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Abstract

Supervised Fine-Tuning (SFT) Large Language001
Models (LLM) fundamentally rely on high-002
quality training data. While data selection and003
data synthesis are two common strategies to004
improve data quality, existing approaches often005
face limitations in static dataset curation that006
fail to adapt to evolving model capabilities. In007
this paper, we introduce Middo, a self-evolving008
Model-informed dynamic data optimization009
framework that unifies model-aware data selec-010
tion with context-preserving data refinement.011
Unlike conventional one-off filtering/synthesis012
methods, our framework establishes a closed-013
loop optimization system: (1) A self-referential014
diagnostic module proactively identifies sub-015
optimal samples through tri-axial model sig-016
nals - loss patterns (complexity), embedding017
cluster dynamics (diversity), and self-alignment018
scores (quality); (2) An adaptive optimization019
engine then transforms suboptimal samples into020
pedagogically valuable training points while021
preserving semantic integrity; (3) This opti-022
mization process continuously evolves with023
model capability through curriculum learning024
principles. Experiments on multiple bench-025
marks demonstrate that our Middo consistently026
enhances the quality of seed data and boosts027
LLM’s performance with improving accuracy028
by 7.15% on average while maintaining the029
original dataset scale. This work establishes a030
new paradigm for sustainable LLM training031
through dynamic human-AI co-evolution of032
data and models.033

1 Introduction034

Large Language Models (LLMs) have revolution-035

ized artificial intelligence by achieving state-of-036

the-art performance across diverse domains, from037

natural language understanding (Zhou et al., 2023c;038

Hendrycks et al., 2021a) to mathematical reason-039

ing (Cobbe et al., 2021; Hendrycks et al., 2021b)040

and code generation (Chen et al., 2021; Austin041

Loss Pattern
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Embedding

Middo Optimizer

Figure 1: Comparison of different dataset and different
models before and after Middo optimization.

et al., 2021). This success is largely attributed 042

to Supervised Fine-Tuning (SFT), where models 043

undergo rigorous training on high-quality, human- 044

aligned datasets to ensure outputs closely match 045

human expectations. Crucially, the quality of these 046

datasets directly dictates the model’s ultimate ca- 047

pabilities: noisy or suboptimal training data can 048

lead to degraded performance, while meticulously 049

curated data unlocks advanced reasoning, general- 050

ization, and robustness. As LLMs scale, the adage 051

“garbage in, garbage out” becomes increasingly im- 052

portant—highlighting the urgent need for system- 053

atic methods to optimize training data quality. 054

Existing approaches primarily fall into two cate- 055

gories to improve data quality: data selection (Cao 056

et al., 2024; Zhou et al., 2023b; Li et al., 2024d; Jia 057

et al., 2024; Zhou et al., 2024; Li et al., 2024e,a) 058

and data synthesis (Dai et al., 2023; WANG et al., 059

2023; Mukherjee et al., 2023; Xu et al., 2025; 060

Liu et al., 2024a). Data selection methods filter 061

raw datasets using heuristic rules (e.g., length fil- 062

ters) (Zhao et al., 2024a) or statistical metrics like 063

perplexity (PPL) (Liu et al., 2024a) and Instruction- 064

Following Difficulty (IFD) (Li et al., 2024c) to 065

retain “high-quality” samples. Conversely, data 066

synthesis leverages advanced LLMs (e.g., GPT- 067

4 (Achiam et al., 2023)) to generate new training ex- 068
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amples, often through prompting or distillation (Li069

et al., 2024f). While both strategies improve data070

quality, they suffer from critical limitations. Se-071

lection methods are typically static, applying fixed072

criteria that ignore the evolving needs of the model073

during training. Similarly, synthesis approaches of-074

ten discard original data, wasting potentially valu-075

able information, and risk generating distributional076

narrow or redundant examples. These one-time077

data curation methods fail to adaptively refine data078

in tandem with the model’s progress.079

To overcome these limitations, we propose080

Middo, Model-informed Dynamic Data Optimiza-081

tion, a self-evolving framework that unifies model-082

aware data selection with context-preserving data083

refinement. Unlike static approaches, Middo es-084

tablishes a closed-loop optimization system where085

data curation dynamically adapts to the model’s086

evolving capabilities. The framework operates087

through three core mechanisms: (1) A self-088

referential diagnostic module that proactively iden-089

tifies suboptimal training samples using three090

model signals: loss patterns (to detect complexity091

mismatches between data and model proficiency),092

embedding cluster dynamics (to assess diversity093

gaps in the latent space), and self-alignment scores094

(to evaluate data quality against the model’s own095

knowledge). (2) An adaptive optimization engine096

that transforms these suboptimal samples into ped-097

agogically valuable training points. For example,098

overly complex samples may be simplified through099

stepwise decomposition, while low-diversity clus-100

ters are enriched with controlled extension—all101

while preserving the original data’s semantic intent.102

(3) A dynamic curriculum that iteratively updates103

the training dataset based on the model’s progress,104

ensuring that data difficulty and diversity scale with105

the model’s capabilities. By integrating these com-106

ponents, Middo not only maximizes the utility of107

existing data but also bridges the gap between static108

data curation and adaptive model training.109

Experiments across multiple benchmarks demon-110

strate Middo’s effectiveness especially on low-111

quality datasets. Models trained with Middo opti-112

mized data achieve consistent performance gains113

over baselines, improving accuracy by 7.15% on114

average while maintaining the original dataset115

scale. Further analysis highlights Middo’s abil-116

ity to “grow” with the model: early training phases117

focus on complex, high-loss examples, whereas118

later stages prioritize diversity extension. Notably,119

Middo trained models exhibit stronger abilities to120

addresses hard problems, solving more than three 121

times the number of challenging test problems (e.g., 122

MATH, GPQA) compared to models trained on 123

static datasets. These results validate that sustain- 124

able LLM advancement requires co-evolving data 125

and models—a paradigm shift from today’s dis- 126

jointed curation practices. 127

2 Related Work 128

2.1 Synthetic Data Generation 129

Synthetic data generation is a key technique for aug- 130

menting LLM fine-tuning. Early methods (Edunov 131

et al., 2018; Wieting and Gimpel, 2018) introduced 132

perturbation-based approaches to enhance data di- 133

versity, using character-level (Belinkov and Bisk, 134

2018) and word-level (Wei and Zou, 2019) modifi- 135

cations. These methods relied on fixed transforma- 136

tion rules, limiting adaptability. 137

LLMs have been leveraged for scalable data syn- 138

thesis (Sudalairaj et al., 2024; Jung et al., 2024; 139

Dai et al., 2023; WANG et al., 2023; Mukherjee 140

et al., 2023; Xu et al., 2025; Liu et al., 2024a; Li 141

et al., 2025). Self-instruct methods (Wang et al., 142

2023) generate instruction-response pairs, while 143

Evol-Instruct (Xu et al., 2024) and Auto-Evol- 144

Instruct (Zeng et al., 2024) refine data complex- 145

ity iteratively. However, these methods remain 146

static, failing to adapt as models improve. Re- 147

cent approaches integrate model feedback into data 148

generation (Anonymous, 2025a; Cao et al., 2025; 149

Anonymous, 2025b; Li et al., 2024f), incorporat- 150

ing student model signals for adaptive synthesis. 151

LLM2LLM (Lee et al., 2024) is an iterative data 152

augmentation strategy that enhances low-data fine- 153

tuning by using a teacher LLM to generate syn- 154

thetic training data from incorrect student LLM 155

predictions and I-SHEEP (Park et al., 2024) uses 156

iterative self-enhancement paradigm. 157

2.2 Data Selection 158

Data selection is crucial for LLM fine-tuning, as 159

high-quality and informative data directly impacts 160

model performance (Zhou et al., 2023a; Xu et al., 161

2023). Early heuristic-based methods relied on 162

surface-level statistics like item frequency (Raffel 163

et al., 2020) and repetition count (Laurençon et al., 164

2022), but lacked adaptability to model evolution. 165

Recent work explores LLM-driven data selec- 166

tion, optimizing for quality, diversity, and com- 167

plexity (Cao et al., 2024; Zhou et al., 2023b; Li 168

et al., 2024d; Jia et al., 2024; Zhou et al., 2024; Li 169
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et al., 2024e,a; Du et al., 2023; Kung et al., 2023).170

Instruction-Following Difficulty (IFD) metric (Li171

et al., 2024c) enables models to self-select training172

instances, while other methods (Yu et al., 2024;173

Colombo et al., 2024; Lu et al., 2024; Zhao et al.,174

2024b) use LLM self-assessment for efficiency.175

Further advancements integrate LLM-based evalu-176

ation mechanisms. AlpaGasus (Chen et al., 2024)177

and LIFT (Xu et al., 2023) use structured prompts178

for data assessment, while DEITA (Liu et al.,179

2024b) introduces a multi-dimensional scoring sys-180

tem based on complexity and quality.181

3 Methodology182

This section delineates the methodological frame-183

work of Middo (illustrated in Figure 2), our pro-184

posed self-evolving data optimization system for185

LLM fine-tuning. The methodology is structured186

into four interconnected components, an overview187

of the closed-loop and iterative dynamic optimiza-188

tion pipeline, followed by introducing detailed ex-189

positions of its three core modules.190

3.1 Middo Pipeline191

As depicted in Figure 2, our Middo framework192

establishes an iterative data-model co-evolution193

loop driven by tri-axial signal analysis, along194

with three interconnected data optimization mecha-195

nisms, each targeting distinct dimensions of train-196

ing sample selection: (1) Loss patterns, to identify197

samples with mismatched complexity (overly chal-198

lenging) relative to the current model’s capability199

through loss trajectory analysis. (2) Embedding200

cluster dynamics, to detect coverage gaps in the201

semantic space, ensuring balanced conceptual rep-202

resentation. (3) Self-alignment scores, for qual-203

ity filtering to leverage the model’s self-evaluation204

capacity to flag low-confidence or inconsistent re-205

sponses through automated alignment scoring.206

At each iteration, these parallel signal analyz-207

ers jointly select suboptimal samples, which are208

then regenerated through context-aware synthe-209

sis—preserving original semantic intent while en-210

hancing pedagogical value. The refined dataset211

immediately feeds back into model training, cre-212

ating a dynamic feedback loop where improved213

model capabilities inform subsequent optimization214

cycles. Notably, the optimized dataset remains sim-215

ilar data size, without extending large data synthe-216

sis, leading an efficient data optimization. This self-217

referential mechanism ensures continuous align-218

ment between data characteristics and model evo- 219

lution. Following sections systematically elaborate 220

on the implementation of each signal-specific opti- 221

mization module and their synergistic integration. 222

3.2 Loss Patterns: Complexity Optimization 223

Complexity Selection. Complexity reflects the 224

“difficulty” or “compositionality” of data. A good 225

dataset usually requires smooth complexity distri- 226

bution of data for training. Therefore, we introduce 227

Loss Patterns, which targets overly challenging 228

samples by modifying them to maintain a balanced 229

and learnable training set (Zhao et al., 2024b). Dur- 230

ing fine-tuning, the loss for a sample (Xi, Yi) is 231

computed as the likelihood of predicting succes- 232

sive tokens given the instruction Xi and its context. 233

We denote the loss before and after training as 234

Lpre(Xi, Yi) and Lpost(Xi, Yi), respectively. 235

Intuitively, we consider both the loss before and 236

after training to select the complex data. Specifi- 237

cally, we classify samples based on their loss evolu- 238

tion: samples with both low Lpre and Lpost are con- 239

sidered easy, while those with high values in both 240

metrics remain difficult, indicating excessive com- 241

plexity. We then define a complex sample subset, 242

Dhard, as those where both losses exceed thresholds 243

τpre and τpost. For adaptive refinement, these thresh- 244

olds are dynamically computed as τl = µ + mσ, 245

with µ and σ being the mean and standard deviation 246

of the loss values across the dataset. 247

Complexity Optimization. For complex data op- 248

timization, instead of discarding difficult samples, 249

we transform them to be simpler with more man- 250

ageable forms. Specifically, we replace samples 251

in Dhard with their simplified counterparts, Dhard′ . 252

This is achieved by an automatic process in which 253

a LLM analyzes and summarizes the complex in- 254

structions (Zeng et al., 2024), then simplifies them 255

step by step while preserving the core educational 256

content. An example is shown as Figure 9 in Ap- 257

pendix. This iterative transformation process up- 258

dates the dataset by replacing overly complex sam- 259

ples with refined versions that offer more effec- 260

tive learning material. As training continues, this 261

adaptive approach ensures a continuous alignment 262

between data complexity and model capability. 263

3.3 Embedding Cluster Dynamics: Diversity 264

Optimization 265

Diversity Selection. Diversity is crucial for en- 266

suring broad concept coverage and a uniform data 267
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Figure 2: The Middo pipeline: a closed-loop, iterative dynamic optimization framework for LLM fine-tuning. It
comprises three core modules that leverage model feedback: Loss Patterns identify overly complex samples, which
are then simplified; Self-alignment Scores evaluate data quality, transforming low-quality samples into high-quality
ones; and Embedding Cluster Dynamics detect sparse data points and expand the data distribution through targeted
augmentation. Middo ensure the training set continually evolves to better align with the model’s capabilities.

distribution. Embedding Cluster Dynamics identi-268

fies sparse data points that signal underrepresented269

regions in the dataset. We use the embedding clus-270

ter dynamics to select data as follows: We extract271

sentence embeddings from the model’s (which is272

the initial model that we will train upon it) last273

hidden layer H(L) using average pooling, then274

compute the cosine similarity between each data275

point and find the k-nearest neighbors for each276

data, Nk(Xi). A lower average cosine similarity277

among these neighbors Nk(Xi) indicates the data278

is positioned in a sparser region. Thus, the data279

points whose average cosine similarity score (di-280

versity score) below a threshold τe are selected for281

optimization. Similarly, the threshold τe is also282

dynamically updated as iteration goes on.283

Diversity Optimization. To enhance diversity-284

balanced distribution, we augment the sparse subset285

Dsparse by incorporating examples from their cor-286

responding Nk(Xi) as demonstrations to generate287

new samples. This process generates an expanded288

set Dsparse′, which is then integrated back into the289

dataset. An instance can be found in Appendix290

(Figure 10). By following a structured augmen-291

tation strategy that preserves semantic relevance,292

we ensure that the data distribution becomes both293

broader and more balanced, ultimately improving294

the model’s generalization.295

3.4 Self-alignment Scores: Quality 296

Optimization 297

Quality Selection. High-quality data is essen- 298

tial for fine-tuning, as poor-quality samples can 299

degrade performance (Zhou et al., 2023a). To re- 300

duce manual annotation costs, many approaches 301

use the LLM-as-a-Judge paradigm (Chen et al., 302

2024; Xu et al., 2023). We enhance this by leverag- 303

ing the fine-tuned model itself to assess data quality 304

via Self-alignment Scores. Specifically, for each 305

instruction-response pair (Xi, Yi) in the dataset D, 306

the model computes scores Sπins.(Xi) for instruc- 307

tion evaluation and Sπres.(Xi, Yi) for instruction- 308

response pair evaluation based on three key metrics 309

π from AlignBench (Liu et al., 2024c): Clarity, 310

Completeness, and Factuality. The final quality 311

score S(Xi, Yi) is obtained by averaging these in- 312

dividual scores. These samples with scores below 313

a similar dynamic threshold τs are identified as 314

low-quality, forming the seed dataset Dlow. 315

Quality Optimization. To refine Dlow, we use 316

LLMs to automatically analyze and improve these 317

samples via tailored evolution strategies (prompt 318

templates and examples are provided in the Ap- 319

pendix Figure 11). This process converts low- 320

quality samples into higher-quality versions, de- 321

noted as Dlow′. The dataset is then updated by re- 322

placing the original low-quality samples with Dlow′, 323

maintaining the dataset size while progressively en- 324

hancing its overall quality. 325
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In each iteration, after the above three data selec-326

tion and refinement progress, the optimized dataset327

is then feed back for next round model training.328

4 Experiment329

4.1 Settings330

Data Optimization Configurations. We con-331

duct optimization on the Alpaca (Taori et al., 2023)332

and WizardLM (Xu et al., 2024) datasets. To en-333

sure a fair comparison, we also completely rewrite334

the responses of Alpaca using GPT-4o-mini as seed335

data for the experiments. For Embedding Cluster336

Dynamics, we set the number of neighbors to k = 2.337

During experiments, each dataset undergoes three338

iterations of optimization. A detailed analysis of339

the number of neighbors and iteration numbers340

are provided in Appendix B and Appendix C. We341

generate data by GPT-4o-mini, setting both temper-342

ature and top_p to 1.0 to maximize diversity.343

Training and Evaluation Settings. We fine-344

tune LLaMA-3.1-8B (Dubey et al., 2024) and345

Mistral-7B-v0.3 (Jiang et al., 2023) using LLaMA-346

Factory (Zheng et al., 2024), performing full-347

parameter SFT for one epoch. Evaluation is con-348

ducted using OpenCompass (Contributors, 2023),349

with vLLM (Kwon et al., 2023) for batch in-350

ference acceleration. All hyperparameters are351

detailed in Appendix A.5. We assess general352

knowledge on IFEval (Zhou et al., 2023c) and353

MMLU (Hendrycks et al., 2021a), mathematical354

problem-solving on GSM8K (Cobbe et al., 2021)355

and MATH (Hendrycks et al., 2021b), code gen-356

eration on HumanEval (Chen et al., 2021) and357

MBPP (Austin et al., 2021), and commonsense358

reasoning on Hellaswag (Zellers et al., 2019) and359

GPQA (Rein et al., 2024).360

4.2 Main Results361

The evaluation results on all benchmarks over var-362

ious data iterations and models are presented in363

Table 1. We can see that Middo consistently en-364

hances model performance across all benchmarks,365

achieving an average accuracy increase of 7.15%366

over three iterations on the Alpaca dataset based on367

LLaMA-3.1-8B, all while preserving the original368

data scale. Moreover, when extending our experi-369

ments to Mistral-7B-v0.3, we observed an average370

improvement of 4.75%, further underscoring the ro-371

bustness and adaptability of our framework across372

different model architectures.373

Dynamic Iterative Improvement. On the Al- 374

paca dataset, the average score increased progres- 375

sively with each iteration. Across the MMLU, 376

GSM8K, MATH, and MBPP benchmarks, we ob- 377

served consistent, step-by-step improvements over 378

multiple iterations. This showcases the versatility 379

of our approach, which excels in general capabili- 380

ties, mathematics, and coding. Notably, accuracy 381

on GSM8K improved by 15.55%, and Hellaswag 382

saw an 11.11% increase when evaluated on the 383

LLaMA-3.1-8B model. For Mistral-7B-v0.3, we 384

observed an 11.07% improvement on MMLU, a 385

12.59% increase on GSM8K, and a 10.6% gain 386

on GPQA. These results underscore the effective- 387

ness of our method in driving performance gains 388

and highlight the cumulative benefit of our iterative 389

optimization process. 390

Further Validation on 4o-mini Rewritten Data. 391

Steady improvements observed on both the 4o-mini 392

rewritten Alpaca dataset—averaging a 2.2% in- 393

crease overall, with MMLU showing an impressive 394

11.87% boost—demonstrate that these gains are not 395

merely a result of using 4o-mini data. Instead, they 396

illustrate that our framework intrinsically enhances 397

dataset quality and model performance. Impor- 398

tantly, we achieve these improvements without re- 399

sorting to stronger variants such as GPT-4o (Hurst 400

et al., 2024) or GPT-o1 (Jaech et al., 2024), rein- 401

forcing the robustness and general applicability of 402

our method. 403

Initial Dataset Quality. Our experiments reveal 404

that higher-quality datasets require fewer modifica- 405

tions to reach optimal performance. For instance, 406

while the Alpaca dataset achieve peak performance 407

at third iterations, the 4o-mini rewritten Alpaca re- 408

quired only two iterations, and the Wizard dataset 409

reached its best performance in just one round of 410

optimization. 411

Comparison with Other Works. We compare 412

Middo with both existing data selection (Alpaca- 413

clean(Ruebsamen, 2023), Superfiltering (Li et al., 414

2024b), Long (Zhao et al., 2024a), AlpaGa- 415

sus (Chen et al., 2024)) and data augmen- 416

tation (Alpaca-GPT4 (Peng et al., 2023), I- 417

SHEEP (Anonymous, 2025b), WizardLM (Xu 418

et al., 2024)) methods on the Alpaca dataset. 419

We use the optimal dataset obtained through 420

Middo from Alpaca for comparison with other base- 421

lines. Additionally, to ensure a relatively fair com- 422

parison with data selection methods, we include a 423
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Setting General Math Code Reasoning Average
MMLU IFEval GSM8K MATH HumanEval MBPP Hellaswag GPQA

Base Model: LLaMA-3.1-8B

Alpaca

init 47.46 41.09 35.63 4.96 39.63 37.40 48.11 5.56 32.48

iter1 50.13 45.77 43.67 10.62 40.24 39.20 56.37 13.64 37.45
iter2 41.82 44.63 50.11 12.40 39.63 41.40 59.22 18.18 38.42
iter3 51.32 43.20 51.18 12.92 39.63 41.80 58.78 16.67 39.63

Alpaca
4o-mini

init 32.82 44.04 57.09 17.78 51.22 45.20 53.70 24.24 40.76

iter1 41.09 43.47 54.21 17.34 51.22 46.00 59.11 21.72 41.77
iter2 44.69 47.96 57.62 18.50 52.44 45.40 57.37 19.70 42.96
iter3 38.58 48.11 58.68 18.30 46.95 46.80 52.37 28.79 42.32

Wizard

init 46.12 46.14 53.30 12.72 40.24 48.00 53.05 12.12 38.96

iter1 48.39 50.11 54.44 13.80 46.95 45.00 63.54 20.20 42.80
iter2 48.86 49.48 55.12 13.90 48.78 45.20 58.63 18.18 42.29
iter3 47.18 50.79 54.51 11.70 43.29 45.40 62.97 20.20 42.01

Base Model: Mistral-7B-v0.3

Alpaca

init 27.66 43.22 22.21 3.88 29.27 28.80 44.17 0.51 24.97

iter1 31.31 45.62 29.57 5.82 30.49 33.80 42.73 14.65 29.25
iter2 26.87 49.46 31.69 6.84 31.71 31.00 53.95 5.56 29.64
iter3 38.73 44.01 34.80 6.64 26.22 31.40 44.86 11.11 29.72

Alpaca
4o-mini

init 31.56 43.14 44.88 9.64 42.07 37.80 46.25 21.21 34.56

iter1 31.33 47.93 45.19 8.72 37.20 41.32 41.32 19.70 34.09
iter2 28.83 47.92 48.90 11.34 35.37 38.40 42.63 27.27 35.08
iter3 28.96 50.78 48.60 10.10 32.32 39.00 32.95 20.20 32.86

Wizard

init 40.71 50.95 44.96 8.10 35.98 35.60 53.98 9.09 34.92

iter1 41.39 51.18 44.43 9.44 37.80 38.60 59.01 17.17 37.38
iter2 33.87 51.71 47.08 9.26 39.02 38.40 66.18 19.7 38.15
iter3 33.18 50.79 41.51 9.70 36.29 37.40 54.97 16.20 35.01

Table 1: Main Results: performance of models in the optimization step for different datasets and the performance
trained on optimized dataset. The init means the performance of the model before the iterative optimization step.
The best performance for the average is highlighted in bold and the second best is underlined.

Method Size General Math Code Reasoning Average
MMLU IFEval GSM8K MATH HumanEval MBPP Hellaswag GPQA

Alpaca 52.0k 47.46 41.09 35.63 4.96 39.63 37.40 48.11 5.56 32.48

Data Selection
Alpaca-clean 51.7k 47.21 43.92 43.90 4.20 29.27 43.40 60.17 5.56 34.70
Superfiltering 7.8k 39.96 37.80 44.50 5.38 40.85 44.00 42.38 27.27 35.27

Superfiltering GPT4 7.8k 37.71 34.35 53.68 11.00 9.15 45.60 57.81 2.53 31.48
Long 1.0k 25.51 14.75 56.33 16.56 13.41 45.60 25.83 0.00* 24.75

AlpaGasus 9.2k 33.98 48.82 43.82 6.06 35.98 42.40 44.50 18.18 34.22

Data Augmentation
I-SHEEP 8.4k 23.61 29.61 43.14 8.28 32.32 32.60 41.83 0.00* 26.42

Alpaca-GPT4 5.2k 51.94 38.68 50.87 10.28 17.07 43.60 63.02 0.51 34.50
WizardLM 70.0k 46.12 46.14 53.30 12.72 40.24 48.00 53.05 12.12 38.96

Middo Optimize Only 8.8k 43.47 40.78 65.20 15.58 51.83 47.60 58.65 17.68 42.60
Middo 63.1k 44.69 47.96 57.62 18.50 52.44 45.40 57.37 19.70 42.96

Table 2: Results of Middo compared to other baseline methods. The best and second best results are highlighted in
bold and underlined, respectively. The size of the dataset is the number of examples used for training. Our method
outperforms all baselines in the average score. *Note that 0.00 indicates that the method did not solve any examples.

dataset that only uses the optimized data without424

incorporating any unoptimized samples, referred as425

“Middo Optimize Only”, to isolate the effect of the426

optimization process and make a direct comparison 427

with data selection approaches. 428

Results in Table 2 shows our method achieves 429
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iteration Ablations IFEval MATH HumanEval Hellaswag Average

iter1

w 45.77 10.62 40.24 56.37 38.25
w/o loss 42.49 10.11 39.02 59.53 37.79
w/o neighbor 39.01 10.82 42.07 57.86 37.45
w/o score 43.48 10.20 36.59 48.40 34.67

iter2

w 44.63 12.40 39.63 59.22 38.97
w/o loss 42.28 9.92 42.68 58.21 38.27
w/o neighbor 46.75 10.26 34.76 46.66 34.61
w/o score 44.18 11.76 39.02 51.38 36.58

iter3

w 44.24 12.92 39.63 59.25 39.01
w/o loss 43.18 12.42 36.59 55.30 36.87
w/o neighbor 40.12 12.46 34.15 56.83 35.89
w/o score 45.17 7.92 40.85 54.67 37.15

Table 3: Ablation study on the development set. We
report the performance of the model with different abla-
tions. The ablations include removing the loss patterns,
embedding cluster dynamics and self-alignment scores
separately. The best performance is highlighted in bold.
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Figure 3: Performance comparison of Middo on the Al-
paca dataset with varying refined data sizes. The x-axis
represents the number and percentage of data selected
for refinement, while the y-axis shows the average ac-
curacy across three iterations. To ensure fairness, we
guarantee that the data after refinement is the same.

the highest average score of 42.96, outperforming430

all other approaches. Notably, even when using431

only the optimized subset Middo Optimize Only,432

our method delivers a robust average score of 42.6.433

This demonstrates that data size is not the main434

factor influencing iterative improvement, but are435

inherent to the effectiveness of our dynamic data436

selection and optimization process.437

5 Analysis438

5.1 Ablation Studies439

To assess the effectiveness of Middo and the contri-440

bution of each optimization pipeline, we conduct441

ablation experiments on the LLaMA-3.1-8B model442

over the Alpaca dataset. Specifically, we analyze443

the following ablations: (a) w/o loss: removes Loss444

Patterns. (b) w/o neighbor: excludes Embedding445

Cluster Dynamics. (c) w/o score: removes Self-446

alignment Scores.447

The ablation results in Table 3 consistently show448

that removing any part of the framework leads to a449

decline in performance across multiple iterations,450

reinforcing that each component plays a signifi-451
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Figure 4: Loss distribution comparison before and af-
ter applying Middo. We tested LLaMA-3.1-8B on the
Alpaca dataset over one optimization iteration. The den-
sity curve reflects the relative frequency of data points
within specific loss intervals. The inset subfigure high-
lights the maximum loss reduction from 12.99 to 4.61
through our optimization.

cant role in the overall performance. This trend 452

holds across the second (iter2) and third (iter3) 453

iterations, where the removal of any pipeline con- 454

sistently results in suboptimal performance, further 455

highlighting the importance of balancing complex- 456

ity, diversity, and quality in the optimization pro- 457

cess. These findings underscore the necessity of 458

the full framework for achieving optimal results. 459

5.2 Effect of Selected Data Scale 460

We give an investigation on the impact of the dif- 461

ferent scales of the selected and optimized data in 462

this section by varying the thresholds for data selec- 463

tion. Results are illustrated in Figure 3. We observe 464

that increasing the size of the refined data initially 465

leads to an upward trend in performance; however, 466

once the refined data exceeds a certain threshold, 467

performance begins to decline. To maintain the po- 468

tential for further iterative improvement, we set the 469

refined data size at a moderate level that optimally 470

balances the cost and benefit of the optimization 471

process. In the first iteration, each component se- 472

lects approximately 5% of the data for refinement. 473

By controlling the parameter m, the amount of data 474

refined can adaptively change as the model’s ca- 475

pability increases. Detailed data sizes selected in 476

each iteration are provided in Appendix F. 477

5.3 Data Analysis 478

For a deep understanding of how Middo transforms 479

the dataset, we provide an analysis of its impact on 480

data complexity, diversity, and quality. 481

Complexity. To quantify how Middo modulates 482

dataset complexity, we analyze the loss distribution 483

evolution through optimization cycles. As shown 484

7



100 50 0 50 100

150

100

50

0

50

100

150

Figure 5: t-SNE visualization of the Alpaca dataset
before and after applying Middo. The original dataset is
shown in light blue, while the augmented data is in dark
blue. The plot illustrates the distribution of data points
in the latent space, highlighting the impact of Middo on
dataset diversity.

in Figure 4, the original dataset exhibits a long-485

tailed distribution with extreme loss values up to486

12.99. After applying Middo, the maximum loss487

decreases by 64.5% to 4.61, indicating success-488

ful mitigation of overly complex samples and the489

distribution mode shifts leftward, suggesting bet-490

ter alignment between data complexity and model491

capability. This transformation demonstrates our492

framework’s ability to adaptively prune pathologi-493

cal samples while preserving pedagogically valu-494

able challenges.495

Diversity. To analyze the diversity of the dataset496

after applying Middo, we visualize the data distri-497

bution using t-SNE. As shown in Figure 5. This vi-498

sualization reveals how the augmented data points499

are distributed relative to the original data. Notably,500

most of the augmented samples are located at the501

peripheries of the clusters, effectively filling in the502

sparsely populated regions. This distribution indi-503

cates that Middo is not merely adding redundant504

data but is instead enhancing the overall coverage505

of the latent space. By strategically augmenting the506

dataset at the cluster edges, Middo improves the di-507

versity and ensures a more uniform distribution of508

data points, ultimately contributing to better model509

generalization.510

Quality. The self-alignment score trajectories511

across different iterations are presented in Figure 6.512

The observed trend indicates a gradual increase in513

the average score as the iterations progress. This514

improvement signifies that the quality of the data515

is becoming more closely aligned with the model’s516

evolving capabilities. Through the adversarial self-517

play mechanisms and iterative quality refinement,518

the model is able to assess and enhance the quality519
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Figure 6: Self-alignment score evolution across itera-
tions. The x-axis represents the number of iterations,
while the y-axis shows the average self-alignment score.

of both the instructions and responses within the 520

dataset. As the self-alignment scores increase, it re- 521

flects that the refined data is not only more accurate 522

but also more consistent with the model’s internal 523

standards and expectations. This detailed evolu- 524

tion of the self-alignment scores provides critical 525

insights into the dynamic process of dataset opti- 526

mization, confirming that our approach effectively 527

transforms low-quality samples into high-quality 528

learning material over successive iterations. 529

6 Conclusion 530

In this paper, we present Middo, a model-informed 531

dynamic data optimization framework that trans- 532

forms LLM fine-tuning via closed-loop learning. 533

Unlike traditional static methods, Middo estab- 534

lishes a self-evolving system that continuously 535

adapts to the model’s evolving capabilities. It 536

employs three core mechanisms: complexity op- 537

timization refines overly complex samples using 538

loss patterns, ensuring the training data remains 539

appropriately challenging; diversity optimization 540

enhances dataset diversity by analyzing embedding 541

cluster dynamics and addressing gaps in the seman- 542

tic space; and quality optimization leverages self- 543

alignment scores to evaluate and improve the qual- 544

ity of training samples. Experiments on multiple 545

benchmarks demonstrate that Middoconsistently 546

boosts LLMs’ performance, achieving an average 547

accuracy improvement of 7.15% while maintaining 548

the original data scale on LLaMA-3.1-8B. Ablation 549

studies confirm the effectiveness of each compo- 550

nent, underscoring the importance of balancing 551

complexity, diversity, and quality. Middo’s adapt- 552

ability and model-awareness make it a powerful 553

tool for sustainable LLM training, ushering in a 554

new paradigm of dynamic human-AI co-evolution 555

of data and models. Moreover, our approach paves 556

the way for future research in adaptive training that 557

continuously optimize learning efficiency. 558
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Limitations559

Despite its promising results, Middo has several560

limitations: (1) Middo relies on the model be-561

ing fine-tuned itself for identifying data quality562

and complexity. This means that the approach re-563

quires a sufficiently capable base model, and the564

performance may be limited if the base model is565

not strong enough to generate meaningful diag-566

nostics for data refinement. (2) Middo does not567

currently utilize Reinforcement Learning from Hu-568

man Feedback (RLHF), which could further en-569

hance data refinement, especially for complex or570

subjective tasks. (3) The closed-loop optimization571

system may lead to higher computational costs as572

the dataset grows or updates become more frequent,573

presenting scalability challenges. (4) Middo may574

propagate biases present in the initial training data,575

limiting fairness and generalization if the base576

model is trained on biased data. These limitations577

highlight areas for future improvement, such as578

integrating RLHF, optimizing for scalability, and579

addressing data biases.580
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A Experimental Details 978

A.1 Instruction Fine-tune Dataset 979

We evaluate Middo on three general instruction 980

fine-tuning datasets. 981

• Alpaca (Taori et al., 2023): consists of 52,002 982

instruction-response pairs generated by Stan- 983

ford University using the self-instruct (Wang 984

et al., 2023) method based on OpenAI’s text- 985

davinci-003. This dataset is designed for fine- 986

tuning dialogue models similar to ChatGPT 987

to achieve efficient instruction-following ca- 988

pabilities. 989

• Alpaca-4o-mini: to evaluate performance on 990

a higher-quality response dataset, we gener- 991

ated responses for all Alpaca instructions us- 992

ing GPT-4o mini, creating the Alpaca-4o-mini 993

dataset. 994

• WizardLM (Xu et al., 2024): 70K data gen- 995

erated based on Evol-Instruct, which aims 996

to generate more complex instruction data 997

through a recursive evolutionary approach in 998

order to improve the model’s reasoning and 999

instruction comprehension. 1000
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A.2 Models1001

We primarily conducted experiments on LLaMA1002

3.1-8B, and additionally performed extra experi-1003

ments on Mistral 7B-v0.3.1004

• LLaMA 3.1-8B (Dubey et al., 2024): LLaMA1005

3.1-8B is a large language model released by1006

Meta, featuring 8 billion (8B) parameters. It1007

is part of the LLaMA (Large Language Model1008

Meta AI) series, focusing on efficient reason-1009

ing and text generation capabilities. LLaMA1010

3.1-8B excels in code generation, language1011

understanding, and conversational tasks, opti-1012

mizing inference speed and training efficiency,1013

making it suitable for research, commercial1014

applications, and AI studies.1015

• Mistral 7B-v0.3 (Jiang et al., 2023): Mistral1016

7B-v0.3 is an open-source language model1017

developed by Mistral AI, featuring 7 billion1018

parameters. It is optimized based on the Trans-1019

former architecture, emphasizing efficiency1020

and multitasking capabilities. Compared to1021

earlier versions, this model shows improve-1022

ments in coding, mathematics, and reasoning1023

tasks, making it suitable for chatbots, pro-1024

gramming assistance, and natural language1025

processing tasks. Mistral 7B-v0.3 incorpo-1026

rates feedback from the open-source commu-1027

nity to enhance inference efficiency, deliver-1028

ing high performance with reduced computa-1029

tional resources.1030

A.3 Benchmarks1031

We assess model performance on general knowl-1032

edge, mathematical problem-solving, code genera-1033

tion and commonsense reasoning benchmarks.1034

• IFEval (Instruction Following Evalua-1035

tion) (Zhou et al., 2023c): a benchmark1036

dataset designed to assess the instruction-1037

following capabilities of large models. It en-1038

compasses various tasks, including general1039

knowledge question answering, commonsense1040

reasoning, and mathematical reasoning, aim-1041

ing to measure the understanding and accu-1042

racy of language models when executing com-1043

plex instructions.1044

• MMLU (Massive Multitask Language Un-1045

derstanding) (Hendrycks et al., 2021a): a1046

large-scale, multi-task language understand-1047

ing benchmark that covers 57 subjects, testing1048

models on their knowledge and reasoning abil- 1049

ities across fields such as history, law, math- 1050

ematics, and medicine. It serves as a signifi- 1051

cant indicator of general artificial intelligence 1052

knowledge levels. 1053

• GSM8K (Grade School Math 8K) (Cobbe 1054

et al., 2021): a dataset specifically created 1055

for solving mathematical problems, contain- 1056

ing approximately 8,500 elementary school 1057

math questions that primarily focus on basic 1058

arithmetic, logical reasoning, and text compre- 1059

hension skills. This dataset is used to evaluate 1060

models’ mathematical computation and rea- 1061

soning abilities. 1062

• MATH (Hendrycks et al., 2021b): consists 1063

of math competition problems from middle 1064

school and college levels, covering areas such 1065

as algebra, geometry, number theory, and cal- 1066

culus. This dataset is more challenging than 1067

GSM8K and is primarily used to assess mod- 1068

els’ performance on advanced mathematical 1069

reasoning tasks. 1070

• HumanEval (Chen et al., 2021): a dataset for 1071

evaluating code generation capabilities, fea- 1072

turing a series of Python programming prob- 1073

lems, each with a clear function signature and 1074

test cases. This dataset is commonly used to 1075

measure AI performance in automated code 1076

generation and programming tasks. 1077

• MBPP (Mostly Basic Programming Prob- 1078

lems) (Austin et al., 2021): a benchmark 1079

dataset for code generation, containing 1,000 1080

basic programming questions that cover data 1081

structures, algorithms, and logical reasoning. 1082

It is suitable for assessing AI capabilities in 1083

fundamental programming tasks. 1084

• Hellaswag (Zellers et al., 2019): a benchmark 1085

dataset for commonsense reasoning, consist- 1086

ing of a series of incomplete sentences that 1087

require models to select the most reasonable 1088

ending. This dataset tests models’ contextual 1089

understanding and reasoning abilities by de- 1090

signing misleading options. 1091

• GPQA (Graduate-Level Google-Proof 1092

Q&A) (Rein et al., 2024): a challenging 1093

dataset designed to evaluate the capabilities 1094

of LLMs and scalable oversight mechanisms. 1095

Let me provide more details about it. 1096

13



A.4 Baselines1097

We compare Middo with both existing data selec-1098

tion and data augmentation methods on the Alpaca1099

dataset.1100

Data Selection Methods.1101

• Alpaca-clean (Ruebsamen, 2023): a cleaned1102

version of the Alpaca dataset that removes1103

low-quality samples and duplicates, aiming to1104

improve the overall quality of the dataset.1105

• Superfiltering (Li et al., 2024b): using1106

smaller, weaker language models (such as1107

GPT-2) as data filters to compute IFD allows1108

for the selection of high-quality instruction1109

tuning data.1110

• Long (Zhao et al., 2024a): directly select the1111

1,000 samples with the longest responses as1112

training data.1113

• AlpaGasus (Chen et al., 2024): utilize pow-1114

erful LLMs (such as ChatGPT) to automati-1115

cally assess the sample quality in the Alpaca1116

dataset and filter out high-quality data to en-1117

hance model training effectiveness.1118

Data Augmentation Methods.1119

• Alpaca-GPT4 (Peng et al., 2023): a data aug-1120

mentation method that uses GPT-4 to generate1121

additional training data for the Alpaca dataset.1122

• I-SHEEP (Anonymous, 2025b): a data aug-1123

mentation method that uses a self-supervised1124

learning approach to generate additional train-1125

ing data for the Alpaca dataset.1126

• WizardLM (Xu et al., 2024): 70K data gen-1127

erated based on Evol-Instruct, which aims1128

to generate more complex instruction data1129

through a recursive evolutionary approach in1130

order to improve the model’s reasoning and1131

instruction comprehension.1132

A.5 Hyperparameters1133

Fine-tune. For LLaMA-3.1-8B, we follow the1134

Alpaca GitHub repository1, setting the batch size1135

to 32, the learning rate to 2×10−5, and the warmup1136

ratio to 0.03. For Mistral-7B-v0.3, we adjust the1137

learning rate to 1×10−5, as per official recommen-1138

dations2. All the hyperparameters are detailed in1139

Table 4.1140
1https://github.com/tatsu-lab/stanford_alpaca
2https://docs.mistral.ai/capabilities/

finetuning

Hyperparameter Value

LLaMA-3.1-8B
Learning Rate 2× 10−5

Number of Epochs 1
Number of Devices 8
Per-device Batch Size 4
Gradient Accumulation Steps 8
Learning Rate Scheduler cosine
Warmup Ratio 0.03
Max Sequence Length 4096

Mistral-7B-v0.3
Learning Rate 1× 10−5

Number of Epochs 1
Number of Devices 8
Per-device Batch Size 4
Gradient Accumulation Steps 8
Learning Rate Scheduler cosine
Warmup Ratio 0.03
Max Sequence Length 4096

Table 4: Hyperparameters used for fine-tuning.

Data Synthetic. We use the OpenAI API to gen- 1141

erate data by GPT-4o-mini, setting both tempera- 1142

ture and top_p to 1.0 to guarantee diversity. 1143

Hyperparameter Value

Pass@n n = 1
Presence Penalty 0.0
Frequency Penalty 0.0
Repetition Penalty 1.0
Temperature 0.0
Top_p 1.0
Top_k −1
Min_p 0.0
Max Tokens 4096
Min Tokens 0

Table 5: Hyperparameters used for evaluation.

Evaluation. All benchmarks are conducted in 1144

zero-shot and we conducted the tests using the 1145

default configuration of OpenCompass. All the 1146

hyperparameters are detailed in Table 5. 1147

All experiments are conducted on 8 × NVIDIA 1148

Tesla A100 GPUs about 50 GPU hours. 1149

B The Impact of Neighbor Number 1150

We also explore how the number of neighbors k 1151

used in the Embedding Cluster Dynamics affects 1152
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k IFEval GSM8K MATH HumanEval MBPP Hellaswag ARC-c Average

1 43.59 38.74 9.20 35.98 39.8 48.59 17.17 33.3
2 51.56 43.21 10.72 40.85 41.00 57.47 12.12 35.72
3 40.82 40.49 9.50 32.32 39.20 59.72 8.59 32.95

Table 6: Impact of the number of neighbors (k) in the Embedding Cluster Dynamics on Middo performance. The
table shows the performance across various benchmarks for different values of k, indicating that k = 2 yields the
best overall average score.

the overall performance of Middo. By varying1153

the number of neighbors, we analyze its impact1154

on dataset diversity and model performance. Ta-1155

ble 6presents the results of this analysis. We find1156

that the optimal number of neighbors is k = 2,1157

which achieves the best balance between diversity1158

and performance. This setting ensures that the1159

dataset is sufficiently expanded to enhance model1160

generalization while avoiding excessive noise that1161

may degrade performance.1162

C The Impact of Iterations1163
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Figure 7: Performance trends on the Alpaca dataset
across different optimization iterations. The model’s
performance peaks at three iterations and declines there-
after.

We tested the number of iterations on the Al-1164

paca dataset as Figure 7 shows and found that the1165

model’s performance significantly declined after1166

the third iteration. Therefore, we chose to optimize1167

each dataset for three iterations. This optimal num-1168

ber is not necessarily fixed and may vary depending1169

on the threshold of each iteration.1170

D Data Size Details1171

We selected approximately 5% of the data from1172

each part in the first iteration and maintained the1173

same threshold controlling hyperparameter m in1174

subsequent rounds. We did not place excessive1175

emphasis on the improvements brought about by1176

Dataset iteration loss neighbor self total

LLaMA-3.1-8B

Alpaca

init m = 1 m = −1 m = −1.5 52,002
iter1 1180 1924 1159 53,939
iter2 299 1853 108 55,811
iter3 242 1822 381 57,636

Alpaca
4o-mini

init m = 0 m = −1 m = −0.5 52,002
iter1 5684 8032 4145 60,865
iter2 611 2291 876 63,184
iter3 472 2127 661 65,324

Wizard

init m = 1 m = −1.5 m = −2 70000
iter1 3585 3585 2690 73,642
iter2 959 3341 1016 76,993
iter3 751 3414 420 80,419

Mistral-7B-v0.3

Alpaca

init m = 0.5 m = −2 m = −1 52002
iter1 2418 2111 2367 54,131
iter2 1985 2091 932 56,268
iter3 1788 1982 352 58,348

Alpaca
4o-mini

init m = 1 m = −2 m = −2.5 52,002
iter1 1407 7691 1499 59696
iter2 1278 9116 1045 68874
iter3 1346 2487 661 74036

Wizard

init m = 1 m = −1.5 m = −1.5 70000
iter1 5637 5709 5258 76429
iter2 3558 5999 6310 82501
iter3 3885 6229 3767 89178

Table 7: Data Size Details Across Iterative Refinement.
For each dataset, the table lists the number of samples
selected by the three components—loss (Loss Patterns),
neighbor (Embedding Cluster Dynamics), and self (Self-
alignment Scores). During each iteration, along with the
total data size after refinement. The init row represents
the original dataset size and the threshold controlling
hyperparameter m corresponding to each component.

differences in data volume, so our selection may 1177

not necessarily be optimal. The data size details 1178

are shown in Table 7. 1179

As the model’s performance improves, the 1180

amount of data filtered out at the same thresh- 1181

old gradually decreases. We find that early train- 1182

ing phases focus on complex, high-loss examples, 1183

whereas later stages prioritize diversity and data 1184

diversity is an ongoing necessity. 1185
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(a) Alpaca dataset.
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(b) Alpaca-4o-mini dataset.
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(c) WizardLM dataset.

Figure 8: Self-alignment score evolution across iterations. The x-axis represents the self-alignment scores, while the
y-axis shows the density of data points.

E Self-alignment Scores1186

We provide detailed self-alignment score evolution1187

across iterations on the Alpaca, Alpaca-4o-mini,1188

and WizardLM datasets in Figure 8. These figures1189

illustrate the dynamic evolution of self-alignment1190

scores across iterations, highlighting the continu-1191

ous improvement in dataset quality and alignment1192

with model capabilities.1193

F Case Study1194
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Complexity Optimization Prompt Template

You are a powerful LLM with the task to simplify the given #Prompt# for weaker open source LLMs (e.g.
LLaMA, Qwen). Since the original #Prompt# is hard for them to handle, you need to rewrite it into a
simpler version that these weaker LLMs can handle or learn from more easily. Follow the steps below
carefully.
Step 1: Read the #Prompt# in detail. Suggest possible methods to make this prompt easier for weaker
LLMs to handle or learn from, then list these methods as your #Methods List#.
Step 2: Create a comprehensive plan to simplify the #Prompt# using several methods from your #Methods
List#. Present your plan in a clear, step-by-step format.
Step 3: Execute your plan to rewrite the #Prompt# into a simpler, more learnable version. You can change
scenarios, contexts, or settings as needed. Your goal is to ensure that weaker LLMs learn from this prompt,
rather than just memorizing an answer.
Step 4: Finally, review your rewritten version for any problems. Present only the #Final Rewritten Prompt#,
without any additional explanation.
Please respond strictly in the following format:
Step 1 #Methods List#:
Step 2 #Plan#:
Step 3 #Rewritten Prompt#:
Step 4 #Final Rewritten Prompt#:

Overly Hard Data Example

Find the mode of the following set of numbers: 23, 16, 22, 19, 24, 21

Optimize Steps

Step 1 #Methods List#:
1. Simplify the language used in the prompt.
2. Break down the instructions into simpler steps.
3. Provide examples to clarify the concept of mode.
4. Use smaller numbers or more relatable contexts.
5. Ask the question in a more direct manner.

Step 2 #Plan#:
1. Change complex terminology like “mode” to a more descriptive explanation.
2. Use a familiar context, like favorite fruits or animals.
3. Clearly outline the steps needed to find the most common number, potentially using a smaller set.
4. Offer a simple example to illustrate the mode calculation.
5. Keep the structure straightforward and direct.

Step 3 #Rewritten Prompt#:
Find the most frequent number in this list: 3, 7, 2, 3, 5, 7. What number appears the most?’

Step 4 #Final Rewritten Prompt#:
Find the number that appears the most in this list: 3, 7, 2, 3, 5, 7. What is that number?

Optimized Easier Data

Find the number that appears the most in this list: 3, 7, 2, 3, 5, 7. What is that number?

Figure 9: Complexity optimization example.
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Diversity Extension Prompt Template

You are a powerful LLM with the task to create brand new prompts for weaker open source LLMs (e.g.
LLaMA, Qwen). You need to create a brand new complete prompt for them to learn in order to improve
their knowledge and skills. Follow the steps below carefully.
Use #Hint Prompt 1# and #Hint Prompt 2# as guiding examples. Then read the #Core Prompt# in detail.
Be inspired to suggest additional new prompts, and ultimately create only one completely original and
diverse #New Prompt#.
Please respond strictly in the following format:
#New Prompt#:"

Sparse Data And Neighbors

#Hint Prompt 1#:
How long did Shakespeare live?

#Hint Prompt 2#:
How did the Industrial Revolution change society?

#Core Prompt#:
How did Julius Caesar die?

Extensioned Data

What were the key factors that led to the fall of the Roman Empire?

Figure 10: Diversity extension example.
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Quality Optimization Prompt Template

You are a powerful LLM with the task to rewrite the given #Prompt# for weaker open source LLMs (e.g.,
LLaMA, Qwen). Since the original #Prompt# is of poor quality for them to learn, you need to rewrite it into
a higher quality version that these weaker models can better learn from. Follow the steps below carefully.
Step 1: Read the #Prompt# in detail. Identify reasons for the poor quality of the #Prompt#. Suggest
possible methods to improve the quality of the #Prompt#, then list these methods as your #Methods List#.
Step 2: Create a comprehensive plan to rewrite the #Prompt# using several methods from your #Methods
List#. Present your plan in a clear, step-by-step format.
Step 3: Execute your plan to rewrite the #Prompt# into a higher quality version.
Step 4: Finally, review your rewritten version for any problems. Present only the #Final Rewritten Prompt#,
without any additional explanation.
Please respond strictly in the following format:
Step 1 #Methods List#:
Step 2 #Plan#:
Step 3 #Rewritten Prompt#:
Step 4 #Final Rewritten Prompt#:

Low Quality Data Example

Given the following input, generate a job description for a product manager.
Noinput

Optimize Steps

Step 1 #Methods List#:
1. Clarify the input requirements to make them more explicit.
2. Use structured language with clear expectations for the output.
3. Specify the context in which the job description will be used.
4. Provide examples of desirable skills and experiences for the product manager role.
5. Ensure the language is professional and appropriate for a job description.

Step 2 #Plan#:
1. Add a clear request for a job description that outlines key responsibilities and qualifications for a product
manager.
2. Specify the context, such as whether it’s for a tech company, a startup, or a different industry.
3. Suggest including attributes and skills relevant to the product manager role, such as project management,
communication, and analytics.
4. Format the request to clearly indicate the sections that should be included in the job description (e.g.,
summary, responsibilities, qualifications).

Step 3 #Rewritten Prompt#:
<note:same as next box>

Step 4 #Final Rewritten Prompt#:
<note:same as next box>

Optimized High Quality Data

Please create a detailed job description for a Product Manager position in a tech company. The description
should include the following sections:
- Job Summary: A brief overview of the role and its importance within the company.
- Key Responsibilities: A list of primary duties that the Product Manager will be responsible for, such
as managing product development, collaborating with cross-functional teams, and conducting market
research.
- Required Qualifications: Skills and experiences necessary for the role, including knowledge of product
management methodologies, strong analytical abilities, and effective communication skills.
- Preferred Attributes: Any additional qualities that would make a candidate stand out, such as a passion for
technology or experience in agile environments.

Figure 11: Quality optimization example.
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Self-Alignment Instruction Score Prompt Template

We would like to request your feedback on the {dimention} of the prompt displayed below.

Prompt:
Give three tips for staying healthy.

Please rate according to the {dimention} of the prompt to evaluate {explanations}. Each prompt is scored
on a scale of 0 to 10, with higher scores indicating higher {dimention}. Try to avoid scoring a full 10. Give
your rating number first, then give a explanation of your rating.

Self-Alignment Instruction Score Dimentions and Explanations

"factuality": "whether the information provided in the prompt is accurate and based on reliable facts and
data",
"clarity": "whether the prompt is clear and understandable, and whether it uses concise language and
structure",
"completeness": "whether the prompt provides sufficient information and details".

Instruction Clarity Score Example

7. The prompt is clear and understandable, but it could be more concise.

Figure 12: Self-Alignment instruction score example.

Self-Alignment Response Score Prompt Template

We would like to request your feedback on the {dimention} of the prompt displayed below.

Prompt:
What are the three primary colors?

Response:
The three primary colors are red, blue, and yellow.

Please rate according to the {dimention} of the response to evaluate {explain}. Each response is scored on
a scale of 0 to 10, with higher scores indicating higher {dimention}. Try to avoid scoring a full 10. Give
your rating number first, then give a explanation of your rating.

Self-Alignment Response Score Dimentions and Explanations

"factuality": "whether the information provided in the response is accurate and based on reliable facts and
data",
"clarity": "whether the response is clear and understandable, and whether it uses concise language and
structure",
"completeness": "whether the response provides sufficient information and details".

Response Clarity Score Example

8.5. The response is clear and understandable, but it could be more concise.

Figure 13: Self-Alignment response score example.
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