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Abstract
Modern machine learning models are often trained using massive amounts of data.
Such large datasets come at a high cost in terms of both storage and computation,
especially when the data will need to be used repeatedly (e.g., for neural architecture
search or continual learning). Dataset distillation (DD) describes the process of
constructing a smaller “distilled” dataset (usually consisting of synthetic examples),
such that models trained on the distilled dataset will be similar to models trained
on the original dataset. In this paper, we study DD from a theoretical perspective.
We show that for generalized linear models, it is possible to construct a distilled
dataset with only a single point which will exactly recover the model trained on
the original dataset, regardless of the original number of points. We provide a
specialized distillation for linear regression with size independent of the original
number of points, but which perfectly reconstructs the model obtained from the
original dataset with any data-independent regularizer, or by combining the original
dataset with any additional data. We also provide impossibility results showing that
similar constructions are impossible for logistic regression, and that DD cannot be
accomplished in general for kernel regression, even if the goal is only to recover a
single model.

1 Introduction

Training data is the fuel which powers machine learning. As the amount of data collected increases
day by day, the computational efficiency of learning from such massive datasets becomes an ever
more pressing problem. Training a single model on a vast amount of training data may itself be
feasible, but this is often only a fraction of the computational load. Practitioners will frequently
need to train many different models with thousands of possible hyperparameter settings in order
to train a performant model. If the data are not collected all at once, old data must be stored and
periodically reused in order to prevent the model from forgetting the knowledge it contains. Some
methods, such as kernel-based approaches, also have inference costs which scale with the size of
the training data. In these instances, massive training datasets can impose an undesirable, or even
infeasible, computational burden.

To address these problems, [25] introduced dataset distillation. The goal is to “distill” a large
training dataset into a smaller synthetic set, such that training ML models on the smaller distilled
set approximates model training on the much larger original dataset. Besides the purely scientific
question of how much the original data can be compressed, effective dataset distillation methods can
be applied to hyperparameter tuning, neural architecture search, and continual learning, reducing the
computational cost of these tasks. There are other benefits such as reduced memory footprint and
even improved data privacy [4].

While there has been a great deal of empirical progress on DD, many of its theoretical properties
still have not been studied in the literature. In this work, we seek to begin to fill this theoretical gap.
Aside from answering questions of purely academic interest, a more complete theory can eventually
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lead to methods which are more principled and computationally efficient than the current SOTA. Our
contributions are as follows:

• For GLMs, we show that we can achieve perfect single-model dataset distillation (i.e.,
construct a distilled dataset which exactly recovers the model trained on the full training set)
with only a single synthetic point.

• For linear regression, we show that a synthetic dataset of size d (where d is the dimension
of the features) is necessary and sufficient to recover the full regularization path of model
training on the original data, with any data-independent regularizer.

• We show that it is not possible to compress the original dataset while preserving the
regularization path for logistic regression. We also show that compression is impossible for
kernel regression, even if we only desire to recover a single model.

2 Related Work
Dataset distillation was originally introduced by [25]. Since their original paper, there has been a
growing body of work on the topic, seeking to make improvements both on downstream performance
and computational efficiency. Many works perform distillation by simultaneously training a “student”
model and optimizing the distilled dataset, so that the training trajectory of the student model matches
that of the original model on the original data [1, 5]. Another approach which is simimlar in spirit seeks
to match loss gradients between the synthetic and real data, which implicitly results in similar training
trajectories; this approach is commonly referred to as dataset condensation [32, 30, 8, 7]. Other
approaches seek to directly capture properties of the data distribution, rather than enforcing similar
training trajectories [24, 31]. There are also works which specifically address the computational or
memory burdens of previous methods, allowing them to scale to larger datasets such as CIFAR-100
or ImageNet [14, 3]. Dataset distillation has found applications in a variety of areas. Two commonly
cited use cases are continual learning [12, 16, 27, 18] and neural architecture search [21], but other
uses include privacy [22, 2, 4, 11], robust learning [28, 23] and federated learning [6, 10, 20]. We
refer the reader to the works of [9, 17, 29] for a more comprehensive review, and to the blog post of
[26] for an up-to-date list of works in the area.

While most works in the area are empirical in nature, there are some exceptions. [13] provide
theoretical results for the case of single-model distillation in ridge-regularized linear regression. We
extend their results to the case of logistic regression with cross-entropy loss, and we improve on
their results for linear regression to account for not only single-model distillation, but also recover
regularization paths and dataset combination.

3 Notation & Formal Problem Statement
In this section, we introduce notation and formally state the types of DD we will study. We will use
D = {(xi, yi)}ni=1 ⊆ Rd × R to refer to a generic dataset. Generally, Dorig will refer to the original
training set and Ddist will referred to the distilled dataset. We use θ to refer to model parameters. We
overload notation and use θ(D) to refer to the model resulting from training on the dataset D. The
loss function used for training will be supplied in context. We also use the notation θR(D) to refer to
the model resulting from training of D with (data-independent) regularizer R(θ). We use the notation
θλ to refer to training with ridge regularization with strength λ, i.e. R(θ) = λ∥θ∥2, where ∥ · ∥
denotes the Euclidean norm. We will sometimes abbreviate the notation and write θλorig = θλ(Dorig)

and θλdist = θλ(Ddist).

Throughout the paper, we will consider three possible tasks for DD. In single-model distillation, we
seek to just recover the single model obtained from a fixed training procedure on the original dataset.
While this is not one of the practical use cases for DD, studying single-model distillation can help
inform our intuition for more realistic DD scenarios.

Definition 1. A dataset Ddist is a single-model distillation (SD) of Dorig if θ(Ddist) = θ(Dorig).

In hyperparameter distillation, we require the ability to recover the models obtained from the original
dataset with different choices of hyperparameters. In this work, the hyperparameters will be different
regularization strengths. This setting is a simplified version of using DD to speed up more general
hyperparameter tuning tasks during model training.
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Definition 2. A dataset Ddist is a hyperparameter distillation (HD) of Dorig if θλ(Ddist) = θλ(Dorig)
for all λ ≥ 0.

Finally, in combination distillation, we require that combining the distilled dataset with any other
dataset D should produce the same result as combining the original dataset with D. This is desirable
if dataset distillation is used to prevent catastrophic forgetting in continual learning.

Definition 3. A dataset Ddist is a combination distillation (CD) of Dorig if θ(Ddist ∪D) = θ(Dorig ∪
D) for any other dataset D. Here, the union is considered as a union of multisets.

It is tautologically clear that Dorig is always a distillation of itself, for any of the three DD tasks. Thus
we will be interested in distillation procedures for which |Ddist| ≪ |Dorig|.

4 Theoretical Results
4.1 Single-Model Distillation
We begin by considering single-model distillation, the simplest task for DD. We show that for a
broad class of models (GLMs), the model trained on the original dataset can be encoded using only
a distilled dataset containing only a single-point (Theorem 1). On the other hand, any amount of
compression is impossible in general for kernel regression models (Theorem 2). We begin with the
positive result.

We refer the reader to [15] for an introduction to GLMs. We consider GLMs of the following form:
we use the canonical link function g so that E[y|x] = g−1(x⊤θ) for some θ. Conditional on x, y
belongs to a generalized exponential family with density given by

f(y;x, θ) = h(y) exp(yx⊤θ − b(x⊤θ))

for some functions h and b. Given a dataset {(xi, yi)}ni=1, the model parameters θorig can be trained
by minimizing the negative log-likelihood, which takes the following form:

L(θ) = −
n∑

i=1

(yix
⊤
i θ − b(x⊤

i θ)) + (terms independent of θ).

Theorem 1. For any GLM initialized at 0 and trained via gradient descent on the negative log-
likelihood, the single-point dataset Ddist = {(θorig, g−1(∥θorig∥2))} accomplishes single-model
dataset distillation.

The setting of Theorem 1 includes unregularized linear and logistic regression. Single-model
distillation is also possible for these special cases when ridge regularization is applied. Due to space
constraints, we defer these results to the appendix.

We have shown that it is possible to encode the weights for any GLM in a single datapoint, the best
compression result which could possibly hold. However, for kernel regression models, we find the
opposite extreme: in general, it is impossible to produce a condensed dataset which is smaller than
the original dataset.

We consider a standard kernel regression setting [19]. Let H be a RKHS with inner product
⟨·, ·⟩H, norm ∥w∥2H = ⟨w,w⟩H, associated kernel K, and feature map ϕ : Rd → H, so that
⟨ϕ(x), ϕ(x′)⟩H = K(x, x′) for all x, x′ ∈ Rd. In kernel regression, given a dataset {(xi, yi)}ni=1 ⊆
Rd × R, the goal is to find

min ∥w∥2H s.t. w ∈ argmin

n∑
i=1

(yi − ⟨w, xi⟩H)2.

By the representer theorem, the solution w∗ has the form w∗ =
∑n

i=1 αiK(·, xi) for some coefficients
αi. Kernel regression allows us to model nonlinear relationships between the covariates and target
variable. However, this increase in expressive power also means that the information contained in the
original dataset cannot be perfectly distilled into a smaller dataset.

Theorem 2. Suppose that the original dataset Dorig = {(xi, yi)}ni=1 is such that (xi, yi) are
independent for each i, and xi and yi|xi have distributions which are absolutely continuous with
respect to the Lebesgue measure. Then with probability 1, any exact single-model distillation for
Gaussian kernel regression must contain at least n points.

3



We remark that the proof does not rely heavily on the specific choice of the Gaussian kernel. Any
kernel K where the functions K(·, xi) are linearly independent and the coefficients αi are nonzero
with probability 1 will suffice. The same result also holds for kernel ridge regression.

4.2 Hyperparameter and Combination Distillation
Next, we examine the more challenging scenarios of hyperparameter and combination distillation.
The special structure of the loss for linear regression means that both of these can be accomplished
simultaneously with the same distillation (Theorem 3), the size of which is independent of the original
number of datapoints. However, this does not generalize to all GLMs, and distillation with fewer
than the original number of datapoints is provably impossible for logistic regression (Theorem 4).

For linear regression, we will consider the unnormalized square loss L(θ) =
∑n

i=1(x
⊤
i θ−yi)

2. (The
lack of a normalizing n−1 does not change any of our results, as this can simply be absorbed into the
(xi, yi); we use this convention for notational convenience in the proofs.)

Theorem 3. Let {(xi, yi)}ni=1 ⊆ Rd × R be a linear regression dataset, and let X ∈ Rn×d be
the associated design matrix. We assume that n ≥ d and the xi are in general position. Let
v1, . . . , vd ∈ Rd be the right singular vectors of X with associated singular values σ1, . . . , σd.
Finally, define x̃i = σivi and ỹi = θ⊤origx̃i. Then the distilled dataset Ddist = {(x̃i, ỹi)}di=1
accomplishes hyperparameter and combination distillation.

We can actually show a stronger result, namely that Ddist satisfies θR(Ddist) = θR(θorig) for any
data-independent regularizer R(θ). Unforunately, this strong positive result for linear regression does
not extend to the slightly more complicated case of logistic regression.

We consider a logistic regression model trained with the (normalized) cross-entropy loss: L(θ) =
− 1

n

∑n
i=1(yi log hθ(xi) + (1 − yi) log(1 − hθ(xi)), where hθ(x) = 1/(1 + e−θ⊤x). (Again, our

decision to include the normalizing constant in this case does not change the result.) Unlike linear
regression, no compression via DD is possible in this case.

Theorem 4. Let {(xi, yi)}ni=1 ⊆ Rd × {0, 1} be a binary classification dataset such that all of the
xi are distinct. Then any distilled dataset which accomplishes exact hyperparameter or combination
distillation must contain at least n points.

Linear and logistic regression both belong to the class of generalized linear models. The conflicting
results in these two cases regarding hyperparameter and combination distillation mean that we cannot
generally conclude whether HD and CD are possible (or impossible) for GLMs.

5 Discussion
In this work, we studied the problem of dataset distillation from a theoretical perspective. We showed
that it is possible to distill the training set for a GLM down to a single point, regardless of the original
number of training points, when the goal is to simply recover the original model by training on the
distilled data. We further showed exact hyperparameter and combination distillation (two commonly
cited practical use cases for dataset distillation) are possible for linear regression, but compression is
provably impossible for even the slightly more complicated case of logistic regression.

Limitations & Future Work For the case of logistic regression, Theorem 4 shows that compression
is not possible for exact hyperparameter distillation with ridge regularization, provided that the same
regularization parameter is used on both the original and distilled datasets. We conjecture that a
stronger result should hold, namely that the regularization paths of the original and distilled datasets
cannot coincide for any correspondence between the original and distilled regularization parameters.

Deriving results for approximate distillation would also be of practical interest. For instance, suppose
we want to enforce a tolerance ∥θλorig − θλdist∥ ≤ ε for all λ ≥ 0; how much compression is possible
in this case, for either kernel or logistic regression (and similarly for combination distillation)?

Lastly, a common use case for DD is neural architecture search. In this setting, it is important that
the same distilled dataset will perform well across different network architectures. This case is
not covered by any of our theory. Extending our analyses to this setting (perhaps by revisiting the
kernel regression setting and deriving approximate results for kernels which are sufficiently similar,
corresponding to sufficiently similar network architectures) is also a potentially fruitful line of future
inquiry.
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A Proofs Deferred from Section 4.1
Proof of Theorem 1. The negative log-likelihood for a GLM on a dataset {(xi, yi)}ni=1 is given by
ℓ(θ) = −

∑n
i=1(yix

⊤
i θ − b(x⊤

i θ)). (We ignore the term which does not depend on θ.) Its gradient is
therefore

∇ℓ(θ) = −
n∑

i=1

(yi − b′(x⊤
i θ))xi =

n∑
i=1

(yi − g−1(x⊤
i θ))xi.

Here we have used the fact that b′(x⊤θ) = g−1(x⊤θ) (see [15]). A simple inductive argument shows
that the parameters of a model initialized at 0 and trained via GD on ℓ remains in the span of the xi.
In particular, for the distillation Ddist, GD will arrive at parameters θdist = cθorig for some scalar c.
We claim that in fact θdist = θorig. If θorig = 0, we are already done, so assume that θorig ̸= 0. Then
the scalar c satisfies

0 = ∇ℓ(cθorig) = (g−1(∥θorig∥2)− g−1(c∥θorig∥2))θorig.

Since θorig ̸= 0, the result will follow immediately if g−1 is injective. This follows immediately from
the fact that g−1 exists (i.e., g is invertible). This is because

g−1(x) = g−1(y) =⇒ x = g(g−1(x)) = g(g−1(y)) = y.

This completes the proof.

Proof of Theorem 2. Let K = (e−∥xi−xj∥2

)ni,j=1 denote the kernel matrix and y = (y1, . . . , yn)
⊤

denote the response vector. The predictions for the kernel regression model trained on this dataset are
given by

f(x) =

n∑
i=1

αie
−∥x−xi∥2

,

where α = K†y. (In fact, α = K−1y since K is invertible with probability 1.) Note that the
independence and absolute continuity conditions on xi and yi|xi imply that the xi are distinct and
αi ̸= 0 for all i with probability 1.

For a Gaussian kernel regression model trained on any distilled dataset {(x̃i, ỹi)}ki=1, by the repre-
senter theorem, the resulting predictor takes the form

g(x) =

k∑
i=1

βie
−∥x−x̃i∥2

for some coefficients βi. Setting f(x) = g(x), the result holds since any collection {e−∥x−xi∥2}Ni=1
is linearly independent provided the xi are unique.

B Proofs Deferred from Section 4.2
Proof of Theorem 3. Let X ∈ Rn×d denote the original data matrix and Y ∈ Rn denote the response
vector. The training loss function is given by

n∑
i=1

(θ⊤xi − yi)
2 +R(θ) = θ⊤(X⊤X)θ − 2θ⊤(X⊤Y ) +R(θ) + Y ⊤Y.

From this expression, we see that if X̃⊤X̃ = X⊤X and X̃⊤Ỹ = X⊤Y (where X̃ and Ỹ are the
data matrix and response vector for the distilled dataset), then the losses on the original and distilled
datasets are the same as a function of θ (modulo a constant offset) and thus have the same minima.

Let X = UΣV ⊤ be the SVD of X , where Σ = diag(σ1, . . . , σd) ∈ Rd×d and V = [v1 · · · vd] ∈
Rd×d with vi ∈ Rd. Since V is orthogonal, it is easy to see that if X̃ = ΣV ⊤ and Ỹ = Σ−1V ⊤X⊤Y ,
we have the desired equalities. This can be accomplished with the distilled dataset

{(x̃i, ỹi) : i = 1, . . . , d}, x̃i = σivi, ỹi = σ−1
i v⊤i X

⊤Y.
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We remark that Ỹ has a simpler expression, namely Ỹ = X̃θ0orig. That is, Ỹ is just the predictions of
the unregularized model on the synthetic dataset X̃ . This is because

Ỹ = Σ−1V ⊤X⊤Y = (X⊤X)−1/2X⊤Y = (X⊤X)1/2︸ ︷︷ ︸
X̃

· (X⊤X)−1X⊤Y︸ ︷︷ ︸
θ0
orig

.

Since in this case we have X̃⊤X̃ = X⊤X and X̃⊤Ỹ = X⊤Y , it follows that θRorig = θRdist for any
data-independent regularizer R(θ).

Note that this analysis also implies that the same distilled dataset also works for combination
distillation. In particular, let X ′, Y ′ be the data matrix and response vector for any other dataset D.
The combined data matrix for the original datasets is X = [X⊤ X ′⊤]⊤, while the combined response
vector is Y = [Y ⊤ Y ′⊤]⊤; for the dataset resulting from combination with the distilled dataset, these
quantities are X̃ = [X̃⊤ X ′⊤]⊤ and Ỹ = [Ỹ ⊤ Y ′⊤]⊤, respectively. Then we have

X⊤X = X⊤X +X ′⊤X ′ = X̃⊤X̃ +X ′⊤X ′ = X̃⊤X̃,

X⊤Y = X⊤Y +X ′⊤Y ′ = X̃⊤Ỹ +X ′⊤Y ′ = X̃⊤Ỹ.
It directly follows that θ(Dorig ∪ D) = θ(Ddist ∪ D).

Proof of Theorem 4. We begin with hyperparameter distillation. Suppose that θλorig = θλdist = θλ.
Since θλorig, θ

λ
dist are stationary points of their respective losses, we have

1

n

n∑
i=1

(
1

1 + e−θλ·xi
− yi

)
xi + λθλ =

1

k

k∑
i=1

(
1

1 + e−θλ·x̃i
− ỹi

)
x̃i + λθλ = 0.

In particular, we see that

1

n

n∑
i=1

(
1

1 + e−θλ·xi
− yi

)
xi =

1

k

k∑
i=1

(
1

1 + e−θλ·x̃i
− ỹi

)
x̃i (1)

for all θλ. Since {θλ : λ ≥ 0} has an accumulation point at 0 and both functions in equation (1)
are analytic functions of θ, by the identity theorem, the equality (1) must hold for all values of θ
(not just those in the regularization path θλ). The desired result then follows since any collection
{ 1
1+e−θ·x̄i

}Ni=1 are linearly independent as functions of θ, provided that the x̄i are unique.

The proof for combination distillation is similar. Let {(xi, yi)}ni=1 be the original dataset and
{(x̃i, ỹi)}ki=1 be the distilled dataset, and fix a regularization strenght λ > 0. We will use
{(x̄i, ȳi)}mi=1 to denote an arbitrary second dataset that we wish to combine with the first.

By the definition of combination distillation, the model obtained by training on the union of the
original dataset with the second dataset must be the same as the model obtained by training on the
union of the distilled dataset and the second dataset. In particular, this implies that

1

n+m

[
n∑

i=1

(
1

1 + e−x⊤
i θ

− yi

)
xi +

m∑
i=1

(
1

1 + e−x̄⊤
i θ

− ȳi

)
x̄i

]
+ λθ = 0

=⇒ 1

k +m

[
k∑

i=1

(
1

1 + e−x̃⊤
i θ

− ỹi

)
x̃i +

m∑
i=1

(
1

1 + e−x̄⊤
i θ

− ȳi

)
x̄i

]
+ λθ = 0. (2)

For each m ≥ 0, define θ(m) to be the (shared) solution to (2) when the second dataset is {(x̄i, ȳi)}mi=1
has x̄i = 0, ȳi = 0 for all i. In particular, we see that

n∑
i=1

(
1

1 + e−x⊤
i θ(m)

− yi

)
xi −

k∑
i=1

(
1

1 + e−x̃⊤
i θ(m)

− ỹi

)
x̃i + (n− k)λθ(m) = 0. (3)

Since {θ(m)}∞m=0 has an accumulation point at 0 and the LHS of (3) is analytic as a function of θ, it
follows that (3) holds for all θ (not just θ(m)) by the indentity theorem. Note that the norm of the
two summation terms are bounded by a constant, while ∥(n − k)λθ∥ is unbounded provided that
n− k ̸= 0. In particular, this means that we must have k = n, as desired.
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