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Abstract

Multimodal emotion recognition systems rely001
heavily on the full availability of modali-002
ties, suffering significant performance declines003
when modal data is incomplete. To tackle this004
issue, we present the Cross-Modal Alignment,005
Reconstruction, and Refinement (CM-ARR)006
framework, an innovative approach that sequen-007
tially engages in cross-modal alignment, re-008
construction, and refinement phases to handle009
missing modalities and enhance emotion recog-010
nition. This framework utilizes unsupervised011
distribution-based contrastive learning to align012
heterogeneous modal distributions, reducing013
discrepancies and modeling semantic uncer-014
tainty effectively. The reconstruction phase015
applies normalizing flow models to transform016
these aligned distributions and recover miss-017
ing modalities. The refinement phase employs018
supervised point-based contrastive learning to019
disrupt semantic correlations and accentuate020
emotional traits, thereby enriching the affec-021
tive content of the reconstructed representa-022
tions. Extensive experiments on the IEMO-023
CAP and MSP-IMPROV datasets confirm the024
superior performance of CM-ARR under condi-025
tions of both missing and complete modalities.026
Notably, averaged across six scenarios of miss-027
ing modalities, CM-ARR achieves absolute im-028
provements of 2.11% in WAR and 2.12% in029
UAR on the IEMOCAP dataset, and 1.71% and030
1.96% in WAR and UAR, respectively, on the031
MSP-IMPROV dataset. Our code is available032
at this url.033

1 Introduction034

Multimodal emotion recognition (MMER) entails035

the analysis of emotional cues across various036

modalities, including speech, text, and body lan-037

guage, among others. These modalities serve com-038

plementary functions in the expression and inter-039

pretation of human emotions. However, in practical040

applications, the availability of these modalities is041

frequently compromised; specific modalities may042

Figure 1: An example of missing modalities: when
the speech modality is missing, emotion recognition
is guided by the text and video modalities, leading to
incorrect predictions. The ground truth is “angry”.

be absent or inaccessible due to various factors. For 043

example, text data may be unavailable due to errors 044

in automatic speech recognition systems, speech 045

may be obscured by excessive background noise, 046

and visual data may be impaired by poor lighting 047

or occlusions. These challenges underscore the 048

need for MMER systems to be highly adaptable 049

and robust, capable of effectively functioning even 050

with incomplete modal information. 051

Conventional multimodal learning paradigms, as 052

documented in the literature (Yoon et al., 2018; Liu 053

et al., 2022; Sun et al., 2024), typically operate 054

under the assumption of complete modality pres- 055

ence. These approaches are dedicated to construct- 056

ing fusion models optimized for scenarios where 057

all modalities are fully available, a presumption 058

that can undermine their utility in situations where 059

modalities are partially missing. Illustratively, as 060

depicted in Fig. 1, an emotion classified as “an- 061

gry” in a fully modal context—primarily due to 062

pronounced tones in the speech modality—may be 063

reinterpreted as “neutral” in the absence of the 064

speech component, with the text and video modali- 065

ties becoming the guide. 066

The research community has developed inno- 067

vative methodologies aimed at enhancing the re- 068

silience of MMER systems faced with incomplete 069

modalities, primarily focusing on predicting miss- 070

ing data across modalities. However, the signifi- 071
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cant distribution gaps between different modalities072

present substantial challenges. For instance, Wang073

et al. (2023) utilize flow models to map heteroge-074

neous modality representations into a latent space075

following a Gaussian distribution, aiming to ensure076

consistency. Nevertheless, this approach does not077

adequately address the distribution gaps between078

modalities. Alternatively, Zuo et al. (2023) sug-079

gest the use of modality-invariant features to aid080

in reconstructing modality-specific characteristics.081

While this method is promising, it has been cri-082

tiqued for its limited effectiveness, particularly due083

to difficulties in accurately predicting modality-084

specific features. These strategies underscore the085

critical need for effective cross-modal alignment086

before attempting to predict missing data across087

modalities.088

To address the aforementioned problems, this pa-089

per introduces a novel framework for cross-modal090

alignment, reconstruction, and refinement, desig-091

nated as CM-ARR. The initial alignment phase092

aims to bridge the distributional divergences be-093

tween modalities, which facilitates subsequent re-094

construction efforts. Specifically, inspired by MAP095

(Ji et al., 2023), we employ an unsupervised1096

distribution-based contrastive learning approach097

that replaces point representations with their Gaus-098

sian distributional counterparts. This method can099

convey richer multimodal semantic information by100

effectively encoding uncertainty. Next in the re-101

construction phase, we deploy a network based on102

normalizing flow models. This method transforms103

aligned modality representations into a Gaussian104

latent space (Wang et al., 2023). Gaussian distribu-105

tions for missing modalities are estimated by trans-106

ferring characteristics from available modalities.107

Subsequently, the representation of the missing108

modality is obtained through inverse normalization109

of the estimated Gaussian distribution. In the final110

refinement phase, we refine modality representa-111

tions to better capture emotional characteristics.112

The initial phases prioritize semantic alignment,113

sidelining emotional attributes. Consequently, we114

implement supervised point-based contrastive115

learning. This method considers modalities from116

different instances of the same class as positive117

samples and thus disrupts the semantic correlation118

between modalities. Doing so enables the model to119

capture emotional attributes and related features be-120

1Modalities from the same instance are treated as positive
samples without relying on explicit class labels.

yond mere semantics, enhancing the reconstruction 121

of emotional information. 122

Overall, CM-ARR begins by aligning modalities 123

to harmonize disparate modal distributions, a step 124

that facilitates the effective estimation of missing 125

data in the subsequent reconstruction phase, and 126

concludes with refinement to accentuate emotional 127

traits. The key contributions of this paper are sum- 128

marized as follows: 129

• We introduce the CM-ARR framework, a pio- 130

neering approach for cross-modal alignment, 131

reconstruction, and refinement, designed to 132

enhance emotion recognition in scenarios 133

characterized by incomplete data. 134

• We present two contrastive learning strategies: 135

unsupervised distribution-based contrastive 136

learning for effective uncertainty modeling 137

and mitigation of distributional disparities, 138

alongside supervised point-based contrastive 139

learning that disrupts strong semantic inter- 140

modality correlations, facilitating a deeper un- 141

derstanding of emotional consistency. 142

• Our empirical investigations, conducted on 143

the IEMOCAP and MSP-IMPROV datasets 144

under both missing and full modality condi- 145

tions, affirm the superior performance of our 146

proposed CM-ARR framework. 147

2 Related Work 148

2.1 Incomplete Multimodal Learning 149

In MMER, there have been remarkable advances 150

in research addressing the modality absence prob- 151

lem. These methods fall into two main categories: 152

missing modality generation (Cai et al., 2018; Suo 153

et al., 2019; Du et al., 2018) and multimodal joint 154

representation learning methods (Pham et al., 2019; 155

Han et al., 2019; Yuan et al., 2021). 156

Missing Modality Generation aims to utilize 157

available modalities to predict or reconstruct miss- 158

ing ones. Tran et al. (2017) introduce a Cascaded 159

Residual Autoencoder (CRA) to fill in data with 160

missing modalities. This method effectively re- 161

covers incomplete data by integrating a series of 162

autoencoders in a cascaded structure and leverag- 163

ing a residual mechanism to address corrupted data. 164

Similarly, Cai et al. (2018) develop a 3D encoder- 165

decoder network that captures the intermodal rela- 166

tionships and compensates for missing modalities 167

through adversarial and classification losses. 168
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Multimodal Joint Representation Learning169

seeks to learn latent representations in a common170

feature space from available data that remain robust171

even when some modalities are missing. Pham et al.172

(2019) introduce a method for learning robust joint173

representations through cyclic translation between174

modalities, thereby enhancing the model’s capabil-175

ity to comprehend and represent multimodal data.176

Zhao et al. (2021) propose the Missing Modality177

Imagination Network (MMIN), a unified model178

designed to address the issue of uncertain miss-179

ing modalities. Zeng et al. (2022b) employ a Tag-180

Assisted Transformer Encoder (TATE) network,181

which guides the network to focus on different182

missing cases by encoding specific tags for the183

missing modalities. Furthermore, they (Zeng et al.,184

2022a) propose an Ensemble-based Missing Modal-185

ity Reconstruction (EMMR) framework to detect186

and recover semantic features of the key missing187

modality. However, these methods do not consider188

the effect of heterogeneous modal gaps on missing189

modality reconstruction and emotion recognition.190

IF-MMIN (Zuo et al., 2023) and DiCMoR (Wang191

et al., 2023) work on this problem. The former192

learns modality-invariant features, and the latter193

transfers distributions from available modalities to194

missing modalities to maintain distribution consis-195

tency in the recovered data. Nevertheless, these196

approaches only partially bridge modal gaps and197

overlook semantic uncertainties across modalities.198

To overcome these limitations, we introduce the199

CM-ARR framework, which leverages Gaussian200

distributions to both align modalities and model201

semantic uncertainty.202

2.2 Contrastive Learning203

Contrastive learning (CL) (Khosla et al., 2020; He204

et al., 2020) aims to foster efficient data represen-205

tations by drawing similar samples closer and dis-206

tancing dissimilar ones. In recent years, CL has207

become a cornerstone in the field of representation208

learning (Radford et al., 2021; Wang et al., 2021;209

Ghosh et al., 2022; Sun et al., 2023). Notably, Ji210

et al. (2023) address the heterogeneity between211

image and text modalities using unsupervised CL.212

Pan et al. (2023) employ supervised contrastive213

learning to enhance emotional representation learn-214

ing by clustering similar text and speech modality215

samples. Building on these principles, our work in-216

troduces both unsupervised distribution-based con-217

trastive learning and supervised point-based con-218

trastive learning. These approaches are designed219

to bridge the gaps between heterogeneous modali- 220

ties and decipher common emotional patterns for 221

improved prediction accuracy. 222

3 CM-ARR 223

In this section, we detail the proposed CM-ARR 224

framework. Fig. 2 illustrates the architecture of 225

CM-ARR, which comprises three main phases: 226

alignment, reconstruction, and refinement. With- 227

out loss of generality, we consider a multimodal 228

dataset consisting of three modalities: text, speech, 229

and video. 230

3.1 Alignment Phase 231

3.1.1 Feature Extraction 232

Given a speech signal, video segment and its cor- 233

responding transcribed text, we extract high-level 234

features for each modality as follows: 235

Text Representation: For each text sequence, 236

we obtain high-level text features Rt using the 237

pre-trained Bert-base model (Devlin et al., 2018), 238

which has 12 encoder layers, each with 12 self- 239

attention heads and 768 hidden units. 240

Speech Representation: For each speech signal, 241

we obtain high-level speech features Rs using the 242

pre-trained Wav2vec2-base model (Baevski et al., 243

2020), where the pre-trained Wav2vec2-base model 244

has 12 encoder layers, each with 8 self-attention 245

heads and 768 hidden units. 246

Video Representation: For each video segment, 247

we utilize a pre-trained DenseNet model (Huang 248

et al., 2017) to extract facial expression features Rv, 249

trained on the Facial Expression Recognition Plus 250

(FER+) dataset (Barsoum et al., 2016). These fea- 251

tures, referred to as "Denseface," are frame-level 252

sequential features derived from detected faces in 253

video frames, with each feature vector comprising 254

342 dimensions. 255

3.1.2 Unsupervised Distribution-based 256

Contrastive Learning 257

In the alignment phase, to mitigate the gaps be- 258

tween heterogeneous modalities while also mod- 259

eling the uncertainty, we introduce an uncertainty 260

modeling component (UMC) that employs Gaus- 261

sian distributions to capture semantic uncertainty. 262

This is coupled with unsupervised distribution- 263

based contrastive learning to bring the modal dis- 264

tributions closer. 265

Fig. 3 illustrates the architecture of the UMC, 266

tasked with learning a Gaussian distribution for 267

each point-based modality representation, Rn, 268

3



ሚ𝑍𝑡

𝑍𝑣

Text
stream

Speech
stream

Alignment Phase

1D
 C

o
n

v
1D

 C
o

n
v

1D
 C

o
n

v

~ℒ𝑢𝑑𝑐𝑙

C
ro

ss-M
o

d
al Fu

sio
n

~ℒ𝑠𝑝𝑐𝑙

Refinement PhaseReconstruction Phase

~ℒ𝑐𝑙𝑠

~ℒ𝑟𝑒𝑐

…

…

…

𝓕𝒔

𝓕𝒗

𝓕𝒕 𝓕𝒕
(−𝟏)

𝓕𝒔
(−𝟏)

UMC

𝑋𝑣

𝑋𝑠

𝑅𝑣

𝑅𝑠

𝑅𝑡

Video
Encoder

Speech
Encoder

Text
Encoder

R
e

co
n

𝑍𝑠

෨𝑋𝑡
෠𝑋𝑡

Video
stream

𝓕𝒗
(−𝟏)

Figure 2: The framework of CM-ARR consists of three phases: the alignment phase employs unsupervised
distribution-based contrastive learning to semantically align the video, speech, and text modalities (see UMC in
Fig. 3); the reconstruction phase applies normalizing flow models to each modality; the refinement phase utilizes
supervised point-based contrastive learning to accentuate emotional traits. The red arrows denote the inference
process assuming the text modality is missing.

Rn
Multi-head
Attention

LN MLP μn

Σn

g(·)

Multi-head
Attention

LN MLP

Figure 3: The overall structure of the proposed UMC,
where g(·) denotes the gelu function, LN signifies the
LayerNorm operation, and MLP indicates the feed
forward layer.

where n ∈ {s, v, t}. We specifically employ the269

MLP and the multi-head attention mechanism to270

enhance feature-level and sequence-level interac-271

tions, respectively. The UMC learns a mean vector272

µn and a variance vector Σn for each Rn, trans-273

forming the point-based modality representations274

into Gaussian distributions.275

We then implement an unsupervised distribution-276

based contrastive learning approach to align hetero-277

geneous modal distributions effectively, utilizing278

the 2-Wasserstein distance (Kim et al., 2021) to279

measure the distance between the Gaussian distri-280

butions of three modalities:281

D2W = ∥µn − µm∥22 + ∥Σn − Σm∥22 , (1)282

where m,n ∈ {s, v, t} and n ∩m = ∅.283

Suppose there are N speech-text, text-video, and284

speech-video pairs in each batch, where modalities285

from the same instance are treated as positive sam-286

ples and those from different instances as negatives.287

Taking the example of speech-text pairs, we utilize 288

InfoNCE loss (He et al., 2020) to compute the loss 289

Ludcl: 290

Ludcl = Ls2tnce + Lt2snce, (2) 291

Ls2tnce = − log
exp (S (si, ti) /τ)∑N

n=1 exp (S (si, tn) /τ)
, (3) 292

Lt2snce = − log
exp (S (ti, si) /τ)∑N

n=1 exp (S (ti, sn) /τ)
, (4) 293

S(t, s) = a ·D2W + b, (5) 294

where τ represents a learned temperature parameter. 295

S (·, ·) denotes the similarity between a speech-text 296

pair. a is a negative scale factor and b is a shift 297

value. 298

3.2 Reconstruction Phase 299

Using representations from different feature spaces 300

directly may lead to inefficacy due to scale, distri- 301

bution, and semantic inconsistencies. Hence, we 302

initially project each modality’s features into a com- 303

mon dimensional space using a 1D convolutional 304

layer, obtaining Xs, Xv, and Xt for further analysis 305

and processing. 306

Subsequently, we define the normalizing flow 307

model for each modality as Fn, with n ∈ {s, v, t}, 308

and F (−1)
n representing its inverse transformation. 309

The features of each modality are fed into their 310

respective normalizing flow model, translating the 311

input features from their original complex distribu- 312
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Datasets Languages Year Subjects Type Access
Sample size of emotions used

Total
ang hap neu sad

IEMOCAP English 2008 5 male,
5 female Acted Licensed 1103 1636 1708 1084 5531

MSP-
IMPROV English 2017 6 male,

6 female Acted Licensed 460 999 1733 627 3819

Table 1: Statistics of benchmark datasets. Note that the IEMOCAP dataset combines happiness and excited emotions
into “hap”.

tions to a manageable Gaussian distribution Zn.313

Zn = Fn (Xn) . (6)314

Conversely, the Gaussian distribution Zn can be315

transformed back into the complex distribution of316

the input features via the inverse transformation317

F (−1)
n , giving X̃n. Assuming text modality is miss-318

ing and speech and video modalities are available,319

we input Xs and Xv into respective flow models,320

Fs and Fv, to obtain Zs and Zv. Zt for the missing321

text modality can then be computed as:322

Z̃t ← (Zs + Zv) /2 ∼ N (µt,Σt) , (7)323

where N denotes the Gaussian distribution. µt324

and Σt represent the mean and covariance of the325

text Gaussian distribution, respectively. At this326

point, Z̃t represents an estimated Gaussian consis-327

tent with missing text. X̃t featuring the original text328

distribution is then generated through the inverse329

process of the text-specific flow:330

X̃t = F (−1)
t

(
Z̃t

)
. (8)331

Finally, the text-specific reconstruction module332

is used to recover the text features X̂t. The mod-333

ule consists of multiple residual channel attention334

blocks (Wei et al., 2022), where we replace the 2D335

convolutional layer with 1D. The reconstruction336

loss is computed as:337

Lrec =
∥∥∥X̂t −Xt

∥∥∥2
F
. (9)338

Similarly, when speech and video modalities339

is missing, we follow analogous steps, recover-340

ing speech and video features by transferring from341

available text.342

3.3 Refinement Phase343

To further promote the emotional information in344

the modality representations, we incorporate super-345

vised point-based contrastive learning to refine the346

modality representations of CM-ARR.347

3.3.1 Supervised Point-based Contrastive 348

Learning 349

The learned representations still exhibit strong se- 350

mantic correlations between various modality pairs. 351

To address this, we utilize supervised point-based 352

contrastive learning. Specifically, we treat modali- 353

ties from different instances but with the same emo- 354

tion labels (where different instances may have dis- 355

tinct semantics but share similar emotion character- 356

istics) as positive samples, and those from different 357

labels as negatives. This method transforms one- 358

to-one modality relationships into many-to-many, 359

emotion-centric relationships, thereby enabling the 360

network to learn enhanced emotion representations 361

beyond mere semantics. 362

3.3.2 Cross-Modal Fusion 363

Finally, after obtaining the recovered text features 364

X̂t and the available speech and video features Xs 365

and Xv, we fuse them into the multimodal represen- 366

tation H using three cross-modal attention blocks 367

and one self-attention block (Vaswani et al., 2017) 368

for the emotion recognition task. The process is as 369

follows: 370

Htv = Cross-Attentiontv (Qt,Kv, Vv) ,(10) 371

Hts = Cross-Attentionts (Qt,Ks, Vs) , (11) 372

H ′ = Concat [Htv, Hts] , (12) 373

H = Self-Attention
(
H ′) , (13) 374

where Ks, Vs = Xs,Kv, Vv = Xv and Qt = X̂t. 375

3.4 Optimization Objective 376

To train our proposed CM-ARR, four loss functions 377

are required: unsupervised distribution-based con- 378

trastive learning loss Ludcl, supervised point-based 379

contrastive learning lossLspcl, modality reconstruc- 380

tion loss Lrec, and emotion recognition loss Lcls. 381

In summary, our training loss is defined as: 382

L = αLudcl + βLspcl + λLrec + Lcls, (14) 383

where α, β, and λ represent the trade-off factors. 384
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Dataset Avail. CRA MMIN IF-MMIN CIF-MMIN DiCMoR+ Ours

IEMOCAP

{t} 31.15 / 27.96 67.49 / 68.46 66.58 / 67.51 67.97 / 68.93 68.83 / 70.15 69.74 / 70.92
{s} 54.58 / 56.79 54.84 / 56.87 56.06 / 58.38 56.26 / 58.46 71.02 / 72.30 74.15 / 75.38
{v} 53.31 / 51.17 53.17 / 50.28 53.11 / 51.28 51.40 / 51.39 51.60 / 49.03 54.06 / 52.42
{v, t} 31.66 / 28.42 72.98 / 73.60 72.61 / 73.14 73.00 / 74.12 72.14 / 73.36 73.04 / 74.09
{s, v} 63.12 / 63.93 64.03 / 64.71 64.80 / 66.49 66.03 / 67.17 72.28 / 73.49 75.51 / 76.38
{s, t} 32.88 / 30.13 74.07 / 75.49 73.77 / 75.48 74.50 / 75.72 76.89 / 77.83 78.95 / 79.70
Avg. 44.45 / 43.07 64.43 / 64.90 64.48 / 65.38 64.86 / 65.96 68.79 / 69.36 70.90 / 71.48

{s, v, t} - 77.17 / 77.89 77.97 / 78.58 79.26 / 80.34 78.36 / 79.80 79.86 / 81.06

Dataset Avail. CRA MMIN IF-MMIN CIF-MMIN DiCMoR+ Ours

MSP-
IMPROV

{t} 46.78 / 28.37 62.08 / 57.30 61.97 / 58.23 62.42 / 58.71 62.13 / 59.85 63.57 / 61.49
{s} 37.90 / 38.96 51.60 / 43.35 50.46 / 40.45 50.66 / 40.37 52.78 / 47.17 55.55 / 50.87
{v} 59.46 / 42.42 60.09 / 45.75 61.68 / 45.29 61.10 / 46.15 59.84 / 49.33 62.04 / 51.01
{v, t} 54.96 / 38.84 69.37 / 63.94 67.49 / 63.40 69.90 / 65.36 67.30 / 64.21 68.47 / 65.88
{s, v} 57.85 / 47.70 63.74 / 55.91 62.42 / 53.14 63.75 / 55.21 62.70 / 52.65 63.84 / 54.25
{s, t} 48.57 / 37.97 64.00 / 60.98 63.25 / 59.91 63.78 / 60.80 67.92 / 65.37 69.49 / 66.85
Avg. 52.59 / 39.04 61.81 / 54.53 61.21 / 53.40 61.93 / 54.43 62.11 / 56.43 63.82 / 58.39

{s, v, t} - 69.70 / 64.89 69.03 / 63.84 72.02 / 67.12 71.69 / 68.08 72.37 / 69.69

Table 2: Performance comparison across testing conditions. The values reported in each cell denote WAR / UAR.
“Avail.” indicates the available modalities. “Avg.” indicates average performance across all conditions. The best
results are marked in boldface.

4 Experiments385

4.1 Datasets386

Our experiments utilize two widely adopted387

datasets: IEMOCAP (Busso et al., 2008) and MSP-388

IMPROV (Busso et al., 2016). IEMOCAP, col-389

lected by the University of Southern California, is390

a multi-modal emotion corpus comprising 10,039391

utterances from 10 actors who express a range of392

specific emotions. MSP-IMPROV features 7,798393

utterances from six sessions with 12 actors, focus-394

ing on the exploration of emotional behaviors dur-395

ing spontaneous dyadic improvisations. Additional396

details about these datasets are available in Table 1.397

4.2 Experimental Setup398

We evaluate all comparative methods on IEMO-399

CAP and MSP-IMPROV using 5-fold cross-400

validation and 6-fold cross-validation, respectively.401

We employ evaluation metrics such as weighted402

average recall (WAR) and unweighted average re-403

call (UAR) to assess the performance. In all ex-404

periments, parameters are configured as: α=1.0,405

β=0.1, λ=10, learning rate=1e-5, batch size=16,406

epochs=100.407

We benchmark CM-ARR against several state-408

of-the-art (SOTA) frameworks for incomplete mul-409

timodal emotion recognition, including CRA (Tran410

et al., 2017), MMIN (Zhao et al., 2021), IF-MMIN411

(Zuo et al., 2023), CIF-MMIN (Liu et al., 2024), 412

and DiCMoR+ (Wang et al., 2023). DiCMoR+ de- 413

notes our enhanced version of the DiCMoR frame- 414

work, where we substitute the original speech en- 415

coder with a pre-trained Wav2vec2 model. This 416

improves reproduction quality, creating a more ro- 417

bust framework. Using Wav2vec2 also enables a 418

fairer comparison to our method, which similarly 419

utilizes Wav2vec2 for speech encoding. 420

4.3 Comparison with SOTA Methods 421

Table 2 presents the performance of CM-ARR 422

against SOTA models in terms of WAR and UAR 423

under full and missing modality testing conditions. 424

Across all evaluation metrics, CM-ARR consis- 425

tently outperforms the competing models, indicat- 426

ing its superior performance. 427

Further analysis of CM-ARR’s recognition per- 428

formance on the IEMOCAP dataset under vari- 429

ous missing modality conditions reveals notable 430

findings. Specifically, when compared to the best 431

SOTA model, DiCMoR+, CM-ARR achieves a rel- 432

ative enhancement of 3.07% and 3.06% in WAR 433

and UAR, respectively, on average. Notably, CM- 434

ARR demonstrates exceptional performance when 435

at least one modality is present, particularly with 436

the availability of the speech modality, showing 437

a significant relative improvements of 4.41% and 438

4.26% across WAR and UAR, respectively. Con- 439
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Dataset Avail. Baseline w/o Ludcl w/o Lspcl w/o attention w/ Point Ours

IEMOCAP

{t} 66.63 / 67.15 69.44 / 70.20 69.49 / 70.45 68.71 / 69.75 66.71 / 67.96 69.74 / 70.92
{s} 55.57 / 57.75 71.90 / 72.67 71.89 / 72.99 71.68 / 72.72 70.48 / 71.74 74.15 / 75.38
{v} 42.91 / 37.54 50.24 / 48.35 51.14 / 48.56 50.00 / 47.76 50.35 / 48.99 54.06 / 52.42
{v, t} 68.71 / 68.94 71.59 / 72.90 72.55 / 73.33 70.72 / 71.53 71.06 / 72.19 73.04 / 74.09
{s, v} 61.10 / 62.84 72.06 / 72.96 73.37 / 73.86 72.10 / 73.47 72.65 / 73.26 75.51 / 76.38
{s, t} 75.34 / 76.61 76.51 / 78.04 77.80 / 78.83 76.77 / 77.91 75.53 / 76.67 78.95 / 79.70
Avg. 61.71 / 61.80 68.62 / 69.18 69.37 / 69.67 68.33 / 68.85 67.79 / 68.46 70.90 / 71.48

Table 3: Emotion recognition results of the ablation study evaluating CM-ARR components on IEMOCAP. The
values reported in each cell denote WAR / UAR.

versely, the performance gains are more modest440

when only the text modality is present. This dis-441

crepancy underscores the speech modality’s capac-442

ity to encapsulate substantial textual information,443

facilitating the effective reconstruction of textual444

modality representations from speech. In contrast,445

the text modality’s limited encapsulation of speech-446

related information results in less effective speech447

modality reconstruction. In addition, the perfor-448

mance of our method is also optimized compared449

to SOTA under full modality testing condition. In450

conclusion, CM-ARR’s ability to leverage avail-451

able modalities for reconstructing missing modali-452

ties significantly mitigates the challenges posed by453

missing modalities, affirming its effectiveness in454

addressing the missing modality problem in multi-455

modal emotion recognition.456

The right side of Table 2 shows the performance457

comparison between CM-ARR and SOTA methods458

on the MSP-IMPROV corpus. Given the corpus’s459

complexity as a challenging sentiment analysis460

dataset, the performance of these methods is gen-461

erally modest. However, experimental results in-462

dicate that CM-ARR consistently surpasses SOTA463

methods across various scenarios, demonstrating464

its superior effectiveness and robust generalization465

capabilities.466

4.4 Ablation Study467

In Table 3, ablation experiments are conducted468

on each component of the CM-ARR framework.469

To illustrate the limitations of models trained ex-470

clusively on full modalities in addressing missing471

modality scenarios, we establish a full modality472

baseline model, denoted as ’Baseline’, which in-473

cludes feature extraction and cross-modal fusion474

components. Results from the IEMOCAP dataset475

indicate a significant performance decline in the476

Baseline model when faced with missing modal-477

ities, underscoring its vulnerability to conditions478

of modality absence, given its training on the pre- 479

sumption of modality completeness. 480

Effects of Unsupervised Distribution-based 481

Contrastive Learning: To verify the effective- 482

ness of the alignment phase, we perform an abla- 483

tion experiment (w/o Ludcl) to evaluate the perfor- 484

mance, as shown in Table 3. The results show 485

that the models with unsupervised distribution- 486

based contrastive learning achieve better perfor- 487

mance. This suggests that distribution-based repre- 488

sentations could learn richer semantic information 489

from modal uncertainty and help bridge the distri- 490

butional divergences between modalities, which 491

facilitates subsequent reconstruction. Addition- 492

ally, replacing distribution-based contrast learning 493

with point-based representation (w/ Point) further 494

demonstrates that leveraging modal uncertainty to 495

gather diverse semantic information offers added 496

advantages. Consequently, Gaussian distribution- 497

based representations prove superior to instance- 498

based representations. 499

Effects of Supervised Point-based Contrastive 500

Learning: To validate the effectiveness of the re- 501

finement phase, we present the results of an abla- 502

tion experiment (w/o Lspcl). The results show that 503

it is helpful to improve the performance by disrupt- 504

ing the semantic correlation between modalities 505

through our point-based supervised contrast learn- 506

ing. This method allows the model to capture more 507

generalized patterns within modal information, re- 508

ducing the risk of overfitting to specific semantic 509

content. Consequently, this approach emphasizes 510

emotionally significant attributes, thereby enhanc- 511

ing the representation’s robustness. 512

4.5 Parameter Analysis 513

To thoroughly investigate the impact of various 514

parameter settings on model performance, we con- 515

duct the comparative analysis focusing on the ef- 516

fects of Ludcl, Lrec, and Lspcl weights. 517
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(a) (b) (c)

Figure 4: The effect of weights α, β, and λ on performance.

Avail.: t
Miss.: s, v

Avail.: s
Miss.: t, v

Avail.: v
Miss.: t, s

Baseline

Ours

Figure 5: Visualization of the representations from different methods on the IEMOCAP corpus test set. Light blue
represents speech reconstruction representations, while light red and light green depicts text and video reconstruction
representations, respectively, with their corresponding darker shades indicating ground truth.

In Fig. 4 (a), the UAR (orange line) demon-518

strates relatively stable performance compared to519

WAR. This indicates that a moderate loss weight520

(1.0) yields the best performance for both WAR521

and UAR in unsupervised distribution-based con-522

trastive learning. Similarly, the impacts of re-523

construction loss and supervised point-based con-524

trastive learning weights on performance are illus-525

trated in Fig. 4 (b) and (c).526

In summary, all three loss weights significantly527

influence model performance. The optimal weights528

are 1.0 for Ludcl, 10.0 for Lrec, and 0.5 for Lspcl.529

4.6 Visualization Analysis530

In Fig. 5, we use t-SNE (Van der Maaten and Hin-531

ton, 2008) to visualize the distribution of the modal-532

ity representations for Baseline and our CM-ARR.533

Fig. 5 illustrate the impact of CM-ARR on534

the reconstructed representation in scenarios of535

modality absence. In baseline, there is notice-536

ably less overlap between the reconstructed modal-537

ity and its ground-truth representations, with the538

distribution shape of the reconstructed representa-539

tions markedly differing from that of the ground- 540

truth representations. In contrast, ours (CM-ARR) 541

demonstrates that the distributional similarity of 542

reconstructed representations to the ground-truth 543

representations is significantly enhanced, partic- 544

ularly evident in the overlap of clusters and the 545

distribution shapes. 546

5 Conclusion 547

In this paper, we introduce the Cross-Modal Align- 548

ment, Reconstruction, and Refinement (CM-ARR) 549

framework, designed to improve multimodal emo- 550

tion recognition in incomplete data scenarios. CM- 551

ARR effectively models uncertainty within the se- 552

mantic space using unsupervised distribution-based 553

contrastive learning, reducing the distributional 554

gap. The reconstruction phase utilizes a normaliz- 555

ing flow model to transform aligned distributions, 556

while the refinement phase augments the emotional 557

content of the reconstructed representations. Ex- 558

tensive validation on the widely recognized IEMO- 559

CAP and MSP-IMPROV datasets confirms the su- 560

perior effectiveness of our approach. 561
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Limitations562

The efficacy of the CM-ARR framework primarily563

hinges on its ability to leverage available modalities564

for reconstructing missing ones, thereby mitigat-565

ing the adverse impacts of modality absence. The566

experiments with missing modalities show that dif-567

ferent modalities contribute to emotion recognition568

to different degrees. For example, the video modal-569

ity in the iemocap corpus is weak with a low degree570

of its contribution to emotion recognition. There-571

fore, how to deal with the transformation between572

weak and strong modalities and measure the im-573

portance of these modalities is a more interesting574

issue, which will motivate us to further optimize575

our proposed CM-ARR.576
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