o SV YV
4.0 5 § ¥4
BNV NS
R IR A A T R | e
% g ~ » ’ “ “ g
NO z | o4 —--|- - - -
=] N et > -« . ‘ v~
- Sl alv v v b
AN RN
<
-4.0 \
|08 MZEERREREIAN
1.0 , 10 00 0510152025 30 3540 -1.0 10
Time in seconds RNN Learnt Dimension z :Ea,\jﬁlefltODE
——@Stable FP
O Unstable FP
B Line Attractor i Left Click occured
) ! Right Click
1D Flow Field Auditory inputs driving trajectory 2D Flow Field learnt by 1D RNN 0.8 Richt 8.;§k occured
0.8 1.0 -0.8 Left Click value
c
Ee]
[}
Sy v b b v ' '
s g v v
o' z | — a . .
© E\ N i 0
g ‘ b t 4 [
£
1.0 <
-0.8 -1.0
-1.0 z 1.0 0.0 05 1.0 1.5 2.0 25 3.0 35 4.0 -1.0 1.0
Time in seconds RNN Learnt Dimension

Figure 10: Two different dynamical portraits for binary decision making task: (A) bi-stable attractor
ODE and (B) line attractor ODE. First column represents the true underlying ODE and the RNN
estimate learned using least squares. Second column depicts a sample trajectory driven by momentary
input clicks. A right click creates a drift towards the positive stable fixed point where as a left click,
towards the negative stable fixed point for A. For B, accumulation along the line takes place with no
diffusion. Third column represents the flow-field estimated by the RNN.

A Non-canonical RNN line B Unsu?erwsed -model

attractor flow field low field
NN NN\] T oin
e YN b Ak,
_9\\\\ NONON NN R R
2 T BEERY
o ‘ P PR
[— Al RN o o4t
a LmeAttractor N ¢ ot
5 x %X % % ~ % % % ¥ ; N | I
o .
=3 AN NI N N R . oot !
SENENENENENENENENEN A~~~+ff{
AINNNNNNNNNN b vy oyt
- z1 1 - z1 1
| | Inputpulse train I | inputpulse train
| |
0.5 .
inp dim 0.8 1\6\(“
12d'\(\'\
27d,'m
Rank 1 RNN Rank 2 RNN
-0.5 -0.5

0 time(s)—» 4 0 time(s) —» 4

Figure 11: Two additional dynamical portraits for binary decision making task. Top: flow-field for
each ODE, with input driven trajectory highlighted in blue. Bottom: true and fitted trajectories over
time for each dimension.

25

D OMP algorithm and it’s application to a limit cycle ODE

The detailed algorithm for OMP is given here:

Algorithm 2 OMP for finding smallest RNN

1: Select a grid of values z.

Create global basis set ® using uniformly sampled m, b values.

Initialize n weights using linear decay term only: ng = —(z'z) "'z g(z).
Initialize residual: ro = g(z) — ng * (—2)

Initialize solution basis set, @ = 0.

At each iteration ¢:

1. Find basis vector with highest correlation with residual:

AN AN

I argmax||¢iTrt,1||| (21

2. If entry ¢ is not in the solution basis:

* Add new entry to the solution basis, ®; < ;

* Solve to find new linear weights [ng, n}] using Eqn
* Solve to find new linear weights n} using Eqn

* Compute the updated residual:

re=g(z) - [”0‘(_Z)] , (22)

l’l; T (I)f,
3. Check for termination based on a predefined sparsity threshold

d' = len(®;) (23)

D.1 Smallest RNN for 2D Limit Cycle

Following our discussion on the multi-dimensional case and the smallest RNN (Sec. 3.1} 5]), we
apply our framework to learn the smallest number of neurons needed to fit an RNN for the limit cycle
flow-field (equations provided in SI.[A.2)). Specifically, we apply both our OMP and COMP method
to greedily add neurons that best approximate the target ODE. Fig [12]highlights the advantage of our
COMP and OMP methods in designing small RNNs. Additionally we note, for our COMP method,
with just 20 neurons the ODE fits are qualitatively similar to the true target, with much lower MSE
values compared to OMP. This showcases the advantage of COMP as the basis parameter space
increase.

D.2 Parameter distribution of random basis for OMP

In this section we delve into the role of the distribution from which the random basis is sampled.
As shown in Section[5] each basis function approximates the ODE (g(z)) over some finite domain
(z). Thus, first, it is critical the basis functions span the domain of the function being approximated.
Second, these functions need not be odd symmetric and hence basis functions need to also be shifted
to capture these movements. As shown in Fig[[3), as long as these properties are met (i.e both
the uniform grid and standard normal generate basis functions in the same domain, with the same
offset ranges), the exact underlying distribution from which the basis functions are drawn does not
play a critical role when finding the smallest low-rank RNN. This can be seen as the MSE values
follow similar trends with greedy addition of basis functions (panel D). Qualitatively, this can also be
observed via similar reconstruction of the ODE across iterations of OMP (panel A,B). Note however,
by changing the distribution from which ® is drawn the exact basis picked are different, as the global
optimal basis are no longer the same (panel C).

26

neurons=5 neurons= 10 neurons= 20 MSE vs Number of Neurons

target dzy /dt

= SgEmEs . -

target dzo/dt

! Imuwz/,u’ 'l | l—‘! ' ! I! l
10 15 20
»RNN 1

T P R e

time (s) time (s) time (s) time (s) time (s) time (s)

True vs Reconstructed
Trajectory

 latent -

Figure 12: COMP and OMP for 2d Limit Cycle. The first row depicts the estimated flow-field for
dimension one. The second row depicts the estimated flow-field for dimension two. Last row shows
true vs the RNN reconstructed trajectory for both OMP and COMP. We show fits and reconstructions
for 5, 10, 20 neurons that are added via OMP and COMP respectively. Right most panel depicts the
mean squared error (on log-scale) as a function of the number of neurons. Note COMP shows much
steeper drops in MSE, compared to OMP.

ODE fits with OMP . .
A 1 Neuron 8 Neuro '5 Neurons C Scaled basis functions D o
_ with 5 neurons approximation error
- = [8
go X . gl =< <
° =] ﬁ \ Basis: Normal Distribution

\ Basis: Uniform Distribution

RNN neurons

Figure 13: Influence of distribution of basis functions. (A,B) RNN estimated fit of Bi-stable attractor
ODE the true underlying ODE over 1,3,5 iterations of OMP. In the top row basis functions (both m;
and b;) are generated over a uniform grid spanning +1 to —1. Alternatively the bottom row consists
of basis functions generated from a standard normal (i.e m; ~ N(0,1), and b; ~ N(0,1)). (C)
Scaled basis functions selected after 5 OMP iterations, with the top row drawn from the dniform
distribution and the bottom row from the normal distribution. (D) Mean squared error (MSE) between
target ODE and RNN approximation as a function of the number of RNN neurons added by OMP
(blue: basis functions drawn from uniform grid, green: basis functions drawn from standard normal).

E Additional training details

E.1 Backprop comparison for a binary decision making ODE

In Section] both our framework and the networks trained with Backprop are trained and tested
from a set of teacher trajectories, which are simulated from the underlying ODE (eg., in the binary
decision-making task, trajectories originate from random initial conditions and evolve toward one of
two fixed points). To generate each trajectory, we used Euler integration with a time step of d¢ = 0.01
over a duration of 4 seconds, yielding 400 time steps per trajectory. A total of 160 unique initial
conditions were uniformly sampled along the z-axis. Of these, 150 were used for training and the
remaining 10 for testing. Each of the networks trained via BP in Fig [3] were trained for 15 epochs,
with a batch size of 10 per epoch. Thus, a total of 150 gradient steps were performed (performance
plateaued at 100 gradient steps). Additionally, each of the networks were trained over three random
seeds of initializations, where parameters were initialized from standard normal distributions. The
values reported in Fig [3]correspond to the best performing seed. Lastly, to compare performance we
trained our networks via our online RLS implementation. Once training was complete (using the 150
training trajectories), we used the final n weight to test performance.

27

We report training times in Table[I] Note, our framework provides significantly faster training.

Table 1: Training Time For Binary-Decision Making Task

Model Type Size Time(s)

Low Rank (r = 1) 5 62.419
Low Rank (r=1) 10 62.468

Full Rank 2 29.161
Full Rank 3 29.209
Full Rank 5 29.025
Full Rank 10 29.392
Full Rank 50 28.998
Our Model 5 0.069

E.2 Target tracking task: Compare networks with optimal bases vs standard normal bases

To compare performance for networks trained with optimized basis against those trained with the stan-
dard normal basis, we derive a target matching problem from the ODE presented in Figure 5] (Panels
A and B). Specifically, we used a set of four starting locations in z given by: [7.92,4.72,2.3, —7.36].
We then rolled out the dynamics (as per the ODE) using an Euler integration for a total of a 1000
time-steps, with d¢ = 0.1. Each of these trajectories (originating from each of the start locations)
converged to a specific stable fixed point. We then compared rank 1 RNNs trained via our Online
Method (RLS) and those trained with BPTT. Our RLS method achieves near perfect performance
after a single epoch, while BPTT trained networks were trained for 5 epochs. MSE results presented
are averaged over 5 random seeds of initialization.

E.3 FORCE Comparisons
E.3.1 Lorenz Attractor Trajectory

Following our discussion in Sec.] we present an additional evaluation using a more challenging
target trajectory: the Lorenz attractor, a well-known chaotic system defined by the set of coupled
nonlinear differential equations

dz d dz

S —o—a), L=alp-2) -y, T =wy-p, (24)
using standard parameters o = 10, p = 28, and § = 8/3. We simulated the trajectory using Euler
integration with a time step of d¢ = 0.01 for a total of 7" = 3000 steps (30 seconds of data), and used
the scaled x(t) signal as the target output (as in [9]). While our method was trained on (and able to
reconstruct) all three variables Z = [z(t), y(t), and z(t)], only reconstructions of x(t) are shown
for comparison, as this is the only signal used in the FORCE training objective [9]. Specifically in
our case, this can be formalized as a rank-3 RNN, written as the problem of fitting three different

nonlinear functions %%, % and % using three different linear combinations of the same 3D basis

. dt dt
functions:
df’f T n] ¢(MZ +b)
Y~ —|y|+ |ngp(MZ+Db)|, (25)
dz z nj ¢(MZ +b)

where M = [m;moms] is ad x 3 matrix, b is once again a column vector of offsets, and we have
assumed a constant filtered input, v = 1.

We compare networks trained using our online learning framework against those trained with the
FORCE algorithm. For FORCE, we used a recurrent gain of g = 1.5 and trained each network
across 10 random seeds; our method was similarly evaluated with the same number of seeds. Fig
[I4] reports mean squared error (MSE) averaged across seeds, along with representative trajectory
reconstructions.

As in previous experiments, our method consistently achieves lower MSE with fewer neurons.
Qualitatively, this is also evident in the trajectory reconstructions: our networks produce more

28

accurate fits at smaller sizes (/N = 16, 64) than FORCE, which fails to reliably capture the signal
until larger networks (for instance showed with N = 1024). Additionally, this further highlights that
our networks converge more rapidly than those trained with FORCE.

Comparison against FORCE on Lorenz Attractor

MSE on trajectory

10° 4
10-14
10-2 4

FORCE
103 4 Our Online Method

MSE

104 4

1075 4

10 102 108
Number of neurons
Target

FORCE
Our Online Method

True vs Target Reconstruction (N=16)

Figure 14: Top Row: Mean squared error (MSE) in log scale across networks of varying size (left).
Bottom Rows: True vs reconstructed z(t) trajectory from the Lorenz system, (green our method,
blue FORCE) for networks of size 16, 64, 1024.

29

E.3.2 Application to noisy data

We further validate our framework by discussing it’s application to noisy data. Specifically, we
simulated a target signal for a total of 7' = 1000 seconds. This signal was sampled with a discrete
time bin of dt = 0.1, thus 10,000 time steps of the target wave were obtained. We then added
independent gaussian noise: N ~ (0,0.05), at each time step of the trajectory to obtain the noisy
target (also used in FORCE [9]). While the target output is a 1-d signal, we used the trajectory and
it’s two cumulative sums to fit our networks (thus needing rank 3 network). We trained RNNs using
our RLS method, FORCE and BPTT (rank 3, 4). To ensure a consistent comparison, in Fig. @We
report the training MSE (averaged across 5 seeds) after one epoch: a single pass over the 10, 000-step
sequence, across all methods. We see highest performance with our RLS method. Additionally, both
RLS and FORCE achieve near-perfect performance in a single pass, while BPTT typically requires
5-8 epochs to reach comparable errors.

A Target Signal: Noisy Sine Wave B FORCE vs BPTT vs Our Online Method (RLS)
. BPTT (rank 4) RLS (rank 3)
1 2 BPTT (rank 3) FORCE
a
2(t) § 10
w
%)
-1 =
0 200 400 600 800 1000 16"

8 16 64 128 256 512 1024
Number of neurons

Time (seconds)

Figure 15: Networks fit on a noisy sum of four sinusoids target signal. A: Target trajectory sampled
for T' = 1000 seconds. B: Training Mean Squared Error (in log scale) of networks trained with
FORCE, BPTT and our Online Method (RLS)

E.3.3 Additional discussion on our online (RLS) method and the FORCE Framework

Below we discuss some ways in which our methodology differs from the FORCE/FULL-FORCE
[9} [10] training schemes.

1. Initialization with Full-Rank weight matrix: FORCE/FULL-FORCE methods require
full rank-initializations, and learn low-rank updates on this initilalization over time. This
comes at the cost of interpretibility as the dynamics of such networks need to be analysed
post training through methods such as PCA. On the other hand, our offline and online
framework directly models the latent low-dimensional dynamic and doesn’t ever need
full-rank initializations.

2. Senstive to initialization and requires multiple epochs: One of the motivations of FORCE
is that it introduces the benefits of training networks that exhibit chaotic activity prior to
training. While powerful, it is observed this results in these networks needing multiple
epochs/iterations. Additionally, these networks exhibit stochastic results based on initializa-
tion (e.g based on the parameter g). In contrast, our methods provide a deterministic closed
form updates.

3. Doesn’t directly embed an ODE, but produces a set of target trajectories: A stark
difference between our offline framework is unlike other training methodologies similar to
FORCE and FULL-FORCE that can only be trained against target trajectories, we can also
directly model the underlying ODE. Thus, in cases where such a hypothesized ODE exists,
we can represent the entire space of the low-dimensional dynamic.

F Embedding higher dimensional ODEs

To highlight the ability of our framework to embed higher dimensional ODEs, we train a network to
perform the n-bit flip flop task [[12]. Specifically, we consider the case where n = 10. In this case,

30

the network receives 10 binary inputs at random times, and produces 10 binary outputs. The network
is expected to maintain it’s output if the inputs received are the same, or alternatively switch it’s
output if the opposite input pulse is presented. We successfully embed such a task using a rank 10
network with 10 neurons. We design our networks such that each neuron is required to keep track
of a single input pulse, thus requiring 10 neurons. Note, this could be arbitrarily scaled up to any
number of input pulses, by simply scaling up the number of neurons in the network. In Fig. [I6] each
neuron is presented with random positive or negative input pulses in blue, to which it must respond
appropriately. Our method generates the required output as seen via the activity («(¢)) of 4 example
neurons from this network. The network was simulated for 7" = 50 seconds, sampled at dt = 0.01.
Concretely, this was achieved by rolling out the equivalent high-dimensional network dynamics given
by:

X = —x+ MN'"¢(x)+ Bu (26)

In our case, M, N, B are randomly drawn from standard normal distributions. u represents the input
pulse train seen in blue, and the vector of neural activity x(¢) represents the desired output.

10 bit flip flop task

Neuron 1 Neuron 2

1
1
m— [nput
-1 _ _ _ Neuron
Activity

Neuron 3 Neuron 4
1
1

0O 10 20 30 40 50 0 10 20 30 40 50
Time (seconds) Time (seconds)

Figure 16: RNN generating appropriate response for the 10 bit flip-flop task. Neuron Activity, x(t)
of 4 example neurons is shown.

31

	Introduction
	Background: low-rank recurrent neural networks
	An alternate view of low-rank RNNs
	Multi-dimensional dynamical systems

	Comparison with backpropagation (BP) and FORCE
	Finding the smallest RNN for a given dynamical system
	Infinite low-rank RNNs
	Active learning for low-rank RNNs
	Discussion
	Choice of nonlinearity
	Comparison of activation functions in estimating ODEs
	Absence of inputs for limit cycle

	Online recursive least square (RLS) algorithm
	General formulation & application to binary decision making task
	OMP algorithm and it's application to a limit cycle ODE
	Smallest RNN for 2D Limit Cycle
	Parameter distribution of random basis for OMP

	Additional training details
	Backprop comparison for a binary decision making ODE
	Target tracking task: Compare networks with optimal bases vs standard normal bases
	FORCE Comparisons
	Lorenz Attractor Trajectory
	Application to noisy data
	Additional discussion on our online (RLS) method and the FORCE Framework

	Embedding higher dimensional ODEs

