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ABSTRACT

Diffusion models (DMs) have demonstrated remarkable generative capabilities in
image generation but also pose privacy and copyright risks by memorizing and
exposing training images. This concern is heightened by privacy regulations such
as GDPR, which grant individuals the right to request the deletion of their data
from AI models. Machine unlearning (MU) has been proposed to address this
issue, as it enables the selective removal of specific training data from AI mod-
els. However, most existing MU methods for DMs primarily focus on unlearning
at the class level—either by removing entire classes of data or class-specific fea-
tures. In contrast, sample-level machine unlearning (SLMU), which targets the
removal of individual training samples, remains an underexplored area. SISS is
the pioneering work on SLMU for DMs. However, after careful investigation, we
find that the evaluation metric used in SISS does not adequately assess unlearning
performance. Moreover, under our proposed evaluation framework, SISS cannot
achieve complete unlearning and presents significant degradation in generative
performance. In this paper, we first define the objective of SLMU for DMs. Build-
ing on this definition, we introduce a quantitative evaluation framework for con-
structing benchmarks that compare different methods. Using this framework, we
are the first to identify the fake unlearning phenomenon. Additionally, we propose
a novel Sample-Level Machine Unlearning approach for Diffusion models, termed
SMUD. SMUD alters the generative path of the targeted images, leading the DM
to generate different images. Quantitative experimental results against baselines
demonstrate that the proposed SMUD is the only method that can achieve SLMU
without fake unlearning for both unconditional and conditional DMs.

1 INTRODUCTION

Diffusion models (DMs) have gained significant attention as powerful generative models. Trained
on large-scale image datasets, DMs generate high-fidelity images that align closely with the train-
ing data distribution. DMs are broadly classified into two types: unconditional and conditional.
Unconditional DMs generate high-quality images from Gaussian random inputs without additional
information Ho et al. (2020); Nichol & Dhariwal (2021). In contrast, conditional DMs leverage aux-
iliary information to guide the generation process, enabling tasks such as text-to-image generation
Rombach et al. (2022); Ramesh et al. (2022); Saharia et al. (2022b) and image-to-image translation
Meng et al. (2022); Lugmayr et al. (2022); Saharia et al. (2022a).

However, alongside their impressive generative capabilities, DMs also raise privacy concerns; for
instance, both unconditional and conditional DMs can generate duplicates of training images Wang
et al. (2024b); Somepalli et al. (2023); Carlini et al. (2023); Chen et al. (2024b), leading to privacy
breaches and copyright infringement. DMs present strong memorization, i.e., most generated data
are duplicates of the training data when trained on small datasets Yoon et al. (2023); Baptista et al.
(2025); Gu et al. (2023); Zhang et al. (2024b). Currently, some regulations, such as the General Data
Protection Regulation (GDPR) GDP (2016) and the California Consumer Privacy Act (CCPA) CCP
(2018), are addressing privacy and copyright risks. These regulations grant individuals the right to
request the deletion of their data from a well-trained AI model.

Machine unlearning (MU) Bourtoule et al. (2021) has been proposed to remove the training data
from a trained AI model to ensure privacy and copyright compliance. MU solutions can be catego-
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rized into exact unlearning and approximate unlearning Thudi et al. (2022). Exact unlearning Bour-
toule et al. (2021); Yan et al. (2022) removes the training data from the model through algorithmic-
level retraining and applies ensemble models for acceleration. Approximate unlearning Mehta et al.
(2022); Golatkar et al. (2020b); Neel et al. (2021) aims to minimize the influence of targeted data
points to an acceptable level rather than completely removing them. However, the above-mentioned
unlearning methods are designed for classification models and unsuitable for DMs. Details about
MU for classification models are available in Appendix A.1. On the other hand, most existing MU
methods for DMs are primarily focus on class-level MU, such as unlearning an entire class of data
or a class of features Zhang et al. (2024c;a); Li et al. (2024a); Fan et al. (2024); Fuchi & Takagi
(2024); Gandikota et al. (2023). These methods cannot solve the finer-grained sample-level ma-
chine unlearning (SLMU) since they require a conditioning input and unlearn all features related to
the input. Details about MU for DMs are available in Appendix A.2.

Another challenge of SLMU for DMs lies in defining appropriate evaluation metrics that measure
how well the DMs unlearn the targeted samples. For class-level MU in DMs, we can evaluate
the performance of MU methods by verifying whether the unlearned DMs generate the targeted
classes or features, but this evaluation is not suitable for SLMU. On the other hand, evaluation
metrics for SLMU in classification models are usually based on the model’s output Chundawat et al.
(2023); Fan et al. (2024); Chen et al. (2023a); Foster et al. (2024); Kurmanji et al. (2024); Liu et al.
(2024). However, these metrics are unsuitable for DMs, as the output of a DM is a random three-
dimensional vector rather than a deterministic classification vector. Furthermore, the distributions
of the generated images before and after unlearning may appear indistinguishable Stadler et al.
(2022); Yuan et al. (2024a;b) since the targeted unlearning data are in-distribution for SLMU. SISS
Alberti et al. (2025) is the pioneering work in SLMU for DMs. However, after careful investigation
(detail in Section 3.2), we find that the evaluation metric used in SISS is inadequate. Besides, SISS
is built on a problematic assumption, i.e., fine-tuning on X \ A can unlearn the unlearning set A
from the pretrained model, as Baseline-F in Fig. 7 and 14 in Appendix cannot achieve complete
unlearning. Under our proposed evaluation framework, SISS fails to achieve complete unlearning
and exhibits significant degradation in generative performance. To address these research gaps, this
paper introduces a novel method—Sample-level Machine Unlearning for Diffusion models, termed
as SMUD. SMUD alters the generative path of the targeted unlearning images, causing the DM to
generate different images from those initially presented. Besides, this paper proposes a quantitative
evaluation framework based on the memorization property of DMs, which can be used to construct
a benchmark and thus provides a foundation for future research.

In summary, the paper makes the following contributions:

• We propose a novel quantitative evaluation framework for SLMU in DMs, leveraging
DMs’ memorization property, which can be used to construct a benchmark and thus pro-
vides a foundation for future research.

• To the best of our knowledge, we are the first to observe the fake unlearning phenomenon
in machine unlearning and incorporate it into the proposed evaluation framework.

• We propose a novel SLMU method, SMUD, which intentionally changes the generation
path of the targeted images to avoid generating them.

• We provide a comprehensive evaluation of the proposed SMUD. Quantitative results
against four baselines demonstrate that our proposed SMUD is the only method to achieve
SLMU without fake unlearning for both unconditional and conditional DMs.

2 PRELIMINARIES FOR DIFFUSION MODELS

The DMs introduced in this section are based on DDPM Ho et al. (2020). DDPM operates in
two stages, i.e., the forward and reverse processes. The forward process starts from clean data
x0 and iteratively adds Gaussian noise to the data for T steps until the data xT becomes nearly
indistinguishable from pure Gaussian noise. Given a forward process step t, xt can be calculated by,

xt (x0, ϵ) =
√
ᾱtx0 +

√
1− ᾱtϵ for ϵ ∼ N (0, I), (1)

where ᾱt is a pre-defined parameter and t ∈ {1, 2, · · · , T}. The reverse process starts from pure
Gaussian noise x̂T ∼ N (0, I) and iteratively denoises the data with the estimated noise, ϵ̂ =
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Figure 1: Demonstration of memorization of DMs where the original image is not included in the
training dataset of reference DDPM but included in that of pre-trained DDPM.

ϵθ(x̂t, t), where ϵθ is a trainable approximator, until getting x̂0. Given x̂t, x̂t−1 can be calculated
by,

x̂t−1 =
1
√
αt

(
x̂t −

1− αt√
1− ᾱt

ϵθ (x̂t, t)

)
+ σtzt, (2)

where t ∈ {1, 2, · · · , T}, zt ∼ N (0, I), and σt and αt are pre-defined parameters. To make
the distribution of x̂0 similar to that of x0, the deep learning-based approximator ϵθ is optimized
according to the following loss function,

L(ϵθ) = Et,x0,ϵ

[∥∥ϵ− ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ, t

)∥∥2] . (3)

On the other hand, conditional DDPM incorporates conditioning input into the reverse process en-
abling more targeted and controlled generation. The forward process of conditional DDPM is the
same as Eq.(1). But it considers the conditioning input c to estimate the noise at the step t of the
reverse process. Given x̂t in the reverse process of conditional DDPM, x̂t−1 can be calculated by,

ϵ̂ = ϵθ (x̂t, t, ∅) + β (ϵθ (x̂t, t, c)− ϵθ (x̂t, t, ∅)) ,

x̂t−1 =
1
√
αt

(
x̂t −

1− αt√
1− ᾱt

ϵ̂

)
+ σtzt,

(4)

where c is the conditioning input, ∅ is the feature for the null condition that is usually a zero vector,
and β is a scalar for the conditional scale. Accordingly, the loss function of conditional DDPM is
calculated by,

Lc(ϵθ) = Et,x0,ϵ

[∥∥ϵ− ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ, t, c

)∥∥2] . (5)

3 EVALUATION FRAMEWORK

In this section, we first define the objectives of SLMU in DMs and then present the proposed evalu-
ation framework based on this definition.

3.1 OBJECTIVE DEFINITION

The objective of SLMU for general machine learning models has been defined in Bourtoule et al.
(2021) based on the distribution of model parameters. However, the distribution of model parameters
is hard to measure for evaluation purposes. Moreover, we need to train multiple DMs to estimate the
parameter distribution, which is unrealistic considering the computational requirements of training a
DM. On the other hand, the provider of image generation service usually keeps the model parameters
private and releases an API for users to generate synthetic images using a well-trained DM. In
this scenario, potential privacy breaches and the impact of individual data are primarily manifested
through the generated images. In this regard, Definition 1 defines the objective of SLMU for DMs
based on the distribution of generated images.
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Definition 1 Let θp denote a pretrained DM that is trained on dataset D. Select a subset Du from
D as the unlearning set and retain set Dr = D\Du. Given an SLMU mechanismM, the unlearned
DM θu is obtained by θu =M(θp, Dr, Du). Let Pu denote the distribution of the images generated
by θu. The objectives ofM are to (i) increase the similarity between Pu and the distribution of the
retain set and (ii) erase the memorization of Du in θp.

Note: Same as Alberti et al. (2025), the size of the unlearning set Du is assumed to be much smaller
than that of the training dataset D. As a result, Dr has a similar distribution to D.

3.2 PROPOSED EVALUATION FRAMEWORK

In this Section, we first present challenges in evaluation metrics for SLMU and describe the prob-
lems with the evaluation metrics proposed in Alberti et al. (2025). Then, the proposed quantitative
evaluation framework is introduced.

Challenges in evaluation metrics. As outlined in Definition 1, SLMU in DMs has two primary
objectives. Objective (i) can be effectively evaluated using the FID Heusel et al. (2017). However,
objective (ii) presents a significant challenge—there is no clear method to definitively determine if
the memorization of Du has been fully unlearned. The main reason is that the distribution of the
training dataset D is indistinguishable from that of the retain set Dr under practical metrics, as the
size of the unlearning set Du is small and its samples are in-distribution. Therefore, if objective (i)
is met, the distributions of generated data before and after unlearning are indistinguishable. This
phenomenon has also been observed in Stadler et al. (2022); Yuan et al. (2024a;b).

Problems with existing evaluation metrics. In Fig. 1, the original image xori is part of the training
dataset D for the pretrained DDPM, while the reference DDPM is trained on D \ {xori}. In this
setup, the reference DDPM serves as the ideal unlearned model for the pretrained DDPM, where
the unlearning set Du = {xori}. To evaluate the memorization, we generate a noised image with
400 forward steps, which retains partial information from the original image. Note that after 1000
forward steps, the image becomes pure Gaussian noise and is non-reconstructable. We then conduct
400 reverse steps to reconstruct the image using both the pretrained and reference DDPMs. As
depicted in Fig. 1, the pretrained DDPM reconstructs an image that is nearly identical to the original,
while the reference DDPM reconstructs an image that slightly differs from the original. The authors
of SISS Alberti et al. (2025) argue that a larger difference between the original and reconstructed
images indicates more effective unlearning. However, this definition is problematic. As shown in
Fig. 1 and Fig. 3, although the reference DDPM has never seen the original image during training,
it can reconstruct an image that closely resembles the original image. Since the reference model
is the ideal unlearned model, we cannot conclude that a larger difference between the original and
reconstructed images necessarily means more effective unlearning.

Proposed quantitative evaluation metric. We use the strong memorization of DMs for evaluation
instead of the process demonstrated in Fig. 1 used in Alberti et al. (2025). First, a DM is pretrained
on a small dataset D. Second, generate a synthetic dataset D̂p with the pretrained DM. Third, select
the replicates of D’s data from the synthetic dataset D̂p, using the same method as Yoon et al.
(2023); Gu et al. (2023). The unlearning set Du is constructed by the N most memorized training
data. Then, we unlearn the pretrained DM and generate a synthetic dataset D̂u with the unlearned
DM. Last, we select (using the same method as Yoon et al. (2023); Gu et al. (2023)) and count the
duplicates of Du’s data from D̂u as the quantitative evaluation metric, which is termed as Number
of Duplicates of the Unlearning Set (NDUS). Smaller NDUS means better unlearning.

Fake unlearning. In our preliminary experiments, we observed that initially unlearned DMs, which
do not generate duplicates of images from the unlearning set, start to generate such duplicates after
fine-tuning on the retain set. This phenomenon is termed as fake unlearning. The unlearned DM
initially avoids generating duplicates due to the performance degradation caused by the unlearning
process, and fine-tuning the unlearned model on the retain set can recover the generative perfor-
mance. Fake unlearning indicates that the DM does not completely forget the unlearning data. We
incorporate this fake unlearning in our proposed evaluation framework by measuring NDUS after
fine-tuning the unlearned DM on the retain set. The overall evaluation framework is summarized in
Appendix B.
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Rationale behind NDUS. According to Theorem 4.3 in Baptista et al. (2025), during the reverse
process of DMs, if any intermediate result enters the Voronoi cell of a training sample, the generation
trajectory will converge to that sample. Experimental results in Baptista et al. (2025) also show that
DMs always generate duplicates of training data when the model has enough parameters. This
finding is consistent with other works Yoon et al. (2023); Gu et al. (2023); Zhang et al. (2024b).
Based on this theorem, if a DM stops generating previously memorized data, we can infer that it
has unlearned that training sample. However, as discussed earlier, fake unlearning can occur due
to a decline in generative performance during the unlearning process. To address this, we fine-tune
the unlearned DM on the retain set to recover its generative capabilities and then check whether it
generates the previously memorized data.

4 SAMPLE-LEVEL MACHINE UNLEARNING FOR DIFFUSION MODELS

In this section, we first provide a detailed introduction to SMUD for unconditional DMs and then
briefly describe SMUD for conditional DMs, which is largely identical to the unconditional case.

4.1 SMUD FOR UNCONDITIONAL DMS

To achieve the objectives of SLMU, we first define the noised reverse process for unconditional
DMs as follows,

x̂t−1 =
1
√
αt

(
x̂t −

1− αt√
1− ᾱt

(ϵθ(x̂t, t) + γϵ′)

)
+ σtzt, (6)

where γ ∈ (0,∞) is a coefficient controlling the noise amplitude, ϵ′ ∼ N (0, I), and other parame-
ters and variables are the same as Eq.(2). Eq.(6) can be rewritten as,

x̂t−1 =
1
√
αt

(
x̂t −

1− αt√
1− ᾱt

(ϵθ(x̂t, t))

)
+

γ(1− αt)√
αt(1− ᾱt)

ϵ′ + σtzt. (7)

The summary of the last two terms in Eq.(7), i.e., γ(1−αt)√
αt(1−ᾱt)

ϵ′ + σtzt, follows a Gaussian distri-

bution with mean value of 0 since both ϵ′ and zt follows N (0, I). Therefore, the noised reverse
process Eq.(7) can be seen a standard reverse process Eq.(2) with a larger σt. According to the
analysis in Kynkäänniemi et al. (2019), if γ is properly chosen (neither too large nor too small), and
given the same x̂T , well-trained ϵθ, and zt, the noised and standard reverse processes will produce
different images. This has been experimentally validated in Section 5.1.

To achieve SLMU, we use the noised reversed process to fine-tune the pretrained DM on the un-
learning set. Specifically, we add a Gaussian noise to ϵθ(xt, t) and use the result as the label to
optimize ϵθ(xt, t) when the input x0 is sampled from unlearning set Du. The unlearning loss Lu

for unconditional DMs is calculated as,

Lu(ϵθ) = Et,x0∈Du,ϵ and ϵ′∼N (0,I)[∥ϵ′θ(xt, t) + γϵ′ − ϵθ(xt, t)∥2], (8)

where ϵ′θ is a copy of ϵθ and not optimized during unlearning, γ ∈ (0,∞) controls the noise
amplitude, ϵ′ ∼ N (0, I), and other parameters are the same as Eq.(3). Optimizing ϵθ by minimizing
Eq.(8) alters the generation path of the unlearning set images to other images and thus achieve
SLMU. Moreover, this unlearning loss does not significantly affect the generation performance, as
the altered images remain within the distribution of the training dataset.

On the other hand, the distribution of the images generated by the unlearned model is required
to be similar to the distribution of the retain set Dr as discussed in Definition 1. To achieve this
objective, when the input x0 is sampled from the retain set, we apply the original loss functions of
unconditional DMs as the retain loss Lr, i.e.,

Lr(ϵθ) = Et,x0∈Dr,ϵ∼N (0,I)[∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)∥2]. (9)

We optimize the approximator by minimizing the unlearning loss Eq.(8) every Ninterval optimization
steps to facilitate unlearning while by minimizing the retain loss Eq.(9) at each optimization step to
preserve the model’s generative capability.

5
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4.2 SMUD FOR CONDITIONAL DMS

Similar to the unconditional DDPM, the noised reverse process for conditional DMs is defined as,
ϵ̂ = ϵθ (x̂t, t, ∅) + β (ϵθ (x̂t, t, c)− ϵθ (x̂t, t, ∅)) ,

x̂t−1 =
1
√
αt

(
x̂t −

1− αt√
1− ᾱt

(ϵ̂+ γϵ′)

)
+ σtzt,

(10)

where γ ∈ (0,∞) is a coefficient controlling the noise amplitude and ϵ′ ∼ N (0, I). Similar to
the unconditional case, the noised reverse process Eq.(10) can be seen a standard reverse process
Eq.(4) with a larger σt. According to the analysis in Kynkäänniemi et al. (2019), if γ is properly
chosen (neither too large nor too small), and given the same x̂T , well-trained ϵθ, and zt, the noised
and standard reverse processes will produce different images that follow a distribution similar to the
training dataset, which has been validated experimentally in Section 5.1.

Unlike unconditional DMs, unlearning set images’ information is encoded in ϵθ when the conditions
are either c (the ground-truth condition) or ∅ (the null condition). To simulate the reverse process
Eq.(10), the unlearning loss, Lu, for conditional DMs is calculated by,

yc = (
√
ᾱtx0 +

√
1− ᾱtϵ, t, c), y∅ = (

√
ᾱtx0 +

√
1− ᾱtϵ, t, ∅),

Lu(ϵθ) = Et,x0∈Du,ϵ and ϵ′∼N (0,I)[∥ϵ′θ(yc) + γϵ′ − ϵθ(yc)∥2 + ∥ϵ′θ(y∅) + γϵ′ − ϵθ(y∅)∥2].
(11)

Similar to the unconditional case, we need to optimize ϵθ according to the retain loss to maintain
the generative capability of the DM. The retain loss, Lr, for conditional DMs is calculated as,

Lr(ϵθ) = Et,x0∈Dr,ϵ∼N (0,I)[∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t, c)∥2]. (12)

The pipeline of SMUD is summarized in Appendix C.

5 EXPERIMENTS

In this section, we quantitatively evaluate SMUD with the proposed evaluation framework. Then,
we qualitatively evaluate SMUD trained on a large dataset as demonstrated in Fig. 1.

5.1 EVALUATION OF NOISED REVERSE PROCESSES

To evaluate the effectiveness of the noised reverse process Eq.(6) for unconditional DMs, we apply
the pretrained θp to generate images using standard reverse process, i.e., γ = 0 in Eq.(6), and
noised reverse process, i.e., γ > 0 in Eq.(6). As shown in the left column of Fig. 2, when γ is
small, e.g., γ = 0.05, the images generated by the standard and noised reverse processes are almost
the same. When γ becomes larger, e.g., γ = 0.1, the images generated by the standard and noised
reverse processes become more different. Note that zt and X̂T in Eq.(2) keep the same by using
the same random seed across different γ values. These results demonstrate that injecting Gaussian
noise into ϵθ(x̂t, t) can alter the generated samples while ensuring that they remain consistent with
the training distribution. Consequently, the proposed SMUD preserves the generative capability of
the model after unlearning. Similar observations are obtained for conditional DMs, as illustrated in
the right column of Fig. 2.

5.2 BASELINES AND EVALUATION METRICS.

In this paper, we consider four baselines. The first baseline is training the DM on Dr from scratch,
referred to as Baseline-R. In the field of continual learning Wang et al. (2024a), it has been observed
that fine-tuning a pre-trained deep learning model on new data can degrade its performance on
previously learned data. Building on this property, the second baseline involves fine-tuning the pre-
trained DM on the retain dataset Dr, termed as Baseline-F. The third baseline is based on gradient
ascent Huang et al. (2024), termed as Baseline-GA. Although the method in Huang et al. (2024) is
initially proposed for class-level MU for DMs, it can be adapted to SLMU. The fourth baseline is
SISS Alberti et al. (2025), which is the pioneering work to address SLMU in DMs.

For evaluation, we first use the unlearned DM to generate a synthetic dataset D̂u of the same size as
the pre-training dataset. We then compute the FID (denoted as FID M) between the synthetic dataset

6
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(a) γ = 0 (b) γ = 0

(c) γ = 0.05 (d) γ = 0.05

(e) γ = 0.1 (f) γ = 0.1

Figure 2: Images generated by the pretrained θp with different γ values in the noised reverse process
Eq.(6) (left column) and Eq.(10) (right column).

D̂u and retain set Dr to evaluate objective (i) of Definition 1. Comparing the synthetic dataset D̂u

and unlearning set Du, we select duplicates of Du’s data from D̂u using the method in Yoon et al.
(2023); Gu et al. (2023) and count the duplicates as NDUS (denoted as NDUS M) to evaluate the
objective (ii) of Definition 1. Finally, to detect fake unlearning, we fine-tune the unlearned DM on
Dr and compute FID and NDUS again (denoted as FID F and NDUS F, respectively).

5.3 EXPERIMENTS FOR UNCONDITIONAL DMS

We apply the unconditional DDPM proposed in Nichol & Dhariwal (2021) with a linear noise sched-
ule and 1K diffusion steps. We randomly select 2K images from each of the five classes in the
CIFAR-10 dataset—automobile, airplane, bird, cat, and deer—as five separate training sets. We
pre-train the DDPM for 1M steps with the mini-batch size 128 on a training set and obtain the pre-
trained DDPM θp, and then use it to generate a synthetic dataset D̂p with 2K images. Then we select
16 images in D, which have the most duplicates in D̂p, to construct the unlearning set Du and the
remaining 1984 images of D construct the retain set Dr. We set Ninterval = 5 and γ = 1.0.

Table 1 presents a performance overview of the proposed SMUD and two baselines on unlearning
five CIFAR-10 classes separately. For SMUD and Baseline-GA, the DMs are unlearned for 4K steps
and subsequently finetuned for 4K steps to assess fake unlearning. For SISS, fewer unlearning steps
are applied, as excessive steps severely degrade generation quality (see Appendix D); the unlearned
model is then fine-tuned for 4K steps. As shown in Table 1, SMUD achieves the best generative
performance after unlearning without exhibiting fake unlearning. In contrast, both Baseline-GA and
SISS significantly reduce the generative quality and display fake unlearning. Finetuning the DMs
unlearned by Baseline-GA and SISS results in a lower FID and higher NDUS, indicating that the
unlearning ability of Baseline-GA and SISS is partly due to the decline in generative performance.
Appendix E shows more detailed results during unlearning Automobile including Baseine-F.

5.4 EXPERIMENTS FOR CONDITIONAL DMS

We apply the DDPM with classifier-free guidance Ho & Salimans (2021) with a linear noise schedule
and 1K diffusion steps. We randomly selected 1K images from each class of the CIFAR-10 dataset
to construct D for the evaluation framework. We pretrain the model for 1M steps with the mini-
batch size 128 on D and obtain the pre-trained DDPM θp, and then use it to generate 1K images of
one class to construct D̂p. Then we select 16 images in D, which have the most duplicates in D̂p,
to construct the unlearning set Du and the remaining 9984 images of D construct the retain set Dr.
We set Ninterval = 5 and γ = 0.1.
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Table 1: Performance Overview of the Proposed SMUD and Baselines on Unconditional DDPM

Unlearning Object Method FID M (↓) NDUS M (↓) FID F (↓) NDUS F (↓)

Airplane
Baseline-GA 25.11 0 11.74 0
SISS 91.43 12 11.36 22
SMUD (ours) 12.42 0 11.37 0

Automobile
Baseline-GA 27.68 1 9.03 8
SISS 86.78 3 10.39 25
SMUD (ours) 9.02 0 8.61 0

Bird
Baseline-GA 22.30 2 13.17 1
SISS 110.00 0 14.03 22
SMUD (ours) 15.96 0 14.42 0

Cat
Baseline-GA 36.97 0 16.23 0
SISS 155.99 0 16.04 36
SMUD (ours) 16.14 0 15.71 0

Deer
Baseline-GA 26.32 4 11.18 4
SISS 87.88 0 10.80 25
SMUD (ours) 12.19 0 10.99 0

Table 2: Performance Overview of the Proposed SMUD and Baselines on Conditional DDPM

Unlearning Object Method FID M(↓) NDUS M(↓) FID F(↓) NDUS F(↓)

Airplane
Baseline-GA 57.23 0 57.48 1
SISS 134.06 0 56.02 40
SMUD (Ours) 63.85 0 55.40 0

Automobile
Baseline-GA 39.00 0 28.69 20
SISS 112.13 0 30.30 35
SMUD (Ours) 45.80 0 29.10 0

Bird
Baseline-GA 80.85 1 44.58 15
SISS 146.27 1 44.24 45
SMUD (Ours) 54.56 0 42.41 0

Cat
Baseline-GA 69.25 0 54.56 53
SISS 150.65 0 54.29 50
SMUD (Ours) 63.03 0 51.99 0

Deer
Baseline-GA 54.34 0 49.75 10
SISS 98.09 0 50.04 67
SMUD (Ours) 60.85 0 46.49 0

Table 2 provides a performance overview of the proposed SMUD and two baselines across five
CIFAR-10 classes. We apply SMUD and and Baseline-GA to unlearn the Automobile for 10K steps
and each of the other four classes for 20K steps. The number of finetuning steps is set equal to the
corresponding unlearning steps. For SISS, the unlearning is performed for approximately 50 steps,
followed by 10K finetuning steps. As shown in Table 1, SISS leads to a substantial degradation
in generative performance, while both SISS and Baseline-GA exhibit pronounced fake unlearning.
SMUD maintains the best generative performance after unlearning and does not exhibit fake unlearn-
ing. Appendix F shows more detailed results during unlearning Automobile including Baseine-F.

5.5 EXPERIMENTS ON CELEBA-HQ DATASET

We use the CelebA-HQ dataset Odhiambo (2024), which contains 30K 256× 256 images, to assess
the proposed SMUD when the DM is trained on large datasets. We pre-train the unconditional
DDPM on CelebA-HQ for 800K steps with the mini-batch size 32. We randomly select 128 images
from CelebA-HQ to construct the unlearning set. The remaining 29,872 images construct the retain
set. In this section, we present a qualitative evaluation as demonstrated in Fig. 1. We set Ninterval =
10 and γ = 1.0. We find that the generative performance is significantly damaged after only 90
unlearning steps of SISS, as shown in Appendix D. Thus, we only qualitatively evaluate Baseline-R,
Baseline-GA, and SMUD. The optimization steps for Baseline-GA and SMUD are 100K.
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(a) Original unlearning images (b) Pre-trained DDPM (c) Baseline-R

Figure 3: 16 randomly selected unlearning set images and corresponding reconstructed images by
the pre-trained DDPM and Baseline-R.

(a) Baseline-GA (b) SMUD (c) FID after unlearned

Figure 4: Reconstructed images by Baseline-GA and SMUD, and FID of DMs after being unlearned.

Figure 3a presents 16 images randomly selected from the unlearning set. Figures 3b and 3c show
the corresponding reconstructions by the pre-trained DDPM and Baseline-R, respectively, where
Baseline-R serves as the ideal unlearned DM. As illustrated in Fig. 3, the reconstructions generated
by the pre-trained DDPM are nearly identical to the original images, while those from Baseline-R
also exhibit high similarity. Figure 4 shows the reconstructed images generated by the DMs un-
learned with Baseline-GA and SMUD. Comparing Figs. 4 and 3, the reconstructions from Baseline-
GA visually resemble the original images more closely than those from Baseline-R. In contrast, the
reconstructions produced by SMUD exhibit greater deviations, underscoring its effectiveness over
Baseline-GA. Qualitative results of all 128 unlearning set images can be found in Appendix G. On
the other hand, SMUD preserves the best generative performance as shown in Fig. 4c, suggesting
that its superior unlearning performance is not due to any degradation in generative quality. More-
over, the DM exhibits higher generative performance after unlearning with SMUD compared to the
pre-trained DM, indicating that SMUD minimally impacts generative quality.

6 CONCLUSION

In this paper, we first define two objectives for sample-level machine unlearning (SLMU) in diffu-
sion models (DMs). We then propose a quantitative evaluation framework that leverages the mem-
orization property of DMs to assess these objectives. This framework can be used to construct a
benchmark for SLMU and thus lay a foundation for future research. Compared to the evaluation
metrics proposed in the pioneering work on SLMU, our proposed evaluation framework provides
a better assessment of unlearning methods and validates whether these methods can achieve com-
plete unlearning. Additionally, we propose Sample-level Machine Unlearning for Diffusion models
(SMUD), which modifies the generation path of DMs to prevent the generation of images in the
unlearning set. Experimental results against baselines show that SMUD is the only method that
does not exhibit fake unlearning in both unconditional and conditional DMs. Furthermore, SMUD
preserves the highest generative performance after unlearning.
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A RELATED WORK

In this section, we first review existing SLMU methods for classification tasks and discuss why most
are inadequate for SLMU in DMs. Next, we review existing class-level MU methods for DMs. Last,
we present the current evaluation frameworks for class-level MU methods in DMs, concluding that
they are unsuitable for evaluating SLMU methods.
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A.1 SAMPLE-LEVEL MACHINE UNLEARNING FOR CLASSIFICATION MODELS

Exact unlearning methods: Existing SLMU methods in classification models can be categorized
into exact unlearning and approximate unlearning. Exact unlearning methods unlearn the specific
data by retraining the model. In Bourtoule et al. (2021), the authors introduce the Sharding, Isolation,
Slicing, and Aggregation (SISA) framework, a general approach for exact unlearning. SISA enables
selective data removal by sharding, isolating, slicing, and aggregating training data, avoiding full
model retraining. Building on this idea, Bourtoule et al. (2021); Yan et al. (2022); Chen et al.
(2022a) utilize ensemble methods that split the dataset into smaller sub-datasets, training a separate
model for each. The final classification is based on the combined outputs of these models. To
lower computational costs, they delete the data to be unlearned from the relevant sub-datasets and
retrain only the affected sub-models. Schelter et al. (2021); Brophy & Lowd (2021) apply the SISA
framework to tree-based classification models, while Chen et al. (2022b) extends SISA for Graph
Neural Networks (GNNs). However, the SISA framework is specifically designed for classification
models that work with partitionable datasets, allowing the unlearning set to be isolated. In contrast,
generative models operate by learning distributions rather than mapping inputs to outputs directly,
as in classification tasks. The SISA framework, focusing on classification models, is less suitable for
generative models since less data will lead to significant performance decreases, and the ensemble
model in SISA cannot improve the generation capability compared to one DM trained on one small
dataset.

Approximate unlearning methods: Approximate unlearning reduces the computational cost of
exact unlearning and includes methods based on (1) influence function estimation, (2) model pa-
rameter re-optimization, and (3) gradient updates Xu et al. (2024). Influence function, introduced
by Guo et al. (2020), estimates the influence of given training data using the first-order gradient
and second-order gradient (Hessian matrix) according to the loss function of those data and is used
to remove the data’s influence on the model. Besides, random noise is added to the parameters’s
gradients during optimization to remove the influence completely. However, this method relies on
convexity assumptions and involves costly Hessian matrix inversion, and random noise decreases the
model’s performance. Later research Sekhari et al. (2021); Suriyakumar & Wilson (2022); Mehta
et al. (2022); Wu et al. (2022) developed more efficient approximations. Model re-optimization
methods, like weight perturbation, partially retrain models to update parameters without full retrain-
ing Golatkar et al. (2020a;b; 2021), though they still involve Hessian approximations. However,
in DMs, inputs combine images with random Gaussian noise, and the model learns to predict this
noise. Since the noise varies with each training step, calculating the Hessian for a specific image
and noise is ineffective for unlearning. The noise used for Hessian estimation differs from that used
during training, making the Hessian irrelevant for capturing the influence of a particular training
sample. Gradient-based unlearning methods generally follow two steps: (1) initialize model param-
eters from the previously trained model, and (2) apply a few gradient updates based on modified
data. DeltaGrad Wu et al. (2020) adapts models efficiently to small training dataset changes by us-
ing cached gradients and parameter information. However, it is impractical due to the large memory
required to store this information for every training iteration.

A.2 MACHINE UNLEARNING FOR DIFFUSION MODEL

DMs often utilize diverse open-source data, which can lead to the risk of incorporating sensitive or
inappropriate information Chen et al. (2023b). This has raised concerns about the potential for gen-
erating harmful content Schramowski et al. (2023); Rando et al. (2022), violating copyright through
the imitation of artistic styles Gandikota et al. (2023); Salman et al. (2023), or even memorizing
training data Wang et al. (2024b); Somepalli et al. (2023); Carlini et al. (2023). Recent machine un-
learning efforts in DMs focus on removing specific features or classes. For instance, Salun Fan et al.
(2024) enables unlearning by fine-tuning only the most affected salient weights. Random labelling
of the data from the unlearning set is used to update the salient weights. Forget-Me-Not Zhang et al.
(2024a) leverages cross-attention scores to optimize the model’s perception of target concepts. By
optimizing vision-only self-attentive layers of stable diffusion using <nude, mosaic, benign> im-
age triplets, Safegen Li et al. (2024b) remove pornographic latent representations from its attentive
matrices, cutting off the associations between sexually-related text and nudity vision. In contrast,
Fuchi & Takagi (2024) focuses on unlearning target concepts from the text encoder of Stable Diffu-
sion via a gradient-ascent method without modifying the U-Net parameters. Erased Stable Diffusion
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(ESD)Gandikota et al. (2023) fine-tunes model to align the conditional scores of undesired concepts
with those of unconditioned, permanently removing learned concepts. Follows similar idea Chen
et al. (2024a) aligns conditional scores of undesirable classes with those of safe classes. Wu et al.
(2024b) frames the unlearning task as an adversarial training process, where the DM serves as the
generator to predict noise, and a discriminator classifies whether the noise is linked to the target
concept or the anchor concept. The objective is to align the DM’s output between these two con-
cepts. In Li et al. (2024a) and Wu et al. (2024a), the authors modify the reverse process of DMs by
updating the loss function to align the predicted noise of specific concepts with a predefined noise
distribution. However, the methods mentioned above are designed for conditional DMs to unlearn a
class of data or feature and cannot solve the finer-grained sample-level machine unlearning. Sfront
Huang et al. (2024) utilizes gradient ascent to achieve class-level machine unlearning. Although the
method in Huang et al. (2024) is initially proposed for class-level MU, it can be adapted to SLMU.
In this paper, we employ Sfront as a baseline, termed as Baseline-GA, since it can be adapted to
solve SLMU in DMs.

B EVALUATION FRAMEWORK

Overall evaluation framework. Algorithm 1 summarizes the overall process of the proposed eval-
uation framework. (i) Train a DM θp on a dataset D as the pre-trained model. (ii) Generate a
synthetic dataset D̂p (the same size as D) with θp. (iii) Find memorized training images from D̂p

using the same method as Yoon et al. (2023); Gu et al. (2023). (iv) Select Nu most memorized
training images to construct the unlearning set Du and the retain set Dr = D \ Du. (v) Apply an
unlearning methodM to obtain an unlearned DM θu =M(θp, Dr, Du). (vi) Construct a synthetic
dataset D̂u (the same size as D) with θu. (vii) Select duplicates of Du’s data from D̂u using the
method in Yoon et al. (2023); Gu et al. (2023) and count the duplicates as NDUS. (viii) Fine-tune
the unlearned DM θu on the retain set and calculating NDUS of the fine-tuned DM, similar to steps
(vi) and (vii). (ix) Last, the proposed evaluation framework returns NDUS after unlearning, NDUS
after finetuning, FID between Dr and D̂u. The FID between D̂u and Dr evaluates objective (i) of
Definition 1. NDUSs of unlearned DM and fine-tuned DM evaluate objective (ii) of Definition 1.

Algorithm 1: Evaluation framework.
Input : Dataset D; initialized DM θ0; training algorithm of DM T ; MU methodM.
Output: NDUS and FIDs

1 θp ← T (θ0, D) // Train θp on D according to Eq.(3);
2 D̂p ← DM(θp, z1), z1 ∈ N (0, I) // Generated D̂p with θp;
3 Select duplicates of D’s data from D̂p using the method in Yoon et al. (2023); Gu et al. (2023)
4 Construct unlearning set Du with Nu most memorized data
5 Dr = D \Du // Construct retain set;
6 θu =M(θp, Du, Dr) // Obtain unlearned model θu;
7 D̂u ← DM(θu, z2), z2 ∈ N // Generated D̂u with θu;
8 Select duplicates of Du’s data from D̂u using the method in Yoon et al. (2023); Gu et al. (2023)

and count the duplicates as NDUS
9 θf = T (θu, Dr) // Finetune θu on Dr;

10 D̂f ← DM(θu, z3), z3 ∈ N // Generated D̂f with θf ;
11 Compute NDUS by comparing D̂f and Du

12 Return NDUS after unlearning, NDUS after finetuning, FID(Dr, D̂u)

C PSEUDO CODE OF SMUD

Algorithm 2 summarizes the proposed SMUD: (i) Sample images from the retain set and calculate
the retain loss Eq.(9). (ii) If the optimization step n satisfies n%Ninterval = 0, copy the pre-trained
model ϵθ into ϵ′θ and sample images from the unlearning set. (iii) Calculate the unlearning loss
Eq.(8) and add it to the retain loss. (iv) Optimize ϵθ by minimizing the final loss. (v) After Nunlearn

optimization steps, return the unlearned model.
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Algorithm 2: Pseudo code of SMUD.
Input : Retain set Dr; Unlearning set Du; pre-trained approximator ϵθ; θϵθ denotes

parameters of ϵθ
Output: Unlearned approximator ϵθ

1 for n ∈ {1, 2, · · · , Nunlearn} do
2 Sample xr

0 from Dr

// Retain loss Eq.(9) and Eq.(12);
3 if SMUD for unconditional DMs then
4 l =

∥∥ϵ− ϵθ
(√

ᾱtx
r
0 +
√
1− ᾱtϵ, t

)∥∥2
5 else if SMUD for conditional DMs then
6 l =

∥∥ϵ− ϵθ
(√

ᾱtx
r
0 +
√
1− ᾱtϵ, t, c

)∥∥2
7 if n%Ninterval = 0 then
8 ϵ′θ = copy(ϵθ)
9 Sample xu

0 from Du

// Unlearning loss Eq.(8) and Eq.(11);
10 if SMUD for unconditional DMs then

11
y = (

√
ᾱtx

u
0 +
√
1− ᾱtϵ, t)

l = l + ∥ϵ′θ(y) + γϵ′ − ϵθ(y)∥2
12 else if SMUD for conditional DMs then

13

yc =(
√
ᾱtx

u
0 +
√
1− ᾱtϵ, t, c)

y∅ =(
√
ᾱtx

u
0 +
√
1− ᾱtϵ, t, ∅)

l =l + ∥ϵ′θ(yc) + γϵ′ − ϵθ(yc)∥2+
∥ϵ′θ(y∅) + γϵ′ − ϵθ(y∅)∥2

// Optimization step;
14 θϵθ ← θϵθ − η∇θϵθ

l

15 Return ϵθ
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(a) 1.6K unlearning steps (CIFAR10) (b) 90 unlearning steps (celeb-HQ)

Figure 5: Synthetic images generated by unconditional DDPMs unlearned by SISS.

Figure 6: Synthetic images generated by conditional DDPMs unlearned by SISS for 70 steps.

D SUPPLEMENTAL RESULTS OF SISS

In this section, we explain why the unlearning process of SISS must be halted earlier. Figure 5a
shows the synthetic images generated by the unconditional DDPM after being unlearned for 1.6K
optimization steps with SISS on the CIFAR-10 dataset. Figure 5b shows the synthetic images gen-
erated by the unconditional DDPM after being unlearned for 90 optimization steps with SISS on the
Celeb-HQ dataset. Besides, Fig. 6 shows the synthetic images generated by the conditional DDPM
after being unlearned for 70 optimization steps with SISS on the CIFAR-10 dataset. As shown in
the above synthetic images, the quality of the synthetic images is too poor, so the unlearning process
needs to be stopped.
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(a) NDUS of Baseline-R (b) FID of Baseline-R

(c) NDUS of Baseline-F (d) FID of Baseline-F

Figure 7: NDUS and FID curves during the unlearning of unconditional DDPM using Baseline-R
and Baseline-F.

E SUPPLEMENTAL RESULTS FOR UNCONDITIONAL DM

In this section, we demonstrate detailed results when unlearning Automobile. Figure 7 shows
the NDUS and FID curves during the unlearning of unconditional DDPM using Baseline-R and
Baseline-F. As shown in Fig. 7a, Baseline-R generates zero duplicates of the unlearning set im-
ages, retraining the DM from scratch on the retain set. Figure 7b shows that Baseline-R achieves a
minimum FID score of 7.47 during 1M optimization steps. On the other hand, Baseline-F fails to
unlearn within 100K optimization steps since it still generates a duplicate of an unlearning set image
after 100K optimization steps, as shown in Fig. 7c. Figure 7d shows that fine-tuning the pre-trained
DDPM on the retain set can decrease the FID score.

Figure 8 shows the NDUS and FID curves during the unlearning of unconditional DDPM using the
proposed SMUD. Figure 8a shows the NDUS curves of various γ values over the optimization steps.
As shown in Fig. 8a, the DDPM successfully unlearns the images from the unlearning set after 3K
optimization steps for all γ values, and the value of γ has a limited influence on the unlearning
speed. Figure 8b shows the FID curves over the optimization steps of various γ. As shown in
Fig. 8b, FID scores of the DDPM fluctuate during the unlearning process and the value of γ has
a limited influence on the amplitude of the fluctuation. The fluctuation in NDUS curves occurs
because the DM has not fully unlearned the unlearning set. Consequently, the retain loss, which aids
in improving generative performance, leads to increases in NDUS. The fluctuation in FID curves
arises because the unlearning loss can reduce generative performance, which is why the retain loss
is necessary. To evaluate the existence of fake unlearning, we finetune the unlearned DDPM with
the retain loss on the retain set. Figure 9a shows the NDUS curves during the fine-tuning of the
DDPMs, which have been unlearned by SMUD for {1K, 2K, 3K, 4K, 5K} optimisation steps with
γ = 1.0. The fake unlearning exists when the DDPM is unlearned for 1K optimization steps. After
more unlearning optimization steps, the fake unlearning phenomenon disappears, which means a
complete unlearning. On the other hand, fine-tuning the unlearned DDPM improves the DDPM’s
generative performance w.r.t. FID score, as shown in Fig. 9b.
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(a) NDUS curve (b) FID curve

Figure 8: NDUS and FID curves while unlearning the unconditional DDPM using SMUD.

(a) NDUS curve (b) FID curve

Figure 9: NDUS and FID curves while fine-tuning the unlearned unconditional DDPM after being
unlearned for 1K–5K optimization steps using SMUD with γ = 1.0.
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(a) NDUS curve (b) FID curve

Figure 10: NDUS and FID curves while unlearning the unconditional DDPM using Baseline-GA.

(a) NDUS curve (b) FID curve

Figure 11: NDUS and FID curves while fine-tuning the unlearned unconditional DDPM after being
unlearned for 4K optimization steps using Baseline-GA.

Figure 10 presents the NDUS and FID curves during unlearning unconditional DDPM using
Baseline-GA. As shown in Fig. 10a, Baseline-GA fails to unlearn within 4K optimization steps
since it still generates a duplicate of an unlearning set image after 4K optimization steps. Further-
more, as shown in Fig. 10b, the fluctuation in FID during unlearning with Baseline-GA is more
pronounced than with SMUD, indicating that Baseline-GA degrades the performance of the DDPM
to a greater extent. Moreover, as shown in Fig. 11, fine-tuning the DM unlearned by Baseline-GA
can increase NDUS.

Figure 12 presents the NDUS and FID curves during the unlearning of the unconditional DDPM
using SISS. As shown in Fig. 12b, SISS significantly reduces generative performance. We only plot
the FID curve for up to 1400 unlearning steps, as the DM fails to generate any recognizable images
beyond this point (refer to Appendix D for details). Furthermore, as shown in Fig. 12a, despite the
significant decrease in generative performance, the DM still generates duplicates of the unlearning
data even after 1400 unlearning steps. Furthermore, as illustrated in Fig. 13, fine-tuning the DM
unlearned by SISS increases NDUS, suggesting that the unlearning ability of SISS is partly due to
the decline in generative performance.

F SUPPLEMENTAL RESULTS FOR CONDITIONAL DM

Figure 14 shows the NDUS and FID curves during unlearning conditional DDPM using Baseline-R
and Baseline-F. As shown in Fig. 14a, Baseline-R generates zero duplicates of the unlearning set
images retraining the DM from scratch on the retain set. Figure 14b shows that Baseline-R achieves
a minimum FID score of 27.51 during 1M optimization steps. On the other hand, Baseline-F fails
to unlearn the unlearning set within 100K optimization steps since it still generates 5 duplicates of
unlearning set images after 100K optimization steps, as shown in Fig. 14c. Unlike the unconditional
case, fine-tuning the pre-trained DDPM on the retain set cannot decrease the FID score for condi-
tional DDPM, as shown in Fig. 14d. Besides, unlearning the conditional DDPM is more difficult
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(a) NDUS curve (b) FID curve

Figure 12: NDUS and FID curves while unlearning the unconditional DDPM using SISS.

(a) NDUS curve (b) FID curve

Figure 13: NDUS and FID curves while fine-tuning the unlearned unconditional DDPM after being
unlearned for 1.4K optimization steps using SISS.
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(a) NDUS of Baseline-R (b) FID of Baseline-R

(c) NDUS of Baseline-F (d) FID of Baseline-F

Figure 14: NDUS and FID curves during the unlearning of conditional DDPM using Baseline-R and
Baseline-F.

than the unconditional DDPM, as evident from the comparison of Fig. 14c and Fig. 7c. Therefore,
we perform 10K/20K optimization steps for unlearning in the conditional DDPM instead of 4K steps
for the unconditional case.

Figure 15 shows the NDUS and FID curves during the unlearning of conditional DDPM using the
proposed SMUD. Figure 15a shows the NDUS curves of various γ values over the optimization
steps. As shown in Fig. 15a, the DDPM successfully unlearns the unlearning set images after 2K
optimization steps for all γ values, and the value of γ has a limited influence on the unlearning
speed. Figure 15b shows the FID curves over the optimization steps of various γ values. As shown
in Fig. 15b, FID scores of the DDPM fluctuate during the unlearning process and the value of
γ has a limited influence on the amplitude of the fluctuation. The fluctuation of the FID curves
is because the unlearning loss can decrease the generative performance of the DM. To evaluate
the existence of fake unlearning, we finetune the unlearned DDPM on the retain set. Figure 16a
shows the NDUS curves during fine-tuning the DDPMs, which have been unlearned by SMUD for
{2K, 4K, 6K, 8K, 10K} optimisation steps with γ = 0.1. The fake unlearning phenomenon exists
when the DDPM is unlearned for less than 8K optimization steps. After unlearning the DM over
8K optimization steps, the fake unlearning phenomenon disappears. On the other hand, fine-tuning
after unlearning can help to improve the model’s generative performance w.r.t. FID score, as shown
in Fig. 16b.

Figure 17 presents the NDUS and FID curves during unlearning conditional DDPM using Baseline-
GA. Unlike the unconditional case, NDUS reaches 0 after 500 optimization steps, as shown in Fig.
17a. Then, we finetune the unlearned DDPM for 10K optimization steps, by minimizing the retain
loss on the retain set. As shown in Fig. 18, NDUS increases significantly during the fine-tuning,
which indicates that Baseline-GA did not achieve complete unlearning.

Figure 19 presents the NDUS and FID curves during unlearning conditional DDPM using SISS.
Similar to the unconditional case, SISS significantly decrease the generative performance, as shown
in Fig. 19b. We only plot the FID curve for up to 60 unlearning steps, as the DM fails to generate
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(a) NDUS curve (b) FID curve

Figure 15: NDUS and FID curves while unlearning the conditional DDPM using the proposed
SMUD.

(a) NDUS curve (b) FID curve

Figure 16: NDUS and FID curves during fine-tuning the unlearned conditional DDPM after being
unlearned for 2K–10K optimization steps using SMUD with γ = 0.1.

(a) NDUS curve (b) FID curve

Figure 17: NDUS and FID curves while unlearning the conditional DDPM using Baseline-GA.
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(a) NDUS curve (b) FID curve

Figure 18: NDUS and FID curves while fine-tuning the unlearned conditional DDPM after being
unlearned for 10K optimization steps using Baseline-GA.

(a) NDUS curve (b) FID curve

Figure 19: NDUS and FID curves while unlearning the conditional DDPM using SISS.

any recognizable images beyond this point (refer to Appendix D for details). Moreover, as shown
in Fig. 20, fine-tuning the DM unlearned by SISS increases NDUS, indicating that SISS did not
achieve complete unlearning.

(a) NDUS curve (b) FID curve

Figure 20: NDUS and FID curves while fine-tuning the unlearned conditional DDPM after being
unlearned for 60 optimization steps using SISS.
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G SUPPLEMENTAL RESULTS OF SMUD ON CELEBA-HQ

Following the qualitative evaluation framework introduced in Section 3.2, we reconstructed the un-
learning set images from partially noised images after 400 forward steps. Figure 21 shows the
unlearning set images, synthetic images reconstructed by the pre-trained DDPM and Baseline-R.
The synthetic images reconstructed by the pre-trained DDPM closely resemble the corresponding
unlearning set images, comparing Fig. 21a and Fig. 21b. Although Baseline-R is not trained on
the unlearning set images, it can still reconstruct similar images because the partially noised images
retain some information about the original images, as shown in Fig. 21c. However, the differences
between Fig. 21c, and Fig. 21a are more pronounced compared to those between Fig. 21b and Fig.
21a if we zoom in.

Figure 22a and 22b show synthetic images reconstructed by the DDPM unlearned by Baseline-GA
and SMUD, respectively, after 100K optimization steps. Consistent with Fig. 4, compared with
the original unlearning images, the images reconstructed by SMUD show greater differences than
Baseline-GA, highlighting its superiority over Baseline-GA.
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(a) Unlearning set images

(b) Reconstructed by the pre-trained DDPM

(c) Reconstructed by Baseline-R (trained on the retain set)

Figure 21: The unlearning set images and synthetic images reconstructed by the pre-trained DDPM
and Baseline-R.
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(a) Reconstructed by Baseline-GA

(b) Reconstructed by SMUD

Figure 22: Synthetic images reconstructed by the DDPMs unlearned with Baseline-GA and SMUD.
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