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ABSTRACT

In a physical system, changing parameters such as temperature can induce a phase
transition: an abrupt change from one state of matter to another. Analogous phe-
nomena have recently been observed in large language models. Typically, the task
of identifying phase transitions requires human analysis and some prior understand-
ing of the system to narrow down which low-dimensional properties to monitor and
analyze. Statistical methods for the automated detection of phase transitions from
data have recently been proposed within the physics community. These methods
are largely system agnostic and, as shown here, can be adapted to study the behavior
of large language models. In particular, we quantify distributional changes in the
generated output via statistical distances, which can be efficiently estimated with
access to the probability distribution over next-tokens. This versatile approach is
capable of discovering new phases of behavior and unexplored transitions – an
ability that is particularly exciting in light of the rapid development of language
models and their emergent capabilities.

1 INTRODUCTION

In physics, a phase transition refers to an abrupt change in a system’s macroscopic behavior due
to variations in external conditions such as temperature or pressure. A familiar example is the
transition of water from a phase of high density (liquid) to one of low density (gas) at the boiling point.
Phenomena reminiscent of such classical phase transitions have also been observed in neural networks
(NNs), including rapid knowledge acquisition and sudden improvements in capabilities (Shwartz-Ziv
& Tishby, 2017; McGrath et al., 2022; Olsson et al., 2022). For instance, during training, AlphaZero
exhibited periods where increasingly sophisticated chess openings were suddenly favored (McGrath
et al., 2022), and large language models (LLMs) have shown sudden improvements linked to the
formation of specialized circuitry known as induction heads (Olsson et al., 2022).

As these phase transitions in deep learning systems often coincide with points where model capa-
bilities emerge, disappear, or simply fundamentally change, their systematic detection promises to
enable a more streamlined interrogation of the learning process, potentially leading to better training
methods or safer model deployment. (Ganguli et al., 2022; Liu et al., 2022). For example, analyzing
the grokking phenomenon led to strategies for accelerating generalization (Liu et al., 2022). Existing
methods often require significant human input and may miss critical transitions (Zhong et al., 2023),
highlighting the need for automated detection techniques.

Inspired by statistical methods in physics that require minimal prior knowledge (Carrasquilla &
Melko, 2017; Van Nieuwenburg et al., 2017), we introduce an automated approach for detecting
phase transitions in LLMs using statistical distances from the family of f -divergences. This method
provides a versatile tool for objectively mapping out the phase diagrams of generative models. Such
an approach has the potential to characterize unexplored transitions and discover new behavioral
phases.

As a demonstration, we characterize transitions occurring in Pythia (Biderman et al., 2023), Mistral
(7B) (Jiang et al., 2023), and Llama 3 (8B) (AI@Meta) language models as a function of three control
parameters: an integer in the input prompt, the temperature hyperparameter for text generation, and
the model’s training epoch. We obtain the following findings:

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

• Varying input: Our analysis identifies sharp transitions in text output linked to integer
tokenization and reveals that instruction-tuned models like Llama 3 and Mistral can order
integers, whereas the base models can not.

• Varying temperature: We map out distinct behavioral phases as a function of temperature —
specifically, a deterministic “frozen” phase at low temperatures, an intermediate “coherent”
phase, and a “disordered” phase at high temperatures. The behavior as a function of system
size for the higher temperature transition shows signs of critical behavior. We observe
that LLMs can exhibit a negative “heat capacity”, where its mean energy decreases as
temperature increases.

• Varying training epoch: We also find that rapid changes in weight distributions during
training correspond to transitions in output behavior. The exact location of the output
transitions can be prompt-dependent.

2 METHODOLOGY

2.1 QUANTIFYING DISSIMILARITY BETWEEN DISTRIBUTIONS

In this work, we view phase transitions as rapid changes in the probability distribution P (·|T )
governing the state of a system x ∼ P (·|T ) as its control parameter T is varied.1 That is, values
of the parameter at which the distribution changes strongly are considered critical points where
phase transitions occur. While it is possible to generalize our approach to distributions conditioned
on multiple control parameters as in (Arnold et al., 2023b;a), in the following we consider the
one-dimensional scenario for simplicity.

We quantify the rate of change using f -divergences (Liese & Vajda, 2006), as they have particularly
nice properties, such as satisfying the data processing inequality. Given a convex function f : R≥0 →
R with f(1) = 0, the corresponding f -divergence is a statistical distance defined as

Df [p, q] =
∑
x

q(x)f

(
p(x)

q(x)

)
≥ 0. (1)

Prominent examples of f -divergences include the Kullback-Leibler (KL) divergence, the Jensen-
Shannon (JS) divergence, as well as the total variation (TV) distance.

The TV distance and the JS divergence have also had tremendous success in detecting phase
transitions in physical systems without prior system knowledge under the name of “learning-by-
confusion” (Van Nieuwenburg et al., 2017).2

2.2 DETECTING PHASE TRANSITIONS

Having defined appropriate notions of distance between probability distributions, we now describe
their use to detect phase transitions: Consider a uniform one-dimensional grid T of control parameter
values T . For each midpoint T ∗ lying halfway in between grid points, we define a segment of grid
points σleft(T

∗) to the left and a segment of grid points σright(T
∗) to the right of T ∗. Denoting the

cardinality as | · |, we define

P (x|i, T ∗) =
1

|σi(T ∗)|
∑

T∈σi(T∗)

P (x|T ) (2)

for both i ∈ {left, right}. Intuitively, P (x|i, T ∗) encodes the probability that the system is in state x
conditioned on the fact that the temperature is uniformly distributed over the temperatures contained

1This definition encompasses phase transitions in physics, i.e., abrupt changes in the distribution governing
large-scale systems of interacting constituents.

2Note that both the TV distance and the JS divergence form lower bounds to the KL divergence and other
f -divergence, such as the χ2 divergence: DJS[p, q] ≤ DTV[p, q] ≤

√
DKL[p, q] ≤

√
Dχ2 [p, q] (Flammia &

O’Donnell, 2023). In this sense, detecting a large dissimilarity in terms of the TV distance or the JS divergence
also signals a large dissimilarity in other measures.

2
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in σi(T
∗). Critical points in T ∗ where phase transitions occur can then be identified as local maxima

in the dissimilarity D(T ∗) = D [P (·|left, T ∗), P (·|right, T ∗)].

For the sake of simplicity, we proceed with segments of equal length in this article, and define the
length L = |σleft| = |σright| as the number of parameter values T to the left or right of T ∗ that
characterize the segment. We are free to adjust it according to the problem, as L sets a natural length
scale on which changes in the distributions are assessed. Different settings of L will be discussed in
Sec. 3.

2.3 NUMERICAL IMPLEMENTATION FOR LANGUAGE MODELS

In the case of language models, x is the sampled text and T is any variable that influences the
sampling probability. For tractable density, as is the case for autoregressive language models, we
can efficiently sample text x for a given prompt and directly evaluate its probability P (x|T ). Thus,
we can obtain an unbiased estimate D̂(T ∗) of D(T ∗) by replacing expected values in Eq. (1) with
sample means. The samples correspond to text generated with language models conditioned on
different parameter settings T , see Appendix A for details on implementation.

To increase the sampling efficiency and numerical stability, we rewrite our dissimilarity measures in
a slightly different form. To this end, when sampling around T ∗, we use Bayes’ theorem on Eq. (2)
to write the probability for a sample x to stem from segment σi(T

∗) as

P (σi|x, T ∗) =
P (x|i, T ∗)

P (x|left, T ∗) + P (x|right, T ∗)
. (3)

This quantity is bounded between 0 and 1 and therefore more stable than the ratio of probabilities,
which is the argument of f in the f -divergence [Eq. (1)]. Specifically, using P (σi|x, T ∗) as argument
of a function g, we introduce the new quantity

Dg(T
∗) =

1

2L

∑
i∈{left,right}

∑
T∈σi

Ex∼P (·|T )

[
g [P (σi|x, T ∗)]

]
, (4)

which we will refer to as g-dissimilarity. Algorithm 1 provides pseudo-code for the sampling
procedure with L = 1 and the T parameter corresponding to model temperature.

Algorithm 1 For a given language model implemented in code as “model” and a g-function implemented as “g_function”, the g-
dissimilarity defined in Equation (4) can be estimated at T∗ = 1

2 (Tn + Tn+1) for L = 1 as:

Input: model, n, Tn, Tn+1, nsamples, g_function
Output: g-dissimilarity Dg[T

∗]

1: Dg = 0

2: for i in {1, . . . , nsamples} do
3: for j in {n, n + 1} do
4: sample = model.generate(temperature=Tj )
5: pn = model.evaluate_probability(sample, temperature=Tn)
6: pn+1 = model.evaluate_probability(sample, temperature=Tn+1)
7: Dg = Dg + g_function(pj/(pn + pn+1))

8: end for
9: end for
10: Dg = Dg/(2nsamples)

2.4 DISCUSSION:
f -g CORRESPONDENCE, CHOICE OF g, CONNECTION TO THE FISHER INFORMATION

The g-dissimilarities [Eq. (4)]and the f -divergences [Eq. (1)] defined above correspond to each other
in the following sense: any g-dissimilarity Dg can be rewritten in the form of an f -divergence Df

with

f(x) =
x

2
· g

(
x

1 + x

)
+

1

2
· g

(
1

1 + x

)
, (5)

see Appendix B for the derivation and further discussion. In particular, for the choice g(x) =
log(x) + log(2), Dg corresponds to the JS divergence. For g(x) = 1 − 2min{x, 1 − x}, Dg

corresponds to the TV distance.

3
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A natural choice for g is any linear function in x. In particular, setting g(x) = 2x − 1 results in a
dissimilarity measure that quantifies the ability of an optimal classifier to tell whether a sample x
has been drawn in the left or right sector. This measure is 0 if the two distributions are completely
indistinguishable and 1 if the two distributions are perfectly distinguishable. Moreover, g(x) = 2x−1
is bounded between 1 and -1, where the edge values are attained for the certain predictions of 0 and
1, and the value 0 corresponds to uncertain predictions at 0.5. This results in a low variance and
favorable convergence properties for D̂g(x)=2x−1, which we will refer to as linear dissimilarity in
what follows.

This quantity is a valid f -divergence and, as shown in Appendix B, reduces to the Fisher information
F (Amari & Cichocki, 2010) in lowest non-vanishing order of the distance δT between neighboring
parameter points on the grid. In fact, any g-dissimilarity with g(1/2) = 0 and a twice-differentiable
g-function can be shown to be proportional to the Fisher information in lowest order. To give a sketch
of the derivation, for L = 1 we can write Df (T

∗) = 1
2f

′′(1)F(T ∗)δT 2 +O(δT 3).

Having the Fisher information as a limiting case is a desirable property: It is a well-known, generic
statistical measure for quantifying how sensitive parameterized probability distributions are to
changes in their parameters and its behavior is well-understood when used to detect phase transitions
in physical systems (You et al., 2007; Gu, 2010; Prokopenko et al., 2011; Arnold et al., 2023a). When
considering parametric distributions underlying physical systems, the Fisher information can be
shown to be directly related to important physical quantities, such as the heat capacity and magnetic
susceptibility (Arnold et al., 2023a). Physicists routinely detect phase transitions in physical systems
by identifying divergences (in the case of infinite-sized systems) or sharp local maxima (in the case
of finite-sized systems) in these quantities. While they have no direct correspondence in the more
abstract realm of language models, our method extends this methodology to this domain allowing for
the detection of analogous “phase transitions”. The Fisher information provides a solid theoretical
basis for applying concepts from statistical physics to LLMs, bridging the gap between physical
systems and computational models.

Appendix D introduces physics-based concepts used in this paragraph and article, which may be
unfamiliar to non-physicist readers.

2.5 UTILIZED LARGE LANGUAGE MODELS

In this work, we study transitions in models of the Pythia, Mistral, and Llama families.

Pythia Pythia (Biderman et al., 2023) is a suite of 16 LLMs released in 2023 that were trained
on public data in the same reproducible manner ranging from 70 million (M) to 12 billion (B)
parameters in size. We consider every second model, i.e., the models with 70M, 410M, 1.4B, and
6.9B parameters.

Mistral From the Mistral family, we consider the base model Mistral-7B-v0.1 with 7.3B parameters
and the corresponding fine-tuned Mistral-7B-Instruct model (Jiang et al., 2023) released in 2023.

Llama Llama 3 (AI@Meta) from Meta AI was released in 2024. We consider both the Llama-3 8B
parameter base model and NVIDIA’s chat-tuned Llama3-ChatQA-1.5-8B (Liu et al., 2024). For the
chat model we use accordingly formatted inputs.

3 RESULTS

In the following, we will explore all three fundamental ways in which a parameter T may influence
the output distribution of a language model: (i) As a variable within the input prompt, we scan
through integers injected to the prompt in Sec. 3.1. (ii) As a hyperparameter controlling how a trained
language model is applied, we vary the temperature in Sec. 3.2. (iii) As a training hyperparameter of
the language model, we vary the number of training epochs in Sec. 3.3.
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(a)
prompt "T is larger than 42. True or False?"

Jensen-Shannon divergence: g(x) = log(x) + log(2)
linear dissimilarity: g(x) = 2x 1
total variation distance: g(x) = 2min(x, 1 x) 1
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(b)
prompt "T is larger than 42. True or False?"

L = 1
L = 2
L = 3

Figure 1: Mistral model applied to the integer ordering prompt. (a) Different g-dissimilarities with
L = 3. (b) Linear dissimilarity for different L-values. [Number of text outputs generated per
parameter value T : 10280. Number of generated output tokens: 10. Error bars indicate standard error
of the mean over 4 batches, each with batch size 2056.] Appendix Fig. E1 provides additional scans
for numbers different from 42 and different formulations of the prompt, showcasing the robustness of
these results under variations.

3.1 TRANSITIONS AS A FUNCTION OF A VARIABLE IN THE PROMPT

As an introduction, we start with the simplest case: The parameter T to be varied is a particular
part of the prompt, and all parameters of the language model itself are fixed. As a first such prompt,
consider “T is larger than 42. True or False?” with an integer T as the control parameter. An LLM
that understands the order of integers should output very different answers for T < 42 versus T > 42,
i.e., its distribution over outputs should change drastically around T = 42. Thus, in such a case we
expect the dissimilarities to show a clear peak around T = 42.

Figure 1(a) shows dissimilarities based on various g-functions for the Mistral-7B-Instruct model (Jiang
et al., 2023). All dissimilarities show a clear peak around T = 42, whereas they are relatively flat
otherwise. This is a clear example of an abrupt transition between two distinct phases of behaviors of
an LLM as a function of a tunable parameter. As compared to the linear dissimilarity, the logarithm-
based JS divergence is arguably a bit sharper in that it decays more rapidly to baseline 0. The TV
distance’s peak is the broadest due to the min function appearing in its g-function. In the following,
we will focus on the linear dissimilarity as a compromise between sensitivity and numerical stability.

The transition is also clearly visible using different L settings, see Fig. 1(b). Smaller L values are
closer to the Fisher information limit, while larger values generally lead to higher distinguishability of
distributions and therefore larger peaks at transition points. As we will see in more detail in Sec. 3.3,
they can also be less susceptible to outliers due to the averaging over several parameter points.

Interestingly, when performing the same analysis on base models such as the Llama3-8B and Mistral
base models, as well as Pythia models (Biderman et al., 2023) of various sizes, the resulting linear
dissimilarity is flat, signaling the absence of any transition [see Fig. 2(a)]. In contrast to Mistral-
7B-Instruct and NVIDIA’s chat-tuned Llama3-8B, these models do not show a clear peak around
T = 42.

A transition of a different origin can be observed in Fig. 2(b), where the LLMs are probed using the
prompt “T” with T again being an integer. Interestingly, all Pythia models show a peak between
T = 2020 and T = 2021. This behavioral transition may originate from a transition in the tokenizers
of these models, which encode numbers in a range below T = 2021 with a single token and numbers
in a range at and above T = 2021 with two. This explanation is corroborated by the absence of the
transition around T = 2021 for the Llama and Mistral models, whose tokenizers translate a number
into tokens following rules that are independent of the number’s frequency.

5
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Pythia 410m

Pythia 1.4B
Pythia 6.9B

Figure 2: Benchmarking of various models using the linear dissimilarity with L = 3. (a) Test of
ability to compare integers in value. (b) Bare integers as prompt reveals transition in tokenizer
encoding. [Same numerical settings as in Fig 1.]

The Mistral models and the base Llama3-8B model show a smaller peak around T = 2023/2024.
Both models have only encountered training data from before and around that time given their release
date in 2023/2024, which may explain the peak. This transition is absent in the Pythia models.

3.2 TRANSITIONS AS A FUNCTION OF THE MODEL’S TEMPERATURE

Next, we consider transitions as a function of the temperature hyperparameter T controlling how the
logits z are converted to probabilities

pi =
ezi/T∑
j e

zj/T
(6)

for next-token prediction. The sum runs over all possible tokens. Per construction, at T = 1 language
models predict probabilities pi to approximate the distribution to be learned. In the limit T → 0, the
model deterministically picks the most likely next token in each step. For T → ∞ the model samples
the next token uniformly.

This scenario somewhat resembles a one-dimensional lattice of spins that are coupled via long-range
interactions, i.e., the one-dimensional Ising model (Dyson, 1969; Martínez-Herrera et al., 2022),
which has an order-disorder phase transition. In our case, the tokens take the role of the spins, and
the coupling is mediated via the transformer’s attention mechanism. Appendix D.3 elaborates on this
analogy to Ising-type models.

The behavior observed in Fig. 3 (a) shares some interesting similarities with critical phenomena
observed in physical systems. As the system size (output length) increases from 10 to 1000 tokens,
we see a peak in dissimilarity becoming sharper and higher around T = 0.75. This sharpening of the
peak with increasing system size is reminiscent of finite-size scaling effects seen near critical points
in statistical physics, such as in the Ising model.

For comparison and to confirm the observed behavior, in Fig. 3 (b) we present a second analysis,
independent of the dissimilarity-based indicators and taking inspiration from statistical mechanics,
where the state of thermal systems is governed by the Boltzmann distribution (see Appendix C for
details). We view the LLM as such a thermal system at varying temperature where the negative
logarithmic probability at T = 1, − logP (x|T = 1), takes on the role of the energy E of a given
text output x. In physical systems governed by Boltzmann distributions, thermal phase transitions
can be detected as peaks in the heat capacity C(T ) = ∂Ex∼P (·|T ) [E(x)] /∂T , i.e., by looking at the
temperature derivative of the mean total energy (Blundell & Blundell, 2009).

In the LLM case, the text outputs are not truly sampled from a Boltzmann distribution governed
by the total energy. Instead, each individual token is drawn from a Boltzmann distribution for its
individual energy conditioned on the previous tokens only. This procedure corresponds to a greedy

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T

0.0

0.1

0.2

0.3

0.4

lin
ea

r 
di

ss
im

ila
ri

ty

(a) noutputs = 10
noutputs = 50
noutputs = 100
noutputs = 250
noutputs = 500
noutputs = 1000

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T

0

10

20

30

40

he
at

 c
ap

ac
ity

/n
ou

tp
ut

s

(b) noutputs = 10
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noutputs = 100
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noutputs = 1000

Figure 3: High-temperature transition of Pythia 70M model in response to the prompt “There’s
measuring the drapes, and then there’s measuring the drapes on a house you haven’t bought, a” –
an excerpt from OpenWebText (Aaron Gokaslan and Vanya Cohen, 2019). (a) Linear dissimilarity
measure (L = 5) and (b) heat capacity for various numbers of generated output tokens noutputs with
the temperature range [10−4, 2]. [Number of text outputs generated per parameter value T : 5000,
5000, 5000, 1500, 500, and 300 for noutputs = 10, 50, 100, 250, 500, and 1000, respectively. Error
bars indicate standard error of the mean over 5, 5, 5, 5, 5, and 3 batches for noutputs = 10, 50, 100,
250, 500, and 1000, respectively.] Additional scans of the temperature transitions can be found in
Appendix E.

sampling strategy. The resulting sampling mismatch can lead to the counterintuitive phenomenon of
the mean energy of the system increasing with decreasing temperature corresponding to a negative
“heat capacity”, cf. Fig. 4 (b).

Zooming in on the system with only 10 output tokens, Fig 4 shows again the transition between
sensible output and random output in panel (a), and a second transition at very low temperature in
panel (b), where the model "unfreezes" from producing a deterministic output to producing sensible
and varied text.
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Figure 4: Temperature transitions of Pythia 70M model in response to the prompt “There’s measuring
the drapes, and then there’s measuring the drapes on a house you haven’t bought, a” – an excerpt
from OpenWebText Aaron Gokaslan and Vanya Cohen (2019). Linear dissimilarity measure (L = 5)
is shown in black. Heat capacity is shown in red. Dashed lines indicate local maxima, i.e., predicted
critical points. Shaded regions indicate the error bands. (a) Temperature range [10−4, 2]. (b) Zoomed-
in range [10−4, 0.2] near T = 0. [Number of text outputs generated per parameter value T : 20480.
Number of generated output tokens: 10. Error bars indicate standard error of the mean over 4 batches,
each with batch size 5120.]

In Figs. 3 and 4 we have investigated the output distributions corresponding to a specific prompt.
While we find that the temperature behavior is strongly dependent on the prompt, there seems to be a
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trend: many distinct prompts lead to a transition at T ≈ 1 (i.e., on the order of the natural temperature
scale), at T ≪ 1, or both. Further scans are shown in Appendix F.

The transition at low temperatures has recently been investigated by Bahamondes for GPT-2 using
physics-inspired quantities. Moreover, they speculated on the existence of a phase transition at higher
temperatures. In parallel to our work presented here, this higher temperature transition was analyzed
by(Nakaishi et al., 2024) using correlations in part-of-speech (POS) tags. Their analysis revealed
signs of critical behavior complementary to the peak behavior from Fig. 3.

3.3 TRANSITIONS AS A FUNCTION OF THE TRAINING EPOCH

Finally, we search for transitions as a function of the training epoch, i.e., we compare the output
distributions of models at different stages during training and see whether there are certain epochs at
which these statistics change drastically. This temporal analysis is the most challenging example, as
the distributional changes are very noisy due to the inherently noisy training process of methods from
the stochastic gradient descent family. Here, we analyze the Pythia suite of models for which such
checkpoints are publicly available.

Millidge analyzed the weight distribution of the Pythia models, and similar weight-based analyses of
other NNs during training have also been performed in previous works (Shwartz-Ziv & Tishby, 2017;
Achille et al., 2017; Chen et al., 2023). In order to study the previously observed transitions (Millidge),
we analyze changes in the weight distributions in the same manner as for the output distributions (see
Sec. 2), i.e., to characterize phase transitions using dissimilarities. The lists of model weights are
converted to distributions via histogram binning (10000 bins for the range -3 to 3).
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Figure 5: Linear dissimilarity by epoch, with checkpoints taken every 1000 epochs. (a) Computed at
L = 6 for both weights and responses to 20 random prompts from OpenWebText (gray) and 7 short
prompts (black) shown in panel (b). (b) Computed at L = 1 for several prompts. For reference, the
mean linear dissimilarity over short prompts and OpenWebText prompts with L = 1 is also shown.
[Number of text outputs generated per parameter value T and prompt: 1536. Number of generated
output tokens: 10. Error bars indicate the standard error of the mean over all corresponding prompts.
Error bars for the individual prompts in panel (b) are almost negligible and thus omitted to avoid
visual clutter.]

The results for L = 6 are shown in Fig. 5(a) as colored lines, each corresponding to the distribution
of the weights of a particular QKV layer. Different layers show transitions at roughly 20K (layer 5),
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40K (layers 3), 50K (layer 4), and 80K (layer 4) epochs. We also observe a large peak around epoch 0,
i.e., at the start of the training, highlighting that the LLM learns most rapidly at the beginning stages.
In the long run, the dissimilarity curves approach 0, signaling that overall the weight distributions
become less and less distinguishable.

Complementarily, in the same plot, we show dissimilarities derived from the LLM output distribu-
tions. The grey line corresponds to an average of the dissimilarities obtained by using entries from
OpenWebText (Aaron Gokaslan and Vanya Cohen, 2019) (which serves as a proxy for the Pythia
training dataset) as prompts. The black line corresponds to the average of results obtained from a
selection of single-token prompts [see also panel (b)]. Both dissimilarity curves show a peak around
epoch 0 as well as a peak around 80K epochs that is potentially related to the rapid change of layer 4
around the same time.

Figure 5(b) shows dissimilarities as a function of the training epoch for models queried with short,
generic prompts (“ ”, “0”, “I”, “?”, “1”, “You”, and “!”) at L = 1. These short prompts were selected
to be as general as possible and the associated output distributions seem more sensitive as compared
to the long examples from OpenWebText: their mean dissimilarity shows clear peaks near epochs
20K, 40K, and 80K. These correspond to outliers where the output distribution changes severely only
at a single point and returns back (close) to its original behavior immediately after. As such, these
peaks do not mark transitions between two macroscopic phases of behavior. We further verified this
outlier behavior by inspecting the dissimilarity between the points directly to the left and right of the
potential outlier. It remains an open question if these outliers are linked to the transitions observed in
the layer weights shown in panel (a).

The larger L value used in panel (a) averages out the signal stemming from these outliers. Such a
reduced susceptibility to outliers can be an advantage of using L ≫ 1 when searching for macroscopic
transitions in particular.

Some peak locations in the dissimilarity curves are prompt-dependent, indicating that learning
progresses differently for different types of behavior. Here we have used rather generic prompts,
resulting in an analysis of the LLM’s general behavior during training. However, in principle,
conditioning on the prompt allows one to analyze whether and when specific knowledge emerges (Liu
et al., 2021; Gurnee & Tegmark, 2023). As an outlook, one can imagine automatically monitoring
changes across a multitude of prompts on different topics and testing different abilities at scale,
without the need to design individual metrics for each prompt.

4 RELATED WORKS

Before concluding, let us discuss how our method relates to other approaches for studying phase
transitions in physics and in LLMs.

Generic performance-based analysis. Many previous works found transitions in LLM behavior by
locating sharp changes in generic performance measures, such as sudden drops in training loss (Olsson
et al., 2022; Chen et al., 2023). While this may capture transitions in the overall behavior, such an
approach cannot resolve transitions in specific LLM behavior. In particular, it may miss algorithmic
transitions where the same performance is reached but by different means (Zhong et al., 2023).

Prompt-specific success metrics. Other works have found transitions by looking at success metrics
tailored toward specific prompts (Austin et al., 2021; Brown et al., 2020; Hendrycks et al., 2020;
Radford et al., 2021; Srivastava et al., 2022; Wei et al., 2022; Liu et al., 2021). Recalling the example
studied in Sec. 3.1, this would correspond to assigning a score of 1 if the LLM provided the correct
answer to the question x < 42 and 0 otherwise. Similarly, one could compute such a score in a
temporal analysis (Sec. 3.3) or for detecting transitions as a function of another hyperparameter
(Sec. 3.2). A downside of this approach is that it is restricted to prompts that allow for a clear score
to be assigned. In particular, choosing an appropriate scoring function may require lots of human
engineering. Moreover, discontinuous metrics can artificially induce transitions where the underlying
behavior varies smoothly (Schaeffer et al., 2023) 3. Similarly, they may miss transitions where the
same performance is reached but by different means (Zhong et al., 2023).

3While spurious transitions can still occur with our method due to sampling noise, the metric we utilize is
continuous and does not exhibit thresholding effects.
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Measures based on model internals. The aforementioned approaches are based on the model output.
Many works have also detected transitions based on changes in the internal structure of models,
such as its trainable parameters (Millidge; Chen et al., 2023) (similar to the weight-based analysis
we have performed in Sec. 3.3). However, access to model internals may not always be available.
Moreover, the design of measures that capture specific transitions in behavior requires lots of human
input (Räuker et al., 2023; Conmy et al., 2023; Zhong et al., 2023), e.g., using insights from the field
of mechanistic interpretability.

5 CONCLUSION AND OUTLOOK

We have proposed a method for automating the detection of phase transitions in LLMs, and demon-
strated that it successfully reveals a variety of transitions. Leveraging access to the LLMs’ next-token
probability distributions, the proposed dissimilarity measures can efficiently quantify distribution
shifts without fine-tuning or adaption to the specific scenario at hand. Because the method is solely
based on analyzing a model’s output distribution and access to the model weights is not required, it
enables black-box interpretability studies.

The proposed method is not only applicable to language models, but can be straightforwardly
adapted to any generative model with an explicit, tractable density (Goodfellow, 2016; Arnold et al.,
2023b). If one can draw samples from the output distribution but does not have explicit access to the
underlying probabilities, then the dissimilarity measures can still be approximated using NN-based
classifiers (Menon & Ong, 2016; Arnold et al., 2023a) tailored toward the particular data type, such
as natural language.

Limitations. Future large-scale investigations are needed to fully understand how the uncovered
transitions depend on variables such as the specific prompt, the number of generated output tokens,
or the selected model. In particular, due to computational resource constraints, the size of the studied
language models has been limited.

Broader Impact. Our method has the potential to enhance the development of future AI systems
due to an improved understanding of their behavior. The dual-use nature of such systems carries
inherent risks, which requires one to proceed with caution and implement mechanisms to ensure they
are used safely and ethically.
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A IMPLEMENTATION DETAILS

Estimating dissimilarity measures. Our method for detecting phase transitions is based on esti-
mating Dg across the entire parameter range. Starting with a fixed set of points on a uniform grid
T , let us denote the set of in-between points at least L points away from the border of the range
as T̄ (note that |T̄ | = |T | − 2L). For each trial point T ∗ ∈ T̄ , we obtain an unbiased estimate
D̂g = (Ĵleft + Ĵright)/2, where

Ĵi =
1

|σi|
∑
T∈σi

1

D(T )

∑
x∈D(T )

g [P (σi|x)] . (A1)

Recall that σleft and σright denote the L closest points to the left or right of the trial point. Here,
D(T ) denotes a set of output texts x generated via the LLM at point T ∈ T . In this work, we choose
the number of generated text samples to be the same for all T ∈ T , i.e., |D(T )| = |D|.

We perform the computation of D̂g(T
∗) ∀T ∗ ∈ T̄ in two stages. In a first stage, we go through

each grid point T ∈ T and generate text outputs that are Ntokens in length via the LLM. The
associated computation time scales as |T | ·Ntokens · tLLM,eval(|D|), where tLLM,eval(|D|) = O(|D|)
corresponds to the time it takes the LLM to generate |D| different outputs (single token in length).
In a second stage, for a given trial point T ∗ ∈ T̄ , we evaluate the probability of each text output
generated in its vicinity {x ∈ D(T )|T ∈ σleft(T

∗) ∪ σright(T
∗)} to come from the left or right

segment. That is, we compute P (σleft|x) and P (σright|x), i.e., a term in the sum of Eq. (A1). The
computation time associated with the second stage scales as |T̄ | ·Ntokens · tLLM,eval(|D|) · 2L. Note
that in practice, one can embarrasingly parallelize over the different grid and trial points. Moreover,
one generates and evaluates text outputs batchwise.

Compute Resources. For our computations, we used an NVIDIA RTX 3090 GPU as well as
NVIDIA Tesla V100 (32 GB) and NVIDIA A100 (40GB) GPUs.

Code availability. A Python implementation of our method is available at
github.com/llmtransitions/llmtransitions.

Utilized assets. Our code is implemented in Python and internally uses NumPy (Harris et al.,
2020), PyTorch (Paszke et al., 2019), and transformers (Wolf et al., 2020). For the presented examples,
we make use of the following additional packages: pandas (Wes McKinney, 2010), SciPy (Virtanen
et al., 2020), Matplotlib (Hunter, 2007), and seaborn (Waskom, 2021).

The Pythia models, the Mistral models Mistral-7B-Instruct model and Mistral-7B-Base model, are
available under the Apache-2.0 license on Hugging Face. The Meta-Llama-3-8B model and NVIDIA’s
Llama3-ChatQA-1.5-8B are available on Hugging Face under the Meta Llama 3 community license.

B THEORETICAL BACKGROUND ON g-DISSIMILARITIES

Correspondence Between f -divergences and g-dissimilarities. Let us establish a correspon-
dence between f -divergences [Eq. (1)] and g-dissimilarities [Eq. (4)]. In the following, we denote
P (x|left, T ∗) and P (x|right, T ∗) as Pleft(x) and Pright(x), respectively, and suppress the depen-
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dence on T ∗. We can write any g-dissimilarity as

Dg =
1

2

(
Ex∼Pleft

[
g [P (σleft|x)]

]
+ Ex∼Pright

[
g [P (σright|x)]

])
= Ex∼Pright

[
1

2

Pleft(x)

Pright(x)
g [P (σleft|x)]

]
+ Ex∼Pright

[
1

2
g [P (σright|x)]

]
= Ex∼Pright

[
1

2

Pleft(x)

Pright(x)
g [P (σleft|x)] +

1

2
g [P (σright|x)]

]
= Ex∼Pright

[
1

2

Pleft(x)

Pright(x)
g

[
Pleft(x)

Pleft(x) + Pright(x)

]
+

1

2
g

[
Pright(x)

Pleft(x) + Pright(x)

]]

= Ex∼Pright

[
1

2

Pleft(x)

Pright(x)
g

 Pleft(x)
Pright(x)

Pleft(x)
Pright(x)

+ 1

+
1

2
g

 1
Pleft(x)
Pright(x)

+ 1

].
Thus, any g-dissimilarity Dg can be rewritten in the form of an f -divergence Df [Pleft, Pright] with

f(x) =
x

2
· g

(
x

1 + x

)
+

1

2
· g

(
1

1 + x

)
. (B1)

Note, however, that not any choice of g-function will lead to a proper f -divergence in the sense that
the resulting f -function may not be convex and f(1) may not be zero (recall the definition of an
f -divergence in Sec. 2.1).

JS divergence. Using the correspondence above, we have that Dg(x)=log(x)+log(2) is equivalent to
an f -divergence Df [Pleft, Pright] with

f(x) =
x

2
· log

(
2x

1 + x

)
+

1

2
· log

(
2

1 + x

)
(B2)

which corresponds to the JS divergence.

TV distance. Let us further prove that the Dg(x)=1−2min{x,1−x} corresponds to the TV distance
DTV[Pleft, Pright]. We have

Dg(x)=1−2min{x,1−x} = 1− Ex∼Pleft

[
min{P (σleft|x), P (σright|x)}

]
− Ex∼Pright

[
min{P (σleft|x), P (σright|x)}

]
(B3)

Using the identity

min{P (σleft|x), P (σright|x)} =
1

2
(1− |P (σleft|x)− P (σright|x)|) ,

Eq. (B3) can be rewritten as

Dg(x)=1−2min{x,1−x} =
1

2
Ex∼Pleft

[
|P (σleft|x)− P (σright|x)|

]
+

1

2
Ex∼Pright

[
|P (σleft|x)− P (σright|x)|

]
=

1

2
Ex∼Pright

[(
1 +

Pleft(x)

Pright(x)

)
|P (σleft|x)− P (σright|x)|

]
=

1

2
Ex∼Pright

[
P (σright|x)

(
1 +

Pleft(x)

Pright(x)

) ∣∣∣∣1− P (σleft|x)
P (σright|x)

∣∣∣∣].
Noting that P (σleft|x)

P (σright|x) =
Pleft(x)
Pright(x)

and P (σleft|x) + P (σright|x) = 1, we finally obtain

Dg(x)=1−2min{x,1−x} = Ex∼Pright

[
1

2

∣∣∣∣1− Pleft(x)

Pright(x)

∣∣∣∣]
which corresponds to an f -divergence Df [Pleft, Pright] with f(x) = 1

2 |1− x|, i.e., the TV distance.
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Freedom in Choice of g-function. Note that the choice of g-function leading to a particular g-
dissimilarity is not unique. In particular, we have that Dg̃ = Dg for any g̃(x) = g(x) + c( 1x − 2)
where c ∈ R is some constant:

Dg̃ = Dg +
c

2

(
Ex∼Pleft

[
1− P (σleft|x)
P (σleft|x)

− 1

]
+ Ex∼Pright

[
1− P (σright|x)
P (σright|x)

− 1

])
= Dg +

c

2

(
Ex∼Pleft

[
P (σright|x)
P (σleft|x)

− 1

]
+ Ex∼Pright

[
P (σleft|x)
P (σright|x)

− 1

])
= Dg +

c

2

(
Ex∼Pleft

[1] + Ex∼Pright
[1]− 2

)
= Dg.

Relation to the Fisher information. In the following, we prove that any g-dissimilarity with
g( 12 ) = 0 and a twice-differentiable g-function reduces to the Fisher information in lowest order.

For this, consider the case with L = 1 where we compare the distributions at two points in pa-
rameter space that are separated by δT . The corresponding g-dissimilarity is equivalent to an
f -divergence Df [P (x|T ), P (x|T + δT )]. Note that Df [P (x|T ), P (x|T )] = 0 if f(1) = 0 and
∂Df [P (x|T ), P (x|B)]/∂B|B=T = f ′(1)∂Ex∼P (·|T )[1]/∂T = f ′(1)∂1/∂T = 0. The second-
order derivative corresponds to

∂2Df [P (x|T ), P (x|B)]

∂B2

∣∣∣∣
B=T

= f ′(1)Ex∼P (·|T )

[
1

P (x|T )
∂2P (x|T )

∂T 2

]
+ f ′′(1)Ex∼P (·|T )

[(
∂ logP (x|T )

∂T

)2]
= f ′′(1)F(T )

assuming f ′(1) = 0, where F is the Fisher information. Thus, for L = 1 and parameter values
separated by δT , we can express any g-dissimilarity with g( 12 ) = 0 as Dg =

g′′( 1
2 )

32 F(T )δT 2 +

O(δT 3). The fact that f ′(1) must be zero translates into the condition that g′( 12 ) = 0. This is not
a fundamental restriction since we have some freedom in the choice of g function. That is, we can
replace g 7→ g̃, where g̃(x) = g(x) + c( 1x − 2) with c = 1

6g
′( 12 ), retaining Dg = Dg̃ and ensuring

that g̃′( 12 ) = 0.

C DETAILS ON ENERGY-BASED ANALYSIS OF TEMPERATURE TRANSITION

Let x = (x1, . . . , xN ) be a sequence of N tokens generated for a fixed prompt from an autoregressive
LLM such as the ones considered in this article. The distribution of x is given by

P (x|T ) = QT (xN |x1, . . . , xN−1)QT (xN−1|x1, . . . , xN−2) · · ·QT (x2|x1)QT (x1),

denoting the fact that the tokens are sampled sequentially. In each step, a token is sampled from a
Boltzmann distribution QT ,

QT (xi|x1, . . . , xi−1) = e−E(xi|x1,...,xi−1)/T /Zi(T ).

Here, Zi(T ) =
∑

xi
e−E(xi|x1,...,xi−1)/T is a normalization factor with the sum running over all

possible ith tokens. The conditional energies, E(xi|x1, . . . , xi−1) are typically referred to as logits
and learned from data. Note that while the distribution over individual tokens can be expressed as a
Boltzmann distribution at varying temperature, the overall distribution P (x|T ) cannot.4

Nevertheless, we can define an energy scale for the entire system by viewing the overall probability
distribution at T = 1 as a Boltzmann

P (x|T = 1) = e−E(x)/Z, (C1)

where Z is a normalization constant independent of x (also referred to as partition function). Recall
that any valid probability distribution can be written in the form of Eq. (C1) with a suitably chosen
energy function. Taking the logarithm of Eq. (C2) and reordering, we have

E(x) = − logP (x|T = 1)− logZ. (C2)
4In order for a quantity to be a valid energy of a system, it cannot itself depend on temperature, i.e., change

with temperature.
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Using Eq. (C2), we can compute the total energy up to the constant − logZ which serves as our
reference point for the energy scale. In the main text, we use − logP (x|T = 1) as the total energy
to compute and compare energy statistics at various temperatures. In particular, the heat capacity
remains the same under the mapping − logP (x|T = 1)− logZ 7→ − logP (x|T = 1).

D PHYSICS RELATED TERMINOLOGY

D.1 PHASE TRANSITIONS IN PHYSICS

The most common definition of a phase transition in physics has been given through the Ehrenfest
classification, which demands that the nth derivative of the free energy must have a discontinuity in
the thermodynamic limit of an infinitely large system size. There are, however, notable exceptions
to this definition, such as the Kosterlitz-Thouless transition, which is of infinite order and involves
topological order. Moreover, this classification requires the identification of free energy and is thus
restricted to the context of equilibrium systems.

Besides phase transitions, there are also less stringent, related phenomena like crossovers, which do
not require strict discontinuities. As such, even in physics, the definitions of phase transitions are
being debated and have to be reevaluated when venturing into novel domains.

In the context of LLMs, the term “phase transition” is often used rather colloquially to draw an
analogy to the physical phenomenon. For the present article, we have used the loose but pragmatic
definition of a phase transition referring to a rapid change of the system’s state as the tuning parameter
is varied.

D.2 HEAT CAPACITY

The heat capacity is the derivative of a system’s mean energy with respect to its temperature. In
non-physics terms, the mean energy can be understood as being proportional to the mean logarithmic
probability of the system’s state. Because it can be related to derivatives of the free energy, or
similarly, to derivatives of the underlying probability distribution, divergences in this quantity are
signatures of phase transitions. In a physical equilibrium setting, it is also closely related to the Fisher
information.

D.3 ISING AND POTTS MODELS

A very prominent example of a phase transition relevant to the present work is the Ising model phase
transition in one dimension. The Ising model is better known as a Boltzmann machine or Hopfield
network in the machine learning community and described by the energy E = −

∑
ij wijsisj in its

simplest form. If the variables s have more than two possible states, this becomes a Potts model.

In one dimension and as a function of temperature, such systems can undergo phase transitions in the
Ehrenfest sense involving a discontinuity only if the range of the interaction matrix w is infinite. A
language model’s output can be viewed as a one-dimensional system of tokens whose interaction
with each other is mediated by the attention mechanism. In particular, the correspondence between
self-attention and Potts models has recently been formalized in (Rende et al., 2024).

Note that the interaction only occurs in the forward direction for auto-regressive models and is of
finite range due to the finite context length of current models. While this cannot give rise to a strict
discontinuity, rapid changes qualify for our weaker definition of a phase transition (or a crossover),
and by scaling the system size appropriately one may observe similar critical behavior as in physics.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

E ADDITIONAL SCANS FOR VARYING PROMPT

4 2 0 2 4
T X

0.0

0.2

0.4

0.6

0.8

1.0

in
di

ca
to

r

prompt "T is larger than X. True or False?"
41
43
44
45
46
47
48
49
12

22
32
52
62
72
82
92
142
1042

38 40 42 44 46
T

0.0

0.2

0.4

0.6

0.8

1.0

in
di

ca
to

r

prompt "T is larger than 42. True or False?"
0
1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17

Figure E1: Additional results for integer scan of Fig. 1 using the same numerical settings with the
Mistral-7B-Instruct model (full lines) and the Mistral-7B-base model (dashed lines). (Left) Linear
dissimilarity as a function of T −X , where X takes on a representative range of values (see legend).
(Right) Linear dissimilarity as a function of T for various rephrasings of the original prompt “T is
larger than 42. True or False?” obtained from ChatGPT4 (numbering in the legend refers to different
prompt variations). Examples include “Is T greater than 42?” and “Would you consider T to be more
than 42?”. In both plots, the peak for the instruct models is always at either X − 0.5 or X + 0.5, as
expected (where X = 42 for the right plot).
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Figure F1: High-temperature transition of Pythia 70M model in response to the prompt “The opinions
expressed by columnists are their own and do not represent the views of Townhall.com.\n\n” – an
excerpt from OpenWebText (Aaron Gokaslan and Vanya Cohen, 2019). (a) Linear dissimilarity
measure (L = 5) and (b) heat capacity for various numbers of generated output tokens noutputs with
the temperature range [10−4, 2]. [Number of text outputs generated per parameter value T : 1000,
1000, 300, 100, and 100 for noutputs = 50, 100, 250, 500, and 1000, respectively.]
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Figure F2: High-temperature transition of for Pythia models of various sizes in response to the
prompt “There’s measuring the drapes, and then there’s measuring the drapes on a house you haven’t
bought, a” – an excerpt from OpenWebText (Aaron Gokaslan and Vanya Cohen, 2019). (a) Linear
dissimilarity measure (L = 5) and (b) heat capacity with the temperature range [10−4, 2]. [Number
of text outputs generated per parameter value T : 1000. Number of generated output tokens noutputs:
50.]
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