

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Optimizing User Interface Layouts via Gradient Descent
Peitong Duan Casimir Wierzynski Lama Nachman

Intel AI Intel AI Intel Labs
Santa Clara, USA San Diego, USA Santa Clara, USA

peitong.duan@gmail.com casimir.wierzynski@intel.com lama.nachman@intel.com

ABSTRACT
Automating parts of the user interface (UI) design process has
been a longstanding challenge. We present an automated tech-
nique for optimizing the layouts of mobile UIs. Our method
uses gradient descent on a neural network model of task per-
formance with respect to the model’s inputs to make layout
modifications that result in improved predicted error rates and
task completion times. We start by extending prior work on
neural network based performance prediction to 2-dimensional
mobile UIs with an expanded interaction space. We then apply
our method to two UIs, including one that the model had not
been trained on, to discover layout alternatives with signifi-
cantly improved predicted performance. Finally, we confirm
these predictions experimentally, showing improvements up
to 9.2 percent in the optimized layouts. This demonstrates the
algorithm’s efficacy in improving the task performance of a
layout, and its ability to generalize and improve layouts of
new interfaces.

Author Keywords
Optimization; data-driven design; gradient descent; deep
learning; mobile interfaces; LSTM; performance modeling;

CCS Concepts
•Human-centered computing → User models; •Computing
methodologies → Continuous space search;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CHI ’20, April 25–30, 2020, Honolulu, HI, USA.
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6708-0/20/04 ...$15.00.
http://dx.doi.org/10.1145/3313831.3376589

INTRODUCTION
User interface (UI) design is a very difficult process. There are
many factors to consider, such as ensuring the UI is efficient
to navigate, and that the interface is intuitive so that users
can quickly figure out how to use i t. A vast number of tools
and techniques have been developed to aid designers in this
process. They range from evaluative metrics [2] and models
of human performance [16, 4] that designers can use to assess
their designs, to tools and techniques that can optimize aspects
of the design [27, 24, 9, 25]. Tremendous progress has been
made in modeling human performance on interaction tasks,
and recently, deep learning approaches have been introduced,
specifically for modeling menu item selection [16] and select-
ing items in a grid-based interface [22]. These neural network

models are able to find complex patterns in large datasets and
can be configured to account for various factors affecting task
performance time, such as saliency of the target element for
the task, and learning effects from completing a similar task
earlier in the sequence. These data-driven models have been
shown to outperform analytical models. [16]

Neural networks are differentiable. They are trained to fit a
dataset via gradient-based updates to their weights that aim
to minimize the difference between the model’s predicted
value and the observed value in the data. Similar to how a
neural network is trained, gradients can also be computed
with respect to the network’s inputs and be used to update the
input to minimize the model’s predicted output. This makes
neural networks a viable tool for optimization. We decided
to apply these neural network models of human performance
to the well-studied problem of UI optimization. Specifically,
we explore the use of a task performance model’s gradients
to make updates to user interfaces that aim to minimize an
objective function consisting of the model’s predicted task
completion time and error rate. Since task completion time and
error rate are both useful metrics for evaluating UIs, optimizing
for them may lead to an interface with better usability [20].

To perform this optimization, we first need a predictive model
of task performance. To date, task performance modeling has
been done on menus and grid interfaces where tapping and
scrolling are the only possible interactions. Thus, we extended
the model by Li. et. al. ("Deep Menu") [16] to predict task
performance times on 2D mobile user interfaces given a UI
and a task sequence. Our model also accounts for user error,
where the completion time is increased by a penalty if users
made a mistake on the task. Hence, our model predicts a met-
ric consisting of both task time and error rate. In addition, our
model supports UIs with a variety of element types, such as
sliders, icons, and button groups, as well as task sequences
with many different interaction types including tapping, drag-
ging and dropping, and sliding (slider bar). Furthermore, our
model also handles tasks consisting of multiple interactions.
For instance, a task may require the user to tap two different
UI elements in sequence. To accommodate this more complex
prediction task, we increased the complexity of Deep Menu’s
architecture and added many more input features, including
the location and size of each UI element.

To scope our work, we focus on tuning the size and location of
each element in the UI to minimize task completion time and
error rate. We first crowdsourced the completion times and
error rates of a task sequence with 284 tasks on 108 different
layout variations of a single user interface, a photo editing UI

Paper 462 Page 1

http://dx.doi.org/10.1145/3313831.3376589
mailto:permissions@acm.org
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3313831.3376589&domain=pdf&date_stamp=2020-04-23

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

shown in Figure 2. We then fitted our model to this dataset,
achieving an R2 of 0.79 for the target level metric described in
[16]. Then, we developed an optimization algorithm that takes
in a user interface and a task sequence and makes iterative
adjustments to the x,y position, width, and height of each UI
element using gradient descent. We applied this optimization
algorithm on various layouts of the photo editing UI. To assess
the generalizability of our technique, we applied this algorithm
using the same trained model to layouts of a new interface
that the model has not been trained on. This is important
because designers should not have to collect training data for
every UI they plan to optimize. Fortunately, relationships
between aspects of the layout and task performance are mostly
universal (e.g. the relationship between the UI element’s size
and the time it takes to point to the element is governed by
Fitts’ Law [8]), so our model should be able to infer these
relationships from the dataset and apply it towards optimizing
a new interface layout.

This optimization technique produced layouts that have better
predicted task performance for both the photo editing UI and
the new UI. To verify this experimentally, we crowdsourced
task completion times and error rates for a few initial and
optimized layouts of both UIs. The observed task performance
metric also showed improvements in the optimized layouts,
with improvements up to 9.2 percent. These results demon-
strate our optimization algorithm’s ability to make effective
improvements to a layout, as well as its ability to generalize
to new interface layouts. From a practical standpoint, our
system can facilitate the design process. A designer could start
with a set of hand-crafted candidate layouts and use the model
to compare their task performance. The designer could also
use the optimizer to improve their layouts, generating layout
alternatives with better task performance.

To summarize, we made the following contributions:

• An extension of the model from Deep Menu to predict task
performance of various task types for 2D mobile UI’s. We
crowdsourced a dataset of task performance times from 379
participants and evaluated our model on this data.

• A new technique for optimizing the layout of mobile UI’s
using the gradients of a trained task performance predictor
network. This technique is generalizable and can improve
layouts of a new UI that the model has not been trained on.

RELATED WORK
Substantial work has been done in both predicting human per-
formance on interaction tasks and optimizing user interfaces.

Modeling Human Behavior
Modeling human behavior started with simple analytical mod-
els that focused on very specific aspects of human performance
in isolation. For instance, the well-known Fitts’ Law predicts
how long it takes users to point to a visual target as a function
of distance to the target and target width [8]. However, this
does not include other factors that affect task performance,
such as learning effects from past tasks and visual search time
for the target, which have been accounted for by a model on
menu item selection proposed by Bailly et. al. [4].

Recently, there has been a shift towards using neural networks
to model human behavior, as deep learning models can dis-
cover complex patterns in data and do not require extensive
feature engineering that is often necessary for analytical mod-
els. In particular, Li. et. al. [16] and Swearngin et. al. [26]
collected large datasets via crowdsourcing on Amazon Me-
chanical Turk, and then fitted neural network models to their
datasets. Li. et. al.’s model (Deep Menu) takes in a menu and
a sequence of menu items to select, and predicts the time for
each selection. Their model incorporates factors that affect
visual search and utilizes recurrent layers to capture learning
effects. Swearngin et. al.’s model takes in a mobile UI and an
element in the UI and predicts whether users would view the
element as tappable. Pfeuffer et. al. also collected a dataset via
a 20-user study and fitted a neural network model to predict the
time it takes to tap on items in a scrollable mobile grid layout
[22]. To our knowledge, no one has used deep learning to pre-
dict task performance for a general mobile layout, as well as
for interaction types beyond tapping and scrolling. Our model
expanded the range of interactions to include drag and drop
and sliding. We also extended task modeling to incorporate
tasks with multiple interactions.

UI Optimization
Because UI design is complex and multifaceted, many tech-
niques have emerged to optimize UI designs, and several dif-
ferent metrics have been used as the objective function. For
online games, the goal is usually to maximize user engage-
ment, or how long users spend playing the game. Bayesian
optimization [13] and multi-arm bandits [17] have been used
to tune features of the game, including font-size and how users
enter in input, to maximize user engagement. For general user
interfaces, Krzysztof et. al. created a system (SUPPLE) that
automatically generates interfaces, optimizing for a complex
function estimating the user effort for a given user trace [9].
For optimizing the UI layout specifically, Quiroz, et. al. used
genetic algorithms to evolve the layout of a single UI [24].
The color and location of each element in the interface can be
evolved, but the layout was restricted to a grid, and changes to
the layout consisted of swapping locations of elements within
the grid. Furthermore, human input was required to compute
the fitness of the layouts in each generation.

A common technique is to optimize for an objective function
combining many layout metrics (e.g. visual clutter). This
technique was used in the studies Sketchplore [27] and AIDE
[25]. Sketchplore is perhaps most similar to our work, in that
it optimizes an objective function accounting for both usability
and aesthetics. Sketchplore’s usability component consists of
a weighted summation of an analytical model for visual search
and Fitts’ Law for target acquisition. Our data-driven model
expanded upon this by including additional factors that affect
task performance. For instance, like Deep Menu, our model
also takes in the semantics and saliency of the text labels
on each UI element, which should have a strong effect on
visual search [18], whereas Sketchplore does not factor in text
labels in their visual search component. In addition, our task
performance predictor also accounts for errors users may make
and differentiates amongst types of user interactions, such as
drag and drop and sliding, whereas Sketchplore’s usability

Paper 462 Page 2

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Predicted Task
Completion TimeIn

pu
t

LS
TM

LS
TM

LS
TM

LS
TM

Fu
lly

 C
on

ne
ct

ed
 +

 R
eL

U

In
pu

t

Sequence
of Task +

UI
Element
Feature
Vectors Task + UI

Embedding

Task + UI Encoder Task Performance Predictor

Figure 1. The Task Performance Predictor model’s architecture.

model groups all user interactions as visual search and target
acquisition.

Until now, no work has been done to apply gradients of a deep
neural network model that predicts human task performance to
tune the layout of a user interface for better task performance.
Li et. al. did compute gradients of task completion time
with respect to input features, but it was to study the model’s
memory effects. Our work is also the first to use deep learning
to predict task completion time and error rate of a general
2D user interface with many different element and interaction
types, and also handles multi-step tasks.

TASK PERFORMANCE PREDICTION MODEL
We first expanded the Deep Menu model [16] to predict task
performance for mobile user interfaces. Like [16], the mobile
task performance predictor takes in a UI and a sequence of
tasks performed on the UI and predicts the completion time
of each task. We also increase the task completion time with
an error penalty, which is described later. Our model accounts
for interfaces with a wide selection of individual and grouped
element types. Grouped element types (e.g. a group of icons)
consist of a set of elements of the same type that are arranged
in a rectangular container (see Figure 2, Section E). Individ-
ual element types are single elements, such as a slider bar
(see Section C). Our model also handles different interaction
types, namely tapping, drag and drop, and sliding. We draw
largely from Deep Menu’s model architecture, and most of
our modifications are in the input features.

Model Architecture
Like Deep Menu, we utilize the LSTM’s capabilities of learn-
ing and remembering information from the input task se-
quence. We have an encoder network that generates an em-
bedding for each task. The embedding is then input into a
predictor network, which outputs a prediction for the task’s
performance time. The network’s hierarchical architecture
is depicted in Figure 1. Since the UI may change from the
user’s interactions, features of the UI are fed into the encoder
(along with the task information) for every task embedding.
In particular, each element in the UI is represented by a fixed
length vector, which also contains information about the task.
Details for each feature in the vector are provided in the next
section. A sequence of these feature vectors, one for each UI
element, is input into the encoder network to generate the task
embedding. The feature vectors are ordered by the location

of the top left corner of each element in a top-down, left-right
manner. The predictor model takes in a sequence of task em-
beddings and generates a prediction for the completion time of
each task. We provide a detailed figure illustrating this feature
encoding process in the supplementary materials, and [16]
also presents an explanation for feature encoding.

As shown in Figure 1, the encoder and predictor both have
recurrent layers that account for previous tasks in the sequence
while predicting the completion time of the current task. This
captures the learning effect of users taking less time on tasks
as they become more familiar with the UI. Since the tasks
and UI for our model are more complex than menu item se-
lection, we have two LSTM layers in both the predictor and
encoder models compared to the single recurrent layers in
Deep Menu’s. The recurrent layers in our predictor model
are followed by a feed-forward hidden layer with a ReLU
activation function, and the final time prediction is a linear
combination of this feed-forward hidden layer; this follows
Deep Menu’s architecture.

Model Features
The feature vector for UI element j of task s is as follows:

je =[target, len(name),word2vec(name),x,y,width,height,s

orientation,container_x,container_y,container_width,
container_height,element_type] (1)

These features are selected because they may impact task per-
formance. The first three features (target, len(name), and
word2vec(name)) are taken from [16], which discussed their
effect on task performance. Our target deviates from the def-
inition in [16], and is instead a one-hot vector of length 3
indicating if the UI element is the target for an interaction (e.g.
the specified button to be tapped), the drop or sliding target,
or not a target. For drag and drop and sliding interactions, one
UI element is the target being dragged or slid, and another
is the drop target or sliding destination. Hence, these two
elements must be differentiated. Likewise, all other categor-
ical features are represented as one-hot vectors. len(name)
and word2vec(name) are as defined in [16]. len(name) is the
length of the text label on the UI element and represents its
visual salience. word2vec(name) is the word2vec embedding
(reduced to length 4) that captures the semantics of the ele-
ment’s text label. However, in our case, the element may have
a symbol or image instead of a text label. In this situation, we

Paper 462 Page 3

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

would take the word2vec embedding of the word most closely
represented by the graphic (e.g. the embedding for "undo" is
used for the undo icon). len(name) for icons and images is set
to a value suitable for it’s visual saliency. These features are
normalized to a value between -1 and 1.

An element’s location and size affect pointing time [8] and vi-
sual search [4]. Furthermore, the spatial relationships between
two related elements affect the performance of tasks requiring
interactions with both elements. Hence, we provide the x and
y location of the element’s (or its bounding box’s) center and
the element’s width and height. We also include location and
size of the grouped element’s container (via container_x, etc.)
In addition, for grouped elements, each element in the group
has an input vector because individual members are usually
the task target, as opposed to the group itself. For instance,
users would tap one of the buttons in a button group. These
spatial features are all in pixels that are then normalized to be
between 0 and 1 by the screen width or height. orientation
specifies the orientation of the element, which can be vertical,
horizontal, or not applicable, since some interactions may be
affected by the target element’s orientation. For instance, slid-
ing a horizontal slider requires a different motion from sliding
a vertical slider and may take a different amount of time to per-
form. Finally, the element’s type (slider, button, icon, etc) is
given (element_type) since it determines the element’s visual
salience, as well as how users would interact with it.

We then extend our task encoding with the following
task-specific features: [interaction_type, step, total_steps].
interaction_type indicates the type of interaction required by
the task (tapping, drag and drop, etc.), since different interac-
tion types require different gestures (e.g. tapping vs sliding)
which should affect completion time. Our model also support
tasks consisting of many interactions (e.g. a task may require
tapping two different UI elements). These multi-step tasks
are presented as a single task to the users, who would have to
figure out the individual interactions. Since these multi-step
tasks require more cognitive effort from users, they should not
be modelled as a series of individual single-interaction tasks,
where each step broken down and presented to the user. Our
approach to modeling multi-step tasks are as follows: gen-
erate a task embedding for each interaction in the task, and
use step and total_steps to identify the embedding as part
of a multi-step task. For instance, if a task requires users to
first tap element A and then tap element B, a task embedding
will first be generated for tapping element A with the features
[tap, 1,2] appended, where [1,2] specifies that tapping element
A is step 1 of a 2-step task. Similarly the features [tap,2,2]
are appended to the embedding for tapping element B. For
single-interaction tasks, step and total_steps are both set to 1.

Drag and drop interactions, as well as sliding (the slider han-
dle), involve first acquiring the target and then performing
the interaction. Hence, these interactions consist of two steps
and are modelled as a 2-step task where the first step is target
acquisition and the second is the actual drag and drop or slide.

A B

C

D

E

F

Figure 2. The photo editing UI with all the UI elements labelled. A is the
undo icon, B is the upload icon, C is the slider, D is the button group that
controls which set of stickers are displayed, E is the set of stickers (icon
group type), and F is the button group with the save (checkmark) and
cancel ("X") buttons. The colored rectangles in the photo are not part
of the UI; they are the drop targets for Task Type 4 (drag and drop).

DATA COLLECTION AND EXPERIMENTS
In this section, we discuss the dataset we used to evaluate our
model, the set-up for crowdsourcing this data on Amazon Me-

chanical Turk (mTurk), and the results of our data collection.
To scope our data collection in a way that is useful for layout
optimization, we collected data for various layouts of a single
user interface. Our data collection protocol was subject to
institutional review as detailed in the supplementary materials.

Dataset
The dataset consists of 108 different layouts for a user inter-
face, with examples shown in Figure 3. This UI allows users to
add stickers and filters to a photo, and consists of the following
types of UI elements: button groups (save/cancel buttons and
the "Text"/"Emoji"/"Filter" buttons, Sections F and D of Fig-
ure 2), icons (undo and upload icons, Sections A and B), icon
groups (the stickers, Section E), slider bars (Section C), and
static divs (the photo). An icon group is defined as a group of
icons confined in a rectangular container with as many icons
placed on a row as possible, with uniform and maximal hori-
zontal and vertical spacing between adjacent icons, as shown
in Figure 2, Section E. Button groups are defined similarly.
Icons and buttons are both tappable, but an icon must have a
fixed width to height aspect ratio, which is preserved across
all 108 layouts. The different layouts in this dataset vary in the
size, location, and orientation of each UI element as shown in
Figure 3.

Task Sequence
Possible user interactions with this photo editing UI include
tapping a button or icon, adding a sticker or filter to the photo
by tapping on it, adjusting the size of added sticker with the
slider, and dragging and dropping the added sticker to a sec-
tion of the photo. A comprehensive task sequence is created
with tasks consisting of individual and combinations of these
interactions. Specifically, the different types of tasks include:

1. Selecting a sticker or filter to add to the photo

Paper 462 Page 4

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

2. Tapping the appropriate "Text"/"Emoji"/"Filter" button to
open the appropriate set of stickers and then selecting the
target sticker

3. Adjusting the size of the added sticker with the slider

4. Dragging and dropping the added sticker to a specified
target in the photo. The drop targets are colored rectangles
as shown in Figure 2.

Good Bad Random Random Perturbed

Figure 3. Examples of each layout type in the dataset. The "Random Perturbed" layout is a random perturbation of the "Good" layout.

5. Tapping one of the icons (the undo or upload icon) or one
of the buttons (the save or cancel button)

These task types are relatively simple to ensure all mTurk
workers perform the same set of interactions in the exact same
order as they work through the tasks. This is to guarantee
consistent and accurate modeling of each task. We are able to
incorporate more complex tasks that require two consecutive
interactions (e.g. Task Type 2), which are more difficult to
figure out and can be used to assess how intuitive the layout
is. For Task Type 4 (drag and drop), the locations of its drop
targets are changed (randomly) for every photo to simulate
realistic usage of the UI. For Task Type 3, the sliding destina-
tion for the slider handle is a specified range on the slider bar
(e.g. a value between 50 - 75). Each element in the interface
is interacted with at least five times in this task sequence to
capture both the learnability of the interface, which is reflected
by the first time each task is performed, and the efficiency of
the interface, which is shown in later repetitions of the task
as the user becomes more familiar with the UI. To simulate
realistic usage of this photo editing app, the mTurk participant
works through 20 photos in the task sequence and saves or
cancels their edits to the current photo before moving onto the
next one. This results in a task sequence of 284 tasks.

Generating Random Designs
Out of the 108 different layout of the photo editing UI, 5
are manually designed to meet many of the design guidelines
specified by Apple [12] and Nielsen [19] and 3 are manually
designed to be bad and violate many of these design guide-
lines. Figure 3 shows an example of a good and bad layout,
and all 8 layouts were designed by the authors. To ensure
good coverage of the layout space, the remaining 100 layouts
are generated with the layout parameters randomized or by
randomly perturbing one of the good designs.

Fifty designs were generated by randomizing the layout param-
eters directly. The location, size, and orientation parameters
of each UI element are first randomized and the elements are
added to the interface one by one, checking for overlap. If the
current element being added overlaps with any of the elements
already in the UI, its parameters are rerandomized. Otherwise,
the element is added to the interface. For grouped elements
(e.g. icon groups), the size and location parameters of the con-
tainer are also randomized. The remaining 50 designs were
generated by randomly perturbing each of the 5 good layouts.
Since the other set of randomized layouts likely violate de-
sign guidelines and are considered bad, only good layouts are
perturbed to incorporate more somewhat good layouts to the
dataset. For these perturbed layouts, the size of each element
is adjusted by a random factor selected uniformly from the
interval [0.7,1.3]. Since there is not much white space in these
good layouts, the locations are perturbed by randomly swap-
ping adjacent elements with a probability of 0.15. Figure 3
shows examples of these random and perturbed layouts.

Data Collection App
We built a web application using the psiTurk API to crowd-
source task completion times and error rates of the task se-
quence for each layout. psiTurk provides a backend API for
recording data and a command line interface to recruit work-
ers from Amazon Mechanical Turk [10]. Following the data
collection procedure from [16], the task sequence is presented
to the mTurk worker in the following manner: the worker first
sees the instructions for the task, and when they are ready to
complete the task, they tap the start button and are taken to the
UI to complete the task. Our data collection app is described
in detail in the supplementary materials, which includes exam-
ples of task instructions shown to workers and details on how
we handled and recorded the workers’ errors.

Data Collection Results
All workers were assigned the same task sequence to work
through on one of the 108 different layouts, with at least 3
workers assigned to each. In total, there were 379 participants
from Amazon Turk. There were 151 males and 228 females,
and around 12 percent of the users were left-handed. In total,
we collected completion times of 379 x 284 = 107,636 tasks.

Paper 462 Page 5

∑
|S|
i=1(yi − ti)2

Ls = (3)
∑
|S| y)2
i=1(yi − ¯

CHI 2020 Paper

The task completion times for each task were first averaged
across all workers for that layout; only completion times where
the task was completed correctly were considered. For each
task and layout, we remove outliers whose distance is greater
than 1.5 median absolute deviations (MAD) from the median.
We use MAD because it is more robust in detecting outliers,
compared to standard deviation [15]. To incorporate errors,
the performance metric assigned to each task and layout is
equal to the averaged time for each task per layout increased
by an error penalty as shown in the following equation:

task_per f _metric =
(2)

avg_task_time ∗ (1+ 0.5 ∗ f rac_err)

where f rac_err refers to the fraction of workers who made
an error on that task out of those who were assigned to that
layout. For more severe errors where users incorrectly tapped
the save or cancel button, which means they had to redo all
the tasks for the current photo, the error penalty was increased
from 0.5 to 0.8 and f rac_err becomes the fraction of workers
who erroneously tapped the save or cancel button. Since
these error penalties increase fluctuation in task performance,
they decrease the model’s prediction accuracy. We carefully
tuned these penalty constants to maximize emphasis on errors
without sacrificing significant prediction accuracy.

As a sanity check, we computed the average task perfor-
mance metric for each category of layouts: 564.0 (good,
std.err.=10.7), 638.8 (bad, std.err.=46.7), 588.2 (random,
std.err.=9.7), and 580.7 (random perturbations of good layouts,
std.err.=9.1). As expected, the good designs had on average, a
lower value for the task performance metric compared to the
bad and random categories, with the bad category having the
highest averaged value.

Model Performance Results
This section describes how we configured the model to fit the
dataset we collected, and presents the results of an evaluation
of the model’s accuracy. We also computed the fraction of
workers (assigned to each layout) who were left-handed and
the average of their ages and appended these statistics to the
task embedding. The majority of users would likely interact
with this photo editing UI using their dominant hand, as shown
in the results of a phone grip study on a focused task by Eardley
et. al. [7]. Since certain elements are located at regions that
are more difficult to reach for left-handed users and vice versa,
a user’s handedness may have an impact on task performance.
Furthermore, a person’s age is correlated with their UI design
preferences, familiarity with mobile technology, and gesture
mobility [23], all of which impact task performance.

Model Configuration and Loss Function
There are 8 different element types in the photo editing UI,
which means the element_type feature from Equation 1 is
a one-hot vector of size 8. This results in the per-element
features vectors defined in Equation 1 to have size 27. The
two recurrent layers in the encoder each have 23 LSTM cells.
The predictor network has 30 LSTM cells in its two recurrent
layers, followed by a feed-forward layer of size 28 to compute
the task completion time. To regularize the model and prevent
overfitting, we applied a dropout probability of 0.1 to the task

CHI 2020, April 25–30, 2020, Honolulu, HI, USA

embedding and a dropout probability of 0.4 to the feed-forward
layer in the predictor (Figure 1).

We use the same loss function as [16], which is defined as

where |S| refers to the length of the task sequence, yi is the
observed completion time of task i, and ti is the predicted
task time. ȳ is the average observed task completion time in
sequence S, so the denominator ∑

|
i
S
=
|
1(yi − ȳ)2 is the variance

of the task performance times in the sequence. R2 is a standard
metric to assess a model’s prediction quality and measures the
correlation between observed and predicted sequences. This
loss function is related to R2 via the equation R2 = 1 − Ls.
Since we minimize the loss function Ls during training, we
would be maximizing R2.

Our model was implemented in PyTorch, a deep learning
framework for Python [21]. We trained the network using
the Adam optimization algorithm [14] to minimize the loss
function with a learning rate of 3e−4 and a batch size of 8.
We also clipped gradients so their norms do not exceed 1.0.

Results
We evaluated the model using 6-fold cross validation trained
for 850 epochs at each fold, and computed the R2 using the
target-level R2 defined by Bailly et. al. [4] and used by Li et. al.
to evaluate Deep Menu. This target-level R2 metric examines
the relevant task performance for each UI element with varying
amounts of practice (trials). Our model achieved a target-
level accuracy of 0.79, averaged across all 6 folds. This is
comparable to the target-level R2 of 0.76 achieved by Deep
Menu on their datasets. Figure 4 shows a plot of our model’s
predicted task performance for Task Type 3 (sliding) and the
observed task performance, across trials, demonstrating the
model’s prediction accuracy.

Figure 4. A plot showing the model’s accuracy. This graph contains
the predicted and observed task performance values for Task Type 3
(sliding), across trials.

Paper 462 Page 6

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

UI LAYOUT OPTIMIZATION
Once we have a trained model to predict task performance,
we proceed with layout optimization. We use the gradient
descent algorithm, which makes iterative updates to the input
based on computed gradients (of the objective function with
respect to input) that minimize the objective function. In our
case, the input is the location and size of each element in the
layout, and our objective function is the model’s predicted
task performance. This optimization algorithm is described in
detail in the next sections and supplementary materials.

We then used this optimization algorithm to improve layouts
of the photo editing UI and another UI that the model has
not been trained on, since this technique should be able to
generalize and improve layouts of new interfaces to be useful.
Designers should not have to collect task performance data
for every UI they hope to optimize; the trained model should
be able to transfer patterns it learned from one interface to
optimize the layout of another. We applied this optimization
algorithm on several layouts of both interfaces, which led to
predicted improvements in task performance. To verify actual
improvements in human performance, we crowdsourced task
completion times and error rates for the initial and optimized
layouts. The optimized layouts also show improvements in
observed task performance for both interfaces.

Optimization Algorithm
Optimization algorithms aim to minimize an objective func-
tion, and gradient descent is a particular optimization algo-
rithm that is commonly used to train neural networks. Given
objective function f and input x, a single update at step n is
given by the following equation:

xn = xn−1 − lr∇ f (xn−1) (4)

where lr is the learning rate that controls the update step size.
In our case, the objective function is the sum of the predicted
completion times (with error penalty) of all tasks in a task
sequence plus the penalty functions, and the inputs are the x, y,
width, and height of each element, as well as its corresponding
container dimensions. Each layout feature of every element in
the UI is updated with their respective gradients individually,
following Equation 4. For each UI element, its features (see
Equation 1) are input into the model for every task in the
sequence, which means there will be gradients for the element
from each task. Since the size and location of every element
in the UI must remain consistent throughout the task sequence,
the average is taken over all the element’s gradients across
tasks, and a single update is made using Equation 4 with this
average gradient. The objective function F is formally defined
for layout l by the following equation:

F(l) = task_seq_per f (l)
+(penalty_constant)(overlap_penalty(l))

(5)
+(penalty_constant 0)(boundary_penalty(l))

+(penalty_constant 00)(additional_penalties(l))

Where task_seq_per f is the sum of the predicted task per-
formance of all tasks in the sequence, overlap_penalty is a
differentiable function that is positive if there are overlap-
ping UI elements in layout l and 0 otherwise. Likewise,

boundary_penalty is a differentiable function that is positive
only if any element in l exceeds the boundary of the user
interface. additional_penalties refers to penalty functions
from additional constraints the designer hopes to enforce, e.g.
ensuring two particular elements are aligned. The penalty
constants (e.g. penalty_constant) are constants that add high
values to the objective function if their corresponding penalty
functions are positive. Furthermore, at each update step, if two
elements end up overlapping, their locations are swapped if
their gradients indicate that may lower the objective function.

Penalty Functions
Since each UI element’s layout features are updated indepen-
dently, elements may inevitably overlap with each other or
go out the boundary of the interface after updates. Penalty
functions can prevent these undesirable conditions by adding
a large value to the objective function when these conditions
are detected. The penalty function would then steer the gradi-
ents towards eliminating these conditions so as to remove the
large penalty value. Since penalty functions must contribute to
gradients of the objective function to have an effect, they must
be differentiable. We use the rectified linear (ReLU) function,
which is defined as

ReLU(x) = max(0,x) (6)

ReLU(x) is 0 when x is negative and is equal to x otherwise.
The gradient of ReLU(x) is 1 for positive x and is 0 otherwise.
This satisfies the conditions for our penalty function, since it
will not contribute to the objective function nor the gradients
when it is not activated (equal to 0), and will steer the gradi-
ents away from overlaps or other undesirable situations when
activated.

The overlap and boundary penalty functions we used are pro-
vided, along with derivations, in the supplementary materials.
In addition to the necessary overlap and boundary penalty
functions, designers can add more constraints to improve the
output of the optimization. For instance, penalty functions can
be enforced for two UI elements to have the same size, or to
introduce a minimum size limit for an element. Furthermore,
if a designer wants to group two elements together, such as the
sticker button group (Figure 2, Section D) with the stickers
(Section E), they can introduce a penalty function to ensure
the two elements are in close proximity, aligned horizontally
or vertically, and have the same dimension size along their
bordering sides (e.g. the sticker button and stickers in Figure
2 should have the same widths). The equations for all these
penalty functions are detailed in the supplementary materials.
In sum, penalty functions can be added to ensure any desired
characteristics in the optimized layout. The penalty constant
of each constraint can also be tuned based on importance, with
more important constraints being given a larger constant. This
is especially useful in the case of conflicting constraints.

Swapping Locations of UI Elements
Since the overlap penalty function will push UI elements away
from each other if they overlap, elements will be restricted to
their initial regions throughout the optimization. For instance,
the sticker group (Figure 2, Section E) is constrained to be be-
low the sticker button group (Section D) because whenever the

Paper 462 Page 7

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

sticker group overlaps with the sticker button group, the sticker
group will be pushed back down. To enable exploration of
layout alternatives with a much larger location space, we intro-
duce location swapping of overlapping elements. Specifically,
when two elements overlap, we look at their gradients of the
objective function (Equation 5) without the overlap penalty. If
the two elements’ gradients indicate that swapping their loca-
tions may lower the objective function, the swap is performed.
A rigorous definition of this swapping condition and details of
the location swap can be found in the supplementary materials.

Layout 2 Initial Layout 2 Optimized (Tweaked) Layout 2 OptimizedLayout 1 Initial Layout 1 Optimized

Figure 5. The initial and optimized layouts of two different initial layouts. Layout 1 was optimized with strict constraints, and the predicted task
performance improved by 6.3 percent. "Layout 1 Optimized" shows algorithm’s output. Layout 2 was optimized using relaxed constraints. The layout
directly outputted by the algorithm ("Layout 2 Optimized") had a predicted improvement of 7.1 percent, and the optimized layout after some minor
tweaking ("Layout 2 Optimized (Tweaked)") had an improvement of 4.7 percent.

Optimization Results
This section contains representative samples of optimization
results for the photo editing interface and a new UI that the
model has not been trained on. Additional examples of ini-
tial and optimized layouts for both interfaces can be found
in the supplementary materials. We also crowdsourced hu-
man performance data to verify actual improvement in task
performance for the optimized layouts.

Optimization Set-up
While optimizing the layouts of both user interfaces, we used
values of 10000 for the overlap and boundary penalty constants
and smaller values for less serious penalties (e.g. grouping
of two elements.) We used a learning rate of 0.05 for the
gradient descent. We also clipped gradients to have norms
at most 0.5 to prevent extreme shifts in the layout from a
single update. We ran gradient descent for 500 steps, and
saved a CSS file of the layout at each step. We then took the
layout with the best predicted task performance. In order to
generate layouts with better task performance across the entire
population, we passed in the average age of all adult iPhone
users (37.7) [1] and the average fraction of left-handed people
in the population (0.1) [11] to our model.

Photo Editing UI
For the photo editing UI, we first experimented with optimiza-
tion using several stringent penalties to ensure good output
layouts. These penalties include large minimum size con-
straints for all UI elements, identical sizes between the undo

and upload icons (Sections A and B of Figure 2), and group-
ing the sticker button with the stickers (Sections D and E of
Figure 2). These penalty functions are described in "Addi-
tional Penalty Functions". Figure 5 shows an example of the
initial (Layout 1) and optimized (Layout 1 Optimized) layout,
along with the predicted task performance improvement. An
improvement in task performance refers to a decrease in value
of the task completion time with error penalty metric. The
improvement in task performance for Layout 1 is likely due to
the enlargement of the stickers and other UI elements, which
makes tapping easier according to Fitts’ Law. Furthermore, the
sticker buttons (Figure 2, Section D) in the optimized layout
are adjacent to the stickers (Figure 2, Section E), making the
layout more intuitive. This is because sticker buttons control
which stickers are displayed, so their relationship is more evi-
dent in the optimized layout. Furthermore, this should make
tasks where users must first open the appropriate set of stickers
before selecting a sticker to add (Task Type 2) more efficient
since the two elements are closer together.

We also applied our technique on a layout that was initially
good (Figure 5, Layout 2). We did not see much improve-
ment when we performed optimization with all the stringent
constraints described earlier. Since these strict constraints
limit exploration, we removed those constraints and just set
low minimum size requirements. With this, we were able to
achieve a predicted improvement of 7.1 percent in the total
task performance metric for the optimization’s output layout
(see Figure 5, "Layout 2 Optimized"). However, some of the
elements are too small (e.g. the save and cancel buttons) and
misaligned. We can manually enforce the original stringent
constraints and align the elements, resulting in a more visu-
ally appealing layout (see "Layout 2 Optimized (Tweaked)").
These alignment and resize tweaks to the output are very sim-
ple and straightforward for the designer to apply, and the
tweaked output still had an improvement of 4.7 percent. The
slight decline in predicted task performance after tweaking
(compared to the algorithm’s output layout) could be due to the
fact that misaligned elements stand out and are hence, easier
to find [6]. The increased spacing between some elements (e.g.
the stickers and exit buttons (Sections E and F of Figure 2))

Paper 462 Page 8

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

in the tweaked output layout (compared to the initial layout)
likely caused the improvement in predicted task performance.

To verify that our optimized layouts have better human perfor-
mance, we crowdsourced task completion times and error rates
of the initial and optimized layouts for both layouts in Figure 5.
For Layout 2, we collected data for the "Optimized Tweaked"
layout instead of the "Optimized" layout. We assigned at least
10 mTurk workers to each layout. The crowdsourced results
confirm improvement in task performance in the optimized
layouts. The observed performance increase (decrease in the
value of the task performance metric) is 8.9 percent for Layout
1 (6.3 percent predicted) and 2.0 percent for Layout 2 (4.7
percent predicted). Layout 2 likely had a smaller improvement
than Layout 1 because Layout 2 was initially quite good. To
verify statistical significance of the observed performance im-
provement, we computed a two-sample t-test for the observed
task performance metric for the initial and optimized versions
of both layouts. For Layout 1, t(13) = −16.674, p < 1e−13
and for Layout 2, t(10) = −2.780, p < 0.05, which indicate
statistical significance of the observed improvements.

New UI: Recipe Planner
The recipe planner is an interface where users drag and drop
ingredients that they like and dislike to the appropriate boxes
(see Figures 6 and 7). Once users have made all their selec-
tions, they tap the "Get Recipe" button to get a list of recipes
they may like based on their ingredient preferences. All ele-
ment and interaction types in this recipe planning UI are found
in the photo editing UI. This is necessary in order to utilize
the model trained on the photo editing UI for optimization on
this new UI, as the model would probably not be able to make
accurate predictions on new element and interaction types.
However, the UI element and interaction types in the photo
editing UI are very general and can be used to build a wide
variety of user interfaces. We created a comprehensive task
sequence for the recipe planning interface with which we will
optimize for task performance. The task types include tap-
ping the "Get Recipe", undo, cancel, or one of the ingredients
buttons ("Grains", "Fruits", "Veg."), dragging and dropping a
specified ingredient sticker to the "Ingredients You Like" or
"Ingredients You Dislike" box, and a two-step task, where the
user must first open the appropriate set of ingredients stick-

ers via tapping the corresponding ingredients button and then
dragging and dropping the target ingredient to the appropriate
box. This task sequence for the recipe planner UI had 136
tasks.

We first tried optimizing the layout with strict constraints, such
as large minimum size constraints for the UI elements. How-
ever, these strict constraints did not lead to an improvement in
predicted performance of the task sequence. We then relaxed
these constraints to include only low minimum size constraints.
This resulted in improvements in predicted task performance
of the task sequence, even after the optimization output has
been tweaked to align elements and enlarge elements that
were too small. The optimization results of an initially bad
layout (Layout 1) are shown in Figures 6 and 7. For Layout
1, the optimization algorithm moved the ingredients stickers
closer to the "Ingredients You Like" and "Ingredients You
Dislike" drop targets and added more spacing between the
undo and cancel icons in Layout 1 that were initially too close
together. We also optimized a layout that was initially good
(Layout 2), and Figures 6 and 7 show the results. For Layout
2, the algorithm decreased the distance users had to drag the
ingredient stickers to the drop targets, and also moved the
"Get Recipe" button and the undo icon farther to the right,
which makes it more accessible to right-handed users, who
make up the 90 percent of the user base. To verify that the
optimized layouts have improved human task performance,
we crowdsourced task completion times and error rates for
Layouts 1 and 2 following the same procedure used for the
photo editing UI. There is an observed improvement of 9.2 per-
cent (t(12) = −9.799, p < 1e−8) and a 3.2 percent predicted
improvement for Layout 1, and an observed improvement
of 4.9 percent (t(13) = −5.622, p < 1e−5) and a 5.4 percent
predicted improvement for Layout 2.

Layout 2 Initial Layout 2 Optimized (Tweaked)Layout 1 Initial Layout 1 Optimized (Tweaked)

Figure 6. The initial layouts and the optimized layouts after minor tweaking for the recipe planning UI. Layout 1 had a predicted task performance
improvement of 3.2 percent, and Layout 2 had a predicted improvement of 5.4 percent. The algorithm’s output layouts can be found in Figure 7.

DISCUSSION
Our optimization algorithm was able to discover layout alter-
natives with better task performance for both user interfaces,
which demonstrates the algorithm’s generalizability. Hence,
our trained model would likely be able to improve the layout of
any interface containing UI elements and interactions found in
the photo editing interface, which is a very large set of possible
UI’s. Furthermore, according to Arhippainen et. al. [3], the

Paper 462 Page 9

 CHI 2020 Paper

only layout-relevant factors affecting general user experience
are usability and aesthetics. Since task performance is a good
indicator of usability [20], the optimized layouts will likely
result in better user experience if aesthetics are not worsened.

The findings of our optimization experiments support those
by Lomas et. al. [17]. Their paper emphasized optimizing
for the right metric, and while our optimization technique re-
turned layouts with better task performance, the layouts did
not show much improvement in terms of aesthetics. Hence,
our objective function could have been more comprehensive
and incorporated metrics for the visual aspect of the layout.
Furthermore, as shown in the layouts directly outputted by
the optimization algorithm (Figures 6 and 7), the model made
some elements very small to possibly reduce user error. Lomas
et. al. warned that the optimization output may be unsatisfac-
tory when metrics are optimized to the extreme.

Human-AI Collaboration
These limitations with our optimization algorithm can be fixed
easily by humans, as shown in Figures 6 and 7. Both human
judgement and the optimization algorithm can be misleading,
so ideally humans and AI would collaborate in the design pro-
cess [17]. The following illustrates how this hybrid workflow
might work with our system. Designers can start by building
an initial layout and specifying any constraints in the optimiza-
tion output, such as elements that must be grouped together.
Then, our algorithm returns a layout that the designer can
refine for aesthetic quality and other features. The designer
can then use the task performance predictor to compare the
task performance between the refined and initial layouts. Fur-
thermore, the designer can run the optimization again on the
refined layout to further improve its task performance, and
this iteration between AI optimization and human refinement
can be continued until a satisfactory layout has been achieved.
Furthermore, the optimization algorithm outputs the CSS file
for the layout at every step, which generates a large set of lay-
out alternatives. If the designer sees a layout they like better
than the one with the best predicted task performance, they
can work with their preferred layout instead. In sum, there are

CHI 2020, April 25–30, 2020, Honolulu, HI, USA

many ways for our optimization algorithm to assist designers
in creating a great layout for their user interface.

Limitations and Future Work
There are three main limitations to our work. First, our op-
timization algorithm focuses primarily on usability, whereas
layouts have other important attributes, such as aesthetics. As
explained earlier, less effort will be required from designers if
the algorithm’s output had better aesthetics. Sketchplore [27]
accounted for both usability and aesthetics in their optimiza-
tion, including aesthetics metrics for visual clutter, grid quality,
and alignment. Furthermore, our method only modifies the
sizes and locations of UI elements, while other layout opti-
mizers, such as [27], also adjust the elements’ colors. Second,
many of the tasks in the dataset’s task sequence are simple
and require only one interaction. Although we did have 2-
interaction tasks, including even more complex tasks could
result in stronger emphasis on the layout’s learnability in the
task performance metric. Third, while optimization using our
trained model would likely generalize to other mobile UIs with
element and interaction types found in the photo editing UI,
more training data would probably be necessary for interfaces
with other UI element and interaction types (e.g. swiping) and
for other platforms (e.g. computers). Also, the model’s input
features and architecture may need to be modified for these
cases.

These limitations suggest promising opportunities for future
work. There exist metrics for aesthetic quality, such as the
Balinsky symmetry metric that measures the grid quality of the
layout [5], which can be incorporated in the objective function
to optimize for the appearance of the layout in addition to
usability. Furthermore, since our system provides a platform
for human-AI collaboration in UI design, it would be insightful
to study the dynamics between human and AI during such a
collaboration, such as disagreements that may arise between
the two. It would also be interesting to compare the final
layout after many iterations of this human-AI collaboration
for a novice designer with the layout created by an expert
designer.

Layout 2 OptimizedLayout 1 Optimized

Figure 7. Layouts directly outputted by the algorithm. For Layout 1,
the algorithm made a 5.8 percent improvement (predicted) in task per-
formance, and for Layout 2, the algorithm made a 4.1 percent improve-
ment. These output layouts were tweaked slightly to for alignment and
re-sizing. Figure 6 shows the tweaked layouts.

CONCLUSION
Our model predicts task performance (a metric combining task
completion time and error rate) of a general mobile UI that
contains a variety of element types and supports many types
of user interactions. We then developed an algorithm that uses
this model to make iterative updates to a UI’s layout using gra-
dient descent. We used this optimization algorithm to improve
layouts of two UI’s, including one interface that our model has
not been trained on. Our optimization algorithm was able to
generate layout alternatives with better task performance for
both interfaces, as confirmed by crowdsourcing studies com-
paring the initial and optimized layouts. This demonstrates
the effectiveness of this algorithm in improving a layout’s
task performance, as well as its ability to generalize and make
improvements to new interface layouts. The optimization’s
output layout do need minor human refinement in order to
look aesthetically pleasing. However, collaboration between
human and AI is recommended over relying solely on either.

Paper 462 Page 10

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

REFERENCES
[1] 2019. Android vs iPhone mobile owners in the U.S.

2013, by age. (2019).
https://www.statista.com/statistics/271228/
android-vs-iphone-mobile-owners-age/

[2] Khalid Alemerien and Kenneth Magel. GUIEvaluator: A
Metric-tool for Evaluating the Complexity of Graphical
User Interfaces.

[3] Leena Arhippainen and Marika Tähti. 2003. Empirical
evaluation of user experience in two adaptive mobile
application prototypes. In MUM 2003. Proceedings of
the 2nd International Conference on Mobile and
Ubiquitous Multimedia. Linköping University Electronic
Press, 27–34.

[4] Gilles Bailly, Antti Oulasvirta, Duncan P Brumby, and
Andrew Howes. 2014. Model of visual search and
selection time in linear menus. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems. ACM, 3865–3874.

[5] Helen Balinsky. 2006. Evaluating interface aesthetics:
measure of symmetry. In Digital Publishing, Vol. 6076.
International Society for Optics and Photonics, 607608.

[6] Helen Y Balinsky, Anthony J Wiley, and Matthew C
Roberts. 2009. Aesthetic measure of alignment and
regularity. In Proceedings of the 9th ACM symposium on
Document engineering. ACM, 56–65.

[7] Rachel Eardley, Anne Roudaut, Steve Gill, and
Stephen J Thompson. 2017. Understanding Grip Shifts:
How Form Factors Impact Hand Movements on Mobile
Phones. In Proceedings of the 2017 CHI Conference on
Human Factors in Computing Systems. ACM,
4680–4691.

[8] Paul M Fitts. 1954. The information capacity of the
human motor system in controlling the amplitude of
movement. Journal of experimental psychology 47, 6
(1954), 381.

[9] Krzysztof Gajos and Daniel S Weld. 2004. SUPPLE:
automatically generating user interfaces. In Proceedings
of the 9th international conference on Intelligent user
interfaces. ACM, 93–100.

[10] Todd M Gureckis, Jay Martin, John McDonnell,
Alexander S Rich, Doug Markant, Anna Coenen, David
Halpern, Jessica B Hamrick, and Patricia Chan. 2016.
psiTurk: An open-source framework for conducting
replicable behavioral experiments online. Behavior
research methods 48, 3 (2016), 829–842.

[11] Curtis Hardyck and Lewis F Petrinovich. 1977.
Left-handedness. Psychological bulletin 84, 3 (1977),
385.

[12] Apple Inc. 2019. Adaptivity and Layout. (2019).
https://developer.apple.com/design/
human-interface-guidelines/ios/visual-design/
adaptivity-and-layout/

[13] Mohammad M Khajah, Brett D Roads, Robert V
Lindsey, Yun-En Liu, and Michael C Mozer. 2016.
Designing engaging games using bayesian optimization.
In Proceedings of the 2016 chi conference on human
factors in computing systems. ACM, 5571–5582.

[14] Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014).

[15] Christophe Leys, Christophe Ley, Olivier Klein,
Philippe Bernard, and Laurent Licata. 2013. Detecting
outliers: Do not use standard deviation around the mean,
use absolute deviation around the median. Journal of
Experimental Social Psychology 49, 4 (2013), 764–766.

[16] Yang Li, Samy Bengio, and Gilles Bailly. 2018.
Predicting human performance in vertical menu
selection using deep learning. In Proceedings of the
2018 CHI Conference on Human Factors in Computing
Systems. ACM, 29.

[17] J Derek Lomas, Jodi Forlizzi, Nikhil Poonwala, Nirmal
Patel, Sharan Shodhan, Kishan Patel, Ken Koedinger,
and Emma Brunskill. 2016. Interface design
optimization as a multi-armed bandit problem. In
Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems. ACM, 4142–4153.

[18] Risto Näsänen, Helena Ojanpää, and Ilpo Kojo. 2001.
Effect of stimulus contrast on performance and eye
movements in visual search. Vision Research 41, 14
(2001), 1817–1824.

[19] Jakob Nielsen. 1995. 10 usability heuristics for user
interface design. Nielsen Norman Group 1, 1 (1995).

[20] Jakob Nielsen. 2001. Usability Metrics. (Jan 2001).
https://www.nngroup.com/articles/usability-metrics/

[21] Adam Paszke, Sam Gross, Soumith Chintala, and
Gregory Chanan. 2017. Pytorch: Tensors and dynamic
neural networks in python with strong gpu acceleration.
PyTorch: Tensors and dynamic neural networks in
Python with strong GPU acceleration 6 (2017).

[22] Ken Pfeuffer and Yang Li. 2018. Analysis and Modeling
of Grid Performance on Touchscreen Mobile Devices. In
Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems. ACM, 288.

[23] Sergey Polyuk. 2019. A Guide to Interface Design for
Older Adults. (Jun 2019). https://www.toptal.com/
designers/ui/ui-design-for-older-adults

[24] Juan C Quiroz, Sushil J Louis, Anil Shankar, and
Sergiu M Dascalu. 2007. Interactive genetic algorithms
for user interface design. In 2007 IEEE congress on
evolutionary computation. IEEE, 1366–1373.

[25] Andrew L Sears. 1995. AIDE: A step toward
metric-based interface development tools. In
Proceedings of the 1995 8th Annual Symposium on User
Interface Software and Technology, UIST’95. ACM,
101–110.

Paper 462 Page 11

https://www.statista.com/statistics/271228/android-vs-iphone-mobile-owners-age/
https://www.statista.com/statistics/271228/android-vs-iphone-mobile-owners-age/
https://developer.apple.com/design/human-interface-guidelines/ios/visual-design/adaptivity-and-layout/
https://developer.apple.com/design/human-interface-guidelines/ios/visual-design/adaptivity-and-layout/
https://developer.apple.com/design/human-interface-guidelines/ios/visual-design/adaptivity-and-layout/
https://www.nngroup.com/articles/usability-metrics/
https://www.toptal.com/designers/ui/ui-design-for-older-adults
https://www.toptal.com/designers/ui/ui-design-for-older-adults

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

[26] Amanda Swearngin and Yang Li. 2019. Modeling
Mobile Interface Tappability Using Crowdsourcing and
Deep Learning. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems.
ACM, 75.

[27] Kashyap Todi, Daryl Weir, and Antti Oulasvirta. 2016.
Sketchplore: Sketch and explore with a layout optimiser.
In Proceedings of the 2016 ACM Conference on
Designing Interactive Systems. ACM, 543–555.

Paper 462 Page 12

	Introduction
	Related Work
	Modeling Human Behavior
	UI Optimization

	Task Performance Prediction Model
	Model Architecture
	Model Features

	Data Collection and Experiments
	Dataset
	Task Sequence

	Generating Random Designs
	Data Collection App
	Data Collection Results
	Model Performance Results
	Model Configuration and Loss Function
	Results

	UI Layout Optimization
	Optimization Algorithm
	Penalty Functions
	Swapping Locations of UI Elements

	Optimization Results
	Optimization Set-up
	Photo Editing UI
	New UI: Recipe Planner

	Discussion
	Human-AI Collaboration
	Limitations and Future Work

	Conclusion
	References

