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ABSTRACT 
Automating parts of the user interface (UI) design process has 
been a longstanding challenge. We present an automated tech-
nique for optimizing the layouts of mobile UIs. Our method 
uses gradient descent on a neural network model of task per-
formance with respect to the model’s inputs to make layout 
modifications that result in improved predicted error rates and 
task completion times. We start by extending prior work on 
neural network based performance prediction to 2-dimensional 
mobile UIs with an expanded interaction space. We then apply 
our method to two UIs, including one that the model had not 
been trained on, to discover layout alternatives with signifi-
cantly improved predicted performance. Finally, we confirm 
these predictions experimentally, showing improvements up 
to 9.2 percent in the optimized layouts. This demonstrates the 
algorithm’s efficacy in improving the task performance of a 
layout, and its ability to generalize and improve layouts of 
new interfaces. 
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INTRODUCTION 
User interface (UI) design is a very difficult process. There are 
many factors to consider, such as ensuring the UI is efficient 
to navigate, and that the interface is intuitive so that users 
can quickly figure out how to use i t. A vast number of tools 
and techniques have been developed to aid designers in this 
process. They range from evaluative metrics [2] and models 
of human performance [16, 4] that designers can use to assess 
their designs, to tools and techniques that can optimize aspects 
of the design [27, 24, 9, 25]. Tremendous progress has been 
made in modeling human performance on interaction tasks, 
and recently, deep learning approaches have been introduced, 
specifically for modeling menu item selection [16] and select-
ing items in a grid-based interface [22]. These neural network 

models are able to find complex patterns in large datasets and 
can be configured to account for various factors affecting task 
performance time, such as saliency of the target element for 
the task, and learning effects from completing a similar task 
earlier in the sequence. These data-driven models have been 
shown to outperform analytical models. [16] 

Neural networks are differentiable. They are trained to fit a 
dataset via gradient-based updates to their weights that aim 
to minimize the difference between the model’s predicted 
value and the observed value in the data. Similar to how a 
neural network is trained, gradients can also be computed 
with respect to the network’s inputs and be used to update the 
input to minimize the model’s predicted output. This makes 
neural networks a viable tool for optimization. We decided 
to apply these neural network models of human performance 
to the well-studied problem of UI optimization. Specifically, 
we explore the use of a task performance model’s gradients 
to make updates to user interfaces that aim to minimize an 
objective function consisting of the model’s predicted task 
completion time and error rate. Since task completion time and 
error rate are both useful metrics for evaluating UIs, optimizing 
for them may lead to an interface with better usability [20]. 

To perform this optimization, we first need a predictive model 
of task performance. To date, task performance modeling has 
been done on menus and grid interfaces where tapping and 
scrolling are the only possible interactions. Thus, we extended 
the model by Li. et. al. ("Deep Menu") [16] to predict task 
performance times on 2D mobile user interfaces given a UI 
and a task sequence. Our model also accounts for user error, 
where the completion time is increased by a penalty if users 
made a mistake on the task. Hence, our model predicts a met-
ric consisting of both task time and error rate. In addition, our 
model supports UIs with a variety of element types, such as 
sliders, icons, and button groups, as well as task sequences 
with many different interaction types including tapping, drag-
ging and dropping, and sliding (slider bar). Furthermore, our 
model also handles tasks consisting of multiple interactions. 
For instance, a task may require the user to tap two different 
UI elements in sequence. To accommodate this more complex 
prediction task, we increased the complexity of Deep Menu’s 
architecture and added many more input features, including 
the location and size of each UI element. 

To scope our work, we focus on tuning the size and location of 
each element in the UI to minimize task completion time and 
error rate. We first crowdsourced the completion times and 
error rates of a task sequence with 284 tasks on 108 different 
layout variations of a single user interface, a photo editing UI 
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shown in Figure 2. We then fitted our model to this dataset, 
achieving an R2 of 0.79 for the target level metric described in 
[16]. Then, we developed an optimization algorithm that takes 
in a user interface and a task sequence and makes iterative 
adjustments to the x,y position, width, and height of each UI 
element using gradient descent. We applied this optimization 
algorithm on various layouts of the photo editing UI. To assess 
the generalizability of our technique, we applied this algorithm 
using the same trained model to layouts of a new interface 
that the model has not been trained on. This is important 
because designers should not have to collect training data for 
every UI they plan to optimize. Fortunately, relationships 
between aspects of the layout and task performance are mostly 
universal (e.g. the relationship between the UI element’s size 
and the time it takes to point to the element is governed by 
Fitts’ Law [8]), so our model should be able to infer these 
relationships from the dataset and apply it towards optimizing 
a new interface layout. 

This optimization technique produced layouts that have better 
predicted task performance for both the photo editing UI and 
the new UI. To verify this experimentally, we crowdsourced 
task completion times and error rates for a few initial and 
optimized layouts of both UIs. The observed task performance 
metric also showed improvements in the optimized layouts, 
with improvements up to 9.2 percent. These results demon-
strate our optimization algorithm’s ability to make effective 
improvements to a layout, as well as its ability to generalize 
to new interface layouts. From a practical standpoint, our 
system can facilitate the design process. A designer could start 
with a set of hand-crafted candidate layouts and use the model 
to compare their task performance. The designer could also 
use the optimizer to improve their layouts, generating layout 
alternatives with better task performance. 

To summarize, we made the following contributions: 

• An extension of the model from Deep Menu to predict task 
performance of various task types for 2D mobile UI’s. We 
crowdsourced a dataset of task performance times from 379 
participants and evaluated our model on this data. 

• A new technique for optimizing the layout of mobile UI’s 
using the gradients of a trained task performance predictor 
network. This technique is generalizable and can improve 
layouts of a new UI that the model has not been trained on. 

RELATED WORK 
Substantial work has been done in both predicting human per-
formance on interaction tasks and optimizing user interfaces. 

Modeling Human Behavior 
Modeling human behavior started with simple analytical mod-
els that focused on very specific aspects of human performance 
in isolation. For instance, the well-known Fitts’ Law predicts 
how long it takes users to point to a visual target as a function 
of distance to the target and target width [8]. However, this 
does not include other factors that affect task performance, 
such as learning effects from past tasks and visual search time 
for the target, which have been accounted for by a model on 
menu item selection proposed by Bailly et. al. [4]. 

Recently, there has been a shift towards using neural networks 
to model human behavior, as deep learning models can dis-
cover complex patterns in data and do not require extensive 
feature engineering that is often necessary for analytical mod-
els. In particular, Li. et. al. [16] and Swearngin et. al. [26] 
collected large datasets via crowdsourcing on Amazon Me-
chanical Turk, and then fitted neural network models to their 
datasets. Li. et. al.’s model (Deep Menu) takes in a menu and 
a sequence of menu items to select, and predicts the time for 
each selection. Their model incorporates factors that affect 
visual search and utilizes recurrent layers to capture learning 
effects. Swearngin et. al.’s model takes in a mobile UI and an 
element in the UI and predicts whether users would view the 
element as tappable. Pfeuffer et. al. also collected a dataset via 
a 20-user study and fitted a neural network model to predict the 
time it takes to tap on items in a scrollable mobile grid layout 
[22]. To our knowledge, no one has used deep learning to pre-
dict task performance for a general mobile layout, as well as 
for interaction types beyond tapping and scrolling. Our model 
expanded the range of interactions to include drag and drop 
and sliding. We also extended task modeling to incorporate 
tasks with multiple interactions. 

UI Optimization 
Because UI design is complex and multifaceted, many tech-
niques have emerged to optimize UI designs, and several dif-
ferent metrics have been used as the objective function. For 
online games, the goal is usually to maximize user engage-
ment, or how long users spend playing the game. Bayesian 
optimization [13] and multi-arm bandits [17] have been used 
to tune features of the game, including font-size and how users 
enter in input, to maximize user engagement. For general user 
interfaces, Krzysztof et. al. created a system (SUPPLE) that 
automatically generates interfaces, optimizing for a complex 
function estimating the user effort for a given user trace [9]. 
For optimizing the UI layout specifically, Quiroz, et. al. used 
genetic algorithms to evolve the layout of a single UI [24]. 
The color and location of each element in the interface can be 
evolved, but the layout was restricted to a grid, and changes to 
the layout consisted of swapping locations of elements within 
the grid. Furthermore, human input was required to compute 
the fitness of the layouts in each generation. 

A common technique is to optimize for an objective function 
combining many layout metrics (e.g. visual clutter). This 
technique was used in the studies Sketchplore [27] and AIDE 
[25]. Sketchplore is perhaps most similar to our work, in that 
it optimizes an objective function accounting for both usability 
and aesthetics. Sketchplore’s usability component consists of 
a weighted summation of an analytical model for visual search 
and Fitts’ Law for target acquisition. Our data-driven model 
expanded upon this by including additional factors that affect 
task performance. For instance, like Deep Menu, our model 
also takes in the semantics and saliency of the text labels 
on each UI element, which should have a strong effect on 
visual search [18], whereas Sketchplore does not factor in text 
labels in their visual search component. In addition, our task 
performance predictor also accounts for errors users may make 
and differentiates amongst types of user interactions, such as 
drag and drop and sliding, whereas Sketchplore’s usability 
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Figure 1. The Task Performance Predictor model’s architecture. 

model groups all user interactions as visual search and target 
acquisition. 

Until now, no work has been done to apply gradients of a deep 
neural network model that predicts human task performance to 
tune the layout of a user interface for better task performance. 
Li et. al. did compute gradients of task completion time 
with respect to input features, but it was to study the model’s 
memory effects. Our work is also the first to use deep learning 
to predict task completion time and error rate of a general 
2D user interface with many different element and interaction 
types, and also handles multi-step tasks. 

TASK PERFORMANCE PREDICTION MODEL 
We first expanded the Deep Menu model [16] to predict task 
performance for mobile user interfaces. Like [16], the mobile 
task performance predictor takes in a UI and a sequence of 
tasks performed on the UI and predicts the completion time 
of each task. We also increase the task completion time with 
an error penalty, which is described later. Our model accounts 
for interfaces with a wide selection of individual and grouped 
element types. Grouped element types (e.g. a group of icons) 
consist of a set of elements of the same type that are arranged 
in a rectangular container (see Figure 2, Section E). Individ-
ual element types are single elements, such as a slider bar 
(see Section C). Our model also handles different interaction 
types, namely tapping, drag and drop, and sliding. We draw 
largely from Deep Menu’s model architecture, and most of 
our modifications are in the input features. 

Model Architecture 
Like Deep Menu, we utilize the LSTM’s capabilities of learn-
ing and remembering information from the input task se-
quence. We have an encoder network that generates an em-
bedding for each task. The embedding is then input into a 
predictor network, which outputs a prediction for the task’s 
performance time. The network’s hierarchical architecture 
is depicted in Figure 1. Since the UI may change from the 
user’s interactions, features of the UI are fed into the encoder 
(along with the task information) for every task embedding. 
In particular, each element in the UI is represented by a fixed 
length vector, which also contains information about the task. 
Details for each feature in the vector are provided in the next 
section. A sequence of these feature vectors, one for each UI 
element, is input into the encoder network to generate the task 
embedding. The feature vectors are ordered by the location 

of the top left corner of each element in a top-down, left-right 
manner. The predictor model takes in a sequence of task em-
beddings and generates a prediction for the completion time of 
each task. We provide a detailed figure illustrating this feature 
encoding process in the supplementary materials, and [16] 
also presents an explanation for feature encoding. 

As shown in Figure 1, the encoder and predictor both have 
recurrent layers that account for previous tasks in the sequence 
while predicting the completion time of the current task. This 
captures the learning effect of users taking less time on tasks 
as they become more familiar with the UI. Since the tasks 
and UI for our model are more complex than menu item se-
lection, we have two LSTM layers in both the predictor and 
encoder models compared to the single recurrent layers in 
Deep Menu’s. The recurrent layers in our predictor model 
are followed by a feed-forward hidden layer with a ReLU 
activation function, and the final time prediction is a linear 
combination of this feed-forward hidden layer; this follows 
Deep Menu’s architecture. 

Model Features 
The feature vector for UI element j of task s is as follows: 

je =[target, len(name),word2vec(name),x,y,width,height,s 

orientation,container_x,container_y,container_width, 
container_height,element_type] (1) 

These features are selected because they may impact task per-
formance. The first three features (target, len(name), and 
word2vec(name)) are taken from [16], which discussed their 
effect on task performance. Our target deviates from the def-
inition in [16], and is instead a one-hot vector of length 3 
indicating if the UI element is the target for an interaction (e.g. 
the specified button to be tapped), the drop or sliding target, 
or not a target. For drag and drop and sliding interactions, one 
UI element is the target being dragged or slid, and another 
is the drop target or sliding destination. Hence, these two 
elements must be differentiated. Likewise, all other categor-
ical features are represented as one-hot vectors. len(name) 
and word2vec(name) are as defined in [16]. len(name) is the 
length of the text label on the UI element and represents its 
visual salience. word2vec(name) is the word2vec embedding 
(reduced to length 4) that captures the semantics of the ele-
ment’s text label. However, in our case, the element may have 
a symbol or image instead of a text label. In this situation, we 
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would take the word2vec embedding of the word most closely 
represented by the graphic (e.g. the embedding for "undo" is 
used for the undo icon). len(name) for icons and images is set 
to a value suitable for it’s visual saliency. These features are 
normalized to a value between -1 and 1. 

An element’s location and size affect pointing time [8] and vi-
sual search [4]. Furthermore, the spatial relationships between 
two related elements affect the performance of tasks requiring 
interactions with both elements. Hence, we provide the x and 
y location of the element’s (or its bounding box’s) center and 
the element’s width and height. We also include location and 
size of the grouped element’s container (via container_x, etc.) 
In addition, for grouped elements, each element in the group 
has an input vector because individual members are usually 
the task target, as opposed to the group itself. For instance, 
users would tap one of the buttons in a button group. These 
spatial features are all in pixels that are then normalized to be 
between 0 and 1 by the screen width or height. orientation 
specifies the orientation of the element, which can be vertical, 
horizontal, or not applicable, since some interactions may be 
affected by the target element’s orientation. For instance, slid-
ing a horizontal slider requires a different motion from sliding 
a vertical slider and may take a different amount of time to per-
form. Finally, the element’s type (slider, button, icon, etc) is 
given (element_type) since it determines the element’s visual 
salience, as well as how users would interact with it. 

We then extend our task encoding with the following 
task-specific features: [interaction_type, step, total_steps]. 
interaction_type indicates the type of interaction required by 
the task (tapping, drag and drop, etc.), since different interac-
tion types require different gestures (e.g. tapping vs sliding) 
which should affect completion time. Our model also support 
tasks consisting of many interactions (e.g. a task may require 
tapping two different UI elements). These multi-step tasks 
are presented as a single task to the users, who would have to 
figure out the individual interactions. Since these multi-step 
tasks require more cognitive effort from users, they should not 
be modelled as a series of individual single-interaction tasks, 
where each step broken down and presented to the user. Our 
approach to modeling multi-step tasks are as follows: gen-
erate a task embedding for each interaction in the task, and 
use step and total_steps to identify the embedding as part 
of a multi-step task. For instance, if a task requires users to 
first tap element A and then tap element B, a task embedding 
will first be generated for tapping element A with the features 
[tap, 1,2] appended, where [1,2] specifies that tapping element 
A is step 1 of a 2-step task. Similarly the features [tap,2,2] 
are appended to the embedding for tapping element B. For 
single-interaction tasks, step and total_steps are both set to 1. 

Drag and drop interactions, as well as sliding (the slider han-
dle), involve first acquiring the target and then performing 
the interaction. Hence, these interactions consist of two steps 
and are modelled as a 2-step task where the first step is target 
acquisition and the second is the actual drag and drop or slide. 

A B

C

D

E

F

Figure 2. The photo editing UI with all the UI elements labelled. A is the 
undo icon, B is the upload icon, C is the slider, D is the button group that 
controls which set of stickers are displayed, E is the set of stickers (icon 
group type), and F is the button group with the save (checkmark) and 
cancel ("X") buttons. The colored rectangles in the photo are not part 
of the UI; they are the drop targets for Task Type 4 (drag and drop). 

DATA COLLECTION AND EXPERIMENTS 
In this section, we discuss the dataset we used to evaluate our 
model, the set-up for crowdsourcing this data on Amazon Me-

chanical Turk (mTurk), and the results of our data collection. 
To scope our data collection in a way that is useful for layout 
optimization, we collected data for various layouts of a single 
user interface. Our data collection protocol was subject to 
institutional review as detailed in the supplementary materials. 

Dataset 
The dataset consists of 108 different layouts for a user inter-
face, with examples shown in Figure 3. This UI allows users to 
add stickers and filters to a photo, and consists of the following 
types of UI elements: button groups (save/cancel buttons and 
the "Text"/"Emoji"/"Filter" buttons, Sections F and D of Fig-
ure 2), icons (undo and upload icons, Sections A and B), icon 
groups (the stickers, Section E), slider bars (Section C), and 
static divs (the photo). An icon group is defined as a group of 
icons confined in a rectangular container with as many icons 
placed on a row as possible, with uniform and maximal hori-
zontal and vertical spacing between adjacent icons, as shown 
in Figure 2, Section E. Button groups are defined similarly. 
Icons and buttons are both tappable, but an icon must have a 
fixed width to height aspect ratio, which is preserved across 
all 108 layouts. The different layouts in this dataset vary in the 
size, location, and orientation of each UI element as shown in 
Figure 3. 

Task Sequence 
Possible user interactions with this photo editing UI include 
tapping a button or icon, adding a sticker or filter to the photo 
by tapping on it, adjusting the size of added sticker with the 
slider, and dragging and dropping the added sticker to a sec-
tion of the photo. A comprehensive task sequence is created 
with tasks consisting of individual and combinations of these 
interactions. Specifically, the different types of tasks include: 

1. Selecting a sticker or filter to add to the photo 
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2. Tapping the appropriate "Text"/"Emoji"/"Filter" button to 
open the appropriate set of stickers and then selecting the 
target sticker 

3. Adjusting the size of the added sticker with the slider 

4. Dragging and dropping the added sticker to a specified 
target in the photo. The drop targets are colored rectangles 
as shown in Figure 2. 

Good Bad Random Random Perturbed

Figure 3. Examples of each layout type in the dataset. The "Random Perturbed" layout is a random perturbation of the "Good" layout. 

5. Tapping one of the icons (the undo or upload icon) or one 
of the buttons (the save or cancel button) 

These task types are relatively simple to ensure all mTurk 
workers perform the same set of interactions in the exact same 
order as they work through the tasks. This is to guarantee 
consistent and accurate modeling of each task. We are able to 
incorporate more complex tasks that require two consecutive 
interactions (e.g. Task Type 2), which are more difficult to 
figure out and can be used to assess how intuitive the layout 
is. For Task Type 4 (drag and drop), the locations of its drop 
targets are changed (randomly) for every photo to simulate 
realistic usage of the UI. For Task Type 3, the sliding destina-
tion for the slider handle is a specified range on the slider bar 
(e.g. a value between 50 - 75). Each element in the interface 
is interacted with at least five times in this task sequence to 
capture both the learnability of the interface, which is reflected 
by the first time each task is performed, and the efficiency of 
the interface, which is shown in later repetitions of the task 
as the user becomes more familiar with the UI. To simulate 
realistic usage of this photo editing app, the mTurk participant 
works through 20 photos in the task sequence and saves or 
cancels their edits to the current photo before moving onto the 
next one. This results in a task sequence of 284 tasks. 

Generating Random Designs 
Out of the 108 different layout of the photo editing UI, 5 
are manually designed to meet many of the design guidelines 
specified by Apple [12] and Nielsen [19] and 3 are manually 
designed to be bad and violate many of these design guide-
lines. Figure 3 shows an example of a good and bad layout, 
and all 8 layouts were designed by the authors. To ensure 
good coverage of the layout space, the remaining 100 layouts 
are generated with the layout parameters randomized or by 
randomly perturbing one of the good designs. 

Fifty designs were generated by randomizing the layout param-
eters directly. The location, size, and orientation parameters 
of each UI element are first randomized and the elements are 
added to the interface one by one, checking for overlap. If the 
current element being added overlaps with any of the elements 
already in the UI, its parameters are rerandomized. Otherwise, 
the element is added to the interface. For grouped elements 
(e.g. icon groups), the size and location parameters of the con-
tainer are also randomized. The remaining 50 designs were 
generated by randomly perturbing each of the 5 good layouts. 
Since the other set of randomized layouts likely violate de-
sign guidelines and are considered bad, only good layouts are 
perturbed to incorporate more somewhat good layouts to the 
dataset. For these perturbed layouts, the size of each element 
is adjusted by a random factor selected uniformly from the 
interval [0.7,1.3]. Since there is not much white space in these 
good layouts, the locations are perturbed by randomly swap-
ping adjacent elements with a probability of 0.15. Figure 3 
shows examples of these random and perturbed layouts. 

Data Collection App 
We built a web application using the psiTurk API to crowd-
source task completion times and error rates of the task se-
quence for each layout. psiTurk provides a backend API for 
recording data and a command line interface to recruit work-
ers from Amazon Mechanical Turk [10]. Following the data 
collection procedure from [16], the task sequence is presented 
to the mTurk worker in the following manner: the worker first 
sees the instructions for the task, and when they are ready to 
complete the task, they tap the start button and are taken to the 
UI to complete the task. Our data collection app is described 
in detail in the supplementary materials, which includes exam-
ples of task instructions shown to workers and details on how 
we handled and recorded the workers’ errors. 

Data Collection Results 
All workers were assigned the same task sequence to work 
through on one of the 108 different layouts, with at least 3 
workers assigned to each. In total, there were 379 participants 
from Amazon Turk. There were 151 males and 228 females, 
and around 12 percent of the users were left-handed. In total, 
we collected completion times of 379 x 284 = 107,636 tasks. 
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The task completion times for each task were first averaged 
across all workers for that layout; only completion times where 
the task was completed correctly were considered. For each 
task and layout, we remove outliers whose distance is greater 
than 1.5 median absolute deviations (MAD) from the median. 
We use MAD because it is more robust in detecting outliers, 
compared to standard deviation [15]. To incorporate errors, 
the performance metric assigned to each task and layout is 
equal to the averaged time for each task per layout increased 
by an error penalty as shown in the following equation: 

task_per f _metric = 
(2)

avg_task_time ∗ (1+ 0.5 ∗ f rac_err) 

where f rac_err refers to the fraction of workers who made 
an error on that task out of those who were assigned to that 
layout. For more severe errors where users incorrectly tapped 
the save or cancel button, which means they had to redo all 
the tasks for the current photo, the error penalty was increased 
from 0.5 to 0.8 and f rac_err becomes the fraction of workers 
who erroneously tapped the save or cancel button. Since 
these error penalties increase fluctuation in task performance, 
they decrease the model’s prediction accuracy. We carefully 
tuned these penalty constants to maximize emphasis on errors 
without sacrificing significant prediction accuracy. 

As a sanity check, we computed the average task perfor-
mance metric for each category of layouts: 564.0 (good, 
std.err.=10.7), 638.8 (bad, std.err.=46.7), 588.2 (random, 
std.err.=9.7), and 580.7 (random perturbations of good layouts, 
std.err.=9.1). As expected, the good designs had on average, a 
lower value for the task performance metric compared to the 
bad and random categories, with the bad category having the 
highest averaged value. 

Model Performance Results 
This section describes how we configured the model to fit the 
dataset we collected, and presents the results of an evaluation 
of the model’s accuracy. We also computed the fraction of 
workers (assigned to each layout) who were left-handed and 
the average of their ages and appended these statistics to the 
task embedding. The majority of users would likely interact 
with this photo editing UI using their dominant hand, as shown 
in the results of a phone grip study on a focused task by Eardley 
et. al. [7]. Since certain elements are located at regions that 
are more difficult to reach for left-handed users and vice versa, 
a user’s handedness may have an impact on task performance. 
Furthermore, a person’s age is correlated with their UI design 
preferences, familiarity with mobile technology, and gesture 
mobility [23], all of which impact task performance. 

Model Configuration and Loss Function 
There are 8 different element types in the photo editing UI, 
which means the element_type feature from Equation 1 is 
a one-hot vector of size 8. This results in the per-element 
features vectors defined in Equation 1 to have size 27. The 
two recurrent layers in the encoder each have 23 LSTM cells. 
The predictor network has 30 LSTM cells in its two recurrent 
layers, followed by a feed-forward layer of size 28 to compute 
the task completion time. To regularize the model and prevent 
overfitting, we applied a dropout probability of 0.1 to the task 
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embedding and a dropout probability of 0.4 to the feed-forward 
layer in the predictor (Figure 1). 

We use the same loss function as [16], which is defined as 

where |S| refers to the length of the task sequence, yi is the 
observed completion time of task i, and ti is the predicted 
task time. ȳ is the average observed task completion time in 
sequence S, so the denominator ∑

|
i
S 
=
|
1(yi − ȳ)2 is the variance 

of the task performance times in the sequence. R2 is a standard 
metric to assess a model’s prediction quality and measures the 
correlation between observed and predicted sequences. This 
loss function is related to R2 via the equation R2 = 1 − Ls. 
Since we minimize the loss function Ls during training, we 
would be maximizing R2. 

Our model was implemented in PyTorch, a deep learning 
framework for Python [21]. We trained the network using 
the Adam optimization algorithm [14] to minimize the loss 
function with a learning rate of 3e−4 and a batch size of 8. 
We also clipped gradients so their norms do not exceed 1.0. 

Results 
We evaluated the model using 6-fold cross validation trained 
for 850 epochs at each fold, and computed the R2 using the 
target-level R2 defined by Bailly et. al. [4] and used by Li et. al. 
to evaluate Deep Menu. This target-level R2 metric examines 
the relevant task performance for each UI element with varying 
amounts of practice (trials). Our model achieved a target-
level accuracy of 0.79, averaged across all 6 folds. This is 
comparable to the target-level R2 of 0.76 achieved by Deep 
Menu on their datasets. Figure 4 shows a plot of our model’s 
predicted task performance for Task Type 3 (sliding) and the 
observed task performance, across trials, demonstrating the 
model’s prediction accuracy. 

Figure 4. A plot showing the model’s accuracy. This graph contains 
the predicted and observed task performance values for Task Type 3 
(sliding), across trials. 
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UI LAYOUT OPTIMIZATION 
Once we have a trained model to predict task performance, 
we proceed with layout optimization. We use the gradient 
descent algorithm, which makes iterative updates to the input 
based on computed gradients (of the objective function with 
respect to input) that minimize the objective function. In our 
case, the input is the location and size of each element in the 
layout, and our objective function is the model’s predicted 
task performance. This optimization algorithm is described in 
detail in the next sections and supplementary materials. 

We then used this optimization algorithm to improve layouts 
of the photo editing UI and another UI that the model has 
not been trained on, since this technique should be able to 
generalize and improve layouts of new interfaces to be useful. 
Designers should not have to collect task performance data 
for every UI they hope to optimize; the trained model should 
be able to transfer patterns it learned from one interface to 
optimize the layout of another. We applied this optimization 
algorithm on several layouts of both interfaces, which led to 
predicted improvements in task performance. To verify actual 
improvements in human performance, we crowdsourced task 
completion times and error rates for the initial and optimized 
layouts. The optimized layouts also show improvements in 
observed task performance for both interfaces. 

Optimization Algorithm 
Optimization algorithms aim to minimize an objective func-
tion, and gradient descent is a particular optimization algo-
rithm that is commonly used to train neural networks. Given 
objective function f and input x, a single update at step n is 
given by the following equation: 

xn = xn−1 − lr∇ f (xn−1) (4) 

where lr is the learning rate that controls the update step size. 
In our case, the objective function is the sum of the predicted 
completion times (with error penalty) of all tasks in a task 
sequence plus the penalty functions, and the inputs are the x, y, 
width, and height of each element, as well as its corresponding 
container dimensions. Each layout feature of every element in 
the UI is updated with their respective gradients individually, 
following Equation 4. For each UI element, its features (see 
Equation 1) are input into the model for every task in the 
sequence, which means there will be gradients for the element 
from each task. Since the size and location of every element 
in the UI must remain consistent throughout the task sequence, 
the average is taken over all the element’s gradients across 
tasks, and a single update is made using Equation 4 with this 
average gradient. The objective function F is formally defined 
for layout l by the following equation: 

F(l) = task_seq_per f (l) 
+(penalty_constant)(overlap_penalty(l)) 

(5)
+(penalty_constant 0)(boundary_penalty(l)) 

+(penalty_constant 00)(additional_penalties(l)) 

Where task_seq_per f is the sum of the predicted task per-
formance of all tasks in the sequence, overlap_penalty is a 
differentiable function that is positive if there are overlap-
ping UI elements in layout l and 0 otherwise. Likewise, 

boundary_penalty is a differentiable function that is positive 
only if any element in l exceeds the boundary of the user 
interface. additional_penalties refers to penalty functions 
from additional constraints the designer hopes to enforce, e.g. 
ensuring two particular elements are aligned. The penalty 
constants (e.g. penalty_constant) are constants that add high 
values to the objective function if their corresponding penalty 
functions are positive. Furthermore, at each update step, if two 
elements end up overlapping, their locations are swapped if 
their gradients indicate that may lower the objective function. 

Penalty Functions 
Since each UI element’s layout features are updated indepen-
dently, elements may inevitably overlap with each other or 
go out the boundary of the interface after updates. Penalty 
functions can prevent these undesirable conditions by adding 
a large value to the objective function when these conditions 
are detected. The penalty function would then steer the gradi-
ents towards eliminating these conditions so as to remove the 
large penalty value. Since penalty functions must contribute to 
gradients of the objective function to have an effect, they must 
be differentiable. We use the rectified linear (ReLU) function, 
which is defined as 

ReLU(x) = max(0,x) (6) 

ReLU(x) is 0 when x is negative and is equal to x otherwise. 
The gradient of ReLU(x) is 1 for positive x and is 0 otherwise. 
This satisfies the conditions for our penalty function, since it 
will not contribute to the objective function nor the gradients 
when it is not activated (equal to 0), and will steer the gradi-
ents away from overlaps or other undesirable situations when 
activated. 

The overlap and boundary penalty functions we used are pro-
vided, along with derivations, in the supplementary materials. 
In addition to the necessary overlap and boundary penalty 
functions, designers can add more constraints to improve the 
output of the optimization. For instance, penalty functions can 
be enforced for two UI elements to have the same size, or to 
introduce a minimum size limit for an element. Furthermore, 
if a designer wants to group two elements together, such as the 
sticker button group (Figure 2, Section D) with the stickers 
(Section E), they can introduce a penalty function to ensure 
the two elements are in close proximity, aligned horizontally 
or vertically, and have the same dimension size along their 
bordering sides (e.g. the sticker button and stickers in Figure 
2 should have the same widths). The equations for all these 
penalty functions are detailed in the supplementary materials. 
In sum, penalty functions can be added to ensure any desired 
characteristics in the optimized layout. The penalty constant 
of each constraint can also be tuned based on importance, with 
more important constraints being given a larger constant. This 
is especially useful in the case of conflicting constraints. 

Swapping Locations of UI Elements 
Since the overlap penalty function will push UI elements away 
from each other if they overlap, elements will be restricted to 
their initial regions throughout the optimization. For instance, 
the sticker group (Figure 2, Section E) is constrained to be be-
low the sticker button group (Section D) because whenever the 
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sticker group overlaps with the sticker button group, the sticker 
group will be pushed back down. To enable exploration of 
layout alternatives with a much larger location space, we intro-
duce location swapping of overlapping elements. Specifically, 
when two elements overlap, we look at their gradients of the 
objective function (Equation 5) without the overlap penalty. If 
the two elements’ gradients indicate that swapping their loca-
tions may lower the objective function, the swap is performed. 
A rigorous definition of this swapping condition and details of 
the location swap can be found in the supplementary materials. 

Layout 2 Initial Layout 2 Optimized (Tweaked) Layout 2 OptimizedLayout 1 Initial Layout 1 Optimized

Figure 5. The initial and optimized layouts of two different initial layouts. Layout 1 was optimized with strict constraints, and the predicted task 
performance improved by 6.3 percent. "Layout 1 Optimized" shows algorithm’s output. Layout 2 was optimized using relaxed constraints. The layout 
directly outputted by the algorithm ("Layout 2 Optimized") had a predicted improvement of 7.1 percent, and the optimized layout after some minor 
tweaking ("Layout 2 Optimized (Tweaked)") had an improvement of 4.7 percent. 

Optimization Results 
This section contains representative samples of optimization 
results for the photo editing interface and a new UI that the 
model has not been trained on. Additional examples of ini-
tial and optimized layouts for both interfaces can be found 
in the supplementary materials. We also crowdsourced hu-
man performance data to verify actual improvement in task 
performance for the optimized layouts. 

Optimization Set-up 
While optimizing the layouts of both user interfaces, we used 
values of 10000 for the overlap and boundary penalty constants 
and smaller values for less serious penalties (e.g. grouping 
of two elements.) We used a learning rate of 0.05 for the 
gradient descent. We also clipped gradients to have norms 
at most 0.5 to prevent extreme shifts in the layout from a 
single update. We ran gradient descent for 500 steps, and 
saved a CSS file of the layout at each step. We then took the 
layout with the best predicted task performance. In order to 
generate layouts with better task performance across the entire 
population, we passed in the average age of all adult iPhone 
users (37.7) [1] and the average fraction of left-handed people 
in the population (0.1) [11] to our model. 

Photo Editing UI 
For the photo editing UI, we first experimented with optimiza-
tion using several stringent penalties to ensure good output 
layouts. These penalties include large minimum size con-
straints for all UI elements, identical sizes between the undo 

and upload icons (Sections A and B of Figure 2), and group-
ing the sticker button with the stickers (Sections D and E of 
Figure 2). These penalty functions are described in "Addi-
tional Penalty Functions". Figure 5 shows an example of the 
initial (Layout 1) and optimized (Layout 1 Optimized) layout, 
along with the predicted task performance improvement. An 
improvement in task performance refers to a decrease in value 
of the task completion time with error penalty metric. The 
improvement in task performance for Layout 1 is likely due to 
the enlargement of the stickers and other UI elements, which 
makes tapping easier according to Fitts’ Law. Furthermore, the 
sticker buttons (Figure 2, Section D) in the optimized layout 
are adjacent to the stickers (Figure 2, Section E), making the 
layout more intuitive. This is because sticker buttons control 
which stickers are displayed, so their relationship is more evi-
dent in the optimized layout. Furthermore, this should make 
tasks where users must first open the appropriate set of stickers 
before selecting a sticker to add (Task Type 2) more efficient 
since the two elements are closer together. 

We also applied our technique on a layout that was initially 
good (Figure 5, Layout 2). We did not see much improve-
ment when we performed optimization with all the stringent 
constraints described earlier. Since these strict constraints 
limit exploration, we removed those constraints and just set 
low minimum size requirements. With this, we were able to 
achieve a predicted improvement of 7.1 percent in the total 
task performance metric for the optimization’s output layout 
(see Figure 5, "Layout 2 Optimized"). However, some of the 
elements are too small (e.g. the save and cancel buttons) and 
misaligned. We can manually enforce the original stringent 
constraints and align the elements, resulting in a more visu-
ally appealing layout (see "Layout 2 Optimized (Tweaked)"). 
These alignment and resize tweaks to the output are very sim-
ple and straightforward for the designer to apply, and the 
tweaked output still had an improvement of 4.7 percent. The 
slight decline in predicted task performance after tweaking 
(compared to the algorithm’s output layout) could be due to the 
fact that misaligned elements stand out and are hence, easier 
to find [6]. The increased spacing between some elements (e.g. 
the stickers and exit buttons (Sections E and F of Figure 2)) 
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in the tweaked output layout (compared to the initial layout) 
likely caused the improvement in predicted task performance. 

To verify that our optimized layouts have better human perfor-
mance, we crowdsourced task completion times and error rates 
of the initial and optimized layouts for both layouts in Figure 5. 
For Layout 2, we collected data for the "Optimized Tweaked" 
layout instead of the "Optimized" layout. We assigned at least 
10 mTurk workers to each layout. The crowdsourced results 
confirm improvement in task performance in the optimized 
layouts. The observed performance increase (decrease in the 
value of the task performance metric) is 8.9 percent for Layout 
1 (6.3 percent predicted) and 2.0 percent for Layout 2 (4.7 
percent predicted). Layout 2 likely had a smaller improvement 
than Layout 1 because Layout 2 was initially quite good. To 
verify statistical significance of the observed performance im-
provement, we computed a two-sample t-test for the observed 
task performance metric for the initial and optimized versions 
of both layouts. For Layout 1, t(13) = −16.674, p < 1e−13 
and for Layout 2, t(10) = −2.780, p < 0.05, which indicate 
statistical significance of the observed improvements. 

New UI: Recipe Planner 
The recipe planner is an interface where users drag and drop 
ingredients that they like and dislike to the appropriate boxes 
(see Figures 6 and 7). Once users have made all their selec-
tions, they tap the "Get Recipe" button to get a list of recipes 
they may like based on their ingredient preferences. All ele-
ment and interaction types in this recipe planning UI are found 
in the photo editing UI. This is necessary in order to utilize 
the model trained on the photo editing UI for optimization on 
this new UI, as the model would probably not be able to make 
accurate predictions on new element and interaction types. 
However, the UI element and interaction types in the photo 
editing UI are very general and can be used to build a wide 
variety of user interfaces. We created a comprehensive task 
sequence for the recipe planning interface with which we will 
optimize for task performance. The task types include tap-
ping the "Get Recipe", undo, cancel, or one of the ingredients 
buttons ("Grains", "Fruits", "Veg."), dragging and dropping a 
specified ingredient sticker to the "Ingredients You Like" or 
"Ingredients You Dislike" box, and a two-step task, where the 
user must first open the appropriate set of ingredients stick-

ers via tapping the corresponding ingredients button and then 
dragging and dropping the target ingredient to the appropriate 
box. This task sequence for the recipe planner UI had 136 
tasks. 

We first tried optimizing the layout with strict constraints, such 
as large minimum size constraints for the UI elements. How-
ever, these strict constraints did not lead to an improvement in 
predicted performance of the task sequence. We then relaxed 
these constraints to include only low minimum size constraints. 
This resulted in improvements in predicted task performance 
of the task sequence, even after the optimization output has 
been tweaked to align elements and enlarge elements that 
were too small. The optimization results of an initially bad 
layout (Layout 1) are shown in Figures 6 and 7. For Layout 
1, the optimization algorithm moved the ingredients stickers 
closer to the "Ingredients You Like" and "Ingredients You 
Dislike" drop targets and added more spacing between the 
undo and cancel icons in Layout 1 that were initially too close 
together. We also optimized a layout that was initially good 
(Layout 2), and Figures 6 and 7 show the results. For Layout 
2, the algorithm decreased the distance users had to drag the 
ingredient stickers to the drop targets, and also moved the 
"Get Recipe" button and the undo icon farther to the right, 
which makes it more accessible to right-handed users, who 
make up the 90 percent of the user base. To verify that the 
optimized layouts have improved human task performance, 
we crowdsourced task completion times and error rates for 
Layouts 1 and 2 following the same procedure used for the 
photo editing UI. There is an observed improvement of 9.2 per-
cent (t(12) = −9.799, p < 1e−8) and a 3.2 percent predicted 
improvement for Layout 1, and an observed improvement 
of 4.9 percent (t(13) = −5.622, p < 1e−5) and a 5.4 percent 
predicted improvement for Layout 2. 

Layout 2 Initial Layout 2 Optimized (Tweaked)Layout 1 Initial Layout 1 Optimized (Tweaked)

Figure 6. The initial layouts and the optimized layouts after minor tweaking for the recipe planning UI. Layout 1 had a predicted task performance 
improvement of 3.2 percent, and Layout 2 had a predicted improvement of 5.4 percent. The algorithm’s output layouts can be found in Figure 7. 

DISCUSSION 
Our optimization algorithm was able to discover layout alter-
natives with better task performance for both user interfaces, 
which demonstrates the algorithm’s generalizability. Hence, 
our trained model would likely be able to improve the layout of 
any interface containing UI elements and interactions found in 
the photo editing interface, which is a very large set of possible 
UI’s. Furthermore, according to Arhippainen et. al. [3], the 
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only layout-relevant factors affecting general user experience 
are usability and aesthetics. Since task performance is a good 
indicator of usability [20], the optimized layouts will likely 
result in better user experience if aesthetics are not worsened. 

The findings of our optimization experiments support those 
by Lomas et. al. [17]. Their paper emphasized optimizing 
for the right metric, and while our optimization technique re-
turned layouts with better task performance, the layouts did 
not show much improvement in terms of aesthetics. Hence, 
our objective function could have been more comprehensive 
and incorporated metrics for the visual aspect of the layout. 
Furthermore, as shown in the layouts directly outputted by 
the optimization algorithm (Figures 6 and 7), the model made 
some elements very small to possibly reduce user error. Lomas 
et. al. warned that the optimization output may be unsatisfac-
tory when metrics are optimized to the extreme. 

Human-AI Collaboration 
These limitations with our optimization algorithm can be fixed 
easily by humans, as shown in Figures 6 and 7. Both human 
judgement and the optimization algorithm can be misleading, 
so ideally humans and AI would collaborate in the design pro-
cess [17]. The following illustrates how this hybrid workflow 
might work with our system. Designers can start by building 
an initial layout and specifying any constraints in the optimiza-
tion output, such as elements that must be grouped together. 
Then, our algorithm returns a layout that the designer can 
refine for aesthetic quality and other features. The designer 
can then use the task performance predictor to compare the 
task performance between the refined and initial layouts. Fur-
thermore, the designer can run the optimization again on the 
refined layout to further improve its task performance, and 
this iteration between AI optimization and human refinement 
can be continued until a satisfactory layout has been achieved. 
Furthermore, the optimization algorithm outputs the CSS file 
for the layout at every step, which generates a large set of lay-
out alternatives. If the designer sees a layout they like better 
than the one with the best predicted task performance, they 
can work with their preferred layout instead. In sum, there are 
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many ways for our optimization algorithm to assist designers 
in creating a great layout for their user interface. 

Limitations and Future Work 
There are three main limitations to our work. First, our op-
timization algorithm focuses primarily on usability, whereas 
layouts have other important attributes, such as aesthetics. As 
explained earlier, less effort will be required from designers if 
the algorithm’s output had better aesthetics. Sketchplore [27] 
accounted for both usability and aesthetics in their optimiza-
tion, including aesthetics metrics for visual clutter, grid quality, 
and alignment. Furthermore, our method only modifies the 
sizes and locations of UI elements, while other layout opti-
mizers, such as [27], also adjust the elements’ colors. Second, 
many of the tasks in the dataset’s task sequence are simple 
and require only one interaction. Although we did have 2-
interaction tasks, including even more complex tasks could 
result in stronger emphasis on the layout’s learnability in the 
task performance metric. Third, while optimization using our 
trained model would likely generalize to other mobile UIs with 
element and interaction types found in the photo editing UI, 
more training data would probably be necessary for interfaces 
with other UI element and interaction types (e.g. swiping) and 
for other platforms (e.g. computers). Also, the model’s input 
features and architecture may need to be modified for these 
cases. 

These limitations suggest promising opportunities for future 
work. There exist metrics for aesthetic quality, such as the 
Balinsky symmetry metric that measures the grid quality of the 
layout [5], which can be incorporated in the objective function 
to optimize for the appearance of the layout in addition to 
usability. Furthermore, since our system provides a platform 
for human-AI collaboration in UI design, it would be insightful 
to study the dynamics between human and AI during such a 
collaboration, such as disagreements that may arise between 
the two. It would also be interesting to compare the final 
layout after many iterations of this human-AI collaboration 
for a novice designer with the layout created by an expert 
designer. 

Layout 2 OptimizedLayout 1 Optimized 

Figure 7. Layouts directly outputted by the algorithm. For Layout 1, 
the algorithm made a 5.8 percent improvement (predicted) in task per-
formance, and for Layout 2, the algorithm made a 4.1 percent improve-
ment. These output layouts were tweaked slightly to for alignment and 
re-sizing. Figure 6 shows the tweaked layouts. 

CONCLUSION 
Our model predicts task performance (a metric combining task 
completion time and error rate) of a general mobile UI that 
contains a variety of element types and supports many types 
of user interactions. We then developed an algorithm that uses 
this model to make iterative updates to a UI’s layout using gra-
dient descent. We used this optimization algorithm to improve 
layouts of two UI’s, including one interface that our model has 
not been trained on. Our optimization algorithm was able to 
generate layout alternatives with better task performance for 
both interfaces, as confirmed by crowdsourcing studies com-
paring the initial and optimized layouts. This demonstrates 
the effectiveness of this algorithm in improving a layout’s 
task performance, as well as its ability to generalize and make 
improvements to new interface layouts. The optimization’s 
output layout do need minor human refinement in order to 
look aesthetically pleasing. However, collaboration between 
human and AI is recommended over relying solely on either. 

Paper 462 Page 10



 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

REFERENCES 
[1] 2019. Android vs iPhone mobile owners in the U.S. 

2013, by age. (2019). 
https://www.statista.com/statistics/271228/ 
android-vs-iphone-mobile-owners-age/ 

[2] Khalid Alemerien and Kenneth Magel. GUIEvaluator: A 
Metric-tool for Evaluating the Complexity of Graphical 
User Interfaces. 

[3] Leena Arhippainen and Marika Tähti. 2003. Empirical 
evaluation of user experience in two adaptive mobile 
application prototypes. In MUM 2003. Proceedings of 
the 2nd International Conference on Mobile and 
Ubiquitous Multimedia. Linköping University Electronic 
Press, 27–34. 

[4] Gilles Bailly, Antti Oulasvirta, Duncan P Brumby, and 
Andrew Howes. 2014. Model of visual search and 
selection time in linear menus. In Proceedings of the 
SIGCHI Conference on Human Factors in Computing 
Systems. ACM, 3865–3874. 

[5] Helen Balinsky. 2006. Evaluating interface aesthetics: 
measure of symmetry. In Digital Publishing, Vol. 6076. 
International Society for Optics and Photonics, 607608. 

[6] Helen Y Balinsky, Anthony J Wiley, and Matthew C 
Roberts. 2009. Aesthetic measure of alignment and 
regularity. In Proceedings of the 9th ACM symposium on 
Document engineering. ACM, 56–65. 

[7] Rachel Eardley, Anne Roudaut, Steve Gill, and 
Stephen J Thompson. 2017. Understanding Grip Shifts: 
How Form Factors Impact Hand Movements on Mobile 
Phones. In Proceedings of the 2017 CHI Conference on 
Human Factors in Computing Systems. ACM, 
4680–4691. 

[8] Paul M Fitts. 1954. The information capacity of the 
human motor system in controlling the amplitude of 
movement. Journal of experimental psychology 47, 6 
(1954), 381. 

[9] Krzysztof Gajos and Daniel S Weld. 2004. SUPPLE: 
automatically generating user interfaces. In Proceedings 
of the 9th international conference on Intelligent user 
interfaces. ACM, 93–100. 

[10] Todd M Gureckis, Jay Martin, John McDonnell, 
Alexander S Rich, Doug Markant, Anna Coenen, David 
Halpern, Jessica B Hamrick, and Patricia Chan. 2016. 
psiTurk: An open-source framework for conducting 
replicable behavioral experiments online. Behavior 
research methods 48, 3 (2016), 829–842. 

[11] Curtis Hardyck and Lewis F Petrinovich. 1977. 
Left-handedness. Psychological bulletin 84, 3 (1977), 
385. 

[12] Apple Inc. 2019. Adaptivity and Layout. (2019). 
https://developer.apple.com/design/ 
human-interface-guidelines/ios/visual-design/ 
adaptivity-and-layout/ 

[13] Mohammad M Khajah, Brett D Roads, Robert V 
Lindsey, Yun-En Liu, and Michael C Mozer. 2016. 
Designing engaging games using bayesian optimization. 
In Proceedings of the 2016 chi conference on human 
factors in computing systems. ACM, 5571–5582. 

[14] Diederik P Kingma and Jimmy Ba. 2014. Adam: A 
method for stochastic optimization. arXiv preprint 
arXiv:1412.6980 (2014). 

[15] Christophe Leys, Christophe Ley, Olivier Klein, 
Philippe Bernard, and Laurent Licata. 2013. Detecting 
outliers: Do not use standard deviation around the mean, 
use absolute deviation around the median. Journal of 
Experimental Social Psychology 49, 4 (2013), 764–766. 

[16] Yang Li, Samy Bengio, and Gilles Bailly. 2018. 
Predicting human performance in vertical menu 
selection using deep learning. In Proceedings of the 
2018 CHI Conference on Human Factors in Computing 
Systems. ACM, 29. 

[17] J Derek Lomas, Jodi Forlizzi, Nikhil Poonwala, Nirmal 
Patel, Sharan Shodhan, Kishan Patel, Ken Koedinger, 
and Emma Brunskill. 2016. Interface design 
optimization as a multi-armed bandit problem. In 
Proceedings of the 2016 CHI Conference on Human 
Factors in Computing Systems. ACM, 4142–4153. 

[18] Risto Näsänen, Helena Ojanpää, and Ilpo Kojo. 2001. 
Effect of stimulus contrast on performance and eye 
movements in visual search. Vision Research 41, 14 
(2001), 1817–1824. 

[19] Jakob Nielsen. 1995. 10 usability heuristics for user 
interface design. Nielsen Norman Group 1, 1 (1995). 

[20] Jakob Nielsen. 2001. Usability Metrics. (Jan 2001). 
https://www.nngroup.com/articles/usability-metrics/ 

[21] Adam Paszke, Sam Gross, Soumith Chintala, and 
Gregory Chanan. 2017. Pytorch: Tensors and dynamic 
neural networks in python with strong gpu acceleration. 
PyTorch: Tensors and dynamic neural networks in 
Python with strong GPU acceleration 6 (2017). 

[22] Ken Pfeuffer and Yang Li. 2018. Analysis and Modeling 
of Grid Performance on Touchscreen Mobile Devices. In 
Proceedings of the 2018 CHI Conference on Human 
Factors in Computing Systems. ACM, 288. 

[23] Sergey Polyuk. 2019. A Guide to Interface Design for 
Older Adults. (Jun 2019). https://www.toptal.com/ 
designers/ui/ui-design-for-older-adults 

[24] Juan C Quiroz, Sushil J Louis, Anil Shankar, and 
Sergiu M Dascalu. 2007. Interactive genetic algorithms 
for user interface design. In 2007 IEEE congress on 
evolutionary computation. IEEE, 1366–1373. 

[25] Andrew L Sears. 1995. AIDE: A step toward 
metric-based interface development tools. In 
Proceedings of the 1995 8th Annual Symposium on User 
Interface Software and Technology, UIST’95. ACM, 
101–110. 

Paper 462 Page 11

https://www.statista.com/statistics/271228/android-vs-iphone-mobile-owners-age/
https://www.statista.com/statistics/271228/android-vs-iphone-mobile-owners-age/
https://developer.apple.com/design/human-interface-guidelines/ios/visual-design/adaptivity-and-layout/
https://developer.apple.com/design/human-interface-guidelines/ios/visual-design/adaptivity-and-layout/
https://developer.apple.com/design/human-interface-guidelines/ios/visual-design/adaptivity-and-layout/
https://www.nngroup.com/articles/usability-metrics/
https://www.toptal.com/designers/ui/ui-design-for-older-adults
https://www.toptal.com/designers/ui/ui-design-for-older-adults


 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

[26] Amanda Swearngin and Yang Li. 2019. Modeling 
Mobile Interface Tappability Using Crowdsourcing and 
Deep Learning. In Proceedings of the 2019 CHI 
Conference on Human Factors in Computing Systems. 
ACM, 75. 

[27] Kashyap Todi, Daryl Weir, and Antti Oulasvirta. 2016. 
Sketchplore: Sketch and explore with a layout optimiser. 
In Proceedings of the 2016 ACM Conference on 
Designing Interactive Systems. ACM, 543–555. 

Paper 462 Page 12


	Introduction
	Related Work
	Modeling Human Behavior
	UI Optimization

	Task Performance Prediction Model
	Model Architecture
	Model Features

	Data Collection and Experiments
	Dataset
	Task Sequence

	Generating Random Designs
	Data Collection App
	Data Collection Results
	Model Performance Results
	Model Configuration and Loss Function
	Results


	UI Layout Optimization
	Optimization Algorithm
	Penalty Functions
	Swapping Locations of UI Elements

	Optimization Results
	Optimization Set-up
	Photo Editing UI
	New UI: Recipe Planner


	Discussion
	Human-AI Collaboration
	Limitations and Future Work

	Conclusion
	References 



