
Published as a conference paper at ICLR 2026

INTERNAL PLANNING IN LANGUAGE MODELS: CHAR-
ACTERIZING HORIZON AND BRANCH AWARENESS

Muhammed Ustaomeroglu∗, Baris Askin∗, Gauri Joshi, Carlee Joe-Wong, Guannan Qu
Department of Electrical and Computer Engineering
Carnegie Mellon University
Pittsburgh, PA 15213, USA
{mustaome,baskin,gaurij,cjoewong,gqu}@andrew.cmu.edu

ABSTRACT

The extent to which decoder-only language models (LMs) engage in planning,
that is, organizing intermediate computations to support coherent long-range gen-
eration, remains an important question, with implications for interpretability, reli-
ability, and principled model design. Planning involves structuring computations
over long horizons, and considering multiple possible continuations, but how far
transformer-based LMs exhibit them without external scaffolds, e.g., chain-of-
thought prompting, is unclear. We address these questions by analyzing the hid-
den states at the core of transformer computations, which capture intermediate
results and act as carriers of information. Since these hidden representations are
redundant and encumbered with fine-grained details, we develop a pipeline based
on vector-quantized variational autoencoders that compresses them into compact
summary codes. These codes enable measuring mutual information and analyzing
the computational structure of the underlying model behavior. Using this frame-
work, we study planning in LMs across synthetic grammar, path-finding tasks,
and natural language datasets, focusing on two planning properties: (i) the plan-
ning horizon of pre-output computations, and (ii) the extent to which the model
considers alternative valid continuations. As a separate downstream use of the
same pipeline, we also analyze how decision-relevant information is distributed
across layers and earlier prefix blocks when producing next-token predictions. To-
gether, these analyses advance our understanding of planning in LMs and provide
a general-purpose pipeline for inspecting internal model dynamics. Our results
reveal that the effective planning horizon is task-dependent, that models implic-
itly preserve information about unused correct continuations, and that predictions
draw most on recent computations, though earlier blocks remain informative.

1 INTRODUCTION

Language models (LMs) have advanced so rapidly that they now engage in open-ended conver-
sation, write functional code, and even solve challenging mathematical problems (Brown, 2020;
Achiam et al., 2023; Grattafiori et al., 2024; Touvron et al., 2023). Beyond these raw capabilities,
scaffolding and augmentation techniques further enhance reasoning and planning (Wei et al., 2022;
Wang et al., 2024c; Sel et al., 2025; Yao et al., 2023; Besta et al., 2024). In parallel, hybrid systems
integrating LMs with symbolic planners or external tools have achieved state-of-the-art performance
in embodied and tool-use domains (Zhao et al., 2023; Wang et al., 2024a; Shen et al., 2023).

All the above success suggests that LMs have a certain capability of “planning ahead,” similar
to what humans do in generating coherent long speeches and long-horizon problem solving. Yet,
the typical training method for LMs, next token prediction, focuses only on predicting the next
token, which seemingly suggests LMs are myopic. Motivated by this contrast, this paper seeks to
understand the planning behavior of LMs and how it is affected by next-token prediction (NTP) vs.
multi-token prediction (MTP) in training. As “planning behavior” is a broad term that has many
facets, we further narrow our focus to the following two canonical aspects of planning. First, good

∗Equal contribution

1

Published as a conference paper at ICLR 2026

planners are forward-looking. They structure intermediate computations over a receding horizon
so that near-term actions serve longer-term objectives, an idea made explicit in model-predictive
control (MPC) and world-model–based approaches (Morari & Lee, 1999; Mayne et al., 2000; Ha &
Schmidhuber, 2018; LeCun, 2022). Second, good planners are branch-aware, before committing,
they keep multiple plausible futures “alive,” comparing candidates rather than greedily following a
single line, an ability central in classical MPC and world-model–based control methods (Morari &
Lee, 1999; Mayne et al., 2000; Hafner et al., 2019), and closely tied to robustness under paraphrase
and logically related prompts (Lin et al., 2025; Ahn & Yin, 2025; Saxena et al., 2024) and to the
success of search-based scaffolds such as Tree- and Graph-of-Thoughts (Yao et al., 2023; Besta
et al., 2024). Given the above aspects about planning, this paper seeks to understand,

To what extent are LMs forward-looking and branch-aware?
How does the training method (NTP vs. MTP) affect these qualities?

We approach the above questions by studying the internal states and computations of an LM, as
recent work shows that transformers internally encode rich, high-level abstractions such as belief
states, game configurations, and world models that extend far beyond their immediate outputs, and
that these abstractions can be partially extracted (Shai et al., 2024; Li et al., 2023; Pal et al., 2023;
Richens et al., 2025). This makes the internal representations of LMs a natural locus for investigat-
ing how they plan and reason. While not aimed at these specific questions, existing methods have
explored internal computations of models, e.g. using probing classifiers to test for linguistic fea-
tures in hidden states or mechanistic analyses to identify circuits and disentangled features within
transformers (Hewitt & Liang, 2019; Elhage et al., 2021; Bricken et al., 2023). However, these
only indirectly relate to our questions, and despite important progress, these strategies have clear
limitations. Circuit discovery requires heavy manual engineering (Elhage et al., 2021; Wang et al.,
2023; Chan et al., 2022; Meng et al., 2022), while probing risks conflating genuine representations
with probe artifacts (Hewitt & Liang, 2019; Voita & Titov, 2020; Pimentel et al., 2020; Kunz &
Kuhlmann, 2020; Kumar et al., 2022). These limitations necessitate new approaches towards un-
derstanding the internal computations that are automated, scalable, and less susceptible to probing’s
confounding of representations learned by the probe with those in the model itself.

Contribution 1: We propose an information-theoretic framework to study how planning-related
computations are organized inside LMs that is both automated (no manual circuit engineering) and
free from confounding caused by learned probes. Specifically, to avoid probe-induced confound-
ing, we compute mutual information (MI) between learned discrete representations that summarize
internal states of the LM. By comparing these MI relationships, we characterize whether internal
computations exhibit patterns consistent with forward-looking and branch-aware computation. For
example, to understand the “forward-looking” characteristic, the MI between the internal states of
the prefix and that of future generations can shed light on how much computations inside LMs plan
ahead for future tokens. In contrast, probing aims to detect whether a piece of information is present
in a LM hidden state by training an external model to predict the information from the hidden state,
which may introduce additional representational power brought by the external model. The resulting
prediction losses are often treated as informal proxies for “how much information” a hidden state
contains but they depend on the marginal complexity and scale of the chosen target and can vio-
late basic information-theoretic desiderata such as data processing. As we show in our experiments
(App. D.2), such probe-based quantities can be strongly influenced by these nuisance factors and
need not track true mutual information even in simple controlled settings. In contrast, computing MI
between learned representations gives a confound-resistant metric of how much two variables share
information, without introducing an additional supervised model whose capacity or objective may
obscure the underlying LM computation. Moreover, unlike correlation, which is sensitive primarily
to linear relationships under a chosen parameterization, MI captures arbitrary statistical dependence
and is symmetric and invariant under invertible reparameterizations. To make the MI calculation
scalable to potentially very high dimensional hidden state vectors, we employ a Vector-Quantized
Variational Autoencoder (VQ-VAE) to map collections of block outputs into discrete codes that
serve as coarse summaries of internal states (Van Den Oord et al., 2017). We use VQ-VAE as a
practical compressor with a discrete codebook and transformer encoder, enabling MI estimation
over variable-sized blocks; our validation study (App. A.4) supports this choice. We calculate MI
between the coarse summaries instead of the raw hidden states. This step is crucial: fine-grained
activations are high-dimensional and redundant, making a detailed direct analysis infeasible, while
the compressed codes capture the salient distinctions necessary for comparing computations across
layers, positions, and contexts. Beyond these planning analyses, the same pipeline also supports

2

Published as a conference paper at ICLR 2026

a practical diagnostic: localizing where next-token decision information resides across layers and
earlier prefix blocks. While our framework is general and could be applied to other applications in
deep learning, in this work, we use it to analyze planning in transformer models, and we additionally
demonstrate the localization diagnostic as a method application.

Contribution 2: Understanding the planning of LMs. Using the information-theoretic frame-
work, we analyze LMs’ ability to be (i) forward-looking, (ii) branch-aware, and (iii) as an applica-
tion of our framework, how layers and earlier prefix blocks contain next token information, across a
symbolic task, a structured reasoning problem, and natural text (§ 3):

• Horizon of the Plan (§ 3.1): how far ahead a model plans before producing its next token.
• Branching in the Plan (§ 3.2): to what extent a LM internally considers alternative responses.
• Diagnostic of the information in the computational history (§ 3.3): where decision-relevant

information about the next token is concentrated across layers and earlier prefix blocks.

Our results show that planning is task-contingent and weakly modulated by the training objective
loss, i.e., MTP versus NTP. When the task demands a longer horizon, the LM’s pre-output states
retain information about tokens beyond the immediate next step. In contrast, in locally syntactic
settings, this dependence concentrates near the next token. Training with MTP loss modestly reduces
purely myopic behavior. Internally, the model encodes alternatives to the produced answer, and the
strength of this branching awareness of the plan varies with task difficulty and model quality. Finally,
next-token decisions draw most strongly on the last layers and the most recent token indices.

Related work. Despite the recent advances in LM planning abilities (Wang et al., 2024c; Sel et al.,
2025; Wei et al., 2022; Yao et al., 2023; Besta et al., 2024; Zhao et al., 2023; Wang et al., 2024a;
Shen et al., 2023), recent studies highlight that significant challenges remain, and current approaches
to LM planning still fall short of fully addressing complex reasoning and decision-making tasks. For
example, Lin et al. (2025) show that models can produce conflicting answers under logically related
prompts despite local plausibility, which shows lack of long-horizon planning; Ahn & Yin (2025);
Saxena et al. (2024); Momennejad et al. (2023); Wang et al. (2024b) highlight inconsistencies in the
model’s outputs and struggles with planning tasks. Taken together, these findings underscore that
understanding whether and how planning arises in LMs is not only an open empirical challenge, but
also central to both their interpretability and the principled design of future model architectures.

To interpret LMs, some approaches treat the model as a black box and design tasks or benchmarks to
gauge reasoning, robustness, or generalization abilities at a behavioral level (Srivastava et al., 2023;
Liang et al., 2022). While such evaluations provide useful insights, they miss several perspectives
that can be gained by examining the internal mechanisms of the model. In contrast, mechanistic in-
terpretability seeks to reverse-engineer transformer computations into human-understandable parts,
treating the residual stream as the main information pathway and attention heads as separate com-
ponents that pass information along (Elhage et al., 2021; Olsson, 2022; Cunningham et al., 2023;
Bricken et al., 2023; Hewitt & Liang, 2019; Dunefsky et al., 2024; Lindsey et al., 2025). How-
ever, circuit discovery requires significant manual engineering (Wang et al., 2023; Chan et al., 2022;
Meng et al., 2022). Beyond empirical tools, mathematically grounded perspectives also shed light
on transformer and LLM interpretability (Liu et al., 2023; Ahn et al., 2023; Ustaomeroglu & Qu,
2025; Gao et al., 2024), yet these approaches are often criticized for lacking a one-to-one correspon-
dence with experimental results, since their proofs typically rely on strong assumptions that may
not hold for the highly non-smooth LM architectures. In contrast to them, our method (§ 2) en-
ables the study of LMs both behaviorally and structurally, by examining their internal mechanisms,
without the need for labor-intensive circuit discovery or strong assumptions on the LM. Still, due
to its reliance on information-theoretic tools, our approach can only capture aggregate phenomena,
providing insights in an average sense rather than interpreting individual input prompts.

A different line of interpretability work views LM hidden states as structured representations that
can be ”probed”-probing refers to training lightweight models, often linear classifiers, to read out
specific information from hidden states in order to test what the model represents internally. Using
probing, researchers have shown that transformer hidden states encode structured belief-state and
world-model–like information (Shai et al., 2024; Gurnee & Tegmark, 2024; Hazineh et al., 2023).
Other works demonstrate that a single hidden state can carry information about multiple future
tokens (Pal et al., 2023; Wu et al.) and that probing can reveal the underlying algorithms LLMs use
to solve tasks (Allen-Zhu, 2024). Although there are some mathematical foundations for them (Xu

3

Published as a conference paper at ICLR 2026

et al.), standard accuracy-based probing has been criticized for combining what the probe can learn
with what the representation actually encodes, making the results sensitive to probe capacity, data
size, and hyperparameters (Hewitt & Liang, 2019; Pimentel et al., 2020). Further, high probe scores
often come from exploiting superficial linear context cues rather than genuine structural knowledge
(Kunz & Kuhlmann, 2020): probing can even reveal features that a model does not use for its task
(Ravichander et al., 2021; Kumar et al., 2022). Consequently, some critiques motivate adopting
information-theoretic lenses (Voita & Titov, 2020; Diego-Simón et al., 2025). Similar to some of
these information-theoretic approaches (Tishby & Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017;
Skean et al., 2025; Voita et al., 2019), our method makes use of information theory. For a more
detailed discussion of related work, please refer to App. C.

2 METHOD

Given a prefix sequence of length T , x1:T = [x1, x2, . . . , xT], the decoder-only LM, M, generates
subsequent tokens {x̂T+τ | τ = 1, 2, . . . } autoregressively. We denote the hidden activation at
position t after the ℓth transformer layer by hℓ

t ∈ Rd where d is the hidden dimension of the model.

In our analysis, we treat the outputs hℓ
t of individual transformer blocks as the fundamental units

of computation1. We posit that a block’s output is informative about the computation performed
within that block (Pal et al., 2023; Shai et al., 2024; Li et al., 2023; Elhage et al., 2021; Lind-
sey et al., 2025). We use them as a proxy for the model’s internal processing since each block’s
computation contributes to the overall function of the model. To analyze how planning emerges
in the model’s internal dynamics, we examine collections of layer–token indices S and aggregate
the corresponding block outputs as GS = {hℓ

t | (ℓ, t) ∈ S}, a representation for the computations
within its block. While GS provides a fine-grained representation of block computations, it often
contains unnecessary details for our planning analysis. Hidden states may encode small variations
due to token positions, normalization shifts, or attention noise, factors that are critical for exact out-
put reconstruction but irrelevant for studying planning structure. Moreover, MI estimates between
such high-dimensional vectors have high variance and are hard to find. To address both issues,
we construct coarse, discrete representations of GS . These abstractions preserve the structural de-
pendencies required for our analysis while filtering out irrelevant micro-level variability, yielding
more stable and interpretable MI estimates. We depict the proposed method in Fig. 1. In the first
step, we train a model that maps each collection GS to a coarse discrete representation ZS . Using
the trained model, we then obtain dataset-wide codes for the target hidden states and use these to
estimate mutual information between the coarse representations of LM’s internal computations.

Measuring mutual information between coarse representations. To investigate how planning
is realized within the model, we use MI as a principled way to quantify relationships between the
coarse representations of different computations, corresponding to Steps 2 and 3 of Fig. 1. Suppose
we focus on two hidden state blocks, GA and GB , which are random variables depending on the
data distribution and the trained model parameters. We denote their coarse, discrete representations
by ZA ∈ ZA and ZB ∈ ZB where ZA and ZB are the finite alphabets of possible codes. For
realizations za ∈ ZA and zb ∈ ZB , p(za, zb), p(za), and p(zb) refer to the joint probability of ZA

and ZB , and the marginal probabilities of ZA and ZB , respectively. Mutual information, which
measures how much knowing ZA reduces uncertainty about ZB (and vice versa), is defined as,

I(ZA;ZB) =
∑

za∈ZA

∑
zb∈ZB

p(za, zb) log
p(za, zb)

p(za) p(zb)
. (1)

Since the true data distribution is inaccessible, we approximate by replacing p(za), p(zb), and
p(za, zb) in Eq. 1 with their empirical estimates from the datasets, obtaining by counting code pairs
as in Step 2 of Fig. 1. We analyze the finite-sample error of this count-based MI estimator (and a
bias-corrected variant) in App. E. We do not interpret MI as a direct measure of planning; rather,
we use MI comparatively. We further define normalized mutual information (nMI) metric as

nMI(ZA;ZB) =
I(ZA;ZB)

Imax
. (2)

where Imax denotes the maximum value across the set of MI calculations performed in the same ex-
perimental analysis for comparison. For our purpose of LM planning investigation, the nMI metric

1We use the terms “hidden state” and “(hidden) activation” interchangeably to refer to these outputs.

4

Published as a conference paper at ICLR 2026

Prefix Output
G𝒮

Language Model

G𝒮 Encoder Decoder Ĝ𝒮
Z

Discretization Codebook
vector

Step 1: Train VQ-VAEs

G𝒮A
Encoder A

ZA

Discretization

G𝒮B
Encoder B

ZB

Step 2: Save (ZA, ZB) statistics

Step 3: Calculate the mutual information, I (ZA; ZB), using the statistics

Figure 1: The proposed method. Step 1 (training): For a frozen LM M, hidden states from
selected transformer blocks GS are passed through a VQ-VAE encoder, which maps each block to
a latent vector and then to a discrete codebook index ZS ∈ [K], providing coarse summaries of
internal computations. Step 2 (analysis): For two sets of hidden-state blocks, GSA

and GSB
, we

apply the trained encoder and codebook to the dataset to obtain discrete variables ZA and ZB and
collect their empirical co-occurrence counts. Step 3: Using these statistics, we estimate joint and
marginal distributions p(za, zb), p(za), and p(zb) to compute mutual information I(ZA;ZB) (and
its normalized variant). Then, we analyze how information is shared between different components
of the model’s computation.

is sufficient since our analyses depend on relative, rather than absolute, comparisons between sets of
computations. Accordingly, all claims are about within-setting trends, not about nMI as an absolute
planning score. Absolute values can be misleading for three reasons: (i) the estimated MI of coarse
representations is bounded above by the logarithm of the alphabet size, making it inherently de-
pendent on the experimental choice; (ii) any coarse-graining necessarily discards some information,
which is advantageous for our setting as discussed but removes any meaning of absolute MI values
related to the original hidden states; and (iii) answering our three research questions (§ 3) requires
only relative comparisons of MI instead of relying on absolute values.

Acquiring coarse representations. To estimate MI between the high-level representations of hid-
den state blocks, GS , we need to find a mapping from GS to the discrete codes, as depicted in
Step 1 of Fig. 1. The size of target index set S and its corresponding activation outputs G may
vary depending on the analysis. For instance, when examining all block outputs across the prefix
tokens, S spans every layer and grows with the prefix length T . Since neural networks are effective
at learning representations, we employ an encoder-decoder neural network architecture: the encoder
maps the potentially long and variable-sized GS to a compact representation, and the decoder aims
to recover GS from it. Leveraging the effectiveness in handling variable-length inputs and learning
rich representations (Lin et al., 2022), we adopt transformer-based encoder and decoder models.
Specifically, we employ Vector-Quantized Variational Autoencoder (VQ-VAEs; Van Den Oord et al.
2017). VQ-VAE is a framework consisting of an encoder-decoder network with a trainable embed-
ding codebook between them to discretize the encoder’s output.

Concretely, for each family of index sets S used in our analyses, we train a separate single VQ-VAE
consisting of an encoder E, a codebook {ek}Kk=1 ⊂ Rde , and a decoder D. Given a block GS , the
encoder produces a latent vector rS = E(GS) ∈ Rde . We then quantize by nearest neighbor in the
codebook,

k⋆ = arg min
k∈[K]

∥rS − ek∥22, ZS ≡ k⋆, r̃S ≡ ek⋆ ,

and reconstruct ĜS = D(r̃S). During the training of VQ-VAE model, gradients are propagated
through the quantization step using the straight-through estimator (Van Den Oord et al., 2017). The
overall training objective combines reconstruction, standard vector-quantization, and two regular-
ization terms that promote informative and well-used codes:

L = Lrec + λq Lvq + λcos Lcos + λent Lent. (3)

In Eq. 3, Lrec is a reconstruction loss that encourages ĜS to match GS , Lvq is the quantization
and commitment loss as in Van Den Oord et al. (2017) tying encoder outputs to discrete codes. In

5

Published as a conference paper at ICLR 2026

addition to vanilla VQ-VAE’s training objective we introduce Lcos, a cosine-similarity penalty that
pushes codebook embeddings {ek} to be diverse, and Lent, an entropy term that discourages collapse
to a small subset of codes. These losses encourage representations assigned to different codes to
diverge so that they are not only compact but also discriminative.2 This enables embeddings to
spread out in the latent space and ensures that codes capture distinct features of the data making
them informative and discriminative. Details about the formulas and implementation are given in
App. A.1 and App. A.2.

Overview of the pipeline. Fig. 1 summarizes the procedure. For a frozen pretrained LM M, we
run prefixes x1:T , select block index sets S, and extract the corresponding hidden-state blocks GS .
For each family of blocks, we then train a VQ-VAE so that its encoder maps each GS to a discrete
code ZS ∈ [K], where K is the codebook size (Step 1). Instead of fine-grained activations, we
work with these high-level representation codes that serve as compact summary of complex internal
computations in G. Importantly, we treat these codes not as semantically meaningful entities, but
as representational summaries that allow us to find information relations. Therefore, the estimated
mutual information depends not only on the underlying relationship between the hidden state them-
selves, but also on how they are encoded to high-level codes. Our use of VQ-VAE ensures that the
learned representations are nontrivial since the decoder achieves meaningful reconstructions, and
the cosine similarity penalty enforces diversity among codebook embeddings, which is validated
by the reconstruction quality and codebook similarity results presented in App. A.1. In Step 2, we
apply the trained encoder and codebook to the full dataset to obtain codes ZA and ZB for two com-
pared block collections GA and GB , count their co-occurrences. Then, we using the empirical joint
and marginal distributions, in Step 3, we find I(ZA;ZB) and its normalized variant nMI(ZA;ZB),
used as measures of how information is shared between different parts of the model’s computa-
tion. Furthermore, we validate that our framework can find a closer relation to a known underlying
distribution, in a representative experimental setting. Due to space limits, we refer the reader to
App. A.4 for the details and results of the validation experiment. Experiments discussing probing-
based method (Xu et al.) and a diagnostic illustrating why probing can have confounding effects are
presented in App. D.2–D.5.

While our framework is general and could be applied to other applications in deep learning, in this
work we use it to analyze how transformer models implement planning in practice, focusing on
dimensions that are both theoretically meaningful and empirically informative.

3 ANALYSIS OF PLANNING CAPABILITY

We leverage our method to investigate two core planning-related aspects—(3.1) how much a model’s
prefix computation is forward-looking about future tokens, and (3.2) whether it preserves alternative
correct continuations—and, as an application of the same framework, (3.3) how decision-relevant
information is encoded across layers and earlier prefix blocks when producing next-token decisions.
In our analyses, we use architecture-matched GPT-3 Small (Brown, 2020) models employing rotary
position embeddings (Su et al., 2024). We report results from multiple seeds.

Training objectives: next-token vs. multi-token. In our analysis, we examine two variants of
LM training objectives: MNTP is trained with the standard next-token prediction (NTP) loss (LNTP),
which optimizes conditional likelihood of the immediate next token, and MMTP is trained with the
multi-token prediction (MTP) loss (LMTP), which encourages models to align their hidden states
with predictions across multiple forthcoming tokens. Following Gloeckle et al. (2024) for MTP
implementation, we use shared transformer layers and separate heads for the next tokens during
training. During inference, both models use standard autoregressive next-token generation. Intu-
itively, NTP prioritizes local token-by-token consistency, whereas MTP incentivizes models to form
short-horizon plans and reduces strictly myopic behavior (Nagarajan et al., 2025; Bachmann & Na-
garajan, 2024). Both losses are described in detail in App. B.1.

Datasets. Our experiments span three datasets chosen to cover distinct aspects of planning. (i)
A context-free grammar (CFG) dataset (Allen-Zhu, 2024) emphasizes token-level rules and local

2In short, our VQ-VAE setting with the additional cosine loss combines the regularizing and contrastive
approaches for representation learning, e.g., (Chen et al., 2020; Gao et al., 2021)

6

Published as a conference paper at ICLR 2026

La
yer

Nu
mb

er

xt : prefix input at t ̂xt : model output at th(ℓ)
t : ℓth layer hidden state at t

…
…

…

̂xT+1 ̂xT+τ+1… …

x1 xTx2 ̂xT+1

…

…
1
2

L−1
L

… …

…

…

11

1

2

8

17

13

7

23

9

14

19

4

1

2

Start node
Goal node

1
2

L−1
L

Block Number
1B

̂xT+1

…

…
…
…

̂xT+2 …
…
…
…
…

…

…
Solution 1
Solution 2
Decoy
Other

Figure 2: The visualizations of experimental settings. Left: Horizon of the plan and branches in
the plan experiment (§ 3.1 & § 3.2). Middle: Information in the computational history experiment
(§ 3.3). Colors in the left and middle panels denote the target variables. Right: An illustration of a
simplified sample in PF task. Graphs and token numbers are randomly generated except for the start
(1) and goal node (2). A sample prompt is “19 23 , 13 2 , 11 8 , 4 17 , 1 23 , 9 7, 2 8, 17 1 , 13 2 , 14
23 , 23 7 , 1 23 :” and correct responses are “1 11 8 2” or “1 17 13 2”.

coherence. Tokens in CFG carry intrinsic meaning, much like words in natural language, and are
governed by both local and global syntactic constraints. The model’s task is to learn the grammar
and predict valid next tokens that obey its rules. As a controlled substitute for natural language, CFG
allows us to adjust vocabulary size and task difficulty, providing a clean environment for scientific
study. (ii) A path-finding (PF) task (see Figure 2, right for illustration) requires models to generate
valid paths between a fixed start and goal node in graphs with varying sizes and edge structures.
The node vocabulary consists of 28 unique tokens, each representing a node identity. Unlike in
CFG, these tokens do not carry intrinsic semantics and the meaning of a node token arises only
through the set of edges it participates in. To construct language-model inputs, we linearize the
graph by writing edges as pairs of adjacent node tokens separated by commas in a random order
to prevent the model from exploiting positional shortcuts (e.g., “u v, r t, . . . ”). This edge-list
representation ensures that the model must infer connectivity and graph structure rather than rely
on token identity alone. Solving PF thus requires composing multiple reasoning steps over these
relational inputs, analogous to chaining lemmas to form a proof, introducing a natural flavor of
long-horizon planning. We construct two variants, PF-Short and PF-Long, which require finding
paths of length 4 and 6 (including start and goal), respectively. (iii) A natural language dataset,
OpenWebText (Gokaslan et al., 2019), reflects real-world distributional modeling. Here the model
predicts continuations consistent with natural text. These datasets cover a spectrum from low-level
symbolic structure to high-level naturalistic text. We refer the reader to App. B.2 for details.

3.1 HORIZON OF THE PLAN

In autoregressive generation, predictions for tokens beyond the immediate next one depend on both
the prefix and the model’s own generated outputs, which raises the question of how much computa-
tion the model allocates to tokens beyond the immediate prediction. We specifically ask:

How much do LMs plan about future tokens before deciding on the immediate next token?
To answer this question, we analyze two sets of activations. First, for a prefix of length T , we take
the final-layer hidden states of the autoregressively generated tokens, hL

T+τ for τ ≥ 0. As hL
T+τ

fully specifies the distribution over x̂T+τ+1, we treat it as the model’s decision state and use its
code ZL

T+τ as a concise summary of the strategy employed for that token, obtained from a trained
VQ-VAE. Second, we collect all prefix activations across layers:

H = {hℓ

t | t = 1, . . . , T ; ℓ = 1, . . . , L− 1 } ∈ RT×(L−1)×d,
where H encodes the entirety of the model’s prefix computation that has an effect on future to-
ken generations. Training a separate VQ-VAE over H , we get the LM’s pre-output computation
summary, and denote its high-level code as Z1:L−1

1:T . H and hL
T+τ are respectively shown in red

and blue colors in Figure 2 (left). We address our question by comparing how much the prefix

7

Published as a conference paper at ICLR 2026

computation’s summary Z1:L−1
1:T tells us about the model’s decision state at the generated tokens.

We measure the nMI between Z1:L−1
1:T and ZL

T+τ for τ≥0 as defined in Eq. 2 with normalization
Imax = max{I(Z1:L−1

1:T ;ZL
T+n)}n. If this ratio remains significantly above zero for large τ , then

the pre-output computation Z1:L−1
1:T carries information on the strategy to produce x̂T+τ , indicating

the model’s initial prefix processing is not merely myopic but encodes forward-looking structure
that persists into later generations. Conversely, if the ratio quickly decays to zero, then prefix com-
putations primarily support only the immediate next prediction, with little evidence of long-horizon
dependence between prefix computation and later decision states.

Context-free grammar results. We generate sentences of length [16, 67] from CFG rules, and for
each sample select a prefix length T ∈ [8, 24] uniformly at random before, with the model generating
the remaining continuation. For MNTP and MMTP, Figure 3a reports the nMI between Z1:L−1

1:T and
ZL
T+τ across τ ≥ 0. Because CFG tokens have intrinsic meaning and are significantly governed by

local syntactic constraints, it is expected that prefix computations correlate most strongly with the
first few generated tokens. Indeed, Z1:L−1

1:T retains the highest information about the decision state
for τ = 0, and by τ = 10 the nMI drops to roughly one-fifth of its initial value. This indicates that
the pre-output computation encodes a short-horizon plan tied mainly to the next few tokens. We
observe the same rapid decay of nMI when scaling the LM to 0.3B parameters (App. D.1. MMTP
exhibits a similar pattern, with a slightly slower decay for τ < 10, suggesting that the MTP loss does
not substantially extend the horizon of pre-output computation in a model well-trained on CFG.

Path finding results. On PF-Short and PF-Long, we trained models on NTP and MTP losses.
Because the start and end nodes are fixed tokens, the challenge lies in predicting the correct interme-
diate nodes (τ = 1, 2 for PF-Short and τ = 1, 2, 3, 4 for PF-Long) that connect them. We therefore
focus our analysis on the intermediate positions and compute nMI as defined in Eq. 2. Figure 3b
shows nMI across the generated path as well as the accuracy of correctly finding the whole path. For
PF-Short, we see similar nMI trends across generated tokens for both MMTP and MNTP, which both
attain high accuracy. Interestingly, prefix computations encode more information about the second
intermediate node than about the first. A likely explanation is that there is less uncertainty about the
final token given the edge information and that the model spares more pre-output computation to
find the last token. This resembles a strategy to work backwards from the goal, as a human solving
this task might do. Similarly, for PF-Long, in Figure 3b, both MNTP and MMTP prefix computations
encode a comparatively high amount of MI about the future tokens, unlike to the steady decay seen
in CFG. This suggests that pre-output computations are not limited to the next token but also embed
plans for upcoming positions, reflecting deliberate allocation of capacity toward future outputs. This
finding is aligned with previous research on training LMs to exploit this reverse-solving approach,
which has been shown to improve performance (Bachmann & Nagarajan, 2024). Taken together,
these results indicate that LMs trained with both NTP and MTP loss can exhibit non-myopic behav-
ior when trained on tasks that demand it. Lastly, in the PF-Long experiment, we observe that the
nMI of MMTP is slightly more uniform across τ than that of MNTP, which is a likely explanation
for its higher accuracy by better predicting the earlier (harder) tokens along the generated path.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.2

0.4

0.6

0.8

1.0

nM
I

CFG Task: Normalized MI vs.

NTP Loss
MTP Loss

(a) Context-free grammar

1 2

0.0

0.2

0.4

0.6

0.8

1.0

nM
I

PF-Short: nMI vs.

NTP Loss (Acc:0.92)
MTP Loss (Acc:0.87)

1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

PF-Long: nMI vs.

NTP Loss (Acc:0.60)
MTP Loss (Acc:0.85)

(b) Path finding

Figure 3: nMI results between the prefix summary codes and the last hidden state codes of generated
tokens for CFG (a) and PF (b) tasks. nMI decays fast in CFG, consistent with short-range depen-
dence, while PF maintains or even increases nMI beyond τ = 1, consistent with longer-horizon
predictive dependence of prefix computation on later decision states.

8

Published as a conference paper at ICLR 2026

Table 1: Mean ± std for I(ZH ;Zalt)
/
I(ZH ;Zdecoy) metric and accuracy values in branches in the

plan experiment (§ 3.2). Models encode information about unchosen correct branches more strongly
than unrelated decoys, indicating branch awareness in prefix computations.

Model PF-Short PF-Long
I(ZH ;Zalt)
I(ZH ;Zdecoy)

Accuracy I(ZH ;Zalt)
I(ZH ;Zdecoy)

Accuracy
MNTP 7.60 ± 0.78 0.92 ± 0.03 1.45 ± 0.01 0.60 ± 0.01
MMTP 6.29 ± 0.17 0.88 ± 0.05 1.82 ± 0.27 0.85 ± 0.02

Overall, the dependency between pre-output summaries Z1:L−1
1:T and decision states ZL

T+τ confirms
that the planning horizon is task-dependent. On CFG, nMI drops quickly with τ (short, local plan-
ning); on PF, it stays high and can peak beyond τ = 1, allocating compute to later steps.

3.2 BRANCHES IN THE PLAN

In many tasks, there can be multiple correct continuations for a given query. For exam-
ple, a math problem may admit different solution strategies, or a natural language prompt
may allow several equally valid completions. This raises the question of whether LMs, when
producing one correct answer, also implicitly encode information about other possible cor-
rect answers. Specifically, for the subset of samples the model solves correctly, we ask:

Does the model consider alternative correct answers when generating the next token?
To investigate this question, we use the PF datasets, where each sample is constructed to have two
correct paths and one decoy path (see App. B.2.2). By design, the correct paths and the decoy path do
not share any common nodes, ensuring no correlation among them. Similar to § 3.1, we summarize
prefix computations H into high-level codes Z1:L−1

1:T using a VQ-VAE encoder. In addition, we train
a separate VQ-VAE to encode an entire path to find codes for the alternative correct path (Zalt) and
the decoy incorrect path (Zdecoy). H and the generated path are visualized in Figure 2 (left) with red
and green color, respectively. We then measure the MI between the prefix and alternative solution
versus that between the prefix and decoy path through the ratio I(Z1:L−1

1:T ;Zalt)
/
I(Z1:L−1

1:T ;Zdecoy).
A ratio above one means that the prefix computations encode more information about the alternative
path than the decoy, indicating branch awareness in pre-output planning.

Table 1 reports this ratio together with path-finding accuracy. On PF-Short, both MNTP and MMTP
yield ratios well above 1 and high accuracy, showing that the prefix retains information about unused
correct branches on easier instances. On PF-Long, the ratios are smaller yet remain above 1, which
indicates attenuated but persistent branch information as path length grows. MMTP achieves both
higher accuracy and a larger ratio than MNTP, suggesting that a model which solves the task more
reliably also maintains richer branch-aware computation in its prefix states. Because the correct and
decoy paths are disjoint, trivial overlap is ruled out as an explanation.

5 4 3 2 1
Block Number (k)

7
6
5
4
3
2
1

La
ye

r
N

um
be

r
(

)

1.000.570.560.570.57

0.970.530.530.530.53

0.900.450.440.450.45

0.850.380.380.380.38

0.850.380.380.380.38

0.800.360.350.350.35

0.410.340.330.340.34

5 4 3 2 1
Block Number (k)

7
6
5
4
3
2
1

0.700.580.560.560.57

0.660.530.540.520.53

0.590.450.450.450.45

0.530.380.380.380.38

0.530.390.380.380.38

0.500.360.360.350.34

0.370.340.330.340.34

1

7
6
5
4
3
2
1

0.30

0.31

0.31

0.32

0.32

0.30

0.04

Conditional nMInMI over Blocks and Layers for Generated Tokens at = 0 and = 1

Figure 4: nMI across blocks and layers, and conditional nMI. Left: nMI between the hidden state
block codes and the token decision state code at τ = 0, nMI(Bℓ

k;Z
L
T). Middle: nMI between

block codes and the last-layer decision code at τ = 1, nMI(Bℓ
k;Z

L
T+1). In both heatmaps, nMI is

higher for recent blocks (small k) and final layers (high ℓ). Right: Conditional nMI for the 1st block,
nMI(Zℓ

T−15:T−1;Z
L
T | Zℓ

T), showing that most of the dependence between the 1st block and the
generated token at τ = 0 is attributable to the final prefix position T .

9

Published as a conference paper at ICLR 2026

3.3 INFORMATION IN THE COMPUTATIONAL HISTORY

In an autoregressive LM, the final hidden state at the end of the prefix determines the next token, yet
the computation producing it spans layers and earlier positions. This raises a natural question:

Which earlier layers and prefix blocks remain informative about the next-token decision state?
We view this primarily as a diagnostic. It does not tell us how to improve the model, but it quan-
tifies how concentrated next-token decision information is in recent vs. earlier computation, which
can help design choices that alter attention span or depth-wise context allocation. To answer the
question, we use an 8-layer decoder-only Transformer trained on OpenWebText with NTP objec-
tive. We estimate the nMI between the codes of the model’s decision state for the generated tokens
and of blocks of prefix hidden state computations within the LM. Similar to § 3.1, we obtain a
summary of the strategy employed for token x̂T+τ+1, denoted ZL

T+τ with a VQ-VAE trained over
the last layer of hidden states. We also partition each layer’s prefix hidden states into contiguous,
non-overlapping blocks of length 16 and train a VQ-VAE to acquire the code Bℓ

k where the block
index k ∈ {1, . . . , 12} denotes the kth block from the end of the prefix (i.e., k = 1 corresponds to
the most recent 16 time steps before generation). In Figure 2 (middle), a sample block and a sample
last hidden state are illustrated. We quantify the dependence between the codes of each computa-
tion block and the decision state by measuring nMI between Bℓ

k and ZL
T+τ across all layers ℓ and

blocks k, as defined in Eq. 2, with Imax = max{I(Bℓ
k;Z

L
T+n)}ℓ,k,n. Heatmaps in Figure 4 (left

and middle) show the results for τ= 0 and 1 (see App. B.5.1 for τ > 1).

We observe that last layer computations retain the most information about the decision state of both
immediate and future tokens which is aligned with the results of Pal et al. (2023) and consistent
with the design choice of assigning longer attention spans to higher layers (Sukhbaatar et al., 2019;
Beltagy et al., 2020). Furthermore, along the block axis, we observe a clear recency effect across
all layers: the codes of the most recent blocks, i.e., final time steps of the prefix, computations (Z1),
exhibit the highest nMI (Eq. 2) with the decision state of the generated tokens, and the nMI decays
over earlier blocks in the prefix. Although analysis along both axes indicates that the LM primarily
relies on the most recent computations, we still observe appreciable nMI in lower layers (small ℓ)
and earlier blocks (large k). This suggests that LMs retain information from earlier parts of the
prefix when generating new tokens, instead of relying only on the most recent computations.

We also define conditional normalized mutual information, nMI(Zℓ
T−15:T−1;Z

L
T | Zℓ

T) (see
App. B.5.2 for details), where Zℓ

T−15:T−1 denotes the codes from layer ℓ spanning prefix posi-
tions from T−15 to T−1. This quantity, reported in Figure 4 (right), measures how much additional
information about the decision state ZL

T is captured by earlier time steps in the 1st block, beyond
what is already contained in the final prefix position Zℓ

T . The resulting values are approximately 0.3,
which is much lower than the unconditional nMI values of the 1st block observed in the left heatmap.
This gap suggests that the majority of the dependency between the 1st block and the decision state
arises from the final prefix token at position T . This finding further reinforces our earlier conclusion:
the LM primarily relies on the most recent computations when generating new tokens.

4 CONCLUSION

Drawing on a VQ-VAE, we develop an information-theoretic pipeline that compresses hidden-state
trajectories into discrete codes and uses them to compute MI across an LM’s computation. This lens
measures (i) how prefix computations inform future decision states, (ii) whether models retain in-
formation about alternative continuations, and (iii) how decision-relevant information is distributed
across layers and prefix blocks. We evaluate models trained with standard NTP versus MTP losses
on a synthetic CFG task, PF tasks, and natural text; we find no consistent differences between NTP-
and MTP-trained models. The results are strongly task-dependent: in CFG, nMI between the prefix
and the decision state decays quickly, consistent with largely myopic computation; in path-finding,
the prefix retains substantial information about later steps and alternative correct paths, indicating
stronger branch awareness. Across settings, we observe a recency effect, decision states depend most
on late layers and recent blocks, while earlier activations remain measurably informative. Overall,
LMs exhibit internal planning, but its extent and form vary with the task and training objective; our
VQ-VAE-MI framework provides an automated way to study these behaviors. Future work could
extend this analysis to reasoning models and test architectural changes that promote planning.

10

Published as a conference paper at ICLR 2026

Acknowledgements. This work was partially supported by the US National Science Foundation
under grants CCF 2045694, CNS-2112471, CPS-2111751, ONR N00014-23-1-2149 to GJ and US
Department of Energy under grant DESC0025652 to CJW. In addition, the work was supported by
Pennsylvania Infrastructure Technology Alliance, NSF Grants 2154171, CAREER Award 2339112,
NSF Award 2512805, CMU CyLab Seed Funding to GQ. This work used PSC Bridges-2 GPU at
Pittsburgh Supercomputing Center through allocation CIS250226 from the Advanced Cyberinfras-
tructure Coordination Ecosystem: Services & Support (ACCESS) program, which is supported by
US National Science Foundation grants #2138259, #2138286, #2138307, #2137603, and #2138296.

Reproducibility statement. We describe our method in § 2, with further details provided in the
relevant appendices. Our experimental analyses are presented in § 3, with additional details likewise
included in the appendices. To ensure reproducibility, we provide the full code, tools to acquire the
datasets, and instructions in the supplementary material. In addition, we include a README file
that explains how to run each experiment separately.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Jihyun Janice Ahn and Wenpeng Yin. Prompt-reverse inconsistency: LLM self-inconsistency be-
yond generative randomness and prompt paraphrasing. In Second Conference on Language Mod-
eling, 2025. URL https://openreview.net/forum?id=yfRkNRFLzl.

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to imple-
ment preconditioned gradient descent for in-context learning. Advances in Neural Information
Processing Systems, 36:45614–45650, 2023.

Zeyuan Allen-Zhu. ICML 2024 Tutorial: Physics of Language Models, July 2024. Project page:
https://physics.allen-zhu.com/.

Gregor Bachmann and Vaishnavh Nagarajan. The pitfalls of next-token prediction. In Forty-first
International Conference on Machine Learning, 2024. URL https://openreview.net/
forum?id=76zq8Wkl6Z.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gian-
inazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of
thoughts: Solving elaborate problems with large language models. In Proceedings of the AAAI
conference on artificial intelligence, volume 38, pp. 17682–17690, 2024.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Con-
erly, Nick Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu,
Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex
Tamkin, Karina Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter,
Tom Henighan, and Christopher Olah. Towards monosemanticity: Decomposing language
models with dictionary learning. Transformer Circuits Thread, 2023. https://transformer-
circuits.pub/2023/monosemantic-features/index.html.

Tom et al. Brown. Language models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell,
M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33,
pp. 1877–1901. Curran Associates, Inc., 2020.

Lawrence Chan, Adrià Garriga-Alonso, Nicholas Goldwosky-Dill, Ryan Greenblatt, Jenny
Nitishinskaya, Ansh Radhakrishnan, Buck Shlegeris, and Nate Thomas. Causal scrub-
bing, a method for rigorously testing interpretability hypotheses. AI Alignment Fo-
rum, 2022. https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN/
causal-scrubbing-a-method-for-rigorously-testing.

11

https://openreview.net/forum?id=yfRkNRFLzl
https://physics.allen-zhu.com/
https://openreview.net/forum?id=76zq8Wkl6Z
https://openreview.net/forum?id=76zq8Wkl6Z
https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorously-testing
https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorously-testing

Published as a conference paper at ICLR 2026

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In Hal Daumé III and Aarti Singh (eds.), Pro-
ceedings of the 37th International Conference on Machine Learning, volume 119 of Proceed-
ings of Machine Learning Research, pp. 1597–1607. PMLR, 13–18 Jul 2020. URL https:
//proceedings.mlr.press/v119/chen20j.html.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
coders find highly interpretable features in language models. arXiv preprint arXiv:2309.08600,
2023.

Pablo J Diego-Simón, Emmanuel Chemla, Jean-Rémi King, and Yair Lakretz. Probing syntax in
large language models: Successes and remaining challenges. arXiv preprint arXiv:2508.03211,
2025.

Jacob Dunefsky, Philippe Chlenski, and Neel Nanda. Transcoders find interpretable llm feature
circuits. Advances in Neural Information Processing Systems, 37:24375–24410, 2024.

Nelson Elhage, Neel Nanda, Catherine Olsson, and et al. A mathematical frame-
work for transformer circuits. Transformer Circuits Thread, 2021. https://transformer-
circuits.pub/2021/framework/index.html.

Cheng Gao, Yuan Cao, Zihao Li, Yihan He, Mengdi Wang, Han Liu, Jason Matthew Klusowski,
and Jianqing Fan. Global convergence in training large-scale transformers. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=9wtlfRKwZS.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. SimCSE: Simple contrastive learning of sen-
tence embeddings. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-
tau Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 6894–6910, Online and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.552. URL
https://aclanthology.org/2021.emnlp-main.552/.

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Rozière, David Lopez-Paz, and Gabriel Syn-
naeve. Better & faster large language models via multi-token prediction. arXiv preprint
arXiv:2404.19737, 2024.

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus. http:
//Skylion007.github.io/OpenWebTextCorpus, 2019.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, and et al. The llama 3 herd of models, 2024.
URL https://arxiv.org/abs/2407.21783.

Wes Gurnee and Max Tegmark. Language models represent space and time. In The Twelfth Interna-
tional Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=jE8xbmvFin.

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. Advances
in neural information processing systems, 31, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019.

Dean S Hazineh, Zechen Zhang, and Jeffery Chiu. Linear latent world models in simple transform-
ers: A case study on othello-gpt. arXiv preprint arXiv:2310.07582, 2023.

John Hewitt and Percy Liang. Designing and interpreting probes with control tasks. In Kentaro
Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP), pp. 2733–2743, Hong Kong, China,
November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1275. URL
https://aclanthology.org/D19-1275/.

12

https://proceedings.mlr.press/v119/chen20j.html
https://proceedings.mlr.press/v119/chen20j.html
https://openreview.net/forum?id=9wtlfRKwZS
https://openreview.net/forum?id=9wtlfRKwZS
https://aclanthology.org/2021.emnlp-main.552/
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=jE8xbmvFin
https://openreview.net/forum?id=jE8xbmvFin
https://aclanthology.org/D19-1275/

Published as a conference paper at ICLR 2026

Abhinav Kumar, Chenhao Tan, and Amit Sharma. Probing classifiers are unreliable for concept
removal and detection. Advances in Neural Information Processing Systems, 35:17994–18008,
2022.

Jenny Kunz and Marco Kuhlmann. Classifier probes may just learn from linear context features. In
Donia Scott, Nuria Bel, and Chengqing Zong (eds.), Proceedings of the 28th International Confer-
ence on Computational Linguistics, pp. 5136–5146, Barcelona, Spain (Online), December 2020.
International Committee on Computational Linguistics. doi: 10.18653/v1/2020.coling-main.450.
URL https://aclanthology.org/2020.coling-main.450/.

Yann LeCun. A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27. Open
Review, 62(1):1–62, 2022.

Kenneth Li, Aspen K Hopkins, David Bau, Fernanda Viégas, Hanspeter Pfister, and Martin Wat-
tenberg. Emergent world representations: Exploring a sequence model trained on a synthetic
task. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=DeG07_TcZvT.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic evaluation of language
models. arXiv preprint arXiv:2211.09110, 2022.

Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu. A survey of transform-
ers. AI Open, 3:111–132, 2022. ISSN 2666-6510. doi: https://doi.org/10.1016/j.aiopen.
2022.10.001. URL https://www.sciencedirect.com/science/article/pii/
S2666651022000146.

Zhenru Lin, Jiawen Tao, Yang Yuan, and Andrew Chi-Chih Yao. Existing llms are not self-consistent
for simple tasks. arXiv preprint arXiv:2506.18781, 2025.

Jack Lindsey, Wes Gurnee, Emmanuel Ameisen, Brian Chen, Adam Pearce, Nicholas L. Turner,
Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar, Adly
Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan, Adam
Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman, Kelley
Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. On the biology of a large language
model. Transformer Circuits Thread, 2025. URL https://transformer-circuits.
pub/2025/attribution-graphs/biology.html.

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. In The Eleventh International Conference on Learning Representa-
tions, 2023. URL https://openreview.net/forum?id=De4FYqjFueZ.

David Q Mayne, James B Rawlings, Christopher V Rao, and Pierre OM Scokaert. Constrained
model predictive control: Stability and optimality. Automatica, 36(6):789–814, 2000.

Kevin Meng, David Bau, Alex J Andonian, and Yonatan Belinkov. Locating and editing factual asso-
ciations in GPT. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.),
Advances in Neural Information Processing Systems, 2022. URL https://openreview.
net/forum?id=-h6WAS6eE4.

Ida Momennejad, Hosein Hasanbeig, Felipe Vieira Frujeri, Hiteshi Sharma, Nebojsa Jojic, Hamid
Palangi, Robert Ness, and Jonathan Larson. Evaluating cognitive maps and planning in large
language models with cogeval. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=VtkGvGcGe3.

Manfred Morari and Jay H. Lee. Model predictive control: past, present and future. Computers &
Chemical Engineering, 23:667–682, 1999. URL https://api.semanticscholar.org/
CorpusID:19026701.

Vaishnavh Nagarajan, Chen Henry Wu, Charles Ding, and Aditi Raghunathan. Roll the dice &
look before you leap: Going beyond the creative limits of next-token prediction. In Forty-second
International Conference on Machine Learning, 2025. URL https://openreview.net/
forum?id=Hi0SyHMmkd.

13

https://aclanthology.org/2020.coling-main.450/
https://openreview.net/forum?id=DeG07_TcZvT
https://www.sciencedirect.com/science/article/pii/S2666651022000146
https://www.sciencedirect.com/science/article/pii/S2666651022000146
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://openreview.net/forum?id=De4FYqjFueZ
https://openreview.net/forum?id=-h6WAS6eE4
https://openreview.net/forum?id=-h6WAS6eE4
https://openreview.net/forum?id=VtkGvGcGe3
https://api.semanticscholar.org/CorpusID:19026701
https://api.semanticscholar.org/CorpusID:19026701
https://openreview.net/forum?id=Hi0SyHMmkd
https://openreview.net/forum?id=Hi0SyHMmkd

Published as a conference paper at ICLR 2026

Catherine et al. Olsson. In-context learning and induction heads. Transformer Circuits Thread,
2022. https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html.

Koyena Pal, Jiuding Sun, Andrew Yuan, Byron Wallace, and David Bau. Future lens: Antici-
pating subsequent tokens from a single hidden state. In Jing Jiang, David Reitter, and Shumin
Deng (eds.), Proceedings of the 27th Conference on Computational Natural Language Learn-
ing (CoNLL), pp. 548–560, Singapore, December 2023. Association for Computational Lin-
guistics. doi: 10.18653/v1/2023.conll-1.37. URL https://aclanthology.org/2023.
conll-1.37/.

Liam Paninski. Estimation of entropy and mutual information. Neural computation, 15(6):1191–
1253, 2003.

Stefano Panzeri and Alessandro Treves. Analytical estimates of limited sampling biases in different
information measures. Network: Computation in neural systems, 7(1):87, 1996.

Tiago Pimentel, Josef Valvoda, Rowan Hall Maudslay, Ran Zmigrod, Adina Williams, and Ryan
Cotterell. Information-theoretic probing for linguistic structure. In Dan Jurafsky, Joyce Chai, Na-
talie Schluter, and Joel Tetreault (eds.), Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pp. 4609–4622, Online, July 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.acl-main.420. URL https://aclanthology.org/
2020.acl-main.420/.

Abhilasha Ravichander, Yonatan Belinkov, and Eduard Hovy. Probing the probing paradigm: Does
probing accuracy entail task relevance? In Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Linguistics: Main Volume, pp. 3363–3377, 2021.

Jonathan Richens, Tom Everitt, and David Abel. General agents need world models. In Forty-second
International Conference on Machine Learning, 2025. URL https://openreview.net/
forum?id=dlIoumNiXt.

Yash Saxena, Sarthak Chopra, and Arunendra Mani Tripathi. Evaluating consistency and reasoning
capabilities of large language models. In 2024 Second International Conference on Data Science
and Information System (ICDSIS), pp. 1–5. IEEE, 2024.

Bilgehan Sel, Ruoxi Jia, and Ming Jin. LLMs can plan only if we tell them. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=K3KrOsR6y9.

Adam Shai, Paul M. Riechers, Lucas Teixeira, Alexander Gietelink Oldenziel, and Sarah Marzen.
Transformers represent belief state geometry in their residual stream. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024. URL https://openreview.
net/forum?id=YIB7REL8UC.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugging-
gpt: Solving ai tasks with chatgpt and its friends in hugging face. Advances in Neural Information
Processing Systems, 36:38154–38180, 2023.

Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via informa-
tion. arXiv preprint arXiv:1703.00810, 2017.

Oscar Skean, Md Rifat Arefin, Dan Zhao, Niket Nikul Patel, Jalal Naghiyev, Yann LeCun, and Ravid
Shwartz-Ziv. Layer by layer: Uncovering hidden representations in language models. In Forty-
second International Conference on Machine Learning, 2025. URL https://openreview.
net/forum?id=WGXb7UdvTX.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, and et al. Beyond the imitation game: Quanti-
fying and extrapolating the capabilities of language models. Transactions on Machine Learn-
ing Research, 2023. ISSN 2835-8856. URL https://openreview.net/forum?id=
uyTL5Bvosj. Featured Certification.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

14

https://aclanthology.org/2023.conll-1.37/
https://aclanthology.org/2023.conll-1.37/
https://aclanthology.org/2020.acl-main.420/
https://aclanthology.org/2020.acl-main.420/
https://openreview.net/forum?id=dlIoumNiXt
https://openreview.net/forum?id=dlIoumNiXt
https://openreview.net/forum?id=K3KrOsR6y9
https://openreview.net/forum?id=K3KrOsR6y9
https://openreview.net/forum?id=YIB7REL8UC
https://openreview.net/forum?id=YIB7REL8UC
https://openreview.net/forum?id=WGXb7UdvTX
https://openreview.net/forum?id=WGXb7UdvTX
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj

Published as a conference paper at ICLR 2026

Sainbayar Sukhbaatar, Édouard Grave, Piotr Bojanowski, and Armand Joulin. Adaptive attention
span in transformers. In Proceedings of the 57th Annual Meeting of the Association for Compu-
tational Linguistics, pp. 331–335, 2019.

Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In
2015 ieee information theory workshop (itw), pp. 1–5. Ieee, 2015.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Alessandro Treves and Stefano Panzeri. The upward bias in measures of information derived from
limited data samples. Neural Computation, 7(2):399–407, 1995.

Muhammed Ustaomeroglu and Guannan Qu. A theoretical study of (hyper) self-attention through
the lens of interactions: Representation, training, generalization. In Forty-second International
Conference on Machine Learning, 2025. URL https://openreview.net/forum?id=
wQvR1LHboD.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

E Voita and I Titov. Information-theoretic probing with minimum description length. In EMNLP
2020-2020 Conference on Empirical Methods in Natural Language Processing, Proceedings of
the Conference, pp. 183–196, 2020.

Elena Voita, Rico Sennrich, and Ivan Titov. The bottom-up evolution of representations in the
transformer: A study with machine translation and language modeling objectives. In Kentaro
Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP), pp. 4396–4406, Hong Kong, China,
November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1448. URL
https://aclanthology.org/D19-1448/.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language mod-
els. Transactions on Machine Learning Research, 2024a. ISSN 2835-8856. URL https:
//openreview.net/forum?id=ehfRiF0R3a.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt.
Interpretability in the wild: a circuit for indirect object identification in GPT-2 small. In
The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=NpsVSN6o4ul.

Siwei Wang, Yifei Shen, Shi Feng, Haoran Sun, Shang-Hua Teng, and Wei Chen. ALPINE: Un-
veiling the planning capability of autoregressive learning in language models. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024b. URL https:
//openreview.net/forum?id=WFbZusv14E.

Xinyi Wang, Lucas Caccia, Oleksiy Ostapenko, Xingdi Yuan, William Yang Wang, and Alessandro
Sordoni. Guiding language model reasoning with planning tokens. In First Conference on Lan-
guage Modeling, 2024c. URL https://openreview.net/forum?id=wi9IffRhVM.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Wilson Wu, John Xavier Morris, and Lionel Levine. Do language models plan ahead for future
tokens? In First Conference on Language Modeling.

Yilun Xu, Shengjia Zhao, Jiaming Song, Russell Stewart, and Stefano Ermon. A theory of usable
information under computational constraints. In International Conference on Learning Represen-
tations.

15

https://openreview.net/forum?id=wQvR1LHboD
https://openreview.net/forum?id=wQvR1LHboD
https://aclanthology.org/D19-1448/
https://openreview.net/forum?id=ehfRiF0R3a
https://openreview.net/forum?id=ehfRiF0R3a
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=WFbZusv14E
https://openreview.net/forum?id=WFbZusv14E
https://openreview.net/forum?id=wi9IffRhVM

Published as a conference paper at ICLR 2026

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809–11822, 2023.

Wenhao Zhao, Qiran Zou, Rushi Shah, and Dianbo Liu. Representation collapsing problems in
vector quantization. In Neurips Safe Generative AI Workshop 2024, 2024. URL https://
openreview.net/forum?id=2aOEiTfcZ4.

Zirui Zhao, Wee Sun Lee, and David Hsu. Large language models as commonsense knowledge
for large-scale task planning. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=Wjp1AYB8lH.

Yongxin Zhu, Bocheng Li, Yifei Xin, Zhihua Xia, and Linli Xu. Addressing representation collapse
in vector quantized models with one linear layer, 2025. URL https://arxiv.org/abs/
2411.02038.

A METHOD DETAILS

In this section, we explain the details of our method and implementation.

A.1 VQ-VAE DESIGN AND IMPLEMENTATION

Let hℓt ∈ Rd denote the hidden activation at token position t after Transformer layer ℓ. We view
a computation block as a set of layer–token indices S ⊆ {1, . . . , L} × {1, . . . , T} and write the
corresponding activations as

GS = {hℓt | (ℓ, t) ∈ S }.
The goal is to map the variable-shaped GS to a discrete code zS ∈ [K] with a vector-quantized
variational autoencoder (VQ-VAE). These codes serve as coarse summaries that represent the com-
putation block and make information-theoretic analysis feasible. We measure dependencies between
computations using codes, for example I(ZA;ZB) for two blocks GA and GB , as in the main text
§ 2.

Architecture overview. We train separate VQ-VAEs for target S sets used in our analyses. Each
VQ-VAE has an encoder E that takes GS and outputs a latent vector rS ∈ Rde , a codebook
{ek}Kk=1 ⊂ Rde , and a decoder D that reconstructs ĜS from the selected codebook vector. Quanti-
zation uses nearest neighbors

k⋆ = arg min
k∈[K]

∥rS − ek∥2, zS ≡ k⋆, r̃S ≡ ek⋆ ,

and the straight-through estimator for backpropagation is used for the gradient flow in training.

Design rules by input structure. In our experiments, we select various S depending on the anal-
ysis, as described in § 3. Even within the same experiment, S can vary along the token axis because
different samples may have different lengths. We design the encoder E and decoder D according
to the structure of the hidden state blocks, which span the layer dimension, token index dimension,
and hidden state vector dimension. Below we summarize the design specializations of E and D to
explain how we handle challenges in the structure of the hidden state blocks.

• Multiple layers at the same token index. For each layer ℓ ∈ L, we first process the sequence
{hℓt} with a transformer encoder. The resulting representations are then stacked across the layer
axis. An MLP maps the stacked representation from dimension |L|·d down to de in the encoder. In
the decoder, starting from r̃S , we follow exact reverse operations, e.g., dimensionality expansion
instead of dimensionality reduction with MLP.

• Multiple token indices at the same layer. We treat {hℓt}t∈T as a sequence and process it with a
transformer encoder. To handle variable sequence lengths, the encoder either crops the sequence
to a fixed window Tenc or appends m learned sentinel vectors and uses their outputs to form rS .
In the end, we concatenate representations across multiple time indices and apply an additional

16

https://openreview.net/forum?id=2aOEiTfcZ4
https://openreview.net/forum?id=2aOEiTfcZ4
https://openreview.net/forum?id=Wjp1AYB8lH
https://arxiv.org/abs/2411.02038
https://arxiv.org/abs/2411.02038

Published as a conference paper at ICLR 2026

MLP for further processing to get the encoder output. In the decoder, we first upsample the
time dimension by mapping r̃S with an MLP to a maximum original sequence of length with
d-dimensional vectors, then refine per-token reconstructions with a transformer encoder.

• No token axis (single vector) or after reducing it as above. When the input does not include the
token dimension, or when it has been reduced as described above, we use only MLPs in both the
encoder and decoder. The encoder outputs a single summary vector, and the decoder reconstructs
the corresponding GS shape.

A.2 TRAINING AND LOSSES OF VQ-VAE

Training setup. We train each VQ-VAE on hidden state blocks GS extracted from a fixed, pre-
trained LM M over datasets used in our analyses. For each mini-batch, we sample sequences x1:T ,
feed M with inputs to get hidden activations hℓt , assemble the target blocks GS according to the
experiment. Then, we optimize encoder E, codebook {ek}Kk=1, and decoder D while keeping M
frozen. This follows the standard VQ-VAE pipeline (Van Den Oord et al., 2017) adapted to variable-
shape transformer hidden states.

Objective. Given an input block GS and encoder output rS = E(GS) ∈ Rde , we quantize by
nearest neighbor

k⋆ = arg min
k∈[K]

∥rS − ek∥22, r̃S = ek⋆ ,

and reconstruct ĜS = D(r̃S) with straight-through gradients for the quantizer (Van Den Oord et al.,
2017). The loss combines four parts

L = Lrec︸︷︷︸
data fidelity

+ λq Lvq︸ ︷︷ ︸
quantization and commitment

+ λcos Lcos︸ ︷︷ ︸
codebook diversity

+ λent Lent︸ ︷︷ ︸
anti-collapse

.

Reconstruction uses mean-squared error over the entries of GS ,

Lrec = ∥GS − ĜS∥22.
Quantization and commitment follow Van Den Oord et al. (2017) with the straight-through estimator

Lvq = ∥sg[rS]− ek⋆∥22 + β ∥rS − sg[ek⋆]∥22,
where sg[·] is stop-gradient and β balances codebook learning and encoder commitment. Codebook
diversity encourages distinct codes by discouraging cosine similarity among embeddings,

Lcos =
1

K(K − 1)

∑
i ̸=j

(⟨ei, ej⟩
∥ei∥2 ∥ej∥2

)2
,

which spreads codebook vectors and yields more discriminative high-level codes, consistent with our
use of codes as discussed in main text § 2. To avoid mode collapse of VQ-VAE (Zhao et al., 2024;
Zhu et al., 2025), we further uses an anti-collapse entropy term which employs soft assignments
computed from distances to the full codebook. Let

pk =
exp(−α∥rS − ek∥22)∑K
j=1 exp(−α∥rS − ej∥22)

,

then we minimize the negative entropy

Lent = −H(p) =

K∑
k=1

pk log pk,

which promotes higher-entropy assignments during training and discourages mode collapse.

Stabilizing codebook usage. VQ-VAE training can suffer from codebook collapse (Zhao et al.,
2024; Zhu et al., 2025). We adopt three complementary heuristics. (i) Dead-code reset: codes that
have not been the argmin k⋆ for a fixed window are reinitialized to random encoder outputs from the
current batch. (ii) Codebook dropout: with probability 0.1 we temporarily mask a random subset of
codebook vectors when forming nearest-neighbor distances in the forward pass of training, which
encourages redundancy avoidance and better exploration. (iii) Entropy regularization: the Lent term
above explicitly pushes assignments away from degenerate peaks.

17

Published as a conference paper at ICLR 2026

Optimization details. We use the Adam optimizer for training. Inputs at every token index and
layer index are normalized before encoding.

Evaluation metrics. For quantitative checks of representation quality and nontrivial code usage,
we report: (i) nRMSE between inputs and reconstructions. Let H denote a vectorized view of GS

and Ĥ that of ĜS . With ZH ∈ [K] the selected code and Ĥ = D(eZH
), define

nRMSE =
∥H − Ĥ∥2

∥H∥2
.

(ii) Codebook geometry: cosine similarity among codebook vectors {ek}Kk=1 and its distribution,
which reflects diversity. (iii) Usage distribution: empirical frequencies of ZH .

Rationale for the objective. The reconstruction term certifies that codes retain task-relevant infor-
mation about GS , the VQ term ties encoder outputs to discrete codes, the cosine penalty promotes
discriminative summaries that support our information-theoretic analyses, and the entropy term plus
stabilization heuristics sustain broad code usage throughout training.

A.3 VQ-VAE TRAINING SETUP ACROSS EXPERIMENTS

Across all experiments, each VQ-VAE is trained once per dataset/task and representation type. This
design ensures that the quantization mechanism remains fixed within each study, avoiding con-
founding effects that would arise from retraining VQ-VAE models at different mutual information
estimates. In the planning horizon experiments, each underlying dataset is equipped with its own
hierarchical pair of VQ-VAEs (VQ-VAE1 and VQ-VAE2) for quantizing prefix hidden-state blocks,
along with its own last-layer VQ-VAE. Thus, while the architectural pattern is shared, the mod-
els themselves are trained separately for each task. In the branching experiments, we again train
VQ-VAE1 and VQ-VAE2 for prefix hidden states, together with a dedicated path-sequence VQ-VAE.
In the history experiments, we train one VQ-VAE for prefix blocks and one for last-layer OpenWeb-
Text representations. Once trained, all VQ-VAE models are reused for every mutual-information
estimation within their respective experimental setting.

With respect to training budgets, the VQ-VAE models require only moderate optimization steps.
In the planning horizon experiments, VQ-VAE,1 and VQ-VAE,2 (used for prefix hidden states) are
trained for 15,000 optimization steps each, corresponding to 0.96M sequences in total, while the
last-layer VQ-VAE is trained for 10,000 steps (0.32M sequences). The path-finding version of this
experiment uses the same budgets. These settings apply uniformly to both next-token and multi-
token prediction evaluations. In the branching experiments, VQ-VAE,1 and VQ-VAE,2 (for prefix
states) are trained for 20,000 (0.64M sequences) and 15,000 steps (0.48M sequences), respectively,
and the path-sequence VQ-VAE is trained for 25,000 steps (0.80M sequences). Overall, this experi-
ment uses between 0.32M and 0.96M sequences per VQ-VAE depending on the role. In the history
experiments, we train two VQ-VAEs, one for prefix hidden-state blocks and one for last-layer hidden
states, each for 10,000 optimization steps, corresponding to 0.64M sequences per model.

Choosing hyperparameters for our VQ-VAE models requires some initial effort, but not because the
models are inherently sensitive. Instead, the difficulty arises from the fact that our VQ-VAE objective
includes several additional components beyond the conventional formulation, such as cosine-push
regularization, entropy-based loss, and codebook-reset mechanisms. These additions interact in
nontrivial ways, and as a result the first working configuration for the first experiment takes time to
establish simply because there is no pre-existing recipe for our variant of the objective. Once this
initial configuration is found, however, the process becomes easier. We consistently find that once a
reasonable setting is chosen for one model, closely related values work across all others with little
to no retuning. The only exception is the codebook size. Starting from very small values, increasing
the codebook size improves VQ-VAE performance, but only up to two possible limits. The first
limit is model size. If the VQ-VAE is too small, increasing the codebook size provides little benefit,
and making the model larger restores the usefulness of larger codebooks. The second limit is the
inherent complexity of the task. After a certain point, increasing the codebook size and the model
size no longer leads to meaningful improvements. For these reasons, our experiments use codebook
sizes ranging from 64 (for quantizing a single token in a single-layer hidden state) up to 1024 (for

18

Published as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Theoretical MI

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 E
st

im
at

ed
 M

I

Normalized Theoretical vs Estimated Mutual Information by Codebook Size

Codebook size 64
Codebook size 128
Codebook size 256
Codebook size 512
Codebook size 1024
Perfect prediction

Figure 5: The comparison of our normalized latent mutual information estimations with different
codebook sizes.

quantizing all prefix hidden states). For completeness and reproducibility, all hyperparameters can
be accessed in the configurator files provided with the code.

A.4 VALIDATION ON REPRESENTATIVE EXPERIMENTS

To validate our use of VQ-VAE-derived codes for estimating between computations, we conduct
three experiments below with different difficulty levels.

A.4.1 VALIDATION EXPERIMENT WITH KNOWN MUTUAL INFORMATION

We define discrete variables (A,B). Let A be uniform on a domain A with |A| = 1024, and let

P(B = b | A = a) =

{
pv if b = a,
1−pv

1023 otherwise.

The I (A;B) admits a closed-form expression that depends on pv . We treat (A,B) as the ground-
truth coarse variables that our method aims to recover.

To mimic transformer computations, we associate each a ∈ A with a hidden-state tensor GA ∈
R10×11×768 capturing all block outputs except the final layer of a trained GPT-3 small sized model
given a random prefix of length 10. Also, we associate each possible value of B with GB ∈ R768,
the final-layer hidden state at a single position. These tensors are redundant surrogates for (A,B)
in the sense that they only contain 10-bit information, i.e., log2 1024, despite their huge dimensions,
which match the largest hidden-state structures used in our experimental analysis.

We then apply our pipeline: train VQ-VAE models on GA and GB to obtain discrete codes ZA

and ZB , which serve as coarse summaries of the corresponding computations. Finally, we compare
I (ZA;ZB) to the ground-truth I (A;B) across values of pv and across codebook sizes K. Figure 5
reports both I (A;B) and I (ZA;ZB) normalized within each K. For every K, the codes preserve
the ordering induced by the ground-truth , and I (ZA;ZB) approaches the ground truth as K in-
creases. We do not train to recover (A,B), so I (A;B) is not a supervised target. Rather, I (A;B)
is a reference-process MI that comes from the constructed latent variables defining the generative
story behind (GA, GB).

A.4.2 VALIDATION EXPERIMENT (HARDER SETTING WITH MULTIPLE SIMILAR PREFIXES
FOR EACH LABEL)

We construct a more challenging variant of App. A.4.1. For each a ∈ A we now create a set of 16
surrogate hidden-state tensors in R10×11×768. Concretely, we take a random length-10 prefix and
generate 15 additional prefixes by changing a single token at a random index, then run the trained

19

Published as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Theoretical MI

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 E
st

im
at

ed
 M

I

Normalized Theoretical vs Estimated Mutual Information by Codebook Size

Codebook size 64
Codebook size 128
Codebook size 256
Codebook size 512
Codebook size 1024
Codebook size 2048
Perfect prediction

Figure 6: Harder validation experiment with similar prefixes for each label. Each label maps to 16
surrogates created by one-token edits. Normalized I (ZA;ZB) remains order-consistent with the
reference-process MI across K, despite injected noise and within-class variability.

LM to collect the corresponding hidden state block outputs. Similarly, for each b we produce 16
final-layer hidden states in R768 using the same single-token perturbation strategy. Therefore, this
experiment consists of 214 possible hidden state block GA and 214 possible final-layer hidden state
GB . This setting reflects families of inputs that differ at one token yet retain essentially the same
semantics, which is exactly the kind of fine detail our coarse summaries should compress away. To
further increase difficulty, we add Gaussian noise during VQ-VAE training on hidden states. We
then compute normalized mutual information between the learned coarse variables, treating the 16
surrogates for a fixed label as equiprobable when forming empirical distributions. The results in
Figure 6 show that for every codebook size K, the codes preserve the ground-truth ordering across
pv , and I (ZA;ZB) tightens toward the reference as K increases.

A.4.3 VALIDATION EXPERIMENT (HARDEST SETTING WITH MULTIPLE UNRELATED
PREFIXES)

We now remove within-class similarity entirely. For each a ∈ A we sample 16 independent length-
10 token sequences uniformly at random and collect their R10×11×768 hidden-state tensors. For
each b we likewise sample 16 independent sequences and extract the corresponding R768 final-
layer states. Thus, the 16 surrogates that share a label need not be close in vector space. This
setting emulates many-to-one mappings from highly diverse inputs to the same high-level code. This
setting resembles natural language settings with dissimilar texts having similar meanings. Again,
this experiment consists of 214 possible hidden state block GA and 214 possible final-layer hidden
state GB .

We repeat the same pipeline and probability treatment as in App. A.4.2, estimating normalized MI
between the learned coarse variables while assuming the 16 surrogates per label are equiprobable.
Figure 7 reports the results. Although this regime poses 16 equally likely outcomes per input and
eliminates structure exploitable by local similarity, our method still recovers normalized MI that
preserves the correct ordering across pv , with improved agreement at larger K. This regime would
be quite challenging for a probing-type method to recover any meaningful information due to one-
to-many mapping with totally unrelated targets.

B DETAILS OF EXPERIMENTAL ANALYSES

We provide details of experimental settings and analyses here.

20

Published as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Theoretical MI

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 E
st

im
at

ed
 M

I

Normalized Theoretical vs Estimated Mutual Information by Codebook Size

Codebook size 64
Codebook size 128
Codebook size 256
Codebook size 512
Codebook size 1024
Codebook size 2048
Perfect prediction

Figure 7: Hardest validation experiment with fully independent surrogates. Despite the lack of
within-class proximity, normalized I (ZA;ZB) preserves the ordering induced by the reference-
process MI, and improves as the codebook grows.

B.1 LOSS FUNCTIONS

Let V be the vocabulary. A sequence is x = (x1, . . . , xT) with prefixes x≤t. The model M has
embedding E ∈ R|V|×d and a shared unembedding U ∈ R|V|×d. The transformer has L layers
and width d. Hidden states are hℓ

t ∈ Rd for ℓ = 1, . . . , L and t = 1, . . . , T ; we write hL
t for the

final-layer state. We use P for probabilities and log for natural logarithms.

Next-token prediction (NTP). With teacher forcing, the baseline objective maximizes the con-
ditional likelihood of the immediate next token from the final-layer state hL

t . We use a shared
unembedding U ∈ R|V|×d:

Pθ (xt+1 | x≤t) = softmax(U hL

t) xt+1
, LNTP(θ) = −

T−1∑
t=1

logPθ (xt+1 | x≤t) .

Multi-token prediction (MTP). To align internal states with short-horizon futures, we equip the
model with Γ output heads Gloeckle et al. (2024). Head γ ∈ {1, . . . ,Γ} is implemented as a trans-
former layer f (γ)h : Rd → Rd that takes hL

t as input and is followed by the same shared unembedding
U :

Pθ(xt+γ | x≤t) = softmax
(
U f

(γ)
h (hL

t)
)

xt+γ

.

The training loss sums the cross-entropy across positions and horizons:

LMTP(θ) = −
T−Γ∑
t=1

Γ∑
γ=1

logPθ(xt+γ | x≤t) .

All heads contribute equally. At test time decoding remains autoregressive; the auxiliary heads affect
only the training signal and can optionally be used for speedups.

In our experiments, when we use MTP loss in CFG task, we used Γ = 4. As for, PF-Long and
PF-Short tasks we used Γ = 2

B.2 DATASET

Here we explain how we generated the dataset and how we used them in our LM training.

21

Published as a conference paper at ICLR 2026

B.2.1 CONTEXT-FREE GRAMMAR DATA GENERATION DETAILS

The specific formal details of our CFG are not central to the claims of this paper. We use it only as a
controlled source of long, purely syntactic sequences. Readers who want a formal presentation and
broader context can consult the CFG-based data generation reference Allen-Zhu (2024), on which
our CFG data is based on. Here we provide the details of our specific CFG parallel to the naming
convention in Allen-Zhu (2024).

We construct a layered grammar that expands strictly downward from a single start symbol to a
set of terminals. The layers are organized as one start symbol, then four intermediate nonterminal
layers of size three each, and finally a terminal inventory of sixty four symbols, summarized as the
tuple (1, 4, 4, 4, 64). For every nonterminal we define a small menu of alternative productions;
each nonterminal has between three and five alternatives, and each alternative rewrites the parent
into two or three symbols drawn only from the next layer. This acyclic layout fixes the depth of any
derivation and guarantees termination.

Once the grammar is fixed, each sequence is produced by starting at the start symbol and repeatedly
expanding pending nonterminals until only terminals remain. Whenever a nonterminal has several
alternatives, one is chosen at random. Because expansion always moves one layer down, sequences
are long but tightly controlled in length. In the configuration used in the paper we generate four
million sequences. The shortest contains 16 terminals and the longest 67 (the number of terminals
corresponds to the sequence length), measured without begin or end markers. The resulting corpus
contains 4M sequences (150M tokens).

B.2.2 PATH-FINDING DATA GENERATION DETAILS

PF–Short is built to be a small but nontrivial path–finding task. In every instance the start node is
labeled 1 and the goal node is labeled 2. We first lay down two correct trunks from the start to the
goal. Each trunk has exactly two internal nodes, so a correct answer has the form 1, a, b, 2. We then
lay down two decoy trunks that also begin at the start but end at fresh terminals that are not the goal.
Decoys are the same length as the correct trunks, and the interiors of all trunks are disjoint. Up to
this point the graph contains the start, the goal, two correct routes that meet only at those endpoints,
and two look–alike alternatives that never reach the goal.

To make the local neighborhood around each trunk less revealing, we sprinkle branches on top of the
trunks. We do this in one layer: for each eligible trunk node we independently add a small number
of fresh children drawn from a Poisson distribution with mean one, and we cap the number of branch
children per node at two. We never branch from the goal or from decoy terminals, and for the start
node we reduce its branch allowance to account for the four trunk edges already attached to it, so its
total degree remains bounded. If the instance would exceed the node budget of 28 distinct labels we
discard it and resample.

Before writing the example to disk we randomly relabel every internal node using a permutation
of the labels 3 through 28, while keeping 1 and 2 fixed. We also shuffle the edge list. The model
never sees coordinates or orders, only an unordered set of undirected edges and an answer slot. A
simplified typical prompt looks like

1 9, 7 2, 9 5, 1 3, 3 7, 5 2:

and either 1 9 5 2 or 1 3 7 2 is accepted as correct. In our experiments the PF–Short training split
contains 16M samples generated with the recipe above. We also have a similar sized dataset to
train corresponding vqvaes and a smaller validation data. Please also refer to Figure 2 (right) for a
simplified network example.

PF–Long extends the horizon while keeping local clutter modest. We again fix the start to 1 and the
goal to 2. We lay down two correct trunks, each with four internal nodes, so a correct answer has
the form 1, a, b, c, d, 2. We then add one decoy trunk of the same length that begins at 1 but ends at
a fresh non-goal terminal; interiors are disjoint. To add distractors we apply a two-layer branching
pass: a light first layer around trunks followed by a very light second layer, with at most one branch
child per parent. We never branch from the goal or from decoy terminals, and we reduce the start’s
branch allowance to respect the degree cap. If a sample would exceed the budget of 28 distinct node
labels we discard and resample. Finally we randomly permute the internal labels within 3 through

22

Published as a conference paper at ICLR 2026

28, keep 1 and 2 fixed, remap the paths, and shuffle the edge list. The training split contains 16M
PF–Long examples generated with this recipe.

B.2.3 NATURAL LANGUAGE (OPENWEBTEXT)

Finally, we include a large-scale natural language dataset (OpenWebText) to examine whether our
information-theoretic analyses extend to unconstrained real-world data. Unlike the synthetic CFG or
path-finding settings, this dataset reflects distributional structure from natural language and allows us
to test whether planning signals identified in controlled tasks also emerge under standard pretraining
conditions.

B.2.4 HOW THE GENERATED DATA ARE USED TO TRAIN THE LANGUAGE MODELS

For the CFG and OpenWebText corpora we run conventional pretraining in separate setups. For
CFG, we first generate many standalone sequences that satisfy the grammar. We then randomly
shuffle these CFG sequences and concatenate them end to end to form a single text stream for that
corpus. Training samples are taken by choosing a random starting offset in the CFG stream and
slicing a fixed-length block equal to the model context window; the loss is computed on all tokens
in the block except any optional boundary markers.

For OpenWebText, we apply the same pretraining recipe but within its own corpus only: documents
are shuffled and concatenated to form an OpenWebText stream, blocks are sampled at random off-
sets, and next-token prediction is used with causal masking. There is no mixing or interleaving
between CFG and OpenWebText at any stage.

For the path-finding data we use supervised finetuning rather than corpus streaming. Each example is
a self-contained prompt and answer: the input is the unordered edge list written as comma-separated
node pairs followed by a colon, and the target is any valid shortest path from the fixed start to the
fixed goal. We concatenate prompt and answer for teacher forcing, mask the prompt so the loss is
applied only to the answer span, and we do not concatenate different path-finding examples or split
one across blocks. Under this scheme we use both PF–Short and PF–Long, whose correct answers
have lengths four and six respectively when counting the start and goal.

B.3 DETAILS OF PLANNING HORIZON EXPERIMENT (3.1)

Details about VQ-VAE. The VQ-VAE used to quantize the prefix representation H ∈ RT×L×d

employs a 256-entry codebook (ZH ∈ {0, 1, . . . , 255}), while each future final-layer state hL
τ ∈ Rd

is quantized with a 64-entry codebook (ZhL
T+τ

∈ {0, 1, . . . , 63}).

For the CFG task, the dimension ofH is on average 16×11×768 = 135,168, and the dimension of
hL

τ is 768. The mean nRMSE values of VQ-VAE encoding H into summary codes is 0.47, and that
of encoding hL

τ is 0.21. Representative codebook similarity and usage plots from VQ-VAE training
to encode H for the CFG task are provided in Figure 8 and Figure 9. Also, those of VQ-VAE to
encode hL

τ for the CFG task are provided in Figure 10 and Figure 11

For the PF-Short task, the dimension ofH is on average 70×11×768 = 591,360, and the dimension
of hL

τ is 768. The mean nRMSE values of VQ-VAE encoding H into summary codes is 0.75, and
that of encoding hL

τ is 0.48.

For the PF-Long task, to reduce dimensionality, we subsample every three layers when encoding
H due to the limited model size, and we discard token indices corresponding to comma (,) tokens.
The dimension of H is on average 54 × 4 × 768 = 165,888, and the dimension of hL

τ is 768. The
mean nRMSE values of VQ-VAE encoding H into summary codes is 0.59, and that of encoding hL

τ

is 0.49.

We emphasize that these are the results of huge quantization mappings, e.g., from 591,360 real
numbers to 256 discrete labels.

23

Published as a conference paper at ICLR 2026

Figure 8: The codebook similarities for VQ-VAE encoding H in CFG task.

Figure 9: The codebook usage for VQ-VAE encoding H in CFG task.

B.4 DETAILS OF BRANCHES IN THE PLAN EXPERIMENT (3.2)

Details about VQ-VAE. For the VQ-VAE details encoding H in PF-Short and PF-Long tasks,
please, refer to the relevant part of App. B.3 since the same models are used.

Encoding the paths. The paths themselves does not have a vector representation and it is chal-
lenging use a unique class each possible path since in PF-Long, there can be 284 paths. Although
PF-Short is relatively easier, we reduce the number of possible codes to 512 by training VQ-VAE
over a learned embedding vector for each of 28 tokens. Then we obtain the high-level codes of full
path using the trained VQ-VAE. For PF-Long, we calculate the MI between the H’s code obtained
from VQ-VAE and each intermediate token (using the token’s index itself) along the response path.
Then, we take the mean of these values over the nodes on the path to get a full-path MI result.

24

Published as a conference paper at ICLR 2026

Figure 10: The codebook similarities for VQ-VAE encoding H in CFG task.

Figure 11: The codebook usage for VQ-VAE encoding H in CFG task.

B.5 DETAILS OF THE INFORMATION IN THE COMPUTATIONAL HISTORY EXPERIMENT

In this section we provide details of the information in the computational history experiment.

B.5.1 NMI RESULTS IN § B.4 FOR LONGER-HORIZON GENERATED TOKENS (HIGHER τ)

We provide the results in Figures 12&13.

B.5.2 DETAILS OF THE CONDITIONAL NMI ESTIMATES

To estimate I(Zℓ
T−15:T−1;Z

L
T | Zℓ

T), we used the identity:

I(Zℓ
T−15:T−1;Z

L
T | Zℓ

T) = I(Zℓ
T−15:T ;Z

L
T)− I(Zℓ

T−15:T−1;Z
L
T), (4)

which holds because
Zℓ
T−15:T = {Zℓ

T−15:T−1, Z
ℓ
T }.

The first term of the right hand side of (4), is already estimated and shown in the Figure 4 (k = 1
block estimates). As for the second term, we find an approximate value as follows. First, because of

25

Published as a conference paper at ICLR 2026

14 13 12 11 10 9 8 7 6 5 4 3 2 1
Block Number (k)

7

6

5

4

3

2

1

La
ye

r
N

um
be

r
(

)
1.000.570.560.570.570.560.560.560.550.550.550.550.540.54

0.970.530.530.530.530.530.520.530.510.510.510.510.510.51

0.900.450.440.450.450.450.450.440.440.440.440.450.450.45

0.850.380.380.380.380.380.380.380.380.390.390.390.400.40

0.850.380.380.380.380.380.380.380.380.380.390.380.390.40

0.800.360.350.350.350.350.340.340.340.350.350.350.350.34

0.410.340.330.340.340.340.340.340.340.350.350.340.340.33

nMI over Block and Layer for the Token Generated at = 0

14 13 12 11 10 9 8 7 6 5 4 3 2 1
Block Number (k)

7

6

5

4

3

2

1

La
ye

r
N

um
be

r
(

)

0.700.580.560.560.570.570.550.560.560.550.550.560.550.54

0.660.530.540.520.530.530.520.520.520.520.520.510.520.51

0.590.450.450.450.450.440.450.440.440.440.450.440.460.45

0.530.380.380.380.380.380.380.380.380.380.390.390.400.41

0.530.390.380.380.380.380.380.380.380.390.380.380.400.40

0.500.360.360.350.340.350.340.340.340.350.350.350.340.35

0.370.340.330.340.340.340.340.340.340.340.350.330.340.34

nMI over Block and Layer for the Token Generated at = 1

14 13 12 11 10 9 8 7 6 5 4 3 2 1
Block Number (k)

7

6

5

4

3

2

1

La
ye

r
N

um
be

r
(

)

0.650.570.560.570.570.570.560.560.550.550.550.540.550.53

0.620.540.530.530.520.520.520.520.520.520.520.510.510.52

0.530.450.450.450.450.440.440.450.440.440.440.450.450.46

0.470.380.370.380.380.380.380.380.380.390.390.390.400.40

0.480.380.380.380.390.380.380.380.380.390.390.380.400.40

0.450.370.350.350.340.340.340.340.340.350.350.350.350.35

0.360.340.340.330.340.340.340.340.330.340.340.340.340.34

nMI over Block and Layer for the Token Generated at = 2

Figure 12: Heatmap of normalized mutual information over block and layer indices for τ = 0, 1, 2.
Please refer to the caption of 4.

the underlying task’s symmetry (it is OpenWebtext, pretraining task), we have translational invari-
ance, so

I(Zℓ
T−15:T−1;Z

L
T) = I(Zℓ

T−14:T ;Z
L
T+1). (5)

Then, we approximate the right-hand side of this equation by

I(Zℓ
T−14:T ;Z

L
T+1) ≈ I(Zℓ

T−15:T ;Z
L
T+1),

which relies on the observation that in natural language, the incremental information contributed by
extending the context diminishes: as sentences become longer, the mutual information between past
tokens and future ones grows only logarithmically.

B.5.3 DETAILS ABOUT BLOCK VQ-VAE.

The VQ-VAE used to quantize ℓth layer kth block representation hℓ
T−16B:T+16−16B ∈ R16×d em-

ploys a 1024-entry codebook (Bℓ
k ∈ {0, 1, . . . , 1023}), while each future final-layer state hL

τ ∈ Rd

26

Published as a conference paper at ICLR 2026

14 13 12 11 10 9 8 7 6 5 4 3 2 1
Block Number (k)

7

6

5

4

3

2

1

La
ye

r
N

um
be

r
(

)
0.620.570.560.560.560.570.560.560.560.550.550.550.550.53

0.580.530.530.530.520.520.520.520.520.520.510.510.520.51

0.500.450.450.450.450.450.440.440.450.450.440.450.450.46

0.440.380.380.380.390.380.390.380.390.380.380.390.390.41

0.450.380.380.380.380.380.380.380.380.380.380.380.390.39

0.420.360.350.350.340.350.340.340.340.350.350.350.350.34

0.360.340.330.330.340.340.340.330.340.340.340.330.340.34

nMI over Block and Layer for the Token Generated at = 3

14 13 12 11 10 9 8 7 6 5 4 3 2 1
Block Number (k)

7

6

5

4

3

2

1

La
ye

r
N

um
be

r
(

)

0.600.570.560.570.570.560.550.560.550.550.540.540.540.54

0.570.540.530.530.520.530.530.520.520.520.510.520.510.51

0.480.450.450.440.450.440.450.450.450.440.440.450.450.46

0.420.380.380.380.380.380.380.380.390.390.380.390.400.41

0.420.390.380.380.380.380.380.380.380.380.390.380.390.40

0.400.360.350.340.340.340.340.340.340.340.350.340.350.34

0.350.330.330.330.340.340.340.330.340.340.340.340.340.33

nMI over Block and Layer for the Token Generated at = 4

14 13 12 11 10 9 8 7 6 5 4 3 2 1
Block Number (k)

7

6

5

4

3

2

1

La
ye

r
N

um
be

r
(

)

0.600.570.560.570.560.560.560.560.550.540.550.550.540.54

0.560.540.530.520.530.520.530.530.510.520.520.510.510.51

0.470.450.450.450.440.440.450.450.450.450.440.450.450.46

0.410.380.380.380.380.380.390.380.380.380.390.390.400.41

0.420.380.380.380.380.380.380.380.380.380.380.380.390.40

0.390.350.350.350.340.350.340.350.340.340.350.350.350.35

0.340.340.340.340.340.340.340.340.340.340.340.340.340.34

nMI over Block and Layer for the Token Generated at = 5

Figure 13: Heatmap of normalized mutual information over block and layer indices for τ = 3, 4, 5.
Please refer to the caption of 4.

is quantized with a 64-entry codebook (ZhL
T+τ

∈ {0, 1, . . . , 63}). Recall this experiment is on NLP
(OpenWebText pretraining). The dimension of hℓ

T−16B:T+16−16B is on average 16×512 = 7680, and
the dimension of hL

τ is 512. The overall VQ-VAE for the blocks has 4M parameters in total. Repre-
sentative codebook similarity and usage plots from VQ-VAE training to encode hℓ

T−16B:T+16−16B for
the (OpenWebText) task are provided in Figure 14 and Figure 15. For additional details on VQ-VAE
trainings on OpenWebText (NLP pretraining) data please refer to App. B.6.

B.6 ON THE SCALABILITY OF OUR PIPELINE

Recall that to obtain the code ZL
T+τ , we use an encoder whose input is hLT+τ . To study this, we

trained VQ-VAEs of increasing sizes on OpenWebText, with a fixed codebook size of 64 vectors.
OpenWebText is widely used for NLP pretraining, but the data lacks a strong coherent structure
across samples. As a result, it is natural, and in fact expected, that reconstruction errors remain
relatively high.

27

Published as a conference paper at ICLR 2026

Figure 14: The codebook similarities for VQ-VAE encoding hℓ
T−16B:T+16−16B in OpenWebText task.

Figure 15: The codebook usage for VQ-VAE encoding hℓ
T−16B:T+16−16B in OpenWebText task.

Figure 16 reports the normalized nRMSE as a function of model size. This hints that scaling the
encoder can improve representation quality despite the inherent noisiness of the dataset.

C RELATED WORK IN DETAIL

We provide a longer discussion of the Related Work in the main text § 1.

Language model planning. In order to improve LMs’ reasoning and planning abilities, re-
searchers have developed scaffolding and augmentation techniques, including Chain-of-Thought
prompting (Wei et al., 2022), planning tokens (Wang et al., 2024c; Sel et al., 2025), and structured
inference methods such as Tree-of-Thoughts and Graph-of-Thoughts (Yao et al., 2023; Besta et al.,
2024). In parallel, hybrid systems that integrate LMs with symbolic planners or external tools have
achieved state-of-the-art performance in embodied and tool-use domains (Zhao et al., 2023; Wang
et al., 2024a; Shen et al., 2023). Despite these advances, recent studies highlight that significant
challenges remain, and current approaches to LM planning still fall short of fully addressing com-
plex reasoning and decision-making tasks. For example, Lin et al. (2025) show that models can

28

Published as a conference paper at ICLR 2026

6.0 6.5 7.0 7.5 8.0
log10(Number of parameters)

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

nR
M

SE

0.86M

3.30M

12.88M

50.93M

202.53M

Figure 16: The nRMSE vs VQ-VAE encoder parameter count plot.

produce conflicting answers under logically related prompts despite local plausibility, which shows
lack of long horizon planning, although short-horizon planning works fine; Ahn & Yin (2025) re-
veal discrepancies when asking a model what is correct vs what is incorrect; and Saxena et al. (2024)
demonstrate that even repeated queries yield inconsistent outputs. Beyond inconsistency, some stud-
ies find that out-of-the-box models struggle with even simple planning tasks (Momennejad et al.,
2023). Complementing these empirical findings, theoretical analyses suggest that autoregressive
models may face fundamental limits in their planning ability (Wang et al., 2024b). Taken together,
these findings underscore that understanding whether and how planning arises in LMs is not only an
open empirical challenge, but also central to both their interpretability and the principled design of
future model architectures.

Behavioral and Mechanistic Interpretability. Some interpretability (explainability) methods
consider the LM as black box, and design tasks or benchmarks to gauge reasoning, robustness,
or generalization abilities (Srivastava et al., 2023; Liang et al., 2022). In contrast to them, mechanis-
tic interpretability seeks to reverse-engineer transformer computations into human-understandable
parts, treating the residual stream as the main information pathway and attention heads as separate
components that pass information along (Elhage et al., 2021). Using this approach, researchers
have explained key phenomena in LMs: in-context learning can arise from a characteristic two-
head circuit that appears during a training “phase change,” with causal support from perturbation
studies (Olsson, 2022); many neurons are polysemantic, but sparse autoencoders (SAEs) can re-
place them with more interpretable, monosemantic features that enable finer-grained causal anal-
ysis (Cunningham et al., 2023; Bricken et al., 2023); models implicitly encode structural linguistic
properties such as syntax (Hewitt & Liang, 2019). Building on earlier approaches, transcoders, ap-
proximate dense MLPs with wider sparse layers, separating circuits into input-invariant and input-
dependent components, and matching or surpassing SAEs in sparsity, faithfulness, and interpretabil-
ity (Dunefsky et al., 2024). Frontier-scale case studies use cross-layer transcoders to trace multi-step
reasoning and other behaviors, illustrating how these tools can audit mechanisms, not just features,
in modern LLMs (Lindsey et al., 2025). Overall, mechanistic interpretability offers concrete tools
for uncovering how LLMs compute, though these methods are still developing.

Mathematical Perspectives. Beyond empirical tools, mathematically grounded perspectives also
illuminate transformer/LLM interpretability: automata-theoretic analyses show self-attention can
implement finite-state algorithms (Liu et al., 2023); optimization views prove in-context learning
corresponds to (preconditioned) gradient steps (Ahn et al., 2023) and transformers are mutual inter-
action learners (Ustaomeroglu & Qu, 2025); mean-field theory gives global convergence guarantees
at scale (Gao et al., 2024).

Probing. A different line of interpretability work views LLM hidden states as structured represen-
tations that can be ”probed”, probing refers to training lightweight models, often linear classifiers, to

29

Published as a conference paper at ICLR 2026

read out specific information from hidden states in order to test what the model represents internally.
Using probing, researchers have shown that transformer hidden states encode structured belief-state
and world-model–like information (Shai et al., 2024; Gurnee & Tegmark, 2024; Hazineh et al.,
2023). Other works demonstrate that a single hidden state can carry information about multiple
future tokens (Pal et al., 2023) and that probing can reveal the underlying algorithms LLMs use to
solve tasks (Allen-Zhu, 2024).

However, standard accuracy-based probing has drawn a critique for combining what the probe can
learn with and what the representation actually encodes making the results sensitive to probe ca-
pacity, data size, and hyperparameters Hewitt & Liang (2019); Pimentel et al. (2020). Further, high
probe scores often come from exploiting superficial linear context cues rather than genuine struc-
tural knowledge (Kunz & Kuhlmann, 2020). Probing can even reveal features that a model does not
use for its task (Ravichander et al., 2021; Kumar et al., 2022). Consequently, some critiques moti-
vate adopting information-theoretic lenses (Voita & Titov, 2020; Diego-Simón et al., 2025). Several
approaches illustrate this perspective. The original Information Bottleneck framework (Tishby &
Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017) casts learning as a trade-off between compressing
input representations and preserving predictive information about outputs. Complementary work
by Voita et al. (2019) examined how information flows across transformer layers under different
training objectives, revealing that tasks like language modeling, masked language modeling and
machine translation induce distinct patterns of information loss and reconstruction. More recently,
Skean et al. (2025) demonstrated that intermediate layers of LLMs often yield stronger representa-
tions than the final layer, using unified metrics based on entropy.

D EXTRA EXPERIMENTS WITH LARGER MODELS AND COMPARISON WITH
PROBING

In this section we (i) scale experimented language model and repeat the Horizon of the Plan analysis,
(ii) add probe-based baselines, and (iii) explain why probe performance can be confounded in our
setting.

D.1 SCALING TO A LARGER MODEL

We scale the GPT-3–based decoder-only architecture with Rotary Positional Encoding (Su et al.,
2024) to 24 layers and dmodel = 1024 (> 0.3B parameters), more than twice the size used in the main
experiments. We rerun the Horizon of the Plan experiment on the CFG dataset from Section 3.1.
The 0.3B model attains near-perfect sequence-completion accuracy.3 Our method scales smoothly
with larger language models.

Figure 17 reports the normalized mutual information between the prefix summary codes and the last-
layer hidden-state codes at generated positions t+ τ . The nMI curve decays rapidly as τ increases,
matching the trend in smaller models. On CFG, this is consistent with myopic behavior rather than
long-horizon planning, which aligns with the task’s syntactic structure.

D.2 PROBING EXPERIMENTS

Setup. Probing fits a supervised predictor from internal states to a target and uses generalization
performance as a proxy for whether the information is linearly or simply recoverable. We evaluate
probes in the same setting as §D.1.

Let L be the number of layers. For a prefix ending at time t, denote by

Hpref ≜
{
hℓ,i ∈ Rd : ℓ = 1:L, i ≤ t

}
the block of hidden states across all layers and prefix positions. For a future offset τ ≥ 1, denote the
generated token by x̂t+τ and the last-layer hidden state by hLt+τ ∈ Rd. We train separate probes for
each τ . Since the prefix length can vary across samples, we use zero padding for shorter samples.

3Sequence-completion accuracy is the fraction of prefixes for which the model completes a CFG-valid
continuation.

30

Published as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.2

0.4

0.6

0.8

1.0

nM
I

CFG Task: Normalized MI vs.

Figure 17: Normalized MI between prefix summary codes and the codes of the last-layer hidden
state at future position t+ τ on CFG for the 0.3B LM. The rapid decay in nMI with τ replicates the
main-text trend at larger scale.

Token prediction probe. A two-layer MLP ϕτ mapsHpref to a distribution over the 32 CFG tokens.
The loss is cross-entropy,

Ltok
τ = E

[
− log pϕτ

(
x̂t+τ | Hpref

)]
,

and we report accuracy.

Hidden-state regression probe. A two-layer MLP ψτ predicts the future last-layer hidden state,

Lreg
τ = E

[
∥ψτ (Hpref)− hLt+τ∥22

]
.

We report normalized MSEτ , measured by dividing the MSE values by the highest MSE in that
setting.

0 1 2 3 4 5 6 7 8 9

0.075

0.100

0.125

0.150

0.175

0.200

0.225

Ac
cu

ra
cy

Probing method: token accuracy vs

0 1000 2000 3000 4000 5000
Training iter.

0.075

0.080

0.085

0.090

0.095

0.100

0.105

M
ea

n
Ac

cu
ra

cy

Probing method: token mean accuracy vs iter.

0 1 2 3 4 5 6 7 8 9

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Va
lid

at
io

n
no

rm
al

iz
ed

 M
SE

Probing method: last layer
hidden state normalized MSE vs

0 1000 2000 3000 4000 5000
Training iter.

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

M
ea

n
Va

lid
at

io
n

no
rm

al
iz

ed
 M

SE

Probing method: last layer
mean hidden state normalized MSE vs iter.

Figure 18: Probe baselines on CFG. Top left: token accuracy vs. future offset τ . Top right: mean
token accuracy vs. training iteration. Bottom left: hidden-state regression normalized MSEτ vs. τ .
Bottom right: normalized mean MSE vs. training iteration.

31

Published as a conference paper at ICLR 2026

Findings. Token probes are decisively above random sampling only for τ = 0; beyond the imme-
diate next token the accuracy does not change much and not yield a clear picture for interpretation.
Hidden-state regression probes close normalized MSEτ across τ . Even with nonlinear two-layer
MLPs and per-τ training, the results are inconclusive about the structure of long-horizon computa-
tion and planning in the language model. This reflects a practical limitation of probe-style supervi-
sion when the input Hpref and the target hLt+τ are both high dimensional.

Relation to linear or higher-capacity probes. A linear probe is a special case of the MLP used
here, so the nonlinear results upper bound what a linear probe can extract under the same inputs and
targets. If high-capacity probes are used, supervised training can memorize dataset idiosyncrasies
and fit mappings from Hpref to the target that the LM itself does not implement, yielding optimistic
scores without evidencing a mechanism in the model. These effects blur the link between probe
performance and information flow.

We include probes as a diagnostic comparison, not as an estimator or validation of our MI measure.
Probes answer a different question—how well a chosen supervised predictor can recover a hand-
specified target from Hpref—and their performance can be sensitive to predictor capacity and target
complexity. In our setting, probing does not yield a stable or interpretable signal about long-horizon
structure across τ , whereas our MI analysis measures statistical dependence between learned com-
pressed summaries. See Appendix D.3 for an illustration of why probe scores can be confounded.

D.3 WHY PROBING CAN BE CONFOUNDED AND A SIMPLE ILLUSTRATION

Target-variance sensitivity. Prior work (Voita & Titov, 2020; Diego-Simón et al., 2025) has noted
that probe performance can be dominated by the marginal complexity of the target rather than by
information shared with the source.

Let X ∼ Unif[0, 10] so H(X) = log2 10 ≈ 3.32 bits. Define

Y1 = 0, Y2 =

{
X with prob. 0.5,
0 with prob. 0.5.

Then I(X;Y1) = 0 while I(X;Y2) =
1
2H(X) ≈ 1.66 bits. A probe achieves zero error on Y1 yet

struggles on Y2, which would wrongly suggest that X contains more information about Y1 than Y2.
The discrepancy arises because probe loss is governed by the target’s marginal variability, not by the
actual information shared withX . Furthermore, as discussed in the previous section, higher capacity
probes can blur the line between dataset idiosyncrasies and actual language model mechanisms.

Why our method avoids this pitfall. Our method trains two VQ-VAE encoders E1 and E2 on
prefix and future hidden states using only reconstruction losses, with no labels or task supervision.
We then estimate mutual information between I (E1(h1);E2(h2)) and interpret it comparatively in
all tasks. Our conclusions are comparative within a fixed experimental setup: we hold the encoders,
codebooks, and MI estimator fixed and report normalized MI between the same representation types
while varying only the variables of interest. For example, when comparing the MI between the
summary of pre-output computations and the summaries of the first vs. second output token, every
pipeline component is identical, so any MI shift must arise from the underlying interaction among
the selected variables. Finally, by obtaining unsupervised, high-level representations, we reduce the
effect of any blur induced by target-specific idiosyncrasies in the raw hidden states. Our method
coarsens the space and the interaction among the underlying variables is not probe-induced short-
cuts.

D.4 PREDICTIVE ν-INFORMATION CAN BE ARBITRARILY DISTORTED BY RESCALING

Xu et al. define predictive ν-information Iν(X → Y) from a squared-loss prediction problem over
a Gaussian linear family. In the setting of their Proposition 1.5, this reduces to

Iν(X → Y) = tr
(
cov(Y)

)
R2,

32

Published as a conference paper at ICLR 2026

where R2 is the coefficient of determination of the optimal linear regression of Y on X .4 Unlike
Shannon mutual information, this quantity is sensitive to the marginal scale of Y and can be changed
arbitrarily by rescaling the target, even when the underlying information content is fixed.

To illustrate, let X ∼ N (0, 1) and ϵ ∼ N (0, 1) independent. Define

Y1 = X + ϵ, Y2 = a Y1 = a(X + ϵ),

for some scalar a ̸= 0. Since Y2 is an invertible linear transformation of Y1, Shannon mutual
information is invariant:

I(X;Y1) = I(X;Y2).

Now consider Iν in the Gaussian linear setting of Xu et al. We have

Var(Y1) = Var(X) + Var(ϵ) = 2, Var(Y2) = a2Var(Y1) = 2a2.

The optimal linear predictor of Yk from X is proportional to X for both k = 1, 2, and the squared
correlation is

R2
1 = R2

2 =
Cov(X,Y1)

2

Var(X)Var(Y1)
=

12

1 · 2
= 1

2 ,

since scaling Y does not change correlation. Therefore,

Iν(X → Y1) = tr(Cov(Y1))R
2
1 = 2 · 1

2 = 1,

while
Iν(X → Y2) = tr(Cov(Y2))R

2
2 = 2a2 · 1

2 = a2.

By choosing |a| arbitrarily large or small, we can make Iν(X → Y2) arbitrarily larger or smaller
than Iν(X → Y1), despite the fact that Y1 and Y2 contain exactly the same Shannon information
about X . This demonstrates that predictive ν-information, in this common probe setting, fails to
satisfy a basic information-theoretic property: invariance under invertible transformations of the
target (equivalently, it does not obey the data-processing inequality with respect to deterministic
rescalings of Y).

Why our method avoids this scaling pathology. In contrast, our VQ-VAE approach estimates
Shannon mutual information between learned discrete codes I (E1(h1);E2(h2)). Because mutual
information is invariant under invertible transformations of each argument and satisfies the data-
processing inequality, rescaling or reparametrizing the underlying continuous hidden states before
encoding cannot arbitrarily inflate or deflate the measured dependence. Once the encoders and
codebooks are fixed, changes in our estimated MI across conditions reflect differences in shared
structure between the representations, rather than arbitrary choices of units or target scaling.

D.5 Iν MUTUAL INFORMATION PLOTS

In addition to the probing results in Fig. 18, we investigate another probing approach with different
mutual information variant. We reproduce the experiment in App. D via Iν

(
H1:L−1

1:T ;hLT+τ

)
defini-

tion from Xu et al.. As it is seen from the results, Fig. 19, the Iν
(
H1:L−1

1:T ;hLT+τ

)
definition is not

helpful either. Also, we test validity of Iν with our easiest validation test from A.4.1. The results
are seen in Fig. 20. As it is seen Iν fails on our validation test as well.

E FINITE SAMPLING ERROR

We quantify the finite-sample error when estimating the mutual information between two discrete
random variables X and Y over two different MI estimation approaches.

Let X and Y take values in {1, . . . ,KX} and {1, . . . ,KY }, with joint pmf pij := Pr(X = i, Y =
j), marginals pi :=

∑
j pij and pj :=

∑
i pij , and true mutual information

I(X;Y) =

KX∑
i=1

KY∑
j=1

pij log
pij
pipj

.

4Equivalently, Iν(X → Y) is the total variance of Y times the fraction of variance explained by the best
linear predictor.

33

Published as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9

2.00

2.05

2.10

2.15

2.20

2.25

I
(H

h
)

1e8 Probing method: I (H h) vs

0 1000 2000 3000 4000 5000
Training iter.

200000

210000

220000

230000

240000

M
ea

n
M

SE

Probing mean MSE across vs iter.

Figure 19: Reproduction of experiment in App. D via Iν .

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Theoretical MI

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 P
ro

bi
ng

 I
(H

h)

Normalized Theoretical MI vs Normalized Probing I (H h)

Probing Results
Perfect prediction

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Theoretical MI

1.12

1.14

1.16

1.18

1.20

1.22

1.24

1.26

Pr
ob

in
g

I
(H

h)
 (U

nn
or

m
al

iz
ed

)

1e6
Normalized Theoretical MI vs Unnormalized Probing I (H h)

Probing Results

Figure 20: Plots to check validity of Iν on the easiest validation experiment in App. A.4.1

From N i.i.d. samples (Xt, Yt)
N
t=1 drawn from (X,Y), define the cell counts

Nij :=

N∑
t=1

1{Xt = i, Yt = j}, Ni :=

KY∑
j=1

Nij , Nj :=

KX∑
i=1

Nij ,

and the empirical probabilities p̂ij := Nij/N , p̂i := Ni/N , p̂j := Nj/N . The standard plug-in
(maximum-likelihood) mutual information estimator is

Î(X;Y) :=

KX∑
i=1

KY∑
j=1

p̂ij log
p̂ij
p̂ip̂j

. (6)

Asymptotic bias and variance of the plug-in MI. Under standard regularity assumptions (in
particular, pij > 0 for all i, j, which are satisfied in our experiments), an exact local expansion plus
a delta-method argument gives the following large-N behavior (Panzeri & Treves, 1996; Treves &
Panzeri, 1995; Paninski, 2003):

bias
(
Î(X;Y)

)
:= E[Î(X;Y)]− I(X;Y)

= − (KX − 1)(KY − 1)

2N ln 2
+O

(
1

N2

)
, (7)

Var
(
Î(X;Y)

)
=
Cvar(X,Y)

N
+O

(
1

N2

)
, (8)

where Cvar(X,Y) > 0 is a constant that depends only on the true joint distribution pij . Conse-
quently, the mean-squared error (MSE) satisfies

MSE
(
Î(X;Y)

)
:= E

[
(Î(X;Y)− I(X;Y))2

]
=
CMSE(X,Y)

N
+O

(
1

N2

)
, (9)

34

Published as a conference paper at ICLR 2026

for another constant CMSE(X,Y) > 0. In other words, the plug-in MI estimator has

bias = O

(
1

N

)
, Var = O

(
1

N

)
, MSE = O

(
1

N

)
.

A simple first-order bias correction that cancels the leading O(1/N) term in (7) is

ÎPT(X;Y) := Î(X;Y) +
(KX − 1)(KY − 1)

2N ln 2
. (10)

Then

bias
(
ÎPT(X;Y)

)
= O

(
1

N2

)
, (11)

Var
(
ÎPT(X;Y)

)
=
Cvar(X,Y)

N
+O

(
1

N2

)
, (12)

MSE
(
ÎPT(X;Y)

)
=
C̃MSE(X,Y)

N
+O

(
1

N2

)
, (13)

i.e., the MSE still scales as O(1/N) but with a smaller constant prefactor (Treves & Panzeri, 1995).

Paninski-type estimators and worst-case MSE upper bounds. Paninski (2003) constructed a
family of linear estimators for discrete entropy, and hence for mutual information via I(X;Y) =
H(X) + H(Y) − H(X,Y), by explicitly optimizing a rigorous upper bound on the worst-case
MSE over all discrete distributions with a given alphabet size. The resulting “best universal bound”
(BUB) estimators ÎBUB(X;Y) satisfy bounds of the form

sup
p

E
[
(ÎBUB(X;Y)− I(X;Y))2

]
≤ CBUB(KX ,KY , N)

N
, (14)

for an explicit constantCBUB(KX ,KY , N) that can be computed from (KX ,KY , N); in particular,
the worst-case MSE is also upper bounded by a constant times 1/N .

What we use in this work. In our experiments, we computed mutual information using both (i) the
plug-in estimator (6), typically with the Panzeri–Treves bias correction (10), and (ii) Paninski’s
BUB-type estimators assembled from the corresponding entropy estimators (Paninski, 2003). In
all cases we tested, both approaches produced essentially identical values of I(X;Y). Since our
available sample sizes N are very large compared to the effective domain sizes KX and KY (we
have easy access to CFG, Path Finding, and NLP samples), the O(1/N) finite-sample errors of both
methods are very small. In most of our experiments we therefore report the mutual information
estimated using the plug-in estimator.

F THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs in the following ways.

• We polished sentences and corrected the grammar.
• For visualization (figures, plots) of the results, we made LLM to write the visualization

code.
• For the experiment codes we got LLM help, e.g., tab completions, function generation

given the prompt, and we checked all LLM generated code line by line to ensure it works
as intended.

• At the beginning of the project, we used an LLM to help identify relevant literature and
read the suggested papers most pertinent to our work.

35

	Introduction
	Method
	Analysis of planning capability
	Horizon of the plan
	Branches in the plan
	Information in the computational history

	Conclusion
	Method details
	VQ-VAE design and implementation
	Training and losses of VQ-VAE
	VQ-VAE Training Setup Across Experiments
	Validation on representative experiments
	Validation experiment with known mutual information
	Validation experiment (harder setting with multiple similar prefixes for each label)
	Validation experiment (hardest setting with multiple unrelated prefixes)

	Details of experimental analyses
	Loss functions
	Dataset
	Context-free grammar data generation details
	Path-finding data generation details
	Natural language (OpenWebText)
	How the generated data are used to train the language models

	Details of planning horizon experiment (3.1)
	Details of branches in the plan experiment (3.2)
	Details of the information in the computational history experiment
	nMI results in § B.4 for longer-horizon generated tokens (higher)
	Details of the conditional nMI estimates
	Details about Block VQ-VAE.

	On the scalability of our pipeline

	Related work in detail
	Extra Experiments with Larger Models and Comparison with Probing
	Scaling to a larger model
	Probing Experiments
	Why probing can be confounded and a simple illustration
	Predictive nu-information can be arbitrarily distorted by rescaling
	I Mutual Information Plots

	Finite Sampling Error
	The Use of Large Language Models (LLMs)

