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Abstract

In this study, we focus on characterizing the complex network dynamics of in vitro neuronal
system of live biological cells during two distinct activity states: spontaneous rest state and
engagement in a real-time (closed-loop) game environment. We use DishBrain which is a
system that embodies in vitro neural networks with in silico computation using a high-
density multi-electrode array. First, we embed the spiking activity of these channels in a
lower-dimensional space using various representation learning methods. We then extract
a subset of representative channels that are consistent across all of the neuronal prepara-
tions. Next, by analyzing these low-dimensional representations, we explore the patterns
of macroscopic neuronal network dynamics during the learning process. Remarkably, our
findings indicate that just using the low-dimensional embedding of representative channels
is sufficient to differentiate the neuronal culture during the Rest and Gameplay conditions.
Furthermore, we characterise the evolving neuronal connectivity patterns within the Dish-
Brain system over time during Gameplay in comparison to the Rest condition. Notably,
our investigation shows dynamic changes in the overall connectivity within the same re-
gion and across multiple regions on the multi-electrode array only during Gameplay. These
findings underscore the plasticity of these neuronal networks in response to external stimuli
and highlight the potential for modulating connectivity in a controlled environment. The
ability to distinguish between neuronal states using reduced-dimensional representations
points to the presence of underlying patterns that could be pivotal for real-time monitor-
ing and manipulation of neuronal cultures. Additionally, this provides insight into how
biological based information processing systems rapidly adapt and learn and may lead to
new or improved algorithms.
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1. Introduction

The DishBrain system introduces an innovative configuration that reveals elementary bi-
ological intelligence by leveraging adaptive and intrinsic neuronal traits. Within this con-
struct, in vitro neuronal networks are seamlessly integrated with in silico computational
elements utilizing high-density multi-electrode arrays (HD-MEAs). These cultivated neu-
ronal ensembles demonstrate biologically-based adaptive intelligence, effectively emulated
within a dynamic gaming environment through the implementation of closed-loop stimula-
tion and concurrent recordings (Kagan et al., 2022, 2023). Specifically, the biological neural
ensembles show self-organized adaptive electrophysiological dynamics, consistent with an
innate ability for acquiring new knowledge and manifesting meaningful responses to con-
strained, albeit biologically plausible, external stimuli (Harrell et al., 2020). The empirical
data is sourced from cortical cells derived from either embryonic rodent or human induced
pluripotent stem cell (hiPSC) lineages. While synthetic biology methods demonstrate that
in vitro biological networks of cortical cells are able to display real-time adaptive goal-
directed learning in simulated environments (Kagan et al., 2022; Habibollahi et al., 2023,
2022), key underlying network dynamics associated with this learning remain unexplored.

Here, we study the spiking activity recorded from each channel of the HD-MEA to ex-
plore the dynamics of neuronal network structure and functional connectivity between the
recorded units. Understanding the complex dynamics of neuronal networks is important to
discover neural mechanisms of how learning occurs. Neurons in a complex network inter-
act to process information and generate responses. Learning involves the modification of
synaptic interactions, which affects the signal transmission within a neuronal network. In-
vestigating the patterns of dynamic interactions between neurons provides insights into the
mechanisms underlying learning. The temporal patterns and strength of these interactions
represent the network’s ability to encode, store, and retrieve information. By investigat-
ing the dynamic organisation of neural networks, we can discover the mechanisms driving
synaptic modifications, leading to a deeper comprehension of the cellular and network-level
processes intrinsic to learning. Such insights have crucial implications across disciplines,
from neuroscience to artificial intelligence, potentially guiding the development of advanced
learning algorithms and treatments for neurological disorders.

2. Methods

2.1. DishBrain System

To assess the learning efficiency of cultured cortical networks during task engagement, we
recorded neuronal cultures mounted onto a multi-electrode array (MEA) with 1024 chan-
nels. The DishBrain system, interfacing in real-time with the MaxOne MEA (Maxwell
Biosystems, AG, Switzerland) software, enables closed-loop stimulation and recording. In
addition to recording neuronal electrical activity, this system also delivers safe, long-term
external electrical stimulation using biphasic pulses (Ruaro et al., 2005) eliciting action po-
tentials in neurons. Task-related information is relayed through appropriate coding schemes,
allowing real-time monitoring of neuronal activity and simultaneous delivery of structured
stimulation to the neuronal culture.
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The DishBrain system was employed to simulate neural cultures within a virtual gaming
environment, emulating the classic arcade game ‘Pong’. Stimulation was delivered using a
combination of rate coding electrical pulses, ranging from 4Hz to 40Hz, to encode the ball’s
position on the x-axis, and place coding (using designated electrodes arranged in a specific
topographical fashion) to encode the ball’s position on the y-axis. This input targeted a
pre-defined two-dimensional sensory zone comprising 8 sensory electrodes. The motion of
the paddle was controlled by the extent of electrophysiological activity measured within a
predetermined ”motor area” of the cultured network, captured in real-time.

The cells also received information about the closed-loop response to their control of the
paddle’s movement. It was possible to either deliver the sensory stimulation, as explained
above, or a feedback stimulation could be applied as previously described (Kagan et al.,
2022). The data utilized in this work were collected using an unpredictable feedback pro-
tocol. If the cultures failed to hit the ball using the paddle, indicating a ”miss” event, they
were subjected to an unpredictable stimulation. This feedback stimulus had a voltage of
150 mV and a frequency of 5 Hz, introducing an unpredictable external input into the sys-
tem. Random stimulation was delivered to arbitrary locations on the 8 designated sensory
electrodes, at varied intervals over four seconds. A configurable four-second resting period
followed, where no stimulation was provided before the next rally began. Each gameplay
recording session lasted 20 minutes, with a sampling frequency set at 20kHz. More details
of this system are introduced in Appendix A

Figure 1 illustrates the input information, feedback loop setup, and electrode configu-
rations in the DishBrain system.

Input sensory information: 

(  , )ballx bally

Input sensory information: 

(  , )ballx bally

HitMiss

Action:

Moving Paddle

Motor region, action: paddle up
Motor region, action: paddle down

Sensory area
Motor regions

8 Sensory stimulation electrodes

a) b)b)a)

Figure 1: a) DishBrain feedback loop setup. b) Electrode configuration and predefined
sensory and motor regions. Figures adapted and modified from (Kagan et al.,
2022)

2.2. Network Construction

Neuronal spiking activity was measured from 1024 channels of HD-MEA in 248 Gameplay
and 147 Rest session recordings. Given the length of recordings at the 20 kHz sampling
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frequency, the resulting times series during the Gameplay was very long. In the realm of
mining information from dense and high-dimensional networks, a prominent focus in re-
cent years has been on the concept of acquiring network embeddings in lower dimensions.
The primary objective of this direction is to acquire vector representations for individual
nodes within the network, which encapsulate valuable and meaningful insights (Perozzi
et al., 2014; Tang et al., 2015; Khajehnejad, 2019). Hence, in this work, we first employed
dimensionality reduction algorithms to both enhance the computational efficiency of sub-
sequent data analysis and improve data interpretability. This also allowed us to uncover
latent data structures not immediately apparent in the original high-dimensional space.
We used t-SNE (Van der Maaten and Hinton, 2008) and Isomap (Tenenbaum et al., 2000)
to obtain 3-dimensional representations of both Rest and Gameplay recordings. To ascer-
tain if these low-dimensional representations effectively capture latent network structures
associated with learning during Gameplay, we divided all recording sessions in half prior
to applying the dimensionality reduction techniques. Figure 2 illustrates the results after
color labeling the first and second half of the recording sessions for three samples during
Gameplay and Rest conditions, each of 10 and 5 minutes, respectively. The figure shows
that while the two halves of recordings are easily distinguishable in the Gameplay sessions
using either t-SNE or Isomap, the distinction is not as evident during the Rest sessions.
This suggests the presence of specific patterns in the complex network dynamics during
learning, captured only in the Gameplay.

Past studies have extensively utilized simplified models of interconnected neural pop-
ulations based on mean-field approximations as an effective technique that maintains the
dynamic properties of the neural network they are derived from, while also significantly
accelerating simulation speeds by several orders of magnitude as well as allowing to study
phase transitions (Renart et al., 2004; Baspinar et al., 2021; Bick et al., 2020; La Camera,
2021).

Additionally, within complex neural networks, only a fraction of neurons fire at any
given time, while the majority do not show clear action potentials. Growing evidence sug-
gests the emergence of specialized, selective, and abstract response properties within the
cortex (Wolfe et al., 2010). Such sparse activity and connectivity patterns conserve energy
and optimize computational capacity (Olshausen and Field, 2004). Yet, this sparsity high-
lights the redundancy in evaluating every neuron’s individual firing patterns. The neuronal
network’s remarkable ability to encode and process information relies on the concerted ac-
tion of neuronal populations, with individual neurons often conveying redundant or highly
correlated signals.

Motivated by this emergent and collective behaviour of neuronal networks, we aimed
to advance the reduction of computational complexity, when studying large neuronal pop-
ulations while simultaneously preserving the dynamical properties of the network. To do
so, we developed a method to identify a subset of recorded channels that likely monitored
the neuronal populations specially attuned to the ongoing task. Such a subset allows for
specification of neurons that characterise the network’s behavior during Gameplay to more
efficiently study the (macroscopic) dynamics of this smaller and interpretable network of
neurons. To identify a consistent subset of channels across all neuronal cultures, we first
used Tucker decomposition – via higher-order orthogonal iteration – on the tensor data
from the 248 Gameplay sessions in the lower-dimensional embedding space. The resultant
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Figure 2: Low-dimensional representation of 3 samples of a) Gameplay sessions and their
following b) Rest sessions using t-SNE as well as c) Gameplay sessions and their
following d) Rest sessions using Isomap. The purple and maroon dots are the
channel representations in the embedding space in the first and second halves
of the recordings, respectively. Both dimensionality reduction algorithms were
able to distinguish between the two halves of recording during Gameplay but not
during Rest sessions.

tensor with dimensions of 1024 × 3 acts as the compact representation of the original data
capturing its underlying patterns and structures. Using this tensor, we identified the set
of representative channels by employing the K-medoid clustering algorithm to partition the
data into K = 30 clusters and extract the corresponding ’medoids’ of each cluster. Selecting
K > 30 did not significantly improve the clustering accuracy measured by the red Davies-
Bouldin index. A network matrix using functional connectivity – defined as the zero-lag
Pearson correlations – of each Gameplay or Rest session recording was then built with these
30 channels as the nodes and the edges between these nodes represented by the functional
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connectivity. Only edges with Pearson correlation absolute values above 0.7 were kept.
Figure 3 is a schematic illustration of the proposed in vitro network construction framework
in this study.
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Figure 3: A schematic illustration of the overall network construction framework. The
spiking time series of all channels from each recorded neuronal culture are first
mapped to a 3-dimensional space using the t-SNE embedding algorithm. These
lower-dimensional representations of all the recorded cultures are then stacked to
form a tensor. Using tucker decomposition, a tensor is extracted and using K-
medoids algorithm, the representative channels are identified which are consistent
across all neuronal cultures. These channels are then used as the network nodes
and the pairwise Pearson correlation values are used as edge weights for these
networks. The network layout matches the actual location of the selected channels
on the MEA and the node colors indicate whether these nodes belong to the
predefined sensory (green) or motor (blue) regions.

3. Results

After constructing the connectivity networks corresponding to each recording session, we
aimed to examine the temporal evolution of these networks in both Gameplay and Rest
conditions. To achieve this, we divided each recording session into 2-minute windows and
evaluated the change in edge weights as the network evolved over those windows. Figure
4 shows the differences in the correlation between each pair of nodes when comparing the
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last and first 2 minutes of each recording. This figure shows the average networks over all
the Gameplay or Rest sessions with red and black colors indicating increased and decreased
correlations, respectively. The edge weights are proportional to the absolute value of these
differences in functional connectivity.

a) b)

Figure 4: The average networks over all the a) Gameplay and b) Rest sessions with edge
weights corresponding to the difference of correlation values, representing differ-
ences in functional connectivity, between each pair of channels when comparing
the last 2 minutes to the first 2 minutes of the recordings. The edge colors indicate
the valence of these differences in functional connectivity with red/black coloured
edges denoting increased/decreased connectivity, respectively. Blue square and
green circle nodes represent channels selected from motor and sensory regions,
respectively. The arrows on the motor region nodes indicate the direction of pad-
dle movement of which those channels are representative in the predefined layout
shown in Figure 1.

As shown in Figure 4, we found that the cultures, while embedded in the game envi-
ronment, had a higher number of edges with increased correlation between channels while
this change was not apparent during their rest state spontaneous activity. This clearly
indicates significant network plasticity occurring in these cultures that can be a necessary
underlying mechanism for the learning that happens in this closed-loop system (Kagan
et al., 2022). Moreover, we evaluated several other network characteristics from all of the
generated networks and compared them between the first and last 2 minutes of record-
ings in both Rest and Gameplay groups. Figure 5 shows these results. While all of these
metrics showed statistically significant differences during Gameplay, none of them showed
statistically significant differences during the Rest condition of the cultures.

The increased average weight of the networks in the Gameplay sessions confirms the
same patterns also observed in Figure 4. Interestingly, the decreasing modularity index
suggests the change in the community structure of neuronal networks when learning occurs
with disconnected communities becoming more connected during Gameplay. Other features
such as increased clustering coefficient and decreased characteristic path length are also in
line with the increasing pattern of correlation values observed in the connectivity during
Gameplay.
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Figure 5: Comparing the network summary statistics between the first and last 2 minutes
of recording for top) Gameplay and bottom) Rest. While all the evaluated
network metrics show statistically significant differences during Gameplay, no
statistically significant difference is detected during spontaneous rest state period
(Rest). One-way ANOVA test, ***p < 10−3. Box plots show interquartile range,
with bars demonstrating 1.5X interquartile range, the line marks the median and
the black triangle marks the mean. Error bands, 1 SE.

4. Discussion

Our study draws inspiration from mean-field theory, a technique used in statistical physics
that seeks to create simplified models of networks with the aim of reducing computational
complexity. We also build upon previous findings that have underscored the existence of
redundancy within large populations of neurons, which contributes to the robustness of
neural networks. It has been suggested that only a subpopulation of neurons is needed to
capture the comprehensive dynamics of the entire neuronal network.

In our investigation, we work with a large population of in vitro cortical neurons, placing
them within a closed-loop game environment in the DishBrain system. Our primary objec-
tive is to analyze the network dynamics of these neurons during learning, comparing their
complex network dynamics in the experimental setting to conditions of Rest. To tackle this
challenge, we introduce an innovative approach using DishBrain that allows us 1) to study
neuronal populations on a cellular level in a closed-loop game environment, 2) to study
neuronal activities in a lower-dimensional space and 2) to identify a specific subset of the
population that can efficiently encapsulate the complete population dynamics, and 4) to
study the underlying network dynamics leading to the emergence of information processing
and learning.

Our research outcomes demonstrate the effectiveness of our framework in extracting
this low-dimensional information, along with the identification of a small group of the most
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influential recorded units. These findings convincingly indicate that our approach is highly
efficient in capturing variations in the network’s macroscopic properties. This represents a
promising step toward a deeper understanding of how large neuronal populations function
and adapt in complex environments and what could be the underlying network changes
that give rise to learning.
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Appendix A. DishBrain System

A.1. Cell Culture

Neural cells were cultured either from the cortices of E15.5 mouse embryos or differentiated
from human induced pluripotent stem cells via a dual SMAD inhibition (DSI) protocol
or through a lentivirus based NGN2 direct differentation protocols as previously described
(Kagan et al., 2022). Cells were cultured until plating. For primary mouse neurons this
occurred at day-in-vitro (DIV) 0, for DSI cultures this occurred at between DIV 30 - 33
depending culture development, for NGN2 cultures this occured at DIV 3.

A.2. MEA Setup and Plating

MaxOne Multielectrode Arrays (MEA; Maxwell Biosystems, AG, Switzerland) was used
and is a high-resolution electrophysiology platform featuring 26,000 platinum electrodes
arranged over an 8 mm2. The MaxOne system is based on complementary meta-oxide-
semiconductor (CMOS) technology and allows recording from up to 1024 channels. MEAs
were coated with either polyethylenimine (PEI) in borate buffer for primary culture cells
or Poly-D-Lysine for cells from an iPSC background before being coated with either 10
µg/ml mouse laminin or 10 µg/ml human 521 Laminin (Stemcell Technologies Australia,
Melbourne, Australia) respectively to facilitate cell adhesion.Approximately 106 cells were
plated on MEA after preparation as per (Kagan et al., 2022). Cells were allowed ap-
proximately one hour to adhere to MEA surface before the well was flooded. The day
after plating, cell culture media was changed for all culture types to BrainPhys™ Neuronal
Medium (Stemcell Technologies Australia, Melbourne, Australia) supplemented with 1%
penicillin-streptomycin. Cultures were maintained in a low O2 incubator kept at 5% CO2,
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5% O2, 36°C and 80% relative humidity. Every two days, half the media from each well was
removed and replaced with free media. Media changes always occurred after all recording
sessions.

A.3. DishBrain platform and electrode configuration

The current DishBrain platform is configured as a low-latency, real-time MEA control sys-
tem with on-line spike detection and recording software. The DishBrain platform provides
on-line spike detection and recording configured as a low-latency, real-time MEA control.
The DishBrain software runs at 20 kHz and allows recording at an incredibly fine timescale.
There is the option of recording spikes in binary files, and regardless of recording, they are
counted over a period of 10 milliseconds (200 samples), at which point the game environ-
ment is provided with how many spikes are detected in each electrode in each predefined
motor region as described below. Based on which motor region the spikes occurred in, they
are interpreted as motor activity, moving the ‘paddle’ up or down in the virtual space. As
the ball moves around the play area at a fixed speed and bounces off the edge of the play
area and the paddle, the pong game is also updated at every 10ms interval. Once the ball
hits the edge of the play area behind the paddle, one rally of pong has come to an end.
The game environment will instead determine which type of feedback to apply at the end
of the rally: random, silent, or none. Feedback is also provided when the ball contacts
the paddle under the standard stimulus condition. A ‘stimulation sequencer’ module tracks
the location of the ball relative to the paddle during each rally and encodes it as stimula-
tion to one of eight stimulation sites. Each time a sample is received from the MEA, the
stimulation sequencer is updated 20,000 times a second, and after the previous lot of MEA
commands has completed, it constructs a new sequence of MEA commands based on the
information it has been configured to transmit based on both place codes and rate codes.
The stimulations take the form of a short square bi-phasic pulse that is a positive voltage,
then a negative voltage. This pulse sequence is read and applied to the electrode by a
Digital to Analog Converter (or DAC) on the MEA. A real-time interactive version of the
game visualiseris available at https://spikestream.corticallabs.com/. Alternatively,
cells could be recorded at ‘Rest’ in a gameplay environment where activity was recorded
to move the paddle but no stimulation was delivered, with corresponding outcomes still
recorded. Using this spontaneous activity alone as a baseline, the gameplay characteristics
of a culture were determined. Low level code for interacting with Maxwell API was written
in C to minimize processing latencies-so packet processing latency was typically <50 µs.
High-level code was written in Python, including configuration setups and general instruc-
tions for game settings. A 5 ms spike-to-stim latency was achieved, which was substantially
due to MaxOne’s inflexible hardware buffering. Figures 6 and 7 illustrate schematic views
of Software components and data flow in the DishBrain closed loop system.
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a)

b)
Figure 6: Software components and data flow in the DishBrain closed loop system. Voltage

samples flow from the MEA to the ‘Pong’ environment, and sensory information
flows from the ‘Pong’ environment back to the MEA, forming a closed loop. The
blue rectangles mark proprietary pieces of hardware from MaxWell, including the
MEA well which may contain a live culture of neurons. The green MXWServer
is a piece of software provided by MaxWell which is used to configure the MEA
and Hub, using a private API directly over the network. The red rectangles mark
components of the ‘DishServer’ program, a high-performance program consisting
of four components designed to run asynchronously, despite being run on a single
CPU thread. The ‘LAN Interface’ component stores network state, for talking
to the Hub, and produces arrays of voltage values for processing. Voltage values
are passed to the ‘Spike Detection’ component, which stores feedback values and
spike counts, and passes recalibration commands back to the LAN Interface.
When the pong environment is ready to run, it updates the state of the paddle
based on the spike counts, updates the state of the ball based on its velocity
and collision conditions, and reconfigures the stimulation sequencer based on the
relative position of the ball and current state of the game. The stimulation
sequencer stores and updates indices and countdowns relating to the stimulations
it must produce and converts these into commands each time the corresponding
countdown reaches zero, which are finally passed back to the LAN Interface, to
send to the MEA system, closing the loop. The procedures associated with each
component are run one after the other in a simple loop control flow, but the ‘Pong’
environment only moves forward every 200th update, short-circuiting otherwise.
Additionally, up to three worker processes are launched in parallel, depending
on which parts of the system need to be recorded. They receive data from the
main thread via shared memory and write it to file, allowing the main thread to
continue processing data without having to hand control to the operating system
and back again. Figures adapted from (Kagan et al., 2022).
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a)

b)

Figure 7: Numeric operations in the real-time spike detection component of the DishBrain
closed loop system, including multiple IIR filters. Running a virtual environment
in a closed loop imposes strict performance requirements, and digital signal pro-
cessing is the main bottleneck of this system, with close to 42 MB of data to
process every second. Simple sequences of IIR digital filters is applied to incom-
ing data, storing multiple arrays of 1024 feedback values in between each sample.
First, spikes on the incoming data are detected by applying a high pass filter to
determine the deviation of the activity, and comparing that to the MAD, which
is itself calculated with a subsequent low pass filter. Then, a low pass filter is
applied to the original data to determine whether the MEA hardware needs to
be re-calibrated, affecting future samples. This system was able to keep up with
the incoming data on a single thread of an Intel Core i7-8809G. Figures adapted
from (Kagan et al., 2022).
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