
Fading to Grow: Growing Preference Ratios via
Preference Fading Discrete Diffusion for

Recommendation

Guoqing Hu‡ An Zhang‡∗ Shuchang Liu§ Wenyu Mao‡ Jiancan Wu‡

Xun Yang‡ Xiang Li§ Lantao Hu§ Han Li§ Kun Gai§ Xiang Wang‡

‡University of Science and Technology of China
§Independent Researcher

{HugoChinn}@mail.ustc.edu.cn
{an_zhang,xyang21}@ustc.edu.cn

{wenyumao2, wujcan, xiangwang1223}@gmail.com
{xiangli.th11, hulantao, lee.han06}@gmail.com, gai.kun@qq.com

Abstract

Recommenders aim to rank items from a discrete item corpus in line with user
interests, yet suffer from extremely sparse user preference data. Recent advances in
diffusion models have inspired diffusion-based recommenders, which alleviate spar-
sity by injecting noise during a forward process to prevent the collapse of perturbed
preference distributions. However, current diffusion-based recommenders pre-
dominantly rely on continuous Gaussian noise, which is intrinsically mismatched
with the discrete nature of user preference data in recommendation. In this paper,
building upon recent advances in discrete diffusion, we propose PreferGrow, a
discrete diffusion-based recommender system that models preference ratios by
fading and growing user preferences over the discrete item corpus. PreferGrow
differs from existing diffusion-based recommenders in three core aspects: (1) Dis-
crete modeling of preference ratios: PreferGrow models relative preference ratios
between item pairs, rather than operating in the item representation or raw score
simplex. This formulation aligns naturally with the discrete and ranking-oriented
nature of recommendation tasks. (2) Perturbing via preference fading: Instead of
injecting continuous noise, PreferGrow fades user preferences by replacing the
preferred item with alternatives—physically akin to negative sampling—thereby
eliminating the need for any prior noise assumption. (3) Preference reconstruction
via growing: PreferGrow reconstructs user preferences by iteratively growing the
preference signals from the estimated ratios. PreferGrow offers a well-defined
matrix-based formulation with theoretical guarantees on Markovianity and re-
versibility, and it demonstrates consistent performance gains over state-of-the-art
diffusion-based recommenders across five benchmark datasets, highlighting both
its theoretical soundness and empirical effectiveness. Our codes are available at
https://github.com/Hugo-Chinn/PreferGrow.

1 Introduction

Recommender systems aim to rank items from a discrete item set that align with user interests, where
ones in the user-item interaction matrix denote observed interactions, and zeros indicate unobserved

∗Corresponding authors.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/Hugo-Chinn/PreferGrow

Figure 1: Comparison of diffusion-based recommenders in terms of modeling targets and perturbation
strategies. Item-level diffusion recommenders (top) add Gaussian noise into dense item embeddings
but overlook negative signals. Preference score-level diffusion recommenders (middle) perturb
one-hot preference vectors under the constraints of the probability simplex. PreferGrow (bottom)
directly models discrete preference ratios via preference fading.

or missing entries. In real-world scenarios, this interaction matrix is often extremely sparse [1, 2],
which poses a significant challenge for recommenders in accurately modeling user preferences
[3–5]. Recent advances in diffusion models (DMs) offer a promising solution: by injecting noise
during the forward process, DMs transform sparse data into smoother, denser distributions while
preventing collapse into isotropic zero values [6–8]. Motivated by these properties, diffusion-based
recommenders [9–37] have proliferated in recent studies, showing strong potential in addressing data
sparsity and improving preference modeling.

Current diffusion-based recommenders predominantly adopt continuous noise as the perturbation
mechanism by adding noise into either dense item embeddings or one-hot preference score vectors.
As shown in Figure 1, item-level diffusion recommenders [9–27] apply Gaussian noise to user-
interacted item embeddings during the forward process, and learn a score function—the gradient of
the perturbed distribution’s log-likelihood—to recover item embeddings during the reverse process.
However, these methods overlook the negative signals in recommendations, lacking mechanisms
such as negative sampling to differentiate user preferences [9, 27]. In contrast, preference score-level
diffusion recommenders [28–37] model users’ preference scores among the full item corpus, i.e., user
interacted one-hot vectors, by perturbing them within the probability simplex in the forward process.
While the reverse process attempts to reconstruct the preference scores, the simplex constraints—
non-negativity and normalization—introduce additional optimization difficulties [38]. Worse still,
both diffusion-based recommenders assume a prior noise in the sampling process, e.g., Gaussian
[9] or Bernoulli [29], which may poorly reflect the inherently discrete and sparse nature of the user
preference data in recommendation scenarios.

Building on recent advances in discrete diffusion models [39, 38, 40], we propose PreferGrow, a
discrete diffusion-based recommender that models the preference ratios by fading and growing user
preferences through forward and backward processes. Unlike existing continuous diffusion-based

2

recommenders that model preference scores (e.g., probabilities that users interacted with items),
PreferGrow directly models relative preference ratios over a discrete item set. This formulation aligns
more naturally with the discrete and ranking-oriented nature of recommendation tasks and avoids the
strong constraints imposed by the probability simplex. In the forward perturbation, PreferGrow fades
user preference by replacing the preferred item with alternatives, enabling explicit negative sampling
and alleviating data sparsity without relying on predefined noise distribution. In the backward
generation, PreferGrow reconstructs user preferences by iteratively growing the preference signal
from the estimated ratios. We further provide a theoretical analysis showing that these forward and
backward processes preserve key properties of discrete diffusion models.

PreferGrow offers a unified and theoretically grounded framework for discrete diffusion-based
recommendation, characterized by a well-defined matrix-based formulation, flexible and interpretable
preference ratio modeling aligned with diverse negative sampling strategies, and consistently superior
empirical performance.

• Theoretical foundation: At the core of the formulation for PreferGrow is an idempotent fading
matrix used to replace preferred items during the forward perturbation process. We provide a
closed-form solution of this preference fading matrix and theoretically prove that its idempotent
property is critical for ensuring both the Markov property and reversibility of the diffusion process.

• Flexible modeling: By parameterizing the preference fading matrix, PreferGrow flexibly supports
point-wise, pair-wise, and hybrid preference ratios modeling. These variants correspond to distinct
and physically interpretable negative sampling strategies, enabling the framework to adapt to
diverse modeling targets in recommendation.

• Empirical validation: Extensive experiments on five benchmark datasets demonstrate that Prefer-
Grow consistently outperforms existing diffusion-based recommenders, validating the practical
effectiveness of its theoretical foundations.

2 Preliminaries

User preference data is represented as a pair (u, i), where u denotes the user and i is the preferred
item. The preference score p(i|u) indicates the probability that the user u interacts with item i. In
sequential recommendation, u denotes the item sequence that the user has interacted with.

Diffusion-based Recommenders generally consist of three major components: a forward noise-
adding process for perturbation, a generative modeling target, and a backward denoising process for
reconstruction. Specifically, item-level diffusion-based recommenders encode a preferred item i
into its dense embedding x0, and instantiate three components as follows [41]:

• forward perturbation: xt =
√
αtx0 +

√
1− αtϵt, where αt ∈ [0, 1], ϵt ∼ N (0, I).

• modeling target: network sΘ(xt, t, u) ≈ ∇xt
log pt(xt|u) =

√
αtx0−xt

1−αt
= − ϵt√

1−αt
.

• backward generation: xs =
√
αs

xt+(1−αt)sΘ(xt,t,u)√
αt

−
√
1− αs

√
1− αtsΘ(xt, t, u), s < t.

Preference score–level diffusion-based recommenders represent the preferred item i as a one-hot
preference score x0, modeling user preference over the entire item space. Early works [28, 30, 34]
adopt Gaussian noise priors N (·, ·); however, Gaussian perturbations are incompatible with the
probability simplex constraints inherent to preference scores. To address this mismatch, subsequent
studies [29, 35] introduce discrete priors to replace the Gaussian assumption that preserves the
simplex structure throughout the diffusion process. For instance, RecFusion [29] adopts a Bernoulli
prior B(·; ·), resulting in a binomial diffusion formulation:

• forward perturbation: xt ∼ B
(
xt;αtx0 +

αt(1−αt)
2

)
, αt ∈ [0, 1].

• modeling target: B (xt−1; sΘ(xt, t, u)) ≈ p(xt−1 | xt).
• backward generation: xt−1 ∼ B (xt−1; sΘ(xt, t, u)).

The other approach employs a Categorical prior Cat(·; ·):

• forward perturbation: pt(xt | xt−1) = Cat(xt;Qtx0) where Qt =
∏t

i=1 Qi.

3

Figure 2: The overall training and inference pipeline of PreferGrow under the pair-wise setting.

• modeling target: sΘ(xt, t, u) ≈ x0.

• backward generation: pt (xt−1 | xt,x0 = sΘ(xt, t, u)) = Cat
(
xt−1;

Q⊤
t xt⊙Qt−1sΘ(xt,t,u)

x⊤
t QtsΘ(xt,t,u)

)
.

Preference Ratios log p(ip|u)
p(id|u) characterize the relative preference between items, and a positive value

indicates a more preferred item ip and a less preferred item id. Notably, preference modeling in
RLHF [42–44] and DPO [45–48] is grounded in the Bradley–Terry model [49], which explicitly
models preference ratios as in Equation (1). This underscores the effectiveness of preference ratios in
more faithfully capturing user preferences.

p(ip ≻ id | u) = p(ip | u)
p(ip | u) + p(id | u)

=
1

1 + exp
(
−log

p(ip|u)
p(id|u)

) = σ(log
p(ip | u)
p(id | u)

). (1)

Discrete Diffusion Models previously are formulated based on the following Kolmogorov forward
and backward equations [50, 51, 38]:

∂Pt|s

∂t
= QtPt|s,

∂Ps|t

∂t
= RsPs|t, (2)

where Pt|s denotes the transition probability matrix from time s to time t, Qt is the forward transition
rate matrix at time t, and Rs is the reverse-time transition rate matrix at time s. Discrete diffusion
models further model the ratios of data distributions through the following score entropy loss [38]:

LSE = Ex0∼pdata
Et∈U [0,T]Ext∼pt|0(·|x0)

∑
y∈X

Qt(xt, y) · lSE(x0, xt, y)

 , (3)

lSE(x0, xt, y) = esΘ(y,xt) −
pt|0(y|x0)

pt|0(xt|x0)
sΘ(y, xt) +

pt|0(y|x0)

pt|0(xt|x0)
[log

pt|0(y|x0)

pt|0(xt|x0)
− 1], (4)

where X denotes the discrete state space, and sΘ(y, xt) is the output of a neural network that estimates
the preference ratio between y and xt at timestep t.

3 Method

As illustrated in Figure 2, the pipeline of PreferGrow consists of three stages: the preference fading
discrete diffusion process (Section 3.1), the modeling of preference ratios with reference via score
entropy loss (Section 3.2), and the preference growing reverse generation process (Section 3.3).
Additionally, PreferGrow models a non-preference user and achieves personalized enhancement
(Section 3.4). Theoretical proofs are provided in Appendix C, while the computation of score entropy
loss under different fading matrix settings is detailed in Appendix D.

4

3.1 Forward Perturbation: Preference Fading Discrete Diffusion Process

PreferGrow operates directly on the discrete item set X , wherein x0 represents the preferred item i of
user u. PreferGrow first fades user preference based on whether to retain or not to retain the preferred
item x0. The whole fading process is further achieved by progressively decreasing the probability of
retention αt from timestep 0 to T , fading user preferences towards non-preference.

3.1.1 Preference Fading Forms Reference Ratios

Building upon recent advances in discrete DM [39, 38, 40], we introduce a preference fading discrete
diffusion model tailored for recommendation. For a user preference data (u, x0), we fade user
preference by retaining the target item xt = x0 with probability αt and replacing x0 according to
discrete distribution E(X , x0) as the following equation:

pt|0(xt|x0) = αtδx0(xt) + (1− αt)E(xt, x0), xt ∈ X . (5)

where Dirac delta function δx0(xt) equals 1 when xt = x0, and 0 otherwise. Also, in matrix form:

Pt|0 = αtI+ (1− αt)E, (6)

where I is the identity matrix, representing retention, and E is a matrix whose column sums equal
1, defining the replacing mode for perturbation. For simplicity, we refer to E as fading matrix.
We further demonstrate that the idempotence of the fading matrix E ensures the Markov property
and reversibility of preference fading discrete diffusion process, which is crucial for the reverse
generation.
Theorem 1. Suppose αt : [0, T] → [0, 1] is a strictly decreasing function with α0 = 1 and αT = 0.
If E ∈ RN×N is idempotent, i.e., E2 = E, the following properties hold:

• Markov property: {Pt|0}Tt=0 is a Markov process and satisfies the Chapman-Kolmogorov equation:

Pt|s :=
αt

αs
I+

(
1− αt

αs

)
E, (7)

Pt|r = Pt|sPs|r, for all 0 ≤ r ≤ s ≤ t ≤ 1. (8)

• Invertibility: Each Pt|s is invertible, and its inverse is given by:

P−1
t|s =

αs

αt
I+

(
1− αs

αt

)
E. (9)

Upon obtaining xt through preference fading, as illustrated in Figure 2, we can compute the reference
ratios for all items X at timestep t with fading awareness 1− αt as follows:

rt(x0, xt, y) = log
pt|0(y | x0, u)

pt|0(xt | x0, u)
= log

αtδx0
(y) + (1− αt)E(y, x0)

αtδx0(xt) + (1− αt)E(xt, x0)
,∀y ∈ X . (10)

As shown in Figure 2, when the preferred item x0 is retained, i.e., xt = x0, the reference ratio
rt(x0, xt = x0, y ̸= x0) is negative, reflecting a tendency to stay with the current item. Conversely,
when x0 is replaced, i.e., xt ̸= x0, the reference ratio rt(x0, xt ̸= x0, y = x0) tends to be positive,
highlighting the preference for the positive item x0. In this case, the faded item xt can be interpreted
as a negative item, establishing a conceptual connection to the mechanism of negative sampling.

3.1.2 Design Paradigms of the Idempotent Fading Matrix

Given that designing such an idempotent fading matrix is crucial, we derive that, if the preference
fading process converges to a unified state, the fading matrix E can be expressed in closed form.
Proposition 1. Suppose the preference fading Markov process {Pt|0}Tt=0 converges to a unified
non-preference state p⃗T . Then, the fading matrix E can be expressed in closed form as:

E =
p⃗T 1⃗

⊤

1⃗⊤p⃗T
. (11)

5

Equation (11) gives a rank-1 solution for the fading matrix E. Most existing discrete diffusion models
[38–40, 52–55] implicitly adopt such rank-1 instances (i.e., the absorbing and uniform cases). In
Appendix D, examine several representative rank-1 configurations of E that, in a physical sense,
correspond to distinct negative sampling strategies and thus induce different forms of preference ratios.
Specifically, by parameterizing the rank-1 preference-fading matrix, PreferGrow flexibly supports
point-wise, pair-wise, and hybrid preference-ratio modeling. These variants align with interpretable
negative-sampling schemes, enabling the framework to adapt to diverse recommendation objectives.
For each setting, we provide analytical solutions for the fading matrix, closed-form expressions for the
reference ratios, and simplified training losses. We believe prior works on negative sampling [56, 57]
offer valuable guidance for designing more effective rank-1 fading matrices; a systematic exploration
is left for future work. Beyond the rank-1 case, Appendix E derives a general rank-r solution for E.
We present a closed-form characterization together with a discussion of its physical interpretation.
Notably, a rank-r fading matrix induces a quantization of the item space — i.e., a partition into r
components. A comprehensive study of this quantization mechanism and its algorithmic implications
is deferred to our future work.

3.2 Modeling Target: Preference Ratios with Reference via Score Entropy

We begin by computing the reference ratios rt(x0, xt, y) induced by preference fading, as defined
in Equation (10). These reference ratios are then employed to guide the modeling of the user-
conditioned preference ratio log pt(y|u)

pt(xt|u) , where u denotes the user context. Concretely, given a
training instance (u, x0) in sequential recommendation, we encode the interaction history u with a
sequential recommender to obtain a user embedding u = SeqRec(u) (instantiated as SASRec [58] in
our experiments). We then parameterize a learnable function sΘ to estimate the preference ratio for
each y ∈ X at time t:

sΘ(xt, t, u)y = y⊤ MLP
(
concat(xt, t,u)

)
, y ∈ X , (12)

where y and xt are the embeddings of item y and the faded item xt, respectively, and t is the
embedding of timestep t. For the training objective, we adopt the well-known score entropy loss for
discrete diffusion modeling [38], as defined in Equations (3) and (4). To legitimately employ it, we
first verify that PreferGrow satisfies the applicability conditions of score entropy loss.

Proposition 2. The preference-fading discrete diffusion {Pt|s}0≤s≤t≤T with an idempotent fading
matrix E satisfies the Kolmogorov forward equation:

∂Pt|s

∂t
= Qt Pt|s. (13)

Here the rate matrix Qt and αt are defined succinctly by

Qt := lim
s→t

∂Pt|s

∂t
= β(t) (E− I), αt := exp

(
−
∫ t

0

β(τ) dτ
)
, (14)

with β(τ) > 0 and I the identity matrix.

To better explain the effectiveness of the Score Entropy (SE) loss in recommendation, we theoretically
analyze its connection to the Binary Cross-Entropy (BCE) loss [56].

Proposition 3. Define the soft label πy≻xt|x0
= p(y ≻ xt | x0) = σ(rt(x0, xt, y)) as in Equation

(1), where σ denotes the sigmoid function, and use it as the label for the BCE loss. Treating
σ(sΘ(xt, t, u)y) as the prediction for the BCE loss yields the soft-label BCE objective:

LsBCE = −πy≻xt|x0
log σ(sΘ(xt, t, u)y)− (1− πy≻xt|x0

) log(1− σ(sΘ(xt, t, u)y)).

From a gradient perspective, the SE loss and the soft-label BCE loss are related by:

∇sΘLSE = (1 + esΘ(xt,t,u)y)(1 + ert(x0,xt,y))∇sΘLsBCE. (15)

Consequently, the SE loss and the soft-label BCE loss share the same descent direction (up to a
positive scalar) and attain the same optima. Hence, although originating from discrete diffusion
modeling, SE loss is equally well suited to ranking-oriented recommendation tasks as the BCE loss.

6

3.3 Backward Generation: Preference Growing from Preference Ratios

After estimating the preference ratios via score entropy, we reverse the preference fading process to
grow user preferences from the non-preference state. We first demonstrate that this reverse process
of preference fading, referred to as the preference growing process, is Markovian and satisfies the
Kolmogorov backward equation. Together with Proposition 2, this implies that PreferGrow with an
idempotent fading matrix inherits the key properties of previous discrete diffusion models [51, 38].
Theorem 2. If the preference fading process {Pt|0}Tt=0 with an idempotent fading matrix E converges
to a unified non-preference state p⃗T , the reverse preference growing process {Ps|T }0s=T holds:

• Markov property: {Ps|T }0s=T is also a Markov process:

Ps|t = P−1
t|s ·

[
p⃗t ·
(

1

p⃗t

)⊤
]
⊙P⊤

t|s, ∀ 0 ≤ s ≤ t ≤ T. (16)

• Kolmogorov backward equation: Preference growing {Ps|T }0s=T satisfies:
∂Ps|t

∂t
= RsPs|t, ∀ 0 ≤ s ≤ t ≤ T. (17)

Rs := lim
t→s

∂Ps|t

∂s
= Q⊤

s ⊙

[
p⃗s ·

(
1

p⃗s

)⊤
]
−Qs ·

[
p⃗s ·

(
1

p⃗s

)⊤
]
⊙ I. (18)

The matrix p⃗t ·
(

1
p⃗t

)⊤
denotes exponential preference ratios with entries given by pt(y|u)

pt(xt|u)∀xt, y ∈ X .

At this point, we are equipped with the approximated preference ratios sΘ to grow user preferences.
Given a user condition u, we first sample an item xT from the non-preference state p⃗T , and then
compute the reverse transition matrix Ps|t to progressively grow user preference over time as:

ps|t(xs = y|xt) = pt|s(xt|xs = y) ·
∑
z∈X

p−1
t|s (xt = y|xs = z) · esΘ(xt,t,u)z ,∀ 0 ≤ s ≤ t ≤ T. (19)

As illustrated in Figure 2, we iteratively grow user preferences backward until reaching x0. Finally,
based on the preference scores at timestep 0, we recommend the top-K items with the highest scores.

3.4 Modeling Non-preference User for Personalization

3.4.1 Non-preference User Modeling

To enhance the personalization of preference ratios, we introduce the modeling of non-preference
users—i.e., cold-start users with no interaction history—during training. This allows the model to
perform personalized contrast against the non-preference user during inference, thereby reinforcing
user-specific signals for personalized recommendations. As illustrated in Figure 2, we randomly
drop the user condition u with a fixed probability p during training, and replace it with a learnable
embedding that represents the non-preference user ϕ.

3.4.2 Personalized Contrast against Non-preference User

The non-preference user ϕ is defined such that pt|0(xt|x0, ϕ) = pt|0(xt|x0). According to Bayes’

theorem pt|0(xt|x0, u) =
pt|0(xt|x0,ϕ)

p(u|x0)
· p(u|x0, xt), there holds the following ratio condition:

pt|0(xt = y|x0, u)

pt|0(xt = x|x0, u)
=

pt|0(xt = y|x0)

pt|0(xt = x|x0)
· p(u|x0, xt = y)

p(u|x0, xt = x)
. (20)

We then estimate the ratio of the likelihood with a personalization strength parameter w as [59]:

p(u|x0, xt = y)

p(u|x0, xt = x)
≈

{
pt|0(xt = y|x0, ϕ)

pt|0(xt = x|x0, ϕ)
·
[
pt|0(xt = y|x0, u)

pt|0(xt = x|x0, u)

]−1
}w

. (21)

Therefore, the personalization-enhanced preference ratios with strength w are computed as follows:
ŝΘ(xt, t, u)y = w · sΘ(xt, t, u)y + (1− w) · sΘ(xt, t, ϕ)y. (22)

7

Table 1: Performance comparison across different datasets and baselines.
Dataset MoviesLens Steam Beauty Toys Sports

Method HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG

SASRec
@5 0.0905 0.0502 0.0321 0.0192 0.0326 0.0221 0.0340 0.0258 0.0154 0.0101

@10 0.1709 0.0760 0.0572 0.0272 0.0438 0.0257 0.0438 0.0289 0.0230 0.0126
@20 0.2899 0.1059 0.0957 0.0368 0.0595 0.0297 0.0499 0.0305 0.0298 0.0143

Caser
@5 0.0925 0.0576 0.0258 0.0163 0.0170 0.0106 0.0093 0.0072 0.0051 0.0030

@10 0.1605 0.0794 0.0446 0.0223 0.0219 0.0122 0.0129 0.0083 0.0093 0.0043
@20 0.2592 0.1042 0.0736 0.0295 0.0295 0.0141 0.0185 0.0098 0.0149 0.0057

GRURec
@5 0.0892 0.0551 0.0255 0.0156 0.0130 0.0082 0.0124 0.0078 0.0070 0.0048

@10 0.1534 0.0757 0.0441 0.0216 0.0188 0.0101 0.0180 0.0092 0.0107 0.0059
@20 0.2501 0.1000 0.0769 0.0298 0.0313 0.0132 0.0304 0.0117 0.0171 0.0076

DreamRec
@5 0.0676 0.0437 0.0109 0.0073 0.0300 0.0247 0.0381 0.0304 0.0095 0.0084

@10 0.1083 0.0568 0.0157 0.0088 0.0353 0.0265 0.0412 0.0314 0.0112 0.0089
@20 0.1610 0.0701 0.0218 0.0104 0.0402 0.0277 0.0463 0.0327 0.0149 0.0098

PreferDiff
@5 0.0538 0.0349 0.0167 0.0105 0.0335 0.0272 0.0386 0.0308 0.0168 0.0130

@10 0.0852 0.0450 0.0297 0.0145 0.0434 0.0304 0.0494 0.0343 0.0211 0.0144
@20 0.1270 0.0555 0.0526 0.0203 0.0577 0.0340 0.0644 0.0380 0.0256 0.0155

DiffRec
@5 0.0266 0.0121 0.0268 0.0143 0.0095 0.0055 0.0053 0.0028 0.0063 0.0035

@10 0.0889 0.0320 0.0657 0.0268 0.0218 0.0094 0.0153 0.0059 0.0117 0.0052
@20 0.1768 0.0541 0.1159 0.0394 0.0355 0.0128 0.0226 0.0078 0.0194 0.0072

DDSR
@5 0.0871 0.0533 0.0252 0.0157 0.0291 0.0217 0.0386 0.0302 0.0146 0.0109

@10 0.1523 0.0742 0.0437 0.0216 0.0434 0.0262 0.0479 0.0332 0.0213 0.0130
@20 0.2450 0.0975 0.0736 0.0291 0.0608 0.0306 0.0618 0.0367 0.0298 0.0151

PreferGrow Impr. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Hybrid
@5 0.1409 0.0911 0.0615 0.0406 0.0420 0.0322 0.0441 0.0331 0.0207 0.0142

@10 0.2229 0.1174 0.0935 0.0508 0.0532 0.0358 0.0519 0.0356 0.0267 0.0162
@20 0.3355 0.1458 0.1413 0.0628 0.0708 0.0402 0.0625 0.0383 0.0343 0.0181

Adaptive
@5 0.1413 0.0912 0.0583 0.0375 0.0396 0.0310 0.0413 0.0304 0.0168 0.0127

@10 0.2240 0.1177 0.0914 0.0481 0.0508 0.0347 0.0513 0.0337 0.0207 0.0140
@20 0.3362 0.1460 0.1387 0.0600 0.0610 0.0373 0.0642 0.0370 0.0267 0.0155

H@5

H@10H@20

N@5

N@10 N@20

25%50%75%100%

PreferGrow-Adaptive
w/o PointWise

w/o Nonpreference
w/o Nonpreference + PointWise

(a) Abalation of Adaptive on Steam.

H@5

H@10H@20

N@5

N@10 N@20

25%50%75%100%

PreferGrow-Hybrid
w/o PointWise
w/o Nonpreference

w/o PairWise
w/o Nonpreference + PointWise
w/o Nonpreference + PairWise

(b) Ablation of Hybrid on Steam.

Figure 3: Ablation Study on Steam, showing the percentage of the relative effectiveness.

4 Experiment

We compare PreferGrow with a variety of baselines under the all-ranking evaluation protocol,
including classical recommenders (SASRec [58], Caser [60], GRURec [61]), item-level diffusion-
based recommenders (DreamRec [9], PreferDiff [27]), and preference score-level diffusion-based
recommenders (DiffRec [28], DDSR [35]) across five benchmark datasets. Details of the datasets
are provided in Appendix G.1, discussions of the baselines are presented in Appendix G.2, and the
training and evaluation settings are described in Appendix G.3.

4.1 Overall Comparsion

From the results in Table 1, we observe that PreferGrow consistently outperforms all baselines. We
attribute the effectiveness of PreferGrow to three factors: 1) its discrete diffusion process aligns
with the discrete nature of the recommendation scenario; 2) the preference fading noise perturbation
mechanism, akin to negative sampling; and 3) preference ratios modeling without the simplex

8

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.500.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18 Effect of non-preference user ratio p

N@5
N@10

H@5
N@20

H@10
H@20

(a) p of Adaptive on Steam.

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.500.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18 Effect of non-preference user ratio p

N@5
N@10

H@5
N@20

H@10
H@20

(b) p of Hybrid on Steam.

0.9 0.99 0.999 0.9999 0.99999 0.9999990.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18 Effect of hybrid coefficient

N@5
N@10

H@5
N@20

H@10
H@20

(c) λ of Hybrid on Steam.

0 1 2 3 4 5 6 7 8 9 10111213141516171819200.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14 Effect of personalization strength w

N@5
N@10

H@5
N@20

H@10
H@20

(d) w of Adaptive on Steam.

0 1 2 3 4 5 6 7 8 9 10111213141516171819200.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18 Effect of personalization strength w

N@5
N@10

H@5
N@20

H@10
H@20

(e) w of Hybrid on Steam.

1 2 5 10 15 20 25 30 35 40 50 1002000.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18 Effect of generation steps

N@5
N@10

H@5
N@20

H@10
H@20

(f) Steps of Hybrid on Steam.

Figure 4: Hyperparameter analysis of PreferGrow on Steam. Red stars denote the best results.

constraints, which better captures user preferences. Additionally, the hybrid and adaptive fading
matrix settings, inspired by the negative sampling strategy, also demonstrate the flexibility.

4.2 Ablation Study

As presented in Figure 3, we perform a thorough analysis and evaluation of each key component
within PreferGrow to assess their individual significance. The ablation study is conducted using the
following three variations: (1) w/o-PointWise, PreferGrow without the general hard negative item
x−1; (2) w/o-PairWise, Point-Wise PreferGrow with p⃗T = e⃗−1; (3) w/o-Nonpreference, PreferGrow
without modeling the non-preference user ϕ, resulting in no personalized enhancement during the
backward generation, as well as the combination of the aforementioned ablations. Overall, PairWise
preference ratios modeling and non-preference user modeling are crucial for the effectiveness of
PreferGrow, while PairWise preference ratios modeling adds an additional refinement.

4.3 Hyper-parameter Analysis

We further investigate the effect of key hyperparameters on the performance of PreferGrow (Figure 4).
Overall, PreferGrow is fairly robust to the non-preference user proportion p, the hybrid coefficient λ,
and the number of sampling steps, while exhibiting relatively higher sensitivity to the personalization
strength w. Importantly, w is chosen at inference time, so no retraining is required. On the one hand,
w is locally stable within a reasonable range (see Figure 4); on the other hand, we show that the
optimal w is highly consistent across data splits (Appendix G.4). Taken together, these properties
ensure that tuning w is practical and does not introduce significant overhead.

5 Limitations

While effective, PreferGrow still has several aspects that warrant further optimization.

• Higher modeling complexity. As shown in Table 8, targeting preference ratios incurs substantially
higher complexity than prior diffusion-based recommenders. On the one hand, preference ratios
are more expressive and thus raise the potential ceiling of the model; on the other hand, they also
increase the learning difficulty under finite model capacity—for example, leading to longer training
time than previous diffusion-based methods (Appendix G.5). A principled remedy is to extend
PreferGrow to a rank-r fading matrix. By inducing a quantization structure, this formulation can
markedly reduce the complexity of preference ratios while preserving their expressive power, thus
achieving a better expressiveness–redundancy trade-off. We identify this as a primary avenue
for future work. In addition, we observe that the final 50% of training yields only about a 5%
gain in NDCG@5, suggesting substantial redundancy in the training process. A likely cause is
uniform timestep sampling: different timesteps reflect different degrees of user preference fading
and thus vary in the difficulty of modeling preference ratios. Incorporating this difficulty — by

9

beginning with easier timesteps (mild fading) and gradually advancing to harder ones — may
further accelerate convergence.

• High computational complexity. As shown in Table 8, PreferGrow has O(N) complexity for
both loss computation and inference, where N represents the size of the item corpus. While this
is comparable to prior diffusion-based recommenders, it becomes impractical when scaling to
extremely large item sets (e.g., billions of items), where even O(N) is prohibitive. A promising
next step is to incorporate a quantization structure such as Semantic IDs (SIDs) to reduce the cost
from O(N) to O(mc). SIDs represent each item with m codebooks of size c, enabling up to cm

items while maintaining only O(mc) computation. Extending PREFERGROW with rank-r fading
matrix to operate directly on SIDs is our future work.

6 Conclusion

Building upon the previous diffusion-based recommenders and discrete diffusion models discussed in
Appendix A, this paper introduce a new discrete diffusion-based recommender tailored for discrete
and sparse recommendation scenarios, named PreferGrow. In summary, PreferGrow distinguishes
itself from existing diffusion-based recommenders in three key aspects: (1) Discrete Diffusion: It
operates directly on the discrete item set, fully aligning with the discrete nature of recommendation.
(2) Preference Fading: It fades user preferences by replacing the preferred item with others,
akin to negative sampling, thus removing the need for prior noise assumptions. (3) Preference
Ratios: It estimates preference ratios by modeling the logarithmic ratios of user–item interaction
probabilities, circumventing the constraints of the probability simplex. PreferGrow features a well-
defined theoretical formulation and demonstrates superior performance in experiments. We further
discuss the broader impacts of PreferGrow in Appendix B.

Acknowledgments

This research is supported by the National Natural Science Foundation of China (62572449).

References
[1] Nouhaila Idrissi and Ahmed Zellou. A systematic literature review of sparsity issues in

recommender systems. Social Network Analysis and Mining, 2020.

[2] Monika Singh. Scalability and sparsity issues in recommender datasets: a survey. Knowledge
and Information Systems, 2020.

[3] Jinming Cui, Chaochao Chen, Lingjuan Lyu, Carl Yang, and Wang Li. Exploiting data sparsity
in secure cross-platform social recommendation. NeurIPS, 2021.

[4] Hongzhi Yin, Qinyong Wang, Kai Zheng, Zhixu Li, and Xiaofang Zhou. Overcoming data
sparsity in group recommendation. TKDE, 2020.

[5] Wenyu Mao, Zhengyi Yang, Jiancan Wu, Haozhe Liu, Yancheng Yuan, Xiang Wang, and
Xiangnan He. Addressing missing data issue for diffusion-based recommendation. In SIGIR,
2025.

[6] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. NeurIPS, 2019.

[7] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In
ICLR, 2021.

[8] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
NeurIPS, 2020.

[9] Zhengyi Yang, Jiancan Wu, Zhicai Wang, Xiang Wang, Yancheng Yuan, and Xiangnan He.
Generate what you prefer: Reshaping sequential recommendation via guided diffusion. In
NeurIPS, 2023.

10

[10] Zihao Li, Aixin Sun, and Chenliang Li. Diffurec: A diffusion model for sequential recommen-
dation. TOIS, 2023.

[11] Hanwen Du, Huanhuan Yuan, Zhen Huang, Pengpeng Zhao, and Xiaofang Zhou. Sequential
recommendation with diffusion models. arXiv, 2023.

[12] Yu Wang, Zhiwei Liu, Liangwei Yang, and Philip S Yu. Conditional denoising diffusion for
sequential recommendation. In PAKDD, 2024.

[13] Qidong Liu, Fan Yan, Xiangyu Zhao, Zhaocheng Du, Huifeng Guo, Ruiming Tang, and Feng
Tian. Diffusion augmentation for sequential recommendation. In CIKM, 2023.

[14] Jujia Zhao, Wang Wenjie, Yiyan Xu, Teng Sun, Fuli Feng, and Tat-Seng Chua. Denoising
diffusion recommender model. In SIGIR, 2024.

[15] Yuner Xuan. Diffusion cross-domain recommendation. arXiv, 2024.

[16] Zixuan Yi, Xi Wang, and Iadh Ounis. A directional diffusion graph transformer for recommen-
dation. arXiv, 2024.

[17] Yu Hou, Jin-Duk Park, and Won-Yong Shin. Collaborative filtering based on diffusion models:
Unveiling the potential of high-order connectivity. In SIGIR, 2024.

[18] Ziqiang Cui, Haolun Wu, Bowei He, Ji Cheng, and Chen Ma. Context matters: Enhancing
sequential recommendation with context-aware diffusion-based contrastive learning. In CIKM,
2024.

[19] Federico Tomasi, Francesco Fabbri, Mounia Lalmas, and Zhenwen Dai. Diffusion model for
slate recommendation. arXiv, 2024.

[20] Fan Huang and Wei Wang. Diffusion-augmented graph contrastive learning for collaborative
filter. arXiv, 2025.

[21] Xiaodong Li, Hengzhu Tang, Jiawei Sheng, Xinghua Zhang, Li Gao, Suqi Cheng, Dawei Yin,
and Tingwen Liu. Exploring preference-guided diffusion model for cross-domain recommenda-
tion. arXiv, 2025.

[22] Jin Li, Shoujin Wang, Qi Zhang, Shui Yu, and Fang Chen. Generating with fairness: A modality-
diffused counterfactual framework for incomplete multimodal recommendations. arXiv, 2025.

[23] Wenyu Mao, Shuchang Liu, Haoyang Liu, Haozhe Liu, Xiang Li, and Lantao Hu. Distinguished
quantized guidance for diffusion-based sequence recommendation. WWW, 2025.

[24] Chu Zhao, Enneng Yang, Yuliang Liang, Jianzhe Zhao, Guibing Guo, and Xingwei Wang.
Distributionally robust graph out-of-distribution recommendation via diffusion model. arXiv,
2025.

[25] Sharare Zolghadr, Ole Winther, and Paul Jeha. Generative diffusion models for sequential
recommendations. arXiv, 2024.

[26] Guoqing Hu, Zhengyi Yang, Zhibo Cai, An Zhang, and Xiang Wang. Generate and instantiate
what you prefer: Text-guided diffusion for sequential recommendation. In arXiv, 2024.

[27] Shuo Liu, An Zhang, Guoqing Hu, Hong Qian, and Tat seng Chua. Preference diffusion for
recommendation. In ICLR, 2025.

[28] Wenjie Wang, Yiyan Xu, Fuli Feng, Xinyu Lin, Xiangnan He, and Tat-Seng Chua. Diffusion
recommender model. In SIGIR, 2023.

[29] Gabriel Bénédict, Olivier Jeunen, Samuele Papa, Samarth Bhargav, Daan Odijk, and Maarten
de Rijke. Recfusion: A binomial diffusion process for 1d data for recommendation. arXiv,
2023.

[30] Penghang Yu, Zhiyi Tan, Guanming Lu, and Bing-Kun Bao. Ld4mrec: Simplifying and
powering diffusion model for multimedia recommendation. arXiv, 2023.

11

[31] Haokai Ma, Ruobing Xie, Lei Meng, Xin Chen, Xu Zhang, Leyu Lin, and Zhanhui Kang.
Plug-in diffusion model for sequential recommendation. In AAAI, 2024.

[32] Utkarsh Priyam, Hemit Shah, and Edoardo Botta. Edge-rec: Efficient and data-guided edge
diffusion for recommender systems graphs. arXiv, 2024.

[33] Zhenhao Jiang and Jicong Fan. Diffairec: Generative fair recommender with conditional
diffusion model. arXiv, 2024.

[34] Gwangseok Han, Wonbin Kweon, Minsoo Kim, and Hwanjo Yu. Controlling diversity at
inference: Guiding diffusion recommender models with targeted category preferences. arXiv
preprint arXiv:2411.11240, 2024.

[35] Wenjia Xie, Hao Wang, Luankang Zhang, Rui Zhou, Defu Lian, and Enhong Chen. Breaking
determinism: Fuzzy modeling of sequential recommendation using discrete state space diffusion
model. NeurIPS, 2024.

[36] Yangqin Jiang, Lianghao Xia, Wei Wei, Da Luo, Kangyi Lin, and Chao Huang. Diffmm:
Multi-modal diffusion model for recommendation. In MM, 2024.

[37] Rui Xia, Yanhua Cheng, Yongxiang Tang, Xiaocheng Liu, Xialong Liu, Lisong Wang, and Peng
Jiang. S-diff: An anisotropic diffusion model for collaborative filtering in spectral domain. In
WSDM, 2025.

[38] Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the
ratios of the data distribution. ICML, 2024.

[39] Chenlin Meng, Kristy Choi, Jiaming Song, and Stefano Ermon. Concrete score matching:
Generalized score matching for discrete data. NeurIPS, 2022.

[40] Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan
Li. Your absorbing discrete diffusion secretly models the conditional distributions of clean data.
ICLR, 2025.

[41] Calvin Luo. Understanding diffusion models: A unified perspective. arXiv, 2022.

[42] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv, 2022.

[43] Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen
Sahoo, Caiming Xiong, and Tong Zhang. RLHF workflow: From reward modeling to online
RLHF. TMLR, 2024.

[44] Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han Zhong, Heng Ji, Nan Jiang, and Tong
Zhang. Iterative preference learning from human feedback: Bridging theory and practice for
RLHF under kl-constraint. In ICML, 2024.

[45] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
In NeurIPS, 2023.

[46] Junkang Wu, Yuexiang Xie, Zhengyi Yang, Jiancan Wu, Jinyang Gao, Bolin Ding, Xiang Wang,
and Xiangnan He. β-dpo: Direct preference optimization with dynamic β. In NeurIPS, 2024.

[47] Yuxin Chen, Junfei Tan, An Zhang, Zhengyi Yang, Leheng Sheng, Enzhi Zhang, Xiang Wang,
and Tat-Seng Chua. On softmax direct preference optimization for recommendation. In NeurIPS,
2024.

[48] Junkang Wu, Xue Wang, Zhengyi Yang, Jiancan Wu, Jinyang Gao, Bolin Ding, Xiang Wang,
and Xiangnan He. α-dpo: Adaptive reward margin is what direct preference optimization needs.
ICML, 2025.

[49] Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the
method of paired comparisons. Biometrika, 1952.

12

[50] Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg.
Structured denoising diffusion models in discrete state-spaces. In NeurIPS, 2021.

[51] Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis,
and Arnaud Doucet. A continuous time framework for discrete denoising models. In NeurIPS,
2022.

[52] Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis Titsias. Simplified and
generalized masked diffusion for discrete data. NeurIPS, 2024.

[53] Kaiwen Zheng, Yongxin Chen, Hanzi Mao, Ming-Yu Liu, Jun Zhu, and Qinsheng Zhang.
Masked diffusion models are secretly time-agnostic masked models and exploit inaccurate
categorical sampling. ICLR, 2025.

[54] Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis,
and Arnaud Doucet. A continuous time framework for discrete denoising models. NeurIPS,
2022.

[55] Haoran Sun, Lijun Yu, Bo Dai, Dale Schuurmans, and Hanjun Dai. Score-based continuous-time
discrete diffusion models. ICLR, 2023.

[56] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec:
Sequential recommendation with bidirectional encoder representations from transformer. In
CIKM, 2019.

[57] Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. CoRR, 2018.

[58] Wang-Cheng Kang and Julian J. McAuley. Self-attentive sequential recommendation. In ICDM,
2018.

[59] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv, 2022.

[60] Jiaxi Tang and Ke Wang. Personalized top-n sequential recommendation via convolutional
sequence embedding. In WSDM, pages 565–573. ACM, 2018.

[61] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based
recommendations with recurrent neural networks. In ICLR (Poster), 2016.

[62] Jiacheng Li, Ming Wang, Jin Li, Jinmiao Fu, Xin Shen, Jingbo Shang, and Julian McAuley.
Text is all you need: Learning language representations for sequential recommendation. In
KDD, pages 1258–1267, 2023.

[63] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr:
Bayesian personalized ranking from implicit feedback. UAI, 2009.

[64] Wuchao Li, Rui Huang, Haijun Zhao, Chi Liu, Kai Zheng, Qi Liu, Na Mou, Guorui Zhou, Defu
Lian, Yang Song, et al. Dimerec: A unified framework for enhanced sequential recommendation
via generative diffusion models. In WSDM, 2025.

[65] Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg.
Structured denoising diffusion models in discrete state-spaces. NeurIPS, 2021.

[66] Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Gen-
erative flows on discrete state-spaces: enabling multimodal flows with applications to protein
co-design. In ICML, 2024.

[67] F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and context. ACM
Trans. Interact. Intell. Syst., 2016.

[68] Julian J. McAuley, Christopher Targett, Qinfeng Shi, and Anton van den Hengel. Image-based
recommendations on styles and substitutes. In SIGIR, 2015.

[69] Yitong Ji, Aixin Sun, Jie Zhang, and Chenliang Li. A critical study on data leakage in
recommender system offline evaluation. TOIS, 2023.

13

[70] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer:
Enhanced transformer with rotary position embedding. Neurocomputing, 2024.

[71] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yong-Dong Zhang, and Meng Wang. Lightgcn:
Simplifying and powering graph convolution network for recommendation. In SIGIR, 2020.

[72] Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian, and Xing Xie.
Self-supervised graph learning for recommendation. SIGIR, 2021.

[73] Xubin Ren, Wei Wei, Lianghao Xia, Lixin Su, Suqi Cheng, Junfeng Wang, Dawei Yin, and
Chao Huang. Representation learning with large language models for recommendation. In
WWW, 2024.

[74] Shashank Rajput, Nikhil Mehta, Anima Singh, Raghunandan Hulikal Keshavan, Trung Vu,
Lukasz Heldt, Lichan Hong, Yi Tay, Vinh Tran, Jonah Samost, et al. Recommender systems
with generative retrieval. NeurIPS, 2023.

[75] Yupeng Hou, Jianmo Ni, Zhankui He, Noveen Sachdeva, Wang-Cheng Kang, Ed H Chi, Julian
McAuley, and Derek Zhiyuan Cheng. Actionpiece: Contextually tokenizing action sequences
for generative recommendation. In ICML, 2025.

[76] Guorui Zhou, Jiaxin Deng, Jinghao Zhang, Kuo Cai, Lejian Ren, Qiang Luo, Qianqian Wang,
Qigen Hu, Rui Huang, Shiyao Wang, et al. Onerec technical report. arXiv, 2025.

14

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We accurately reflect that this paper introduces a new discrete diffusion-based
recommender growing preference ratios via preference fading.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

15

Justification: We provide the full set of assumptions and a complete (and correct) proof in
Appendix C.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We fully disclose all the information needed to reproduce the main experimen-
tal results in Appendix G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

16

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide open access to our data and code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all the training and test details in Appendix G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: To ensure determinism and due to computational resource constraints, we fix
all random seeds to a random number.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide sufficient information in Appendix G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We fully respect the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss both potential positive societal impacts and negative societal
impacts in Appendix B.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

18

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All assets used in this paper are properly credited and respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

19

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: New assets introduced in this paper are well documented.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

20

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We do not user LLMs as the core method.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

A Related Work

Table 2: Comparison of Diffusion-based Recommenders

Modeling Forward Negative Representative

Target Perturbation Sampling Work

Continuous
Score Function Gaussian on Embedding ✗ DreamRec [9]

Score Function Gaussian on Embedding ✓ PreferDiff [27]

Preference Scores Gaussian on One-hot ✓ DiffRec [28]

Discrete
Preference Scores Bernoulli on One-hot ✓ RecFusion [62]

Preference Scores Categorical on One-hot ✓ DDSR [35])

Preference Ratios Fading on Items ✓ PreferGrow (Ours)

Diffusion-based recommenders [9–37] utilize forward perturbation in diffusion models to address
data sparsity [6], thereby better adapting to sparse recommendation scenarios. They typically consist
of three core components: the modeling objective, the forward noise addition, and the corresponding
backward generation process, which are summarized in Table 2. Current research on diffusion-based
recommenders can be classified into two primary approaches: one involves adding noise to dense item
embeddings at the item level, and the other focuses on perturbing the one-hot interaction probability
vector for all items, which is referred to as preference scores. The first research line, pioneered
by DreamRec [9] and DiffuRec [10], encodes user-preferred items as dense embeddings and adds
Gaussian noise to these item embeddings. DreamRec [9] models the score functions (the gradient of
the log-likelihood of the perturbed distribution) without negative sampling, whereas DiffuRec [10]
incorporates a recommendation loss that includes negative sampling. Building on them, PreferDiff
[27] introduced an optimization objective derived from BPR loss [63], which integrates multiple
negative samples into the generative modeling framework. However, the application of continuous
Gaussian noise to positive preferred items, in contrast to the discrete nature of negative samples,
creates an inherent mismatch, making it difficult to optimize both simultaneously during training,
leading to a trade-off [10, 64, 27]. [25] Additionally, other works have introduced more sophisticated
module designs [11, 12, 14, 16–18, 20, 23, 25, 26] or applied them to different recommendation
tasks [13–22, 24]. For instance, DimeRec [64] incorporates multi-interest models, DiQDiff [23]
introduces semantic vector quantization, and DiffuASR [13] applies item-level diffusion to sequential
recommendation data augmentation. The second research line [28–37] involves converting user
preference data into one-hot vectors, which are then mapped to preference scores within the probability
simplex. DiffRec [28] add continuous Gaussian noise to the preference scores, and then learn to
recover the clean preference scores from the perturbed ones. Consecutively, LD4MRec [30] refines
the design for efficient multimedia recommendation, and D3Rec [34] introduces targeted category
preferences to control diversity during inference. However, the constraints of the probability simplex—
non-negativity and normalization—pose significant challenges in accurately estimating the preference
scores [38]. To address these challenges while considering the probability simplex constraints,
RecFusion [62] assumes a Bernoulli noise prior, completing the binomial diffusion process and
subsequently modeling the parameters of the reverse binomial distribution to facilitate the reverse
generation of preference scores. On the other hand, DDSR [35] adopts a categorical noise prior, as
proposed in [65], and directly recovers clean preference scores from the perturbed ones. Nonetheless,
the constraints of the probability simplex may limit the effectiveness of preference score modeling.
Moreover, both diffusion-based recommenders rely on prior noise assumptions, such as Gaussian
[9] or Bernoulli noise [29], which may not be optimal for recommendation scenarios where user
preference data is inherently discrete.

Discrete Diffusion Models [65, 54, 39, 55, 38, 40, 66] have made substantial advances recently.
Initially, D3PM [65] proposed a discrete diffusion framework based on an arbitrary probability
transition matrix, trained with the evidence lower bound of the log-likelihood. Subsequently, LDR
[54] extended this framework to a continuous-time setting using the Kolmogorov forward and
backward equations. However, modeling score functions in such models presents challenges, as
the gradient of the data distribution is undefined. To address this, CSM [39] introduced Concrete
Score—discretization of score functions and the ratios of data distributions—as modeling objectives

22

for discrete diffusion models. Building upon these advances, SEDD [38] further bridges discrete
diffusion models and ConcreteScore by introducing the score entropy loss. Expanding on these
developments, we present PreferGrow, a matrix-based discrete diffusion framework which perturbing
data by retaining or replacing items within a discrete corpus. The idempotent property of the
replacement matrix (or fading matrix) is central to PreferGrow, and we demonstrate that it satisfies the
Kolmogorov forward and backward equations as LDR [54], aligning it with prior works. Additionally,
we introduce a design paradigm for the idempotent replacement matrix, which unifies previous
approaches, including absorbing and uniform settings.

B Broader Impacts

Theoretically, PreferGrow introduces a well-defined discrete diffusion model building upon prior
work. While designed for recommendation, PreferGrow is also applicable to other discrete domains,
such as molecular design in chemistry and protein structure prediction. There are many potential
societal consequences of our work, none of which we believe warrant specific attention at this time.

C Proofs of Main Results

Proof of Theorem 1: αt : [0, T] → [0, 1] is a strictly decreasing function with α0 = 1 and αT = 0
and the preference fading discrete diffusion process is denoted as Pt|0 = αtI+(1−αt)E,∀t ∈ [0, T].
Then we can rewrite preference fading discrete diffusion process as for α0 = 1:

Pt|0 =
αt

α0
I+ (1− αt

α0
)E,∀t ∈ [0, T]. (23)

For any well-defined Pt|s,0 with 0 < s < t, the following limiting distribution constraint must hold:

pt|0(xt|x0) =
∑
xs∈X

pt|s,0(xt|xs, x0)ps|0(xs|x0),∀xt, x0 ∈ X . (24)

In matrix form, this constraint reduces to Pt|0 = Pt|s,0 Ps|0 for all 0 < s < t. Note that one possible
particular solution of this equation is:

Pt|s,0 := Pt|s =
αt

αs
I+ (1− αt

αs
)E,∀0 ≤ s ≤ t ≤ T. (25)

We will show that this indeed satisfies the constraint under the condition that E is idempotent.

Pt|sPs|0 =

[
αt

αs
I+ (1− αt

αs
)E

]
·
[
αs

α0
I+ (1− αs

α0
)E

]
(26)

=
αt

α0
I+

(
αt

αs
− 2

αt

α0
+

αs

α0

)
E+

(
1 +

αt

α0
− αs

α0
− αt

αs

)
E2

=
αt

α0
I+E2 − αt

α0
E+

(
αt

αs
− αt

α0
+

αs

α0

)
(E−E2)

the fading matrix is idempotent ⇒ E2 = E

=
αt

α0
I+ (1− αt

α0
)E

= Pt|0.

Similarly, for all 0 ≤ r ≤ s ≤ t ≤ T , there holds the Chapman-Kolmogorov equation:

Pt|sPs|r =

[
αt

αs
I+ (1− αt

αs
)E

]
·
[
αs

αr
I+ (1− αs

αr
)E

]
(27)

=
αt

αr
I+E2 − αt

αr
E+

(
αt

αs
− αt

αr
+

αs

αr

)
(E−E2)

the fading matrix is idempotent ⇒ E2 = E

=
αt

αr
I+ (1− αt

αr
)E

= Pt|r.

23

We further note that Pt|s,∀0 ≤ s ≤ t ≤ T is invertible, with inverse given by:

P−1
t|s =

αs

αt
I+ (1− αs

αt
)E,∀0 ≤ s ≤ t ≤ T. (28)

P−1
t|sPt|s =

[
αs

αt
I+ (1− αs

αt
)E

]
·
[
αt

αs
I+ (1− αt

αs
)E

]
(29)

= I+

(
αt

αs
+

αs

αt
− 2

)
· (E−E2)

the fading matrix is idempotent ⇒ E2 = E

= I.

∀0 ≤ r ≤ s ≤ t ≤ T , combined with limiting distribution constraint Pt|r = Pt|s,rPs|r, there are:

Pt|s,r = Pt|rP
−1
s|r

=

[
αt

αr
I+ (1− αt

αr
)E

]
·
[
αr

αs
I+ (1− αr

αs
)E

]
(30)

=
αt

αs
I+E2 − αt

αs
E+

(
αt

αr
− αt

αs
+

αr

αs

)
(E−E2)

the fading matrix is idempotent ⇒ E2 = E

=
αt

αs
I+ (1− αt

αs
)E

= Pt|s.

Pt|s,r = Pt|s indicates pt|s,r(xt|xs, xr) = pt|s(xt|xs),∀0 ≤ r ≤ s ≤ t ≤ T . In summary, the
preference fading discrete diffusion process is Markovian but not time-homogeneous, satisfies the
Chapman–Kolmogorov equation, and is reversible.

Proof of Proposition 1: αt : [0, T] → [0, 1] is a strictly decreasing function with α0 = 1 and
αT = 0. αt is further defined as e−

∫ t
0
β(τ)dτ with β(τ) > 0. The preference fading discrete Markov

diffusion process is denoted as Pt|s = αt

αs
I+ (1− αt

αs
)E,∀0 ≤ s ≤ t ≤ T . We first show that the

preference fading discrete Markov diffusion process converges to a unified non-preference state p⃗T is
well-defined. The transition rate matrix Qt is computed as follows:

Qt = lim
s→t

∂Pt|s

∂t
(31)

= lim
s→t

∂

∂t

(
αt

αs
I+ (1− αt

αs
)E

)
= lim

s→t

∂

∂αt

(
αt

αs
I+ (1− αt

αs
)E

)
· ∂αt

∂t

= lim
s→t

(
1

αs
I− 1

αs
E

)
· (−β(t)) · αt

= β(t) · (E− I) .

The rate matrix Qt characterizes the velocity of probability transitions at time t, encompassing
both the direction and rate of transition. As shown in Equation (32), Qt at any time t ∈ [0, T]
shares a consistent transition direction I− E, while the transition rate β(t) varies over time. This
time-dependent rate results in a non-homogeneous preference fading process. However, the shared
transition direction ensures that all diffusion paths converge to the same non-preference state, making
the process well-defined. Specifically, the stationary distribution π⃗t at time t satisfies the equilibrium
condition Qtπ⃗t = 0⃗. Since different Qt matrices differ only by a scalar factor β(t), they yield the
same stationary solution π⃗. Consequently, the Markov process converges to a common steady-state
distribution π⃗, i.e., the non-preference state p⃗T :

Qtπ⃗ = 0⃗ ⇒ (I−E) p⃗T = 0⃗. (32)

24

Given that (I−E)E = 0, each column of E satisfies the non-preference state equation (I−E) p⃗T =

0⃗. To ensure a unique solution p⃗T , we therefore assume that all columns of E are identical, i.e.
E ∝ p⃗T · 1⃗⊤. Considering the idempotence constraint E2 = E, we then have:

E =
p⃗T · 1⃗⊤

1⃗⊤p⃗T
. (33)

E2 =
p⃗T · 1⃗⊤ · p⃗T · 1⃗⊤

(⃗1⊤p⃗T)2
(34)

=
p⃗T · (⃗1⊤p⃗T) · 1⃗⊤

(⃗1⊤p⃗T)2

=
p⃗T · 1⃗⊤

1⃗⊤p⃗T
= E.

Proof of Proposition 2: We have Pt|s = αt

αs
I + (1 − αt

αs
)E and Qt = β(t) · (E− I). Then we

compute ∂Pt|s
∂t as follows:

∂Pt|s

∂t
=

∂

∂t

(
αt

αs
I+ (1− αt

αs
)E

)
(35)

=
∂

∂αt

(
αt

αs
I+ (1− αt

αs
)E

)
· ∂αt

∂t

=

(
1

αs
I− 1

αs
E

)
· (−β(t)) · αt

= β(t) · αt

αs
· (E− I) .

There holds the Kolmogorov forward equation:

QtPt|s = β(t) · (E− I) ·
[
αt

αs
I+ (1− αt

αs
)E

]
(36)

= β(t) ·
[
−αt

αs
I+ (2

αt

αs
− 1)E+ (1− αt

αs
)E2

]
the fading matrix is idempotent ⇒ E2 = E

= β(t) · αt

αs
· (E− I)

=
∂Pt|s

∂t
.

Proof of Proposition 3: We begin by considering the expression for the loss function LSE, which is
given as:

LSE(x0, xt, y) = esΘ(xt,t,u)y − sΘ(xt, t, u)y · ert(x0,xt,y) + ert(x0,xt,y)(rt(x0, xt, y)− 1). (37)

Then, we compute the gradient of this loss with respect to sΘ, which will help establish a link between
this and the binary cross-entropy loss.

∇sΘLSE = esΘ(xt,t,u)y − ert(x0,xt,y) (38)

= esΘ(xt,t,u)y (1 + ert(x0,xt,y))− (1 + esΘ(xt,t,u)y)ert(x0,xt,y)

= (1 + esΘ(xt,t,u)y)(1 + ert(x0,xt,y))[σ(sΘ(xt, t, u)y)− σ(rt(x0, xt, y))].

25

Next, we consider the soft binary cross-entropy loss LsBCE, which is defined as:

LsBCE(x0, xt, y) = −πy≻xt|x0
log σ(sΘ(xt, t, u)y)−(1−πy≻xt|x0

) log(1−σ(sΘ(xt, t, u)y)). (39)

where the soft label πy≻xt|x0
= p(y ≻ xt | x0) = σ(rt(x0, xt, y)) is the probability of the preference

of y over xt, and σ(·) is the sigmoid function.

Now, we compute the gradient of LsBCE with respect to sΘ:

∇sΘLsBCE = −πy≻xt|x0
(1− σ(sΘ(xt, t, u)y)) + (1− πy≻xt|x0

)σ(sΘ(xt, t, u)y) (40)

= σ(sΘ(xt, t, u)y)− πy≻xt|x0

= σ(sΘ(xt, t, u)y)− σ(rt(x0, xt, y)).

We can now relate the gradients of both loss functions:

∇sΘLSE = (1 + esΘ(xt,t,u)y)(1 + ert(x0,xt,y))∇sΘLsBCE. (41)

Proof of Theorem 2: The reverse preference growing process is denoted as Ω = {Ps|T }0s=T . A
collection F of subsets of Ω is called a σ-algebra on Ω if it satisfies: 1) Ω ∈ F . 2) If A ∈ F then
its complement Ac = Ω \ A also belongs to F . 3) If {An}∞n=1 ⊆ F , then the countable union⋃∞

n=1 An ∈ F . We first show that the preference growing process satisfies the Markov property. Ft

is a σ-algebra of the preference growing process Ωt = {Ps|T }ts=T . ∀A ∈ Ft and 0 ≤ s ≤ t ≤ T :

ps|≥t(xs|xt, A) =
ps,t|>t(xs, xt|A)

pt|>t(xt|A)
· p(A)

p(A)
(42)

=
ps,≥t(xs, xt, A)

p≥t(xt, A)

=
p>t|t,s(A|xt, xs)

p>t|t(A|xt)
·
pt|s(xt|xs)ps(xs)

pt(xt)

the preference fading process is Markovian ⇒
p>t|t,s(A|xt, xs)

p>t|t(A|xt)
= 1

=
ps(xs)

pt(xt)
pt|s(xt|xs)

the Bayes’ theorem ⇒ ps(xs)

pt(xt)
pt|s(xt|xs) = ps|t(xs|xt)

= ps|t(xs|xt).

We rewrite the equation ps|t(xs|xt) =
ps(xs)
pt(xt)

· pt|s(xt|xs) in matrix form ∀0 ≤ s ≤ t ≤ T :

ps|t(xs|xt) =
ps(xs)

pt(xt)
· pt|s(xt|xs). (43)

p⃗s ·
(

1

p⃗t

)⊤

denotes the matrix with entries
ps(xs = y)

pt(xt = x)
,∀x, y ∈ X

Ps|t =

[
p⃗s ·

(
1

p⃗t

)⊤
]
⊙P⊤

t|s

p⃗t = Pt|s · p⃗s ⇒ p⃗s = P−1
s|t · p⃗t

= P−1
t|s ·

[
p⃗t ·
(

1

p⃗t

)⊤
]
⊙P⊤

t|s.

26

The reverse-time preference growing process progresses from s = T to s = 0, and thus αs is an
increasing function, transitioning from αT = 0 to α0 = 1. We then compute the reverse transition
rate matrix Rs as follows:

Rs = lim
t→s

∂Ps|t

∂s

= lim
t→s

∂Ps|t

∂αs
· ∂αs

∂s
(44)

= lim
t→s

∂

∂αs

(
P−1

t|s ·

[
p⃗t ·
(

1

p⃗t

)⊤
]
⊙P⊤

t|s

)
· ∂αs

∂s

= lim
t→s

(
∂P−1

t|s

∂αs
·

[
p⃗t ·
(

1

p⃗t

)⊤
]
⊙P⊤

t|s +P−1
t|s ·

[
p⃗t ·
(

1

p⃗t

)⊤
]
⊙

∂P⊤
t|s

∂αs

)
· ∂αs

∂s

∂P−1
t|s

∂αs
=

∂

∂αs

(
αs

αt
I+ (1− αs

αt
)E

)
=

1

αt
(I−E)

lim
t→s

P−1
t|s = lim

t→s

(
αs

αt
I+ (1− αs

αt
)E

)
= I

∂P⊤
t|s

∂αs
=

∂

∂αs

(
αt

αs
I+ (1− αt

αs
)E⊤

)
= −αt

α2
s

(I−E⊤)

lim
t→s

P⊤
t|s = lim

t→s

(
αt

αs
I+ (1− αt

αs
)E⊤

)
= I

= lim
t→s

(
1

αt
(I−E) ·

[
p⃗t ·
(

1

p⃗t

)⊤
]
⊙ I−

[
p⃗t ·
(

1

p⃗t

)⊤
]
⊙ αt

α2
s

(I−E⊤)

)
· ∂αs

∂s

Qt = β(t) · (E− I) ,Q⊤
t = β(t) ·

(
E⊤ − I

)
Note that from time t to time s < t, αs is increasing. ⇒ ∂αs

∂s
= αsβ(s) > 0

= β(s) · (E⊤ − I)⊙

[
p⃗s ·

(
1

p⃗s

)⊤
]
− β(s) · (E− I) ·

[
p⃗s ·

(
1

p⃗s

)⊤
]
⊙ I

= Q⊤
s ⊙

[
p⃗s ·

(
1

p⃗s

)⊤
]
−Qs ·

[
p⃗t ·
(

1

p⃗t

)⊤
]
⊙ I.

Moreover, we compute ∂Pt|s
∂s and ∂Ps|t

∂s as follows:

∂Pt|s

∂s
=

∂

∂αs

(
αt

αs
I+ (1− αt

αs
)E

)
· ∂αs

∂s
(45)

Note that from time t to time s < t, αs is increasing. ⇒ ∂αs

∂s
= αsβ(s) > 0

=

(
−αt

α2
s

I+
αt

α2
s

E

)
· αsβ(s)

= β(s) · αt

αs
· (E− I)

(E− I)
2
= E2 − 2E+ I = − (E− I) , (E− I)E = 0

= β(s) ·
[
−αt

αs
· (E− I)

2

]
+ β(s) · (E− I)E

=

[
αt

αs
I+ (1− αt

αs
)E

]
· [β(s) · (E− I)]

= Pt|sQs.

27

∂Ps|t

∂s
=

∂

∂s

(
P−1

t|s ·

[
p⃗t ·
(

1

p⃗t

)⊤
]
⊙P⊤

t|s

)
(46)

=
∂

∂s

([
p⃗s ·

(
1

p⃗t

)⊤
]
⊙P⊤

t|s

)

=

[
∂p⃗s
∂s

·
(

1

p⃗t

)⊤
]
⊙P⊤

t|s +

[
p⃗s ·

(
1

p⃗t

)⊤
]
⊙

∂P⊤
t|s

∂s

The reverse time s begins with s = T . ⇒
∂Ps|0

∂s
= −Qs ·Ps|0

∂p⃗s
∂s

=
∂Ps|0 · p⃗0

∂s
= −Qs ·Ps|0 · p⃗0 = −Qs · p⃗s

∂Pt|s

∂s
= Pt|s ·Qs ⇒

∂P⊤
t|s

∂s
= (Pt|s ·Qs)

⊤ = Q⊤
s ·P⊤

t|s

=

[
p⃗s ·

(
1

p⃗t

)⊤
]
⊙ (Q⊤

s ·P⊤
t|s)−

[
Qs · p⃗s ·

(
1

p⃗t

)⊤
]
⊙P⊤

t|s.

Finally, we prove that the preference growing process satisfies the Kolmogorov backward equation:

RsPs|t =

{
Q⊤

s ⊙

[
p⃗s ·

(
1

p⃗s

)⊤
]
−Qs

[
p⃗t ·
(

1

p⃗t

)⊤
]
⊙ I

}
·

{[
p⃗s ·

(
1

p⃗t

)⊤
]
⊙P⊤

t|s

}
(47)

The idea behind this step is to prove that the elements at each position of the matrices are
identical, thereby establishing their equality.
The details are provided in Equation (48), (49) and (50).

=

{[
p⃗s ·

(
1

p⃗t

)⊤
]
⊙ (Q⊤

s ·P⊤
t|s)

}
−

{[
Qs · p⃗s ·

(
1

p⃗t

)⊤
]
⊙P⊤

t|s

}

=
∂Ps|t

∂s
.

{
Q⊤

s ⊙

[
p⃗s ·

(
1

p⃗s

)⊤
]}

·

{[
p⃗s ·

(
1

p⃗t

)⊤
]
⊙P⊤

t|s

}
(x, y) (48)

=
∑
z∈X

qs(z, x)
ps(x)

ps(z)
· ps(z)
pt(y)

pt|s(y|z)

=
ps(x)

pt(y)
·
∑
z∈X

qs(z, x)pt|s(y|z)

=

{[
p⃗s ·

(
1

p⃗t

)⊤
]
⊙ (Q⊤

s ·P⊤
t|s)

}
(x, y),∀x, y ∈ X .

{
Qs ·

[
p⃗s ·

(
1

p⃗s

)⊤
]
⊙ I

}
(x, y) (49)

=
∑
z∈X

qs(x, z)
ps(z)

ps(y)
· δx(y)

= δx(y) ·
∑
l∈X

qs(x, l)
ps(l)

ps(x)
.

28

{
Qs ·

[
p⃗s ·

(
1

p⃗s

)⊤
]
⊙ I

}
·

{[
p⃗s ·

(
1

p⃗t

)⊤
]
⊙P⊤

t|s

}
(x, y) (50)

=
∑
z∈X

δx(z) ·
∑
l∈X

qs(x, l)
ps(l)

ps(x)
· ps(z)
pt(y)

pt|s(y|z)

=
∑
l∈X

qs(x, l)
ps(l)

ps(x)
· ps(x)
pt(y)

pt|s(y|x)

= pt|s(y|x) ·
∑
l∈X

qs(x, l)
ps(l)

pt(y)

=

{[
Qs · p⃗s ·

(
1

p⃗t

)⊤
]
⊙P⊤

t|s

}
(x, y),∀x, y ∈ X .

D Details of Different Fading Matrix Setting

D.1 Point-Wise Setting

In the setting of masked discrete diffusion models [40, 52, 53], we can model point-wise preference
ratios. Specifically, we introduce an auxiliary general hard negative item x−1, which is represented
as a learnable embedding. The unified non-preference state corresponds to the general hard negative
item x−1, that is, p⃗T = e⃗−1 ∈ RN+1, where e⃗−1 denotes the one-hot vector associated with x−1.
In this case, the reference ratios rt(x0, xt ∈ {x0, x−1}, y ∈ {x0, x−1}) capture only the relative
preference between the positive item x0 and the general hard negative x−1. Thus, by using x−1 as a
common reference, we derive the point-wise preference ratios.

Let p⃗T = e⃗−1 ∈ RN+1. Then, the rank-1 fading matrix E is defined as follows:

E =


0 · · · 0 0
...

. . .
...

...
0 · · · 0 0
1 · · · 1 1


In this case, the reference ratios rt(x0, xt ∈ {x0, x−1}, y ∈ {x0, x−1}) model only the ratios
between the general hard negative x−1 and real items X .

rt(x0, xt, y) =


rt(x0, xt, xt) = 0 if xt = y

rt(x0, x0, x−1) = log 1−αt

αt
if y = x−1 and xt = x0

rt(x0, x−1, x0) = log αt

1−αt
if y = x0 and xt = x−1

Qt(x, y) = β(t) · (E− I) =


−β(t) if x = y ̸= x−1

β(t) if x = x−1 and xt ̸= x−1

0 otherwise

We eastimates the preference ratios log pt(y|u)
pt(xt|u) with sΘ(xt, t, u)y:

lSE(x0, xt, y|u) = esΘ(xt,t,u)y − ert(x0,xt,y)sΘ(xt, t, u)y + ert(x0,xt,y)[rt(x0, xt, y)− 1].

For one user preference data (u, x0), with faded item xt, we compute LSE(x0, xt, y|u):

LSE =
∑

y∈{x0,x−1}

Qt(xt, y) · lSE(x0, xt, y|u)

29

= Qt(xt, xt) · lSE(x0, xt, xt|u) +
∑

y∈{x0,x−1}\{xt}

Qt(xt, y) · lSE(x0, xt, y|u)

sΘ(xt, t, u)xt
= rt(x0, xt, xt) = 0 ⇒ lSE(x0, xt, xt|u) = 0

=
∑

y∈{x0,x−1}\{xt}

Qt(xt, y) · lSE(x0, xt, y|u)

Qt(xt ̸= x−1, y ̸= xt) = 0 ⇒ LSE(x0, x0, y|u) = 0 ⇒ xt = x−1

= Qt(x−1, x0) · lSE(x0, x−1, x0|u)

= β(t) ·
[
esΘ(xt,t,u)y − αt

1− αt
· sΘ(xt, t, u)y +

αt

1− αt
[log

αt

1− αt
− 1]

]
.

D.2 Pair-Wise Setting

In the field of natural language processing, uniform discrete diffusion models are generally considered
inferior to masked discrete diffusion models [38, 40]. However, in the context of recommendation,
uniform discrete diffusion models correspond to pair-wise preference ratios, which resemble ran-
dom negative sampling, and are in fact superior to point-wise masked discrete diffusion models.
Specifically, we define the unified non-preference state as having equal probability over all items,
i.e., p⃗T = 1⃗ ∈ RN , where 1⃗ denotes the all-ones vector. In this setting, the reference ratios
rt(x0, xt ∈ X , y ∈ X) capture the relative preferences among all item pairs.

Let p⃗T = 1⃗ ∈ RN , we have fading matrix E as follows:

E =


1
N · · · 1

N
...

. . .
...

1
N · · · 1

N


In this case, the reference ratios rt(x0, xt ∈ X , y ∈ X) model the ratios of all item pairs.

rt(x0, xt, y) =


rt(x0, xt, xt) = 0 if xt = y

rt(x0, x0, y ̸= x0) = − log(1 +N · αt

1−αt
) if y ̸= x0 and xt = x0

rt(x0, xt ̸= x0, x0) = log(1 +N · αt

1−αt
) if y = x0 and xt ̸= x0

rt(x0, xt ̸= x0, y ̸= x0) = 0 otherwise

Qt(x, y) = β(t) · (E− I) =

{
β(t)(1

N − 1) if x = y

β(t) · 1
N otherwise

We eastimates the preference ratios log pt(y|u)
pt(xt|u) with sΘ(xt, t, u)y:

lSE(x0, xt, y|u) = esΘ(xt,t,u)y − ert(x0,xt,y)sΘ(xt, t, u)y + ert(x0,xt,y)[rt(x0, xt, y)− 1].

For one user preference data (u, x0), with faded item xt, we compute LSE(x0, xt, y|u):

LSE =
∑
y∈X

Qt(xt, y) · lSE(x0, xt, y|u)

= Qt(xt, xt) · lSE(x0, xt, xt|u) +
∑

y∈X\{xt}

Qt(xt, y) · lSE(x0, xt, y|u)

sΘ(xt, t, u)xt
= rt(x0, xt, xt) = 0 ⇒ lSE(x0, xt, xt|u) = 0

=
∑

y∈X\{xt}

Qt(xt, y) · lSE(x0, xt, y|u)

Qt(xt, y ̸= xt) = β(t) · 1

N

= β(t) · 1

N
·

∑
y∈X\{xt}

lSE(x0, x−1, x0|u)

30

esΘ(xt,t,u) =
1

N
·

∑
y∈X\{xt}

esΘ(xt,t,u)y =
1

N
·

∑
y∈X

esΘ(xt,t,u)y − 1


sΘ(xt, t, u) =

1

N
·

∑
y∈X\{xt}

sΘ(xt, t, u)y =
1

N
·
∑
y∈X

sΘ(xt, t, u)y

if xt = x0, denote∆ = N · αt

1− αt
:

= β(t) ·
[
esΘ(xt,t,u) − 1

1 + ∆
· sΘ(xt, t, u)−

1

1 + ∆
(log(1 + ∆) + 1)

]
if xt ̸= x0, denote∆ = N · αt

1− αt
:

= β(t) ·
[
esΘ(xt,t,u) − sΘ(xt, t, u)−∆ · sΘ(xt, t, u)x0

+ (1 +∆)(log(1 + ∆)− 1)
]
.

D.3 Hybrid-Wise Setting

Note that the point-wise and pair-wise settings are independent of each other. Therefore, we can define
a hybrid non-preference state as p⃗T = λ(⃗1 ∈ RN , 0)+(1−λ)e⃗−1 ∈ Rn+1, simultaneously modeling
point-wise and pair-wise preference ratios. Since |X | is typically large, the hybrid coefficient λ
should be designed as 1− 10−nλ , where nλ ∈ Z+.

Let p⃗1 = λ(⃗1, 0) + (1− λ)e⃗−1 ∈ Rn+1, we have fading matrix E as follows:

E =


λ
N · · · λ

N
λ
N

...
. . .

...
...

λ
N · · · λ

N
λ
N

1− λ · · · 1− λ 1− λ


In this case, the reference ratios rt(x0, xt ∈ X , y ∈ X) model the ratios of all item pairs.

rt(x0, xt, y) =



0 if xt = y

log
αt+(1−αt)

λ
N

(1−αt)(1−λ) else if y = x0 and xt = x−1

log
λ
N

(1−λ) else if y ̸= x0 and xt = x−1

log (1−αt)(1−λ)

αt+(1−αt)
λ
N

else if y = x−1 and xt = x0

log
(1−αt)

λ
N

αt+(1−αt)
λ
N

else if y ̸= x−1 and xt = x0

log (1−αt)(1−λ)

(1−αt)
λ
N

else if y = x−1 and xt ̸= {x−1, x0}

log
αt+(1−αt)

λ
N

(1−αt)
λ
N

else if y = x0 and xt ̸= {x−1, x0}
0 else if y ̸= {x−1, x0} and xt ̸= {x−1, x0}

Qt(x, y) = β(t) · (E− I) =


β(t)(−λ) if x = y = x−1

β(t)(λ
N − 1) if x = y ̸= x−1

β(t)(1− λ) if x ̸= y and x = x−1

β(t)(λ
N) if x ̸= y and x ̸= x−1

We estimate the preference ratios log pt(y|u)
pt(xt|u) with sΘ(xt, t, u)y:

lSE(x0, xt, y|u) = esΘ(xt,t,u)y − ert(x0,xt,y)sΘ(xt, t, u)y + ert(x0,xt,y)[rt(x0, xt, y)− 1].

For one user preference data (u, x0), with faded item xt, we compute LSE(x0, xt, y|u):

LSE =
∑
y∈X

Qt(xt, y) · lSE(x0, xt, y|u)

31

= Qt(xt, xt) · lSE(x0, xt, xt|u) +
∑

y∈X\{xt}

Qt(xt, y) · lSE(x0, xt, y|u)

sΘ(xt, t, u)xt
= rt(x0, xt, xt) = 0 ⇒ lSE(x0, xt, xt|u) = 0

=
∑

y∈X\{xt}

Qt(xt, y) · lSE(x0, xt, y|u)

Qt(xt = x−1, y ̸= xt) = β(t) · (1− λ),Qt(xt ̸= x−1, y ̸= xt) = β(t) · (λ
N

)

= Qt(xt, y ̸= xt) ·
∑

y∈X\{xt}

lSE(x0, xt, y|u)

esΘ(xt,t,u) =
1

N
·

∑
y∈X\{xt}

esΘ(xt,t,u)y =
1

N
·

∑
y∈X

esΘ(xt,t,u)y − 1


sΘ(xt, t, u) =

1

N
·

∑
y∈X\{xt}

sΘ(xt, t, u)y =
1

N
·
∑
y∈X

sΘ(xt, t, u)y

if xt = x−1, denote ∆ = N · αt

1− αt
and Λ =

λ ·∆
λ ·∆+N

:

= β(t) ·
[
N(1− λ) · esΘ(xt,t,u) − λ · sΘ(xt, t, u)−

1
Λ − λ

N
· sΘ(xt, t, u)x0

]
+β(t) ·

{
λ ·
[
1 +

1

N

(
1

Λ
− 1

)]
·
[
log

(
1

N
· λ

1− λ

)
− 1

]
− log Λ

Λ

}
if xt = x0, denote ∆ = N · αt

1− αt
and Λ =

λ ·∆
λ ·∆+N

:

= β(t) ·
[
λ · esΘ(xt,t,u) − λ · Λ · sΘ(xt, t, u)− (1− λ− λ

N
) · Λ · sΘ(xt, t, u)x−1

]
+β(t) ·

{
(1− λ

N
) · Λ · (log Λ− 1)− (1− λ) · Λ · (log(1

N

λ

1− λ
))

}
if xt ̸= {x0, x−1}, denote ∆ = N · αt

1− αt
and Λ =

λ ·∆
λ ·∆+N

:

= β(t) ·
[
λ · esΘ(xt,t,u) − λ · sΘ(xt, t, u)

]
−β(t) ·

[
(

1

N · Λ
− λ

N
) · Λ · sΘ(xt, t, u)x0

) + (1− λ− λ

N
) · sΘ(xt, t, u)x0

]
+β(t) ·

{
1

N · Λ
· (log Λ + log λ− 1)− (1− λ) · (1 + log(

1

N

λ

1− λ
))− (1− 2

N
) · λ

}
.

D.4 Adative Setting

Furthermore, we can adaptively update the non-preference state p⃗T initialized with above settings.
Under adaptive setting, p⃗T = µ⃗ = softmax(θ⃗), where θ⃗ are learnable parameters.

Let p⃗T = µ⃗ ∈ RN or RN+1, with
∑
x∈X

µx = 1, we have fading matrix E as follows:

E =

 µ1 · · · µ1

...
. . .

...
µ|X | · · · µ|X |


By arbitrarily specifying a distribution µ⃗ satisfying

∑
x∈X

µx = 1, we can instantiate any desired

non-preference state, which is physically associated with different negative sampling strategies. In

32

this case, the reference ratios rt(x0, xt ∈ X , y ∈ X) are computed as follows:

rt(x0, xt, y) =


rt(x0, xt, xt) = 0 if xt = y

rt(x0, x0, y ̸= x0) = − log(
αt+(1−αt)·µxt

(1−αt)·µy
) if y ̸= x0 and xt = x0

rt(x0, xt ̸= x0, x0) = log(
αt+(1−αt)·µxt

(1−αt)·µy
) if y = x0 and xt ̸= x0

rt(x0, xt ̸= x0, y ̸= x0) = log
µy

µxt
otherwise

Qt(x, y) = β(t) · (E− I) =

{
β(t)(1

N − 1) if x = y

β(t) · 1
N otherwise

We eastimates the preference ratios log pt(y|u)
pt(xt|u) with sΘ(xt, t, u)y:

lSE(x0, xt, y|u) = esΘ(xt,t,u)y − ert(x0,xt,y)sΘ(xt, t, u)y + ert(x0,xt,y)[rt(x0, xt, y)− 1].

For one user preference data (u, x0), with faded item xt, we compute LSE(x0, xt, y|u):

LSE =
∑
y∈X

Qt(xt, y) · lSE(x0, xt, y|u)

= Qt(xt, xt) · lSE(x0, xt, xt|u) +
∑

y∈X\{xt}

Qt(xt, y) · lSE(x0, xt, y|u)

sΘ(xt, t, u)xt
= rt(x0, xt, xt) = 0 ⇒ lSE(x0, xt, xt|u) = 0

=
∑

y∈X\{xt}

Qt(xt, y) · lSE(x0, xt, y|u)

Qt(xt, y ̸= xt) = β(t) · µxt

= β(t) · 1

N
·

∑
y∈X\{xt}

lSE(x0, x−1, x0|u)

esΘ(xt,t,u) =
1

N
·

∑
y∈X\{xt}

esΘ(xt,t,u)y =
1

N
·

∑
y∈X

esΘ(xt,t,u)y − 1


s̃Θ(xt, t, u) =

∑
y∈X\{xt}

µy · sΘ(xt, t, u)y =
∑
y∈X

µy · sΘ(xt, t, u)y

µ̂ =
∑
y∈X

µy · logµy

if xt = x0, denote Σ =
αt

1− αt
:

= β(t) ·
[
µxt · esΘ(xt,t,u) − 1

Σ + µxt

· s̃Θ(xt, t, u)

]
+β(t) · µxt

µxt
+Σ

· [µ̂+ (µxt
− 1) · (log(µxt

+Σ)− 1)− µxt
· logµxt

]

if xt ̸= x0, denote Σ =
αt

1− αt
:

= β(t) ·
[
µxt · esΘ(xt,t,u) − s̃Θ(xt, t, u)− Σ · sΘ(xt, t, u)x0

]
+β(t) · [µ̂+ µxt

− (1 + Σ)(1 + log(µxt
)) + (Σ + µx0

) log(Σ + µx0
)− (µx0

) · log(µx0
)] .

E Rank-r Solution of Fading Matrix E

Theorem 3 (Nonnegative Idempotent Decomposition). Let E ∈ RN×N be entrywise nonnegative
and idempotent (E2 = E) with rank(E) = r. Then the following statements are equivalent:

(A) E is nonnegative and idempotent with rank(E) = r.

33

(B) There exist r nonzero, pairwise disjoint2 nonnegative vectors p⃗ 1, . . . , p⃗ r ∈ RN
≥0 and the

corresponding support-indicator vectors s⃗ i := 1supp(p⃗ i) ∈ {0, 1}N such that

E =

r∑
i=1

Ei, Ei :=
p⃗ i(s⃗ i)⊤

(s⃗ i)⊤p⃗ i
, (51)

where (s⃗ i)⊤p⃗ i > 0 for each i and supp(p⃗ i) := { k ∈ {1, . . . , N} : p i
k > 0 }. Equivalently,

for any column index j ∈ {1, . . . , N},

E:j =

{
p⃗ i, if j ∈ supp(p⃗ i) for some i ∈ {1, . . . , r},
0⃗, if j /∈

⋃r
i=1 supp(p⃗

i).

Moreover, writing the support indicator as 1⃗ restricted to supp(p⃗ i), the decomposition (51) admits
the compact form

E =

r∑
i=1

p⃗ i 1⃗⊤supp(p⃗ i)

1⃗⊤supp(p⃗ i)p⃗
i
, p⃗ i ≥ 0, (p⃗ i)⊤p⃗ j = 0 (i ̸= j).

Proof (Sufficiency (B) ⇒ (A)). Entrywise nonnegativity is immediate from p⃗ i ≥ 0 and s⃗ i ≥ 0.
Idempotence follows from disjoint supports: for i ̸= j we have (s⃗ i)⊤p⃗ j = 0, hence

EiEj =
p⃗ i(s⃗ i)⊤

(s⃗ i)⊤p⃗ i
· p⃗

j(s⃗ j)⊤

(s⃗ j)⊤p⃗ j
=

p⃗ i (s⃗ i)⊤p⃗ j (s⃗ j)⊤

(s⃗ i)⊤p⃗ i (s⃗ j)⊤p⃗ j
= 0.

For i = j we obtain

E2
i =

p⃗ i(s⃗ i)⊤p⃗ i(s⃗ i)⊤(
(s⃗ i)⊤p⃗ i

)2 =
p⃗ i(s⃗ i)⊤

(s⃗ i)⊤p⃗ i
= Ei,

so E2 = (
∑

i Ei)
2 =

∑
i E

2
i =

∑
i Ei = E. To compute the rank, observe that the column space of

Ei is span{p⃗ i} and supp(p⃗ i) are disjoint, hence the r one-dimensional subspaces are independent;
therefore rank(E) =

∑
i rank(Ei) = r.

Proof (Necessity (A) ⇒ (B)). Since E is idempotent (E2 = E), its eigenvalues are 0 or 1,
so the image Im(E) has dimension r. Because E ≥ 0, every column of E is either the zero
vector or a nonnegative fixed point of E (indeed, for the j-th standard basis vector e⃗j , we have
E(Ee⃗j) = Ee⃗j ≥ 0). Group the nonzero columns of E by proportionality: put indices j, k in the
same class if the j-th and k-th nonzero columns are positive multiples of each other. This is an
equivalence relation, and it produces exactly r classes, say S1, . . . , Sr, because each class contributes
one linearly independent direction in Im(E). Pick one representative nonzero column from each
class and denote it by p⃗ i ≥ 0 (i = 1, . . . , r). By construction, for every j ∈ Si the j-th column of E
equals p⃗ i, and for j /∈

⋃
i Si the column is zero. The classes are disjoint in support by definition. Let

s⃗ i := 1Si be the indicator of Si. The matrix that places column p⃗ i on Si and zeros elsewhere is

Ei =
p⃗ i(s⃗ i)⊤

(s⃗ i)⊤p⃗ i
, with (s⃗ i)⊤p⃗ i > 0.

Therefore

E =

r∑
i=1

Ei,

which is exactly the Equation (51). Disjoint supports immediately give (p⃗ i)⊤p⃗ j = 0 for i ̸= j. □

Physical intuition:

• Clustering. Partition the item set X (|X | = N) into r clusters C1, . . . , Cr, where items in the
same cluster are more similar. In practice, one may obtain {Ci} via vector-based methods (e.g.,
k-means on semantic embeddings) or via r-way classification on the user–item bipartite/weighted
sequential graph. Since these constructions require side information beyond our core formulation,
a full exploration is deferred to future work.

2Disjointness means the supports do not overlap: supp(p⃗ i) ∩ supp(p⃗ j) = ∅ for i ̸= j.

34

• Cluster-wise target distributions. Define for each cluster a nonnegative target vector

p⃗ i
T (x) > 0 if x ∈ Ci, p⃗ i

T (x) = 0 otherwise, i = 1, . . . , r.

Because {p⃗ i
T }ri=1 have disjoint supports, the resulting fading matrix E =

∑r
i=1

p⃗ i
T (s⃗

i)⊤

(s⃗ i)⊤p⃗ i
T

is

idempotent with rank(E) = r (Theorem 3), where s⃗ i = 1supp(p⃗ i
T).

• Effect. During fading, each preferred item is replaced only by items within the same cluster, which
filters out cross-cluster candidates and better respects item heterogeneity. This rank-r structure also
improves efficiency. Using the decomposition, for any vector x ∈ RN ,

Ex =

r∑
i=1

p⃗ i
T

(s⃗ i)⊤x

(s⃗ i)⊤p⃗ i
T

,

so computing (s⃗ i)⊤x costs O(|Ci|) and the combination step costs O(rN), reducing the overall
complexity from the naive O(N2) to O(rN).

• Takeaway. PreferGrow equipped with a rank-r fading matrix — i.e., cluster-wise replacement —
combines theoretical elegance with practical realism: it confines replacements within semantically
coherent groups while offering a scalable O(rN) implementation.

F Algorithms for Training and Inference

Algorithm 1 Training Algorithm of PreferGrow

Input: user preference data D = {(u, x0)}, non-preference user ratio p, retention probability
αt = e−

∫ t
0
β(τ)dτ with

∫ t

0
β(τ)dτ = (βmin)

1−t(βmax)
t or

∫ t

0
β(τ)dτ = log(1−(1−βscale · t)),

and the non-preference state p⃗T for preference fading.
Output: estimated Preference Ratios sΘ(xt, t, u) and the non-preference user ϕ.

repeat
(u, x0) ∼ D ▷ preference user-item pair.
t ∼ Uniform({1, . . . , T}) ▷ sampling timestep t uniformly.
u = ϕ with probability p ▷ non-preference user modeling.
xt ∼ pt|0(·|x0) = αte⃗x0

+ (1− αt)p⃗T , xt ∈ X ▷ retain or replace for preference fading.
Compute the score entropy loss LSE =

∑
y∈X Qt(xt, y) · lSE(x0, xt, y|u) as Appendix D.

Take gradient descent step on ∇θLSE and update parameters.
until converged

Algorithm 2 Inference Algorithm of PreferGrow

Input: user condition u, sampling timesteps Sτ = {τi}Si=0 with τS = T and τ0 = 0, personalization
strength w, estimated Preference Ratios sθ(xt, t, u) and the non-preference user ϕ.

Output: grown preference scores p(x0|u), x0 ∈ X of user u.
xT = xτS ∼ p⃗T , xT ∈ X ▷ the non-preference state.
for s = S to 1 do

ŝΘ(xτs , τs, u) = (1 + w)sΘ(xτs , τs, u)− w · sΘ(xτs , τs, ϕ) ▷ personalization enhancement.
pτs−1|τs(xτs−1

|xτs , u) = pτs|τs−1
(xτs |xτs−1

) ·
∑

z∈X p−1
τs|τs−1

(xτs−1
|z) · eŝΘ(xτs ,τs,u)z

▷ pτs|τs−1
(xτs |xτs−1

) =
ατs

ατs−1
δxτs

(xτs−1
) + (1− ατs

ατs−1
) · p⃗T (xτs) as Equation (7).

▷ p−1
τs|τs−1

(xτs−1
|z) = ατs−1

ατs
δxτs−1

(z) + (1− ατs−1

ατs
) · p⃗T (xτs−1) as Equation (9).

▷
∑

z∈X p−1
τs|τs−1

(xτs−1
|z) · eŝΘ(xτs ,τs,u)z =

ατs−1

ατs
e
ŝΘ(xτs ,τs,u)xτs−1

+(1− ατs−1

ατs
) · p⃗T (xτs−1

) ·
∑

z∈X eŝΘ(xτs ,τs,u)z .

xτs−1
∼ pτs−1|τs(xτs−1

|xτs , u), xτs−1
∈ X . ▷ reverse preference growing.

end for
return p(x0|u) = pτ0|τ1(xτ0 |xτ1 , u), x0 ∈ X ▷ grown preference scores of user u.

35

Table 3: Statistics of datasets after preprocessing.
Dataset # users # items # Interactions sparsity

Movies 6040 3883 1001456 04.27%
Steam 39795 9265 2949605 00.80%
Beauty 22,363 12,101 198,502 00.07%
Toys 19,412 11,924 138,444 00.06%
Sports 35,598 18,357 256,598 00.04%

G Experiments Details

G.1 Datasets

We evaluate PreferGrow on five real-world benchmark datasets:

• MoviesLens [67] is a commonly used movie recommendation dataset that contains user ratings,
movie titles, and movie genres.

• Steam [58] encompasses user reviews for video games on the Steam Store.

• Beauty [68] contains movie details and user reviews from Jun 1996 to Sep 2023.

• Toys [68] includes user reviews and metadata for toys and games from Jun 1996 to Jul 2014.

• Sports [68] comprises reviews and metadata for sports and outdoor products from 1996 to 2014.

Following prior works [9, 27], we adopt the user-splitting strategy, which has been shown to effectively
prevent information leakage in test sets [69]. Specifically, we sort all sequences chronologically for
each dataset and then split the data into training, validation, and test sets with an 8:1:1 ratio, while
preserving the last 10 interactions as the historical sequence. The statistical characteristics of the
processed dataset are shown in Table 3. As observed from the table, the recommendation datasets
face a significant challenge of severe data sparsity.

G.2 Baselines

We compare PreferGrow with both traditional discriminative recommenders using negative sampling
and diffusion-based generative recommenders, including classical recommenders (SASRec [58],
Caser [60], GRURec [61]), item-level diffusion-based recommenders (DreamRec [9], PreferDiff
[27]), and preference score-level diffusion-based recommenders (DiffRec [28], DDSR [35]):

• SASRec [58] leverages the self-attention mechanism in Transformer to model user preference
scores from interaction histories, addressing data sparsity through negative sampling.

• Caser [60] utilizes horizontal and vertical convolutional filters to capture sequential patterns at the
point-level and union-level, allowing for skip behaviors, and models user preference scores while
addressing data sparsity through negative sampling.

• GRURec [61] adopts RNNs to model user preference scores from interaction histories, mitigating
data sparsity through negative sampling.

• DreamRec [9] reshapes sequential recommendation as oracle item generation, addressing data
sparsity by adding Gaussian noise to dense item embeddings.

• PreferDiff [27] introduces an optimization objective specifically designed for item-level DM-based
recommenders, which can integrate multiple negative samples, addressing data sparsity by adding
noise to dense item embeddings and using negative sampling both.

• DiffRec [28] is a preference score-level diffusion-based generative recommender assuming a
Gaussian prior, addressing data sparsity by adding Gaussian noise to preference scores, without
considering the constraints of the probability simplex.

• DDSR [35] is a preference score-level diffusion-based generative recommender assuming a categor-
ical prior, addressing data sparsity by adding discrete noise to preference scores while respecting
the constraints of the probability simplex.

36

G.3 Implementation Details

Training settings: We implement all models using Python 3.7 and PyTorch 1.12.1 on an Nvidia
GeForce RTX 3090. During training, all methods are trained with a fixed batch size of 256 using the
Adam optimizer. Additionally, we apply early stopping based on the model’s performance on the
validation set. To ensure reproducibility, we fix all random seeds to 100 in our main experiments,
a randomly chosen value. For the classic recommenders with negative sampling, we employ the
binary cross-entropy (BCE) loss. PreferGrow uses SASRec as the encoding model for the user’s
historical sequence, and we adopt both Hybrid-Wise and Adaptive settings for the fading matrix. For
all SASRec modules, we apply RoPE position encoding [70]. The search space of hyperparameters
for the baselines is shown in Table 5, and the optimal parameters for our PreferGrow under both
hybrid and adaptive settings are presented in Table 6. To ensure the reliability of our findings, we
have conducted a comprehensive re-evaluation of our experiments under multiple random seeds
{100, 200, 300, 400, 500} and statistical significance testing (p < 0.001). The results shown in Table
4 consistently confirm the significant performance gains of PreferGrow over baselines.

Table 4: Re-evaluation results (NDCG@5) under multiple random seeds.
Dataset Beauty Toys Sports Steam MovieLens

SASRec 0.0229±.0020 0.0258±.0023 0.0104±.0016 0.0193±.0002 0.0507±.0004
PreferDiff 0.0224±.0031 0.0312±.0009 0.0122±.0007 0.0104±.0004 0.0348±.0005

PreferGrow 0.0315±.0010 0.0326±.0007 0.0146±.0004 0.0399±.0004 0.0913±.0003

Evaluation Protocols and Metrics: To ensure a comprehensive evaluation and mitigate potential
biases, we adopt the all-rank protocol [71–73, 9, 27], which evaluates recommendations across all
items. We employ two widely used ranking-based metrics: Normalized Discounted Cumulative Gain
(N@K) and Mean Reciprocal Rank (M@K), to assess the effectiveness of the models.

G.4 Hyper-parameter Analysis

The personalization strength w is locally stable within a reasonable range and highly consistent
across data splits, thus posing no practical challenge for tuning. As shown in Figure 4 of our paper,
PreferGrow is sensitive to large-magnitude changes in the personalization strength parameter w
(e.g., from 0 to 20). On datasets like Steam, we observe that performance remains locally stable
within a reasonable range (e.g., w ∈ [5, 15]), but drops notably when w is set too small (e.g.,
w = 1). This highlights the need to set w appropriately for each dataset. To assess sensitivity
more systematically, we tested PreferGrow under w ∈ {0, 2, 5, 10} and evaluated the mean absolute
error between the optimal w values selected on the training, validation, and test sets. These optimal
values are determined by uniformly sampling performance across 40 checkpoints throughout the
training process and optimality is defined by maximizing the combined metric HR@5 +HR@10 +
NDCG@5 + NDCG@10. Our findings in Table 7 show that the optimal w is highly consistent
across data splits, indicating that w can be tuned on a validation (or even training) set like other
standard hyperparameters. This ensures that tuning w does not pose a practical challenge.

G.5 Efficiency Analysis

As summarized in Table 9, we report each model’s trainable parameters, the number of training epochs,
GFLOPs per model output (recall that diffusion models require multiple outputs for denoising), and
the total number of outputs.

Quantitative scalability analysis. We also provide a quantitative analysis of PreferGrow and clarify
the solution outlined in the Limitations. PreferGrow introduces only O(N) complexity in the network,
loss, and inference paths — comparable to contemporary diffusion-based recommenders. Table 8
contrasts model, loss, and inference complexities with representative baselines, where L is the history
length, N the item set size, B the number of negatives, d the hidden dimension, and T the number of
diffusion steps.

• Model parameters. We never materialize the full N2 preference-ratio matrix. Equation (12)
requires only N scores; the additional computation cost is thus O(Nd).

37

Table 5: Hyperparameters Search Space for Baselines.
Method Hyperparameter Search Space

Shared lr ∼ {1e-2, 1e-3, 1e-4, 1e-5} with decay 0, embedding size d ∼ {128, 256, 512}
the number of negative sampling (if using) ∼ {64, 128, 256}, bath size = 256

DreamRec w ∼ {0, 1, 2, 5, 10}, T ∼ {500, 1000, 2000,3000}, p ∼ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}

PreferDiff λ ∼ {0.2, 0.4, 0.6, 0.8}, w ∼ {0, 1, 2, 5, 10}, T ∼ {500, 1000, 2000,3000}

DiffRec noise scale ∼ {1e-1, 1e-2, 1e-3, 1e-4, 1e-5}, T ∼ {2, 5, 20, 50, 100}

DDSR T ∼ {500, 1000, 2000,3000}

PreferGrow T ∼ {5, 10, 20, 30, 40}, p ∼ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}
w ∼ {0, 1, 2, 5, 10}, λ ∼ {0.9, 0.99, 0.999, 0.9999, 0.99999}

Table 6: Best Hyperparameters for PreferGrow on five datasets.
Variant Dataset lr d p T w λ

Hybrid

MovieLens 1e-4 256 0.1 20 10 0.9999
Steam 1e-3 256 0.1 20 10 0.99999
Beauty 1e-4 256 0.1 20 5 0.999
Toys 1e-3 256 0.2 20 10 0.9999
Sports 1e-3 256 0.2 20 1 0.9999

Variant Method lr d p T w x−1

Adaptive

Dataset 1e-4 256 0.2 20 10 True
Steam 1e-3 256 0.05 20 10 True
Beauty 1e-4 256 0.1 20 2 True
Toys 1e-4 256 0.2 20 5 True
Sports 1e-4 256 0.2 20 5 True

Table 7: Mean absolute error of w across data splits on five datasets.
Dataset MovieLens Steam Beauty Sports Toys
Mean abs. error of w 0.000 0.000 0.778 0.050 0.775

• Loss computation. With the idempotent fading matrix E, the objective in Eq. (4) simplifies
(Appendix C.1–C.4) to element-wise means, indexing, and a precomputable constant—overall
O(N). The score-entropy loss contains three parts: (i) a positive term and (ii) a negative term
(both simple mean/index operations, O(N)), and (iii) a constant term ensuring non-negativity that
depends only on t and can be precomputed in O(T) with T=20.

• Inference cost. Idempotency yields

E sΘ(xt, t, u) =
(p⊤

T sΘ
1⊤pT

)
1,

reducing Equation (19) from O(N2) to O(N).

Where O(N2) comes from. The apparent O(N2) arises only from the modeling target: preference
ratios are more expressive than conventional logits, which raises PreferGrow’s performance ceiling
but does not inflate the network/algorithmic path beyond O(N).

Scaling to industry scale. When N is extremely large (e.g., billions of items), even O(N) becomes
impractical. As discussed in the Limitations, Semantic IDs (SIDs) offer a principled route to
reduce complexity. SIDs encode each item with m codebooks of size c, enabling up to cm distinct
items while keeping computation at O(mc); since cm ≫ N ≫ mc, this yields a compact yet
expressive representation space and allows PreferGrow-on-SIDs to reduce cost from O(N) to O(mc).
A practical blocker is that current SID pipelines (e.g., Tiger [74], ActionPiece [75], DDSR [35],
OneRec [76]) are not open-sourced. Truly deploying PreferGrow at industrial scale therefore requires

38

Table 8: Comparison of model complexities.
Complexity Model Parameters Loss Computation Modeling Target Inference

SASRec O
(
Ld2 + L2d

)
O
(
Bd

)
O(N) O

(
Ld2 + L2d + Nd

)
DreamRec O

(
(L + 3)d2 + L2d

)
O(d) O(Td) O

(
T (L + 3)d2 + TL2d + Nd

)
PreferDiff O

(
(L + 3)d2 + L2d

)
O
(
Bd

)
O(Td) O

(
T (L + 3)d2 + TL2d + Nd

)
DiffRec O(LN2) O(N) O(TN) O(TLN2)

DDSR O
(
Ld2 + L2d

)
O(N) O(TN) O

(
TLd2 + TL2d + TNd

)
PreferGrow O

(
(L + 3)d2 + L2d

)
O(N + T) O(TN2) O

(
T (L + 3)d2 + TL2d + TN(d + 3)

)

Table 9: Comparison of efficiency on Steam.
Models # Trainable Parameters # training epochs Inference GFLOPs Inference steps

SASRec 2.70M 61 0.85 1
Caser 2.49M 58 0.38 1
GRURec 2.77M 55 4.06 1
DreamRec 7.25M 52 0.85 20
PreferDiff 7.25M 55 0.85 20
DiffRec 18.55M 1000 / 20
DDSR 3.03M 142 1.77 20
PreferGrow 3.03M 480 0.93 20

addressing the open challenge of large-scale multimodal SID pretraining. Extending PreferGrow to
operate over SIDs is our ongoing work.

39

	Introduction
	Preliminaries
	Method
	Forward Perturbation: Preference Fading Discrete Diffusion Process
	Preference Fading Forms Reference Ratios
	Design Paradigms of the Idempotent Fading Matrix

	Modeling Target: Preference Ratios with Reference via Score Entropy
	Backward Generation: Preference Growing from Preference Ratios
	Modeling Non-preference User for Personalization
	Non-preference User Modeling
	Personalized Contrast against Non-preference User

	Experiment
	Overall Comparsion
	Ablation Study
	Hyper-parameter Analysis

	Limitations
	Conclusion
	Related Work
	Broader Impacts
	Proofs of Main Results
	Details of Different Fading Matrix Setting
	Point-Wise Setting
	Pair-Wise Setting
	Hybrid-Wise Setting
	Adative Setting

	Rank-r Solution of Fading Matrix E
	Algorithms for Training and Inference
	Experiments Details
	Datasets
	Baselines
	Implementation Details
	Hyper-parameter Analysis
	Efficiency Analysis

