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Abstract—Accurate and robust localization is crucial for 

supporting high-level driving automation and safety. Modern 

localization solutions rely on various sensors, among which GPS 

has been and will continue to be essential. However, GPS can be 

vulnerable to malicious attacks and GPS spoofing has been 

identified as a high threat. With transportation infrastructure 

becoming increasingly important in supporting emerging vehicle 

technologies and systems, this study explores the potential of 

applying infrastructure data for defending against GPS spoofing. 

We propose an infrastructure-enabled framework using roadside 

units as an independent, secured data source. A real-time detector, 

based on the Isolation Forest, is constructed to detect GPS 

spoofing. Once spoofing is detected, GPS measurements are 

isolated, and the potentially compromised location estimation is 

corrected using secure infrastructure data. We test the proposed 

method using both simulation and real-world data and show its 

effectiveness in defending against various GPS spoofing attacks, 

including stealthy attacks that are proposed to fail the production-

grade autonomous driving systems. 

 

Index Terms—Cybersecurity, GPS spoofing, Infrastructure-

enabled defense solution, Roadside unit.  

I. INTRODUCTION 

ECHNOLOGIES supporting advanced driving systems 

have been evolving at an unprecedented pace in recent 

years. Among them, accurately localizing a vehicle’s 

global positions is critical for vehicle routing and control. To 

support high-level driving automation and safety, localization 

modules must be robust in various driving scenarios, which 

demand advanced sensors and algorithms. Modern localization 

modules rely on multiple sensors, including, for example, 

Global Positioning System (GPS), Inertial Measurement Unit 

(IMU), Light Detection and Ranging (LiDAR), and camera [1]. 

However, sensors on vehicles are vulnerable to malicious 

attacks [2]. For example, GPS spoofing, which broadcasts 

falsified GPS signals, has been a long-recognized high threat 

[3]; LiDAR can be compromised by replay attacks that deceive 

receivers with recorded (thus outdated) data [4]; cameras are 

sensitive to blinding attacks that emit light into the camera [5]. 

Despite the disclosed vulnerabilities, solutions to addressing 

them are still limited. 

This study focuses on GPS spoofing detection and correction 
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as GPS has been and will continue to be an essential technique 

for vehicle localization [6]. Attacks on GPS have long been 

recognized, notably jamming, replaying, and spoofing attacks. 

GPS jamming prevents the receivers from receiving signals 

properly, while a replaying attack records authentic signals and 

replays the outdated or irrelevant signals to interrupt the proper 

operation of vehicles. GPS spoofing aims to forge signals to 

mislead a vehicle to deviate from its planned path [9, 10], hence 

endangering the safety of passengers and other road users. 

Section II-A provides a detailed comparison of these attacks. 

Being a false data injection attack (see a full taxonomy of 

attacks in [2]), GPS spoofing can be the most effective among 

the three types of attacks as it allows the attacker to dictate the 

victim vehicle’s positions to achieve specific goals [9]. Despite 

being a real threat, defending against GPS spoofing is still an 

open security problem from both prevention and detection 

perspectives [3]. From the prevention perspective, a 

fundamental measure to prevent GPS spoofing is to apply 

cryptographic techniques to civilian GPS infrastructure [10]. 

However, it requires considerable modifications or even 

reconstruction of the existing satellite infrastructure and GPS 

receivers, which is impractical. From the detection perspective, 

the defense methods vary by the source of information used for 

detecting malicious attacks. The classical techniques are based 

on collecting and analyzing GPS signals in real time, such as 

accurate clock information or angle of arrival [9], [11]. Though 

effective, these techniques may not be generalizable as each 

technique is designed for specific attacks and may need a large 

budget for installing dedicated devices (e.g., multiple antennae) 

on individual vehicles. Another open question is how to recover 

accurate navigation after an attack is detected [10].  

With various sensors increasingly prevalent in vehicles, 

detecting sensor (e.g., GPS) attacks via cross-comparing 

multiple data sources has attracted considerable attention in 

recent years [12]–[14]. One typical approach is to detect 

anomalies in received real-time measurements by comparing 

them with patterns in previously recorded data. This is often 

done by a supervised machine learning model or a statistical 

model corresponding to specific attacks from these records and 

applying the learned model to real-time anomaly detection [15]. 
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One challenge of implementing such methods is the lack of 

labeled records for model training or the imbalance between 

benign and adversarial records. To address this challenge, some 

studies have developed methods based on one-class 

classification where anomaly detection models are trained using 

only benign data [16]. In practice, the methods may be difficult 

to implement as extracting features for one-class classification 

training is not trivial [16]. Another type of approaches to detect 

attacks is to integrate other real-time data sources (e.g., IMU 

data) with the vehicle’s (mathematical) motion model [6]. An 

anomaly/attack is detected if data from the subject sensor 

deviate too much from the predicted output (e.g., vehicle’s 

position) from the motion model [17]. However, the motion 

model could be compromised when GPS spoofing occurs (and 

before spoofing is detected), leading to unreliable predictions 

[18]; see also the numerical results and discussions later in 

Section VI-B. One mitigation is to simultaneously run multiple 

models on redundant sensors (e.g., GPS, LiDAR and camera) 

and detect attacks via cross-validation. Yet, implementing and 

cross-validating multiple models can be complicated, 

especially for identifying the attack source [14, 19]. Installing 

multiple redundant sensors can also be costly, given the vast 

number of vehicles on roads and constrained onboard resources. 

Besides emerging vehicle-based sensors and technologies, 

transportation infrastructure is becoming increasingly 

important in supporting various functionalities of advanced 

vehicle technologies, especially Connected and Automated 

Vehicles (CAVs)  [19]–[21]. It is widely accepted now that 

infrastructure-vehicle cooperation is probably a more viable 

path to implement emerging systems, e.g., automated driving, 

compared with that using driverless vehicle technologies solely. 

For this, the communication and data transmission between 

vehicles and infrastructure will play a central role. Indeed, V2X 

messages (e.g., the basic safety message (BSM)) have already 

been defined for data transmitted between vehicles and 

“everything” (including other vehicles, the infrastructure, and 

other users of the roadway), and secure data transmission 

schemes (e.g., the secure credential management system 

(SCMS) [22]) have also been proposed for V2X data. Emerging 

V2X communication systems, such as 5G-based Cellular V2X, 

are capable of supporting real-time decisions in, e.g., collision 

avoidance systems and positioning of vehicles. Leveraging 

secure data from the infrastructure may help defend against 

cybersecurity attacks, including GPS spoofing attacks. 

Therefore, while we should continue to encourage research on 

more effective GPS spoofing defense methods based on signal 

processing, anomaly detection, and data fusion (some recent 

methods can be found in [8], [13], [23]), we should also 

welcome methods via exploring the use of secure infrastructure 

data for GPS spoofing detection and mitigation.  

This study focuses on such a new exploration by proposing 

an infrastructure-enabled defense (IED) framework via 

utilizing roadside units (RSU) as an independent, secure data 

source. An RSU broadcasts locational information (similar to 

or could be part of the V2X data from RSU); vehicles in the 

broadcast range can use the information to estimate their 

locations periodically (see Section V-A for more details). Such 

secure, independent data from RSUs enables new ways to 

detect and mitigate GPS spoofing, which we will explore and 

elaborate more in the remainder of this paper. The proposed 

IED framework has several unique features compared with 

existing solutions. First, it takes advantage of the 

communication modules between vehicles and infrastructure 

(e.g., existing or newly deployed V2X devices), instead of 

requiring sophisticated in-vehicle GPS receivers or redundant 

sensors for cross-validation. Second, enabled by the secure data 

from infrastructure, it is feasible to design a simpler yet 

effective defense solution to detect and correct GPS spoofing. 

Computed from secure RSU data, the features for attack 

detection are also “protected” (i.e., safe from attackers’ 

manipulation), relieving the challenge of developing attack-

resilient algorithms [24]. Third, it is more practical to secure the 

information from RSUs than to secure the established civilian 

GPS satellite infrastructure (see Section II-D for more 

discussions). Therefore, the proposed IED solution provides a 

new and valuable alternative to addressing GPS spoofing 

issues. Furthermore, exploring IED solutions for GPS spoofing 

may provide helpful insights to address other data-related 

cybersecurity issues in transportation, which we will elaborate 

more in later sections. We note here that, while we focus on 

GPS spoofing on ground vehicles in this paper, GPS spoofing 

has also been studied for aircraft and marine vehicles (ships) 

[7]. In fact, an infrastructure-based GPS spoofing mitigation 

idea for aircraft was also reported in [25]. However, due to the 

distinct characteristics/operations of ground vehicles and 

aircraft (or ships), their safety requirements, and the drastically 

different space they are operated in, methods for aircraft or 

ships cannot be applied directly to ground vehicles (e.g., the 

idea in [25] does not apply to ground transportation). 

We first introduce the design of secure RSU data and the 

method of how a vehicle interacts with the infrastructure to 

obtain secure, global position measurements. Based on the 

secure measurements, we develop and compute multiple 

features, with which a real-time detector, based on the Isolation 

Forest, is constructed to detect GPS spoofing. Once spoofing is 

detected, GPS measurements are isolated, and the potentially 

compromised location estimation is corrected using the RSU 

data. We design the detection and correction methods under the 

situation that RSU data is not always available due to certain 

constraints (e.g., a limited budget to install RSUs all over the 

road network). If RSU data are not available, an RSU-based 

prediction model utilizes the last available RSU measurement 

and the vehicle motion model to predict vehicle locations, 

preserving timely attack detection. We test the proposed IED 

framework using both simulation and real-world data and show 

its performance compared with state-of-the-art solutions in 

defending various types of GPS spoofing, including a stealthy 

attack that is proposed to fail the production-grade autonomous 

driving systems [16]. The major contributions of this paper are 

summarized as follows. 

1) This study explores and proposes an IED framework for 

detecting and correcting GPS spoofing, which 
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complements existing methods that mainly rely on (likely 

insecure) vehicular data.  

2) By integrating both GPS and RSU data, we develop a 

machine learning-based spoofing detection method that is 

simple yet effective in detecting GPS spoofing, adding new 

tools to the current toolbox for GPS spoofing. 

3) A new correction model is also developed leveraging the 

RSU data, which results in much-reduced location errors 

when GPS spoofing attacks occur. 

In the rest of this paper, we review related works in Section 

II. In Section III, we present the problem statement and major 

assumptions and some preliminaries on which our problem is 

constructed. Section IV introduces GPS spoofing attack 

models. Section V presents the proposed IED framework and 

Section VI evaluates it using both simulation and real-world 

data. Concluding remarks are discussed in Section VII.  

II. LITERATURE REVIEW 

A. GPS Spoofing Attacks 

Existing studies have revealed potential vulnerabilities of 

localization sensors to malicious attacks [13], [16]. GPS is 

particularly prone to attacks, including jamming, replaying, and 

spoofing [2]. GPS jamming can prevent vehicles from receiving 

GPS signals properly by, e.g., transmitting radio signals that 

overpower the (weak) authentic GPS signals. Jamming could be 

addressed by implementing beam/null-steering antenna arrays 

that can filter out jamming signals [26]. Replaying attacks aim 

to confuse vehicles by recording and rebroadcasting GPS 

signals that could be outdated or irrelevant to the vehicles’ real-

time operation. False signals in such attacks could be identified 

by monitoring the receiver’s clock bias over time [26]. GPS 

spoofing misleads vehicles’ trajectories by forging counterfeit 

GPS signals, which could be done by intercepting and falsifying 

authentic signals before sending them to GPS receivers [3]. 

GPS spoofing falls into the broad category of false data 

injection attacks, which compromise sensor readings stealthily 

so that undetected errors are introduced into state predictions. 

A full taxonomy of various types of attacks can be found in [2]. 

It is well recognized that GPS spoofing can be stealthy to be 

detected among these attacks and is still an open challenge in 

the cybersecurity community.  

Before discussing existing defense solutions against GPS 

spoofing, we summarize common types of GPS spoofing in 

recent studies[10], [13], [14]. 

• Instant: One GPS measurement that is unexplainable and 

significantly different from previous ones. 

• Noise: A consecutive sequence of GPS measurements 

with increased variance. Noise attack occurs across 

multiple successive sensor readings.  

• Constant bias: A sequence of GPS measurements with a 

constant offset from the vehicle’s true locations.  

• Gradual drift (stealthy attack): A sequence of GPS 

measurements that are modified to gradually deviate the 

vehicle from its true trajectory during a period of time. 

The references above also discuss in detail the consequences 

of each type of GPS spoofing attacks. Among these attacks, the 

constant bias and gradual drift attacks have received the most 

attention. In particular, the gradual drift attack is one type of 

stealthy attacks, which is more deceptive than other attacks: it 

can result in a large deviation between the true trajectory and 

the falsified trajectory over time. Sophisticated stealthy attacks 

have been proposed in recent studies, making them difficult to 

be detected. For example, stealthy GPS spoofing is proposed in 

[13] to gradually drift the true vehicle position according to its 

kinematic model. In [1], a stealthy GPS spoofing attack (named 

FusionRipper) is designed to fail production-grade autonomous 

driving systems (e.g., Baidu’s Apollo system) with an over 90% 

success rate. FusionRipper targets the predominantly adopted 

Multi-Sensor Fusion (MSF) algorithms and performs 

exponential spoofing, which injects mild deviations at the 

beginning to gradually compromise MSF and then aggressive 

deviations with exponential growths. The deviations injected 

over time are controlled by two parameters which are tuned 

according to MSF’s configuration. In this study, we implement 

FusionRipper as a stealthy attack to test the IED framework. 

B. Detection Methods against GPS Spoofing 

Defending GPS spoofing could be done from the prevention 

perspective, i.e., enhancing data security via techniques such as 

encryption and user authentications. Preventing GPS spoofing 

this way requires significant modifications of the civilian GPS 

satellite infrastructure (i.e., satellites, GPS receivers, and their 

communication that is currently without any encryption 

scheme) that has been widely deployed and used for decades. 

Clearly, doing so would be very costly and impractical [3]. As 

well recognized and adopted extensively in previous studies [9], 

[11], [27], practical GPS spoofing defense solutions contain 

two major steps: spoofing detection and spoofing correction 

(mitigation). We review detection methods here, while 

correction methods are covered in the next subsection.  

Classical GPS spoofing detection methods focus on 

collecting and processing rich information in GPS signals, such 

as accurate clock information, signal power and arrival angle 

[9], [23]. These methods have been shown effective in detecting 

specific types of attacks. However, they often require 

dedicatedly designed GPS receivers in vehicles (e.g., receivers 

with moving or multiple antennae) and may not be 

generalizable to sophisticated attacks that largely mimic 

authentic GPS signals [3]. Meanwhile, how to correct the 

compromised location estimator and recover accurate 

localization after attack detection is still an open question [10].  

In recent years, sensors are increasingly installed in vehicles 

and this has promoted studies that detect spoofing attacks (i.e., 

anomalies) via cross-validating multiple data sources [12], [13], 

[16]. Such studies can be categorized into two groups: data-

driven and model-based [16]. The former relies on prepared 

(historical) data to learn a set of patterns or rules, with which 

the real-time sensor data is determined as benign or adversarial 

[12], [14]. The rules could be learned by formulating a 

supervised learning problem, where a classifier is learned using 

the labeled training data. The trained classifier serves as the 

detector to detect whether a sensor is under attack or not [15]. 

Such supervised learning algorithms have been shown effective 

in detecting spoofing attacks on real-time localization systems 

implemented on a wheeled robot [28]. Recently, deep learning 
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methods have been applied to detecting anomalies in speed 

sensors [14]. Despite their success in specific applications, 

supervised-learning-based methods have two limitations [15]: 

i) the training data requires labeled (at least two classes of) 

records, which can be challenging to prepare; and ii) the trained 

model may not be generalizable to address new types of attacks 

that are not represented in the training data. To address these 

limitations, recent studies propose to perform unsupervised 

learning or one-class classifications (OCC) that are trained only 

on normal data and thus do not require specific labels associated 

with the data [29]. Then, real-time sensor data is fed into the 

learned classifier to detect attacks or anomalies. In [7], the 

authors formulated attack detection as an unsupervised binary 

classification problem and applied K-means to cluster the data 

into two groups, one for attack and the other for non-attack. 

Applying K-means to detect stealthy GPS spoofing can be 

challenging, as it requires predetermining the feature space and 

distance function for measuring the distance between data 

points. In [13], a One-Class Support Vector Machine (OCSVM) 

model is proposed to detect anomalies in vehicular sensor 

readings. Though robust in detecting inconsistencies among 

data sources, studies have shown that OCSVM could be 

sensitive to outliers and tends to produce false-positive errors 

[30]. Meanwhile, OCC-based detectors do not address another 

limitation associated with the data-driven methods: the detector 

may detect the existence of anomalies but could fail to identify 

their source (i.e., which sensor is under attack). This makes it 

challenging to design and implement mitigation measures (e.g., 

isolating the attacked sensor).  

Model-based detection methods involve modeling and 

continuously predicting a vehicle’s motion dynamics using 

real-time measurements from the vehicle [31], [32]. The basic 

idea is that if a sensor measurement deviates from the expected 

value from the vehicle dynamic model too much, the sensor 

may be compromised. The 𝜒2-test-based detection is often used 

to determine whether the deviation is large enough to claim the 

sensor being an outlier or under attack [33]. The detection test 

is a statistical test, based on the statistic Normalized Estimation 

Error Squared (NEES) that follows a 𝜒2 distribution [8], [34]. 

The 𝜒2-test-based detection can be sensitive to sensor noises, 

resulting in a high rate of false positives (i.e., outliers that are 

incorrectly identified as attacks due to sensor noises). To 

mitigate this issue, a cumulative sum (CUSUM) discriminator 

is recently proposed to detect attacks on GPS and LiDAR [16]. 

CUSUM detects an attack by inspecting multiple consecutive 

sensor measurements instead of one measurement only: if the 

inconsistency between the sensor measurement and the 

expected vehicle position appears continuously, the sensor is 

likely under attack. There are some limitations with CUSUM in 

real-world applications. First, it requires two tuning parameters 

that can be challenging to determine in real-world 

implementations. Second, being a model-based method, it relies 

on a prediction model that may be compromised by stealthy 

attacks. Specifically, an attack can carefully manipulate the 

input to the prediction model such that the generated predictions 

are corrupted. If this occurs, the features computed from the 

predictions are no longer reliable indicators of attacks. In the 

numerical experiments in this paper, we show the weakness of 

CUSUM when facing stealthy attacks.  

C. Mitigation/Correction Methods against GPS Spoofing 

Existing studies are mainly on attack detection and have 

limited discussions on mitigating/correcting the errors caused 

by the attack [28], [31]. The typical strategy is to run a fail-safe 

mechanism (e.g., handing over control to the human driver) if 

an attack is detected [35]. However, such a fail-safe mechanism 

can be costly as it interrupts the system or may not be applicable 

in certain scenarios (e.g., automated driving).  

Another typical solution is to deploy multiple sensors, such 

that an attacked sensor is isolated and the system relies on the 

rest of the sensors [36]. For example, a vehicle equipped with 

GPS and LiDAR will rely on LiDAR for localization if GPS 

spoofing is detected [16]. There are some limitations to such 

solutions. First, as noted above, identifying the attack source 

(i.e., which sensor is under attack) in the multi-sensor setting is 

often challenging, especially when all sensors are vulnerable. 

Consequently, isolating the attacked sensor is not trivial. 

Second, in the presence of detection lag, the data fusion 

framework would have been partially compromised before 

noticing an attack and isolating the attacked sensor [1]. 

Previous studies only emphasize isolating the attacked sensor 

but lack discussions on correcting the compromised data fusion 

framework. One possible solution is to run a secondary system 

(e.g., a localization module independent of GPS sensor) so that 

the system under attack is isolated and replaced by the 

secondary system [35]. Yet, deploying and running redundant 

systems could be economically and computationally costly. 

D. Methods of Obtaining Secure Infrastructure Data 

Infrastructure plays an increasingly important role in modern 

driving systems, facilitating their various advanced functions, 

such as detecting pedestrians and efficient driving at 

intersections [12], [37]. The proposed IED framework in this 

paper requires secure infrastructure data (RSU data). Yet, the 

infrastructure data itself can be vulnerable to malicious attacks, 

including DoS attacks and spoofing attacks. Fortunately, active 

research has been conducted on securing infrastructure and 

practical security strategies are currently available [38].  

Infrastructure data collection and transmission can be 

secured by applying a variety of state-of-the-art secure channels 

that use advanced encryption algorithms (e.g., DES, 3DES, 

AES, RSA and Blowfish [39]). These existing encryption 

methods can be evaluated in transportation applications and 

revised, if needed, to fit transportation scenarios better. In 

practice, secure data communication is becoming a standard in 

CAV development and deployment. For example, a recent 

review in [38] summarizes the integrity of V2X communication 

from different contexts, such as reputation analysis and 

message integrity checking. In [22], SCMS is presented to 

secure V2X data. SCMS issues digital certificates to vehicles 

and RSUs to secure their communications while maintaining 

efficient revocation of misbehaving or malfunctioning vehicles. 

SCMS may be readily used for secure data transmission in our 

proposed IED framework. Besides data transmission, the 

received secure infrastructure data may also be encrypted 

before storage (and decoded before using them), ensuring data 

security even if the system (hardware) is hacked [40].  

These existing studies suggest that secure data transmission 

between vehicles and the infrastructure can be reasonably done. 
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As we focus on developing GPS spoofing detection and 

mitigation methods using infrastructure data, in this paper, we 

apply the state-of-the-art encryption method to set up secure 

channels for secure data transmission between an RSU and its 

nearby vehicles. Specifically, we implement an Advanced 

Encryption Standard (AES) scheme [41] in terms of the process 

of encrypting and decrypting transmitted data with user 

authentication, which is similar to the SCMS scheme for secure 

V2X transmission. See Section V-A and Section VI-A for more 

detailed discussions on this. 

III. PROBLEM STATEMENT AND PRELIMINARIES 

A. Problem Statement 

Fig. 1 illustrates the problem setup and the general idea of 

the IED framework against GPS spoofing. We consider a 

simple yet common localization solution, where a vehicle can 

be tracked by a typical motion model with high-frequency local 

measurements from a low-end IMU and takes low-frequency 

global measurements from GPS for correcting location errors 

periodically. Low-end IMUs are pervasive nowadays and are 

widely deployed in smartphones and vehicles. The problem 

setting here ensures the generality of the study since one can 

obtain IMU measurements from a vehicle’s OBD portal [42], 

without installing additional sensors or utilizing the data from 

such sensors even if they are installed. GPS could be spoofed in 

an adversarial environment. The vehicle could deviate from the 

desired trajectory if spoofing is not detected. Our goal here is to 

propose an IDE method with which the vehicle can utilize the 

secure data from RSUs to timely detect GPS spoofing and 

correct location errors incurred by the attacks. Section V-A 

provides more details about the data provided by the RSU.  

 
Fig. 1. ILLUSTRATION OF GPS SPOOFING AND IED SOLUTION. 

B. Assumptions 

We impose the following assumptions to simplify our 

discussion and clarify the focus of this study.  

1) GPS spoofing studied here belongs to data security, which 

is orthogonal to attacks/defenses of hacking into software 

or hardware systems, or physical network security [38], 

[43]. To focus on the research challenges and methods of 

GPS spoofing, we assume in this paper that other attacks 

have been mitigated with proper countermeasures. The 

only exception is the methods for secure data transmission 

between vehicles and the infrastructure; see 2) below. 

2) Vehicles can obtain secure RSU data to calculate their 

global locations. As discussed in Section II-D and more in 

Section V-A, we assume that secure RSU data can be 

readily available by applying (or tailoring) existing 

security schemes [38]. This paper directly applies AES 

[41] to secure the data and focuses on developing and 

testing detection and correction methods.  

3) We assume that IMU is secure due to assumption 1) above. 

IMU measurements are typically accessed via a wired 

channel; thus, their exposure to potentially adversarial 

environments is low unless in the presence of physical 

attacks against in-vehicle hardware. This assumption has 

also been widely adopted in recent cybersecurity research 

involving IMUs [9], [17]. 

C. EKF-based Localization Model 

Estimating vehicle positions from multiple sensors can be 

achieved by a Kalman Filter (KF)-based method or its variants 

[44]. Here we briefly describe the KF-based localization model 

used in this paper to combine GPS (global) and IMU (local) 

data. Vehicle (global) location at time 𝑘 is represented by the 

KF’s state 𝒙𝑘 and uncertainty with a covariance matrix 𝑷̂𝑘. Due 

to the non-linearity of the vehicle motion model, we adopt an 

Extended Kalman Filter (EKF) applied in [1].  

Following initialization at 𝑘 = 0 , EKF estimates vehicle 

positions by iterating a prediction step and an update step. The 

prediction step iterates the motion model (1) to predict vehicle 

positions using IMU data; the process is often referred to as 

dead-reckoning. This prediction step is expressed as a 

discretized vehicle motion model (1) together with the 

propagation of uncertainty (2) [45]. 

𝒙𝑘 = 𝑓(𝒙𝑘−1, 𝒖𝑘), (1) 

𝑷𝑘 = 𝑭𝑘−1𝑷̂𝑘−1𝑭𝑘−1
𝑇 + 𝑳𝑘−1𝑸𝑳𝑘−1

𝑇 . (2) 

Here, 𝒙𝑘  and 𝑷𝑘  represent the vehicle position and its 

uncertainty at time step 𝑘 , respectively. 𝒖𝑘  gives the IMU 

measurement containing white noises 𝒘𝑘  with covariance 

matrix 𝑸. 𝑭𝑘−1 =
𝜕𝑓𝑘−1

𝜕𝒙𝑘−1
|𝒙̂𝑘−1

, 𝑳𝑘−1 =
𝜕𝑓𝑘−1

𝜕𝒘𝑘−1
|𝒙̂𝑘−1

are the partial 

derivative matrices corresponding to the state and noises that 

are obtained by linearizing the system model (1).  

The update step is for periodically correcting the cumulated 

errors in the prediction steps once GPS data 𝒛𝑘
𝐺𝑃𝑆 is received. 

The measurement model for GPS data is given by [16]: 

𝒛𝑘
𝐺𝑃𝑆  =  𝑯 × 𝒙𝑘 + 𝒆𝑘

𝐺𝑃𝑆 . (3) 

Here matrix 𝑯 maps vehicle position to the measurement space. 

𝒆𝑘
𝐺𝑃𝑆 is the measurement noise which is assumed to be additive 

white noise with covariance matrix 𝑹𝐺𝑃𝑆. 

As shown in (4), the update step takes a GPS measurement 

𝒛𝑘  and its uncertainty 𝑹𝐺𝑃𝑆  as input to compute the Kalman 

gain 𝑲𝑘, which is then used to correct the predicted state [1]. 

               𝑲𝑘 = 𝑷𝑘𝑯𝑇(𝑯𝑷𝑘𝑯𝑇 + 𝑹𝐺𝑃𝑆)−1 
(4)                 𝒙𝑘 = 𝒙𝑘 + 𝑲𝑘(𝒛𝑘

𝐺𝑃𝑆 − 𝑯𝒙𝑘)𝒓𝑘
𝐺𝑃𝑆 

                𝑷̂𝑘 = 𝑷𝑘 − 𝑲𝑘𝑯𝑷𝑘 . 

IV. ATTACK MODELS 

Attack models are essential for investigating attack detection 

and mitigation. We consider two types of GPS spoofing attacks: 

the constant bias attack and the stealthy attack. As shown in the 

results section, these two attack models allow for evaluating the 

IED framework under stealthy and non-stealthy attacks, 

generating some interesting insights. Other types of spoofing 

attacks on GPS discussed in Section II-A (including instant and 
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noise attacks) are not implemented in this study, since they 

either fall out of the scope of this study (e.g., DoS attacks) or 

can be approximated by the constant bias or stealthy attacks 

[14] (also briefly discussed below).  

A. Constant Bias Attack 

A constant bias attack injects a constant bias into the true 

measurements, causing the GPS readings to deviate from the 

true ones temporarily. In practice, attackers could launch a bias 

attack to mislead a vehicle by adding a lateral offset or a 

longitudinal offset (or both) to the true GPS readings 𝒛𝑘
𝐺𝑃𝑆 . 

Mathematically, the received GPS measurement would be:  

𝒛̃𝑘
𝐺𝑃𝑆 =  𝒛𝑘

𝐺𝑃𝑆 + 𝑪 (𝑘 ∈  [𝑡𝑠, 𝑡𝑒]), (5) 

where 𝒛̃𝑘
𝐺𝑃𝑆 is the spoofed GPS data, and 𝑪 is a constant vector 

that can be added to the true GPS readings. 𝑡𝑠 and 𝑡𝑒 represent 

the start time and end time of the attack, respectively. With a 

constant bias attack, the vehicle may be deceived by believing 

that it is at the wrong location on the roadway and thus takes 

faulty actions. Notice that an instant attack can be implemented 

by taking 𝑡𝑒 = 𝑡𝑠 + 1.  

B. Stealthy Attack 

A stealthy attack injects a sequence of increasing deviations 

into the true measurements, such that the vehicle gradually 

drifts away from its true trajectory. Mathematically, the 

received GPS measurement can be expressed as:  

𝒛̃𝑘
𝐺𝑃𝑆 =  𝒛𝑘

𝐺𝑃𝑆 + 𝒄𝑘 (𝑘 ∈  [𝑡𝑠, 𝑡𝑒]), (6) 

where 𝒄𝑘  is carefully designed to avoid triggering an attack 

detector. Stealthy attacks are more deceptive than constant bias 

attacks for GPS spoofing. To implement a noise attack, one 

could generate 𝒄𝑘  by sampling a random distribution (e.g., 

norm distribution) with a large variance. 

As noted in Section II-A, we implement FusionRipper, the 

state-of-the-art stealthy spoofing strategy that is recognized by 

the cybersecurity communities [1]. In this study, the 

implementation of FusionRipper is simplified since our 

localization solution includes no LiDAR as in the original 

study. Specifically, we skip the vulnerability profiling step (for 

determining when GPS measurements dominate the location 

estimator) and implement the aggressive spoofing step directly. 

The aggressive spoofing performs exponential spoofing that 

increases the deviation 𝒄𝑘 exponentially. As shown by (7), the 

deviation 𝒄𝑘  is a function of time 𝑘 , controlled by two 

parameters: m and n (with n slightly larger than 1). At the 

beginning of the attack, the deviation is small, making it 

difficult to be detected. As a result, the spoofed GPS 

measurements would be fused and corrupt the data fusion 

framework (i.e., EKF). Once this occurs, aggressive deviations 

can be injected without alerting the detection algorithm.   

𝒄𝑘 = 𝑚 ∗ 𝑛𝑘 (7) 

V. INFRASTRUCTURE-ENABLED DEFENSE METHOD  

An overview of the IED framework is shown in Fig. 2.  

Besides the EKF-based localization model that continuously 

localizes the vehicle (Section III-C), there are three new 

components. The first component aims to obtain secure, global 

measurements of vehicle positions from RSUs. The second one 

(RSU-enabled detection component) runs a real-time detector 

to monitor whether a received GPS measurement is spoofed or 

not. The third component is to correct the vehicle location using 

RSU data. In the following, we describe each of the three 

components in detail. 

 
Fig. 2. IED FOR GPS SPOOFING DETECTION AND CORRECTION.  

A. Secure RSU Data from the Infrastructure 

1) Design of Secure RSU Data 

Methods for obtaining secure RSU data include two major 

aspects: (i) what data to collect and how to collect them; and (ii) 

how to secure data collection and transmission. We focus on (i) 

in this study. For (ii), as discussed in Section II-D, we apply the 

AES scheme, one of state-of-the-art encryption methods, to 

design dedicated secure channels for secure data collection and 

transmissions, focusing on testing its performance in spoofing 

detection and correction in Section VI. 

The design of secure RSU data (denoted as 𝒙𝑘
𝑅𝑆𝑈) ensures 

that a vehicle can use the data to obtain its global position 

measurement similar to GPS. This has been extensively studied 

in the field of GPS-free localization [46]–[48]. A common 

practice is to first estimate the vehicle’s relative position to the 

RSU via ranging methods and then compute the vehicle’s 

global position given the (global) coordinates of the RSU [38]. 

In a ranging method, the distance between a radio transmitter 

(the RSU here) and a receiver can be inferred from the 

properties of the radio wave observed at the receiver [47]. Note 

that this distance is termed as range following the literature. 

The widely known ranging methods include those collecting 

and utilizing received signal strength (RSS), arrival time or 

arrival angle [46]. For CAVs that can communicate with RSUs, 

such range information can be readily available on the vehicle 

side. Following [46], we use 𝑀(•) to express a ranging method 

that obtains the range information 𝑧𝑘
𝑅𝑆𝑈  at time k: 

𝑧𝑘
𝑅𝑆𝑈  =  𝑀(𝒙𝑘, 𝐶𝑟𝑑𝑅𝑆𝑈)  + 𝑒𝑘

𝑅𝑆𝑈. (8) 

Here, 𝑀(•) is essentially a measurement model depending on 

the vehicle’s (true) global position 𝒙𝑘  and the RSU’s 

coordinates 𝐶𝑟𝑑𝑅𝑆𝑈 . 𝑒𝑘
𝑅𝑆𝑈  is the measurement noise in a 

Gaussian distribution with covariance matrix 𝜎𝑅𝑆𝑈. In [46], a 

recent review of RSU-assisted localization methods is 

provided, which vary with the RSU data types and 

configurations of signal transmitters on RSUs and receivers on 

vehicles. There are also real-world implementations in GPS-

absent environments (e.g., Waze’s Beacon program to provide 

navigation for drivers underground [49]). The RSU-assisted 

localization methods could reach an accuracy in centimeters, 

much higher than that of GPS [47].  

In this study, we implement an efficient and low-cost V2X-

based vehicle localization method by Ma et al. [50].  It is low 

cost as it needs only a single data transmitter on the RSU side 

and a single receiver on the vehicle (i.e., it is similar to and can 
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be implemented via the current V2X framework), compared 

with other ranging methods using multiple transmitters or 

receivers to collect information such as angle of arrivals [50]. 

Ma et al. [50] assumes that the RSU broadcasts its coordinates, 

and a vehicle receives the message and extracts associated 

range information (i.e., the relative distance information). Then 

the vehicle computes its global position 𝒙𝑘
𝑅𝑆𝑈using a sequence 

of range information 𝑧𝑘
𝑅𝑆𝑈. Thus, this method may be readily 

deployed based on the current V2X systems without additional 

hardware requirements (the range information does need to be 

extracted from the receiver on the vehicle side). Omitting the 

details, we denote this method with function 𝐺(•) [50]: 

(𝒙𝑘
𝑅𝑆𝑈 , 𝑹𝑘

𝑅𝑆𝑈) =
𝐺([𝒛𝑘

𝑅𝑆𝑈 , 𝒛𝑘−1
𝑅𝑆𝑈, … , 𝒛𝑘−𝑜

𝑅𝑆𝑈], 𝐶𝑟𝑑𝑅𝑆𝑈, [𝒖𝑘 , 𝒖𝑘−1, … , 𝒖𝑘−𝑜]). 

(9) 

[𝒛𝑘
𝑅𝑆𝑈 , 𝒛𝑘−1

𝑅𝑆𝑈 , … , 𝒛𝑘−𝑜
𝑅𝑆𝑈]  is the sequence of range information 

associated with the messages from an RSU. 
[𝒖𝑘, 𝒖𝑘−1, … , 𝒖𝑘−𝑜]  is a sequence of local measurements 

containing either speeds or local displacements. These local 

measurements can be easily accessible from either the vehicle’s 

own wheel encoder or IMU. Covariance matrix 𝑹𝑘
𝑅𝑆𝑈 considers 

the uncertainty associated with the estimated position 𝒙𝑘
𝑅𝑆𝑈 , 

which may be affected by the sequence length and noises in the 

range information. It is reported that the error of 𝒙𝑘
𝑅𝑆𝑈 is less 

than one meter. In our study, we conduct sensitivity analysis in 

Section VI to test whether RSU-assisted location accuracy will 

play a role in detecting and correcting GPS spoofing attacks.  

Lastly, the latency needs to be considered when 

implementing the AES scheme to set up the secure channel 

between an RSU and vehicles. Here latency stems from three 

sources: the communication latency, the latency due to 

encrypting and decrypting the transmitted data, and the 

computational time to derive the vehicle’s global position. One 

main contribution to the communication latency is the V2X 

technology involved, such as the Dedicated Short-Range 

Communication (DSRC) and the emerging 5G-based Cellular-

V2X (C-V2X) system. Previous studies have reported that the 

DSRC communication latency ranges from 10ms to 100ms 

[51], [52] and the C-V2X communication latency would not 

exceed 60ms even when there are 150 vehicles in the same 

communication channel [51], [53]. In our implementation, the 

run times for encrypting/decrypting the transmitted data and 

deriving vehicle’s global position are negligible (0.60ms and 

0.13ms, respectively), when evaluated from an average of 1000 

runs on a personal computer (with a 3.60GHz AMD Ryzen 7 

CPU). This suggests that the latency of the designed secure 

RSU data is dominated by the communication latency. In this 

paper, we use 100ms, the largest reported communication 

latency in the numerical experiments. 

2) RSU-based Location Prediction  

The relative vehicle position measured by RSU, 𝑧𝑘
𝑅𝑆𝑈, would 

not always be available, depending on the availability of RSUs 

along the road. Due to budget limits in a real-world setting, 

RSUs may be spatially sparse in the road network and RSU data 

is only available when vehicles are within an RSU’s service 

range. In this study, we assume the distance between two 

consecutive RSUs, denoted as 𝐷𝑅𝑆𝑈, is uniform, and the service 

range 𝑑𝑅𝑆𝑈  is fixed. In Section VI, we conduct sensitivity 

analyses on how the spacing of RSUs will impact the 

performance of the proposed methods. 

If RSU data are unavailable, we utilize the last available RSU 

data and vehicle motion model to predict a vehicle’s location, 

enabling us to continuously monitor GPS measurements and 

timely detect attacks. The prediction should not involve GPS 

measurements that may have been compromised at the time 

when attacks are detected. However, since the vehicle location 

may change dramatically following commands from the 

vehicle’s actuator (e.g., throttle, brake and steer), predicting the 

vehicle location can be challenging. 

We build an RSU-based prediction model leveraging RSU 

data and the vehicle motion model to address this challenge. 

Specifically, given the most recent vehicle (global) position 

information enabled by the RSU at time 𝑘 (𝒙𝑘
𝑅𝑆𝑈; see (9)), we 

predict vehicle location at 𝑘 + ∆𝑘 . For this, we start a 

standalone vehicle motion model at 𝑘, initialize it with 𝒙𝑘
𝑅𝑆𝑈 

and then iterate it using IMU data 𝒖𝑡 (𝑡 ∈ [𝑘 + 1, 𝑘 + ∆𝑘]) as 

the input. Note that besides predicting vehicle locations, we also 

propagate the errors in IMU data to gain the prediction 

uncertainty that is represented by a covariance matrix 𝑷𝑡
𝑅𝑆𝑈 . 

The iterations of 𝒙𝑡
𝑅𝑆𝑈 and 𝑷𝑡

𝑅𝑆𝑈 are expressed in (10). We will 

use this prediction model in Section V-B to detect GPS 

spoofing and in Section V-C to correct the vehicle location 

when GPS spoofing is detected. 

       𝒙𝑡
𝑅𝑆𝑈  =  𝑓(𝒙𝑡−1

𝑅𝑆𝑈 , 𝒖𝑘)  

       𝑷𝑡
𝑅𝑆𝑈  = 𝑭𝑡−1𝑷𝑡−1

𝑅𝑆𝑈𝑭𝑡−1
𝑇 + 𝑳𝑡−1𝑸𝑳𝑡−1

𝑇  
(10) 

       𝑡 ∈ [𝑘 + 1, 𝑘 + ∆𝑘] 

Here, 𝑭𝑡−1 =
𝜕𝑓𝑡−1

𝜕𝒙𝑡−1
|

𝒙𝑡−1
𝑅𝑆𝑈  and 𝑳𝑡−1 =

𝜕𝑓𝑡−1

𝜕𝒘𝑡−1
|

𝒙𝑡−1
𝑅𝑆𝑈  are the partial 

derivative matrices w.r.t. the state 𝒙 and IMU noises 𝒘.  

B. iForest Model-base Attack Detection 

Given the RSU data, the spoofing detection is formulated as 

a real-time anomaly detection problem, containing two parts: 1) 

generating real-time features, and 2) building a machine 

learning model that determines whether a GPS measurement is 

anomalous or not given the features at k.  

1) Feature Generation  

- The classical feature NEES 

We start with the classical feature for GPS spoofing 

detection, called NEES (Section II-B). It is computed as the 

normalized deviation of the received (possibly spoofed) GPS 

𝒛̃𝑘
𝐺𝑃𝑆 from the predicted location 𝒙𝑘, denoted as 𝒓𝑘

𝐺𝑃𝑆, as below. 

𝒓𝑘
𝐺𝑃𝑆 = 𝒛̃𝑘

𝐺𝑃𝑆 − 𝑯𝒙𝑘 

            𝑺𝑘
𝐺𝑃𝑆 = 𝑯𝑷̂𝑘𝑯𝑇 + 𝑹𝐺𝑃𝑆  

                   𝑁𝐸𝐸𝑆𝑘
𝐺𝑃𝑆 = (𝒓𝑘

𝐺𝑃𝑆)𝑇(𝑺𝑘
𝐺𝑃𝑆)−1𝒓𝑘

𝐺𝑃𝑆 

(11) 

Note that 𝑯 and 𝑷̂𝑘 are defined in Section III-C, and 𝑺𝑘
𝐺𝑃𝑆 is a 

covariance matrix reflecting the uncertainty of 𝒓𝑘
𝐺𝑃𝑆. 

It has been proven that if the noises in measurements follow 

a normal distribution, NEES follows a 𝜒2  distribution [34]. 

Therefore, in previous studies, the 𝜒2 -test-based detection 

using 𝑁𝐸𝐸𝑆𝑘
𝐺𝑃𝑆  is often applied to detect GPS spoofing. 

However, NEES could be impacted by noisy GPS 

measurements, making it hard to differentiate attacks from 

noises [18]. Furthermore, the 𝜒2-test-based detection could be 

ineffective for stealthy attacks [1]. This is because attackers 

could inject a sequence of false information into the authentic 

GPS measurements; each piece of false information alone may 
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not lead to a large enough NEES to trigger the alarm, but these 

errors together could successfully deviate the vehicle. If this 

happens, the 𝜒2 -test-based detector itself may also be 

compromised, making it less likely to detect spoofing attacks. 

- Features generated from RSU data  

We can create new features based on the measurements from 

RSUs, without involving GPS measurements, to address the 

issues associated with NEES. A straightforward way to create 

new features is to compute the difference between RSU and 

GPS measurements. However, as noted earlier, measurements 

from RSUs and GPS may not be at the same frequency, with 

the former not always being available. As a result, the two 

would not be directly comparable.  

We address this issue by utilizing the RSU-based location 

prediction (see Section V-A). The predicted location is 

generated whenever a GPS measurement is received and needs 

to be validated. Then, new features are created by comparing 

the GPS measurement with RSU-based prediction in (10). Since 

the prediction does not involve GPS measurements, these 

features are ‘protected’ as they are immune to GPS spoofing 

attacks. Specifically, using the RSU-based location prediction 

𝒙𝑘
𝑅𝑆𝑈  and the associated covariance matrix 𝑷𝑘

𝑅𝑆𝑈  (see Section 

V-A), we first compute the residual between the GPS 

measurement and the prediction 𝒓𝑘
𝐺𝑃𝑆 as well as the uncertainty 

of the residual 𝑺𝑘
𝑅𝑆𝑈, following (12). Then we generate two new 

(scalar) features 𝑟𝑘
𝑅𝑆𝑈 and 𝑆𝑘

𝑅𝑆𝑈, as shown in (13).  

                𝒓𝑘
𝑅𝑆𝑈 = 𝒛̃𝑘

𝐺𝑃𝑆 − 𝑯𝒙𝑘
𝑅𝑆𝑈 

                𝑺𝑘
𝑅𝑆𝑈 = 𝑯𝑷𝑘

𝑅𝑆𝑈𝑯𝑇 + 𝑹𝑅𝑆𝑈  
(12) 

                 𝑟𝑘
𝑅𝑆𝑈 =  ‖𝒓𝑘

𝑅𝑆𝑈‖  

                𝑆𝑘
𝑅𝑆𝑈 = |𝑺𝑘

𝑅𝑆𝑈| 
(13) 

Here, ‖•‖ and |•| compute the L2 norm of a vector and the 

determinant of a matrix, respectively. 

2) Building an Isolation Forest as the Detector 

The attack detection is treated as a real-time anomaly 

detection problem, for which we apply an unsupervised 

machine learning model to learn anomalies from the data. 

Specifically, we detect GPS spoofing by building an Isolation 

Forest (iForest) that takes all the above features 𝑨𝑘 = 

(𝑁𝐸𝐸𝑆𝑘
𝐺𝑃𝑆, 𝑟𝑘

𝑅𝑆𝑈 , 𝑆𝑘
𝑅𝑆𝑈) at time k as the input. Note that though 

𝑁𝐸𝐸𝑆𝑘
𝐺𝑃𝑆 may be corrupted due to GPS spoofing and thus not 

a reliable feature alone, valuable information can be generated 

by comparing it with the other features, providing additional 

dimensions of inconsistency (anomaly) check.  

iForest produces binary outputs: 𝛿𝑘 = 1 indicates being 

under attack and 𝛿𝑘 = −1 indicates otherwise. Compared with 

other unsupervised learning methods, iForest has multiple 

advantages [54]. First, it has shown superior performance in 

detecting anomalies in extensive empirical studies. Second, 

iForest is easy to train in terms of selecting hyperparameters 

and can scale up to massive applications due to its linear time 

complexity and low memory consumption, making it suitable 

to run on vehicles with constrained resources.  

The intuition behind iForest is that anomalous (or malicious) 

samples are easier to separate (i.e., isolate) from others 

compared with benign samples. In order to isolate a sample, the 

algorithm recursively generates partitions on all the samples by 

randomly setting a split (e.g., a threshold with a random feature) 

until all samples are separated. The recursive partitioning 

process is represented by growing a tree structure 

named Isolation Tree (iTree), with the leaves (or terminating 

nodes) being separated samples and intermediate nodes being 

attribute splits. Then, the length of the path to reach a sample 

starting from the root of an iTree approximates the number of 

partitions required to isolate the sample; a short length suggests 

a sample suspicious to be anomalous (as it is easier to separate). 

By constructing a large number of (random) iTrees based on the 

training dataset, we build an iForest. Using this iForest, we can 

identify samples that tend to have shorter path lengths in iTrees 

than others as anomalous. Anomaly detection with iForest 

consists of two stages: 1) a training dataset is used to build a 

forest of iTrees (i.e., iForest), and 2) each testing sample is 

passed through these iTrees, and an average anomaly score is 

assigned to the sample, which is further classified as a binary 

value. Readers are referred to [54] for more details. 

An unsupervised learning method, the iForest can be trained 

without labeling the data; thus, the training data can be easily 

prepared. In this study, we generate training samples by running 

vehicles and collecting the features at each time step. It is worth 

noting that iForest works in scenarios where the training dataset 

does not contain any anomalies. Therefore, we could prepare 

training samples using historical data, which may or may not be 

attacked. In this study, the training data is collected by running 

vehicles without GPS spoofing. The trained iForest can then be 

applied to detect GPS spoofing attacks in real-time. As 

expressed by (14), to check whether the GPS measurement at 

time k is spoofed, we compute a set of real-time features 𝑨𝑘 and 

input them to the trained iForest. An attack is detected if 𝛿𝑘 =1.  

𝛿𝑘 = 𝑖𝐹𝑜𝑟𝑒𝑠𝑡(𝑨𝑘) ,   𝛿𝑘 ∈  {−1, 1} . (14) 

In applications where GPS noise is large, we improve the 

robustness of the iForest-based detector by accounting for the 

temporal pattern of the features. Specifically, we apply a sliding 

window to use not only the features at time k but also the ones 

at the previous time steps. In our experiment where GPS noises 

are assumed large, features at the previous two steps (i.e., 

𝑨𝑘−2, 𝑨𝑘−1) are incorporated to detect attacks at time k, as it is 

not common to observe three outliers consecutively; see Eqn. 

(15) below. One may adopt a wider sliding window at the cost 

of a higher false-negative rate.  

𝛿𝑘 = 𝑖𝐹𝑜𝑟𝑒𝑠𝑡(𝑨𝑘−2, 𝑨𝑘−1, 𝑨𝑘) ,   𝛿𝑘 ∈  {−1, 1} . (16) 

Note that using the new features calculated from RSU data, 

similar machine learning methods, such as OCSVM (see 

Section II), can also be used to develop the detector, with their 

specific challenges addressed properly (e.g., choosing proper 

kernel functions and associated parameters for OCSVM [55]). 

C. Infrastructure-enabled Correction 

Measurements from RSUs can also be used to correct vehicle 

positions, which is triggered either (a) when RSU data is 

received, or (b) when the detector detects GPS spoofing; see 

Fig. 2. In (b), the RSU-based location predictions will be used 

for correction if a vehicle is outside of the service range of 

RSUs. Next, we introduce each case in detail.  

1) When RSU Data is Received 

When a vehicle enters the service range of an RSU, the 

vehicle periodically obtains measurements from the RSU, 

which can be used to correct the location estimation. The 

correction is done by directly initializing the state of EKF 
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(𝒙𝑘, 𝑷̂𝑘) following (17).  

(𝒙𝑘 , 𝑷̂𝑘) =  (𝒙𝑘
𝑅𝑆𝑈 , 𝑷𝑘

𝑅𝑆𝑈)  (17) 

Here, (𝒙𝑘
𝑅𝑆𝑈 , 𝑷𝑘

𝑅𝑆𝑈  ) is the secure location estimation from RSU 

data in (9). An alternative way to correct vehicle position using 

RSU data is to follow the EKF’s update step as introduced in 

Section III-C. However, this may not be reliable in stealthy 

attacks, which may bypass the attack detector and gradually 

corrupt the EKF [1]. The proposed method can effectively 

remove an attack’s negative effects via direct initialization. 

2) When GPS Spoofing is Detected 

When the detector detects an attack, besides isolating the 

GPS sensor, it corrects the EKF estimator as well. If RSU data 

is available, (17) is followed to correct the EKF location 

estimator; if not, the predicted location from the RSU-based 

prediction model is used. Specifically, when GPS spoofing is 

detected starting at 𝑘 + ∆𝑘 but RSU data is not available, the 

predicted position 𝒙𝑘+∆𝑘
𝑅𝑆𝑈  and its covariance matrix 𝑷𝑘+∆𝑘

𝑅𝑆𝑈  in 

(10) are used by directly initializing the EKF state.  

Since the RSU-based prediction model does not involve GPS 

measurements that may have been spoofed, the predicted 

location is able to correct errors resulting from a delayed 

detection, where the EKF estimator may have been 

compromised already. We show in Section VI-B that this brings 

benefits in defending stealthy attacks that are often detected 

with a delay. This is distinctively different from existing 

spoofing defense methods without RSU data: without removing 

the negative effect of the spoofed GPS measurements, they tend 

to generate deviated location estimations even if the vehicle 

successfully detects and isolates falsified GPS measurements. 

VI. EXPERIMENTAL STUDY 

A. Experiment Settings 

1) General Settings 

We test the proposed IED framework using both simulation 

data and real-world data. Simulation data is from the 

Downtown Seattle simulation model (Fig. 3a) built in 

Simulation Urban Mobility (SUMO). Fifty-three passenger 

vehicles are randomly selected for testing. Their trajectories 

allow us to capture diverse driving scenarios, including 

highways and local streets, where road geometries and vehicle 

dynamics vary considerably. The real-world GPS data contains 

trajectories from 15 vehicles, including both delivery trucks and 

passenger cars. Passenger car trajectories were collected from 

two field experiments conducted in Albany, NY, which were 

originally for measuring traffic performance [56]. Truck 

trajectories were provided by several anonymous logistic 

companies. Each vehicle trajectory comprises a sequence of 

time, location and speed reports, collected every 1 s.  

Taking a trajectory as the input, the MATLAB Navigation 

Toolbox (MNT) is used to simulate necessary sensor 

measurements along the trajectory, including local (e.g., IMU), 

global (e.g., GPS data) and range measurements (e.g., RSU 

data). GPS data are manipulated following the attack models 

(Section IV) to simulate GPS spoofing attacks. The parameters 

of the IMU and GPS sensors (e.g., accuracy levels and 

resolutions) are set as MNT’s default values, which reflect real-

world sensor properties to a large extent. See details of MNT’s 

sensor models in MATLAB documentation [57]. IMU and GPS 

measurements are sampled at 10Hz and 1Hz, respectively. 

RSUs are located along the road at an equal distance, and the 

service range of an RSU is represented by a circle with a radius 

of 500 meters centering at the RSU. Under the service range of 

an RSU, radio signal-to-noise ratio (SNR) in dB is simulated 

using the ground-truth range (i.e., the distance between the 

vehicle and the RSU) and following the measurement model 

𝑆𝑁𝑅 = 10 log10(|𝒛𝑅𝑆𝑈|2/(𝜎𝑅𝑆𝑈)2) as in [50] (essentially the 

reverse of the ranging method). Here, |𝒛𝑅𝑆𝑈| is the Euclidean 

distance between the vehicle and RSU and 𝜎𝑅𝑆𝑈 represents the 

uncertainty (see Section V-A), which will be investigated 

further in our sensitivity analysis. The encryption, decryption 

and transmission process for data security is simulated via an 

AES scheme assuming a 100ms latency as noted earlier.  

Fig. 3. (a) ROAD NETWORK OF DOWNTOWN SEATTLE IN SUMO 

[58]; (b) SENSOR MEASUREMENTS ALONG A TRAJECTORY.  

 

Fig. 3b illustrates an example of a ground-truth trajectory 

together with IMU, GPS and RSU measurements to help 

understand the sensor data. The measurements are visualized at 

where they are received/computed. It can be observed that GPS 

measurements are periodically received along the trajectory 

while RSU measurements are not spatially continuous but 

clustered around where RSUs are installed. 

To simulate GPS spoofing, we randomly select the start time 

and duration of an attack (a uniform distribution ranging from 

5 to 35 seconds). The attack modifies the true GPS data and 

passes the modified data to the vehicle for location estimation. 

We simulate the two types of attacks in Section IV. For constant 

bias attacks, GPS measurements are modified to deviate them 

by four meters, which is roughly the lane width. For stealthy 

attacks, we set m=1.0 and n=1.07, respectively. We choose the 

two values so that the maximum deviation is comparable with 

the one in the constant bias attack (e.g., four meters) for an 

average attack duration of 20 seconds. These values also 

approximate the ones used in the study in [1].  

2) Overview of the Experiments and Key Metrics 

We compare the iForest-based IED method with benchmark 

methods (see Section II) that include the 𝜒2-test-based detector, 

the CUSUM detector, the OCSVM detector implemented 

following [13] without using RSU data, and the OCSVM 

detector that uses the RSU data (hereafter referred to as the 

“OCSVM-based IED method” as it uses the same set of features 

as the iForest method). For a detector that requires tuning 

parameters, we search around the parameters suggested in the 

original work and take the ones that yield the best performance. 

1000 meters

North

Seattle 

Downtown

(a) (b)
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The performance is averaged over all tested trajectories with 

random attack times. The similarities and differences of results 

from simulated and real-world trajectories are summarized. 

Lastly, we present results from sensitivity analysis of the 

iForest-based IED method under three influential factors, i.e., 

RSU spacing 𝐷𝑅𝑆𝑈, hyperparameter of iForest 𝛼, and the error 

in RSU-assisted localization 𝜎𝑅𝑆𝑈. 

Several common metrics are adopted to evaluate the 

performance of the methods, including the F1 score, precision, 

recall, false alarm rate, detection lag, and Rooted Mean Square 

Error (RMSE) of location estimation. The first three evaluate 

detection accuracy, ranging from 0 to 1. Precision calculates 

the ratio of true positives (TP) over all the identified positives, 

and recall, also termed as the correct detection probability, is 

the ratio of TP to all ground-truth positives. A higher precision 

and recall mean a lower false-positive (FP) rate and a higher TP 

rate, respectively. A higher F1 means better detection 

performance in terms of balancing FP and TP. 

𝐹1 =
2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
  (18) 

False alarm rate is the ratio of FP over the total number of 

detection events. Starting from the beginning of a spoofing, 

detection lag counts the number of GPS measurements (at 1Hz) 

missed by the detector before the attack is detected. If GPS 

measurements are spoofed but not detected timely, the victim 

vehicle assimilates them for location estimation, leading to a 

deviated trajectory. RMSE measures the location estimation 

error along a trip by computing the distance between the 

estimated locations 𝒙𝑘 and true locations 𝒙𝑘: 

𝑅𝑀𝑆𝐸 = √
1

𝐾
∑ ‖𝒙𝑘 − 𝒙𝑘‖2

𝐾
𝑘=0   (19) 

Here, ‖𝒙𝑘 − 𝒙𝑘‖2 is the distance between the true location and 

estimated location at time k. K is the duration of the trajectory.  

B. Testing Results Using Simulated Trajectories 

Table I evaluates the proposed method using simulated 

trajectories. Under the constant bias attacks, it can be found that 

all the methods can detect the start of attacks with no lag. Yet, 

given its strength in balancing FP and TP, the IED methods give 

F1 scores of 0.86 and 0.83, respectively, which are much better 

than the other three non-IED methods. The precision and recall 

of the IED methods indicate that they could nearly identify all 

the spoofed GPS measurements while generating some FPs 

possibly due to noises in GPS sensors. As shown later in the 

sensitivity analysis, the FPs can be curbed by tuning the 

hyperparameter. On the other hand, the low precisions by the 

three non-IED methods suggest that they produce many FPs. 

The conventional OCSVM has high recalls with low precisions, 

as it tends to produce FPs. The performance of OCSVM-based 

IED method, by utilizing RSU data, can be boosted 

significantly, which is similar to the performance of the iForest-

based IED method. OCSVM has a lower F1 score due to its 

sensitivity to outliers as discussed in Section II-B. The results, 

especially the similar performances between iForest-based and 

OCSVM-based IED methods, suggest it is the new features 

computed from infrastructure data, not the specific learning 

methods, that lead to the improved performances of IED. With 

effective detection and correction, IED can dramatically reduce 

location errors compared to non-IED methods.  

Under stealthy attacks, the IED methods give F1 scores of 

0.78 and 0.72 respectively, again much better than the three 

non-IED methods. These findings suggest that the IED methods 

can effectively detect the attacks, despite the fact that the 

measurements from RSUs are not always available. Some 

interesting findings can be observed by comparing the 

performance under the two types of attacks. First, it is 

reasonable to observe that all the tested methods perform worse 

under stealthy attacks. Noteworthy is that though being 

downgraded, IED’s performance under stealthy attacks is still 

promising: the recall of 0.84 (or 0.86 for OCSVM-based IED) 

suggests that 84% (or 86%) of spoofed GPS measurements can 

be successfully detected. Second, unlike constant bias attacks, 

all the tested methods experience detection lags under stealthy 

attacks. Both IED methods miss two spoofed GPS 

measurements, as indicated by the detection lag in Table I. This 

is due to the attacks’ stealthy design, where added perturbations 

are small at the early stage of attacks. Although missed by the 

detector, the two spoofed GPS measurements only bring small 

deviations to the location estimation, which are corrected once 

attacks are detected. 

C. Testing Results using Real-world Trajectories 

We further evaluate the proposed methods using real-world 

GPS trajectories, and the results are reported in Table II. It can 

be found that the IED methods still outperform the other three 

TABLE I  

PERFORMANCE OF THE PROPOSED AND BENCHMARK METHODS ON SIMULATED TRAJECTORIES   

𝝌𝟐-test-based  CUSUM 

Conventional 

OCSVM 

(No RSU data) 

OCSVM-based 

IED 

iForest-based 

IED  

Constant bias 

attack 

F1 Score  0.56 0.69 0.70 0.83 0.86 

Precision  0.52 0.60 0.55 0.72 0.77 

Recall  0.69 0.86 0.95 0.98 0.99 

Detection lag 0 0 0 0 0 

RMSE 5.74 4.53 5.02 0.36 0.43 

Stealthy attack 

F1 score  0.47 0.21 0.48 0.72 0.78 

Precision  0.53 0.30 0.45 0.62 0.76 

Recall  0.49 0.22 0.57 0.86 0.84 

Detection lag  3 14 4 2 2 

RMSE 5.69 4.58 5.01 0.36 0.42 
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methods under both types of attacks. The F1 scores under 

stealthy attacks decrease, suggesting that all the methods are 

less effective compared with detecting constant bias attacks.   

The F1 scores are close to those of the tests using simulated 

trajectories, suggesting IED is also effective in dealing with 

real-world data. In detecting stealthy attacks, the IED methods 

have smaller recalls while larger precisions, compared with 

results from those on simulated data. The smaller recalls also 

lead to longer detection lags. In the following sensitivity 

analyses, we show that the trade-off between precision and 

recall can be adjusted according to the practical needs by 

varying hyperparameters of attack detectors.  

D. Sensitivity Analysis 

Multiple factors may impact the performance of the IED 

methods, such as the distance between two consecutive RSUs, 

the hyperparameters, and the accuracy of RSU-assisted 

localization. Here we conduct sensitivity analyses on how these 

factors influence the iForest-based IED method. Simulated data 

are used for the analysis unless noted otherwise. 

1) Distance Between Two Consecutive RSUs 

Given its reliance on RSU data, the IED method is expected 

to be influenced by RSU’s deployment strategy. Specifically, 

out of the RSU service range, the vehicle relies on RSU-based 

location prediction for attack detection and correction. Table III 

shows the performance of varying RSU distance 𝐷𝑅𝑆𝑈  under 

attacks. Note that we stop at 2000m as most of the trajectories 

are shorter than 2000m and a larger 𝐷𝑅𝑆𝑈  does not reduce the 

performance further. As expected, the performance (such as F1 

score and RMSE) downgrades as 𝐷𝑅𝑆𝑈  increases. Yet, the 

iForest-based IED method still maintains an advantage over the 

benchmark methods as 𝐷𝑅𝑆𝑈  increases. 

Fig. 4 and Fig. 5 show the sensitivity of the false alarm rate 

and recall (correct detection probability) with 𝐷𝑅𝑆𝑈  (and the 

other two factors as well). It can be observed that a larger 𝐷𝑅𝑆𝑈  

leads to a larger false alarm rate for both attacks. Under constant 

bias attacks, the recall stays close to 1, and the detection lags 

are zero, suggesting that these attacks can be easily and timely 

identified regardless of 𝐷𝑅𝑆𝑈 . Under stealthy attacks, 

increasing 𝐷𝑅𝑆𝑈 from 1000m to 1500m does not affect recall 

significantly, while a larger 𝐷𝑅𝑆𝑈 (at 2000m) drops it. 

 

TABLE III 

INFLUENCE OF RSU SPACING ON IFOREST-BASED IED METHOD 
𝑫𝑹𝑺𝑼 = 1000m 1500m 2000m 

Constant bias 

attack 

F1 Score 0.92 0.86 0.82 

Precision 0.86 0.77 0.72 

Recall 0.99 0.99 0.99 

Detection lag 0 0 0 

RMSE 0.10 0.43 0.54 

Stealthy 

attack 

F1 score 0.83 0.78 0.62 

Precision 0.83 0.76 0.64 

Recall 0.83 0.84 0.65 

Detection lag 3 2 6 

RMSE 0.10 0.42 0.60 
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Fig. 4. EFFECTS OF INFLUENTIAL FACTORS ON FALSE ALARM 

RATE. 

1000 1500 2000
0.5

0.6

0.7

0.8

0.9

1.0

0.1 0.2 0.3
0.5

0.6

0.7

0.8

0.9

1.0

0.1 0.25 0.5
0.5

0.6

0.7

0.8

0.9

1.0

 

 

R
e

c
a
ll 

(C
o
rr

e
c
t 
D

e
te

c
ti
o

n
 P

ro
b

a
b
ili

ty
)

D
RSU

 Constant bias attack

 Stealthy attack



 

 


RSU  

Fig. 5. EFFECTS OF INFLUENTIAL FACTORS ON RECALL. 

 

2) Hyperparameter of the Attack Detector 

In the iForest-based IED method, one key hyperparameter 

associated with iForest is contamination (denoted as 𝛼) which 

specifies the proportion of spoofed samples in the data set. 

Table IV summarizes the performance of the IED method with 

different 𝛼, ranging from 0 to 0.5. 0 means no anomalies and 

TABLE II 

PERFORMANCES OF THE PROPOSED AND BENCHMARK METHODS ON REAL-WORLD TRAJECTORIES   

𝝌𝟐-test-based  CUSUM 

Conventional 

OCSVM 

(No RSU data) 

OCSVM-based 

IED 

iForest-based 

IED  

Constant bias 

attack 

F1 Score  0.54 0.66 0.64 0.80 0.93 

Precision  0.64 0.61 0.48 0.67 0.88 

Recall  0.52 0.75 0.95 1.00 1.00 

Detection lag 0 0 0 0 0 

RMSE 2.52 1.90 2.04 0.12 0.17 

Stealthy attack 

F1 score  0.44 0.22 0.45 0.69 0.73 

Precision  0.64 0.54 0.38 0.67 0.83 

Recall  0.38 0.14 0.58 0.76 0.67 

Detection lag  6 16 6 4 6 

RMSE 2.02 1.19 1.90 0.17 0.17 

 



12 

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

0.5 means that half of the data samples are anomalies. A range 

from 0.1 to 0.3 in Table IV captures a fairly large range of 𝛼.  

 

TABLE IV 

IMPACTS OF IFOREST HYPERPARAMETER  
𝜶 =  0.1 0.2 0.3 

Constant 

bias attack 

F1 Score 0.91 0.86 0.8 

Precision 0.86 0.77 0.69 

Recall 0.99 0.99 0.99 

Detection lag 0 0 0 

RMSE 0.25 0.43 0.31 

Stealthy 

attack 

F1 score 0.71 0.78 0.71 

Precision 0.8 0.76 0.62 

Recall 0.65 0.84 0.86 

Detection lag 6 3 2 

RMSE 0.35 0.42 0.45 

 

Under the constant bias attacks, recalls remain unchanged 

(near 1), suggesting that the method can robustly detect spoofed 

GPS data under such attacks for a wide range of 𝛼 (Table IV 

and Fig. 5). Meanwhile, a sensitive detector with a large 𝛼 tends 

to reduce the detection lag. Yet, under both constant bias and 

stealthy attacks, a larger 𝛼 leads to more FPs, as indicated by 

the increase in the false alarm rate (Fig. 4) and the decrease in 

precision (Table IV). On the other hand, a larger 𝛼  brings 

benefits to detecting stealthy attacks, since i) more spoofed GPS 

measurements can be detected (as indicated by the larger 

recall), and ii) the detection lag is shorter.  

In summary, a proper 𝛼  can help balance precisions and 

recalls. The proper 𝛼 depends on the types of attacks: a small 𝛼 

is good for detecting constant bias attacks but reduces recalls 

(TPs) in stealthy attacks. Given the high threat of stealthy 

attacks, it would be beneficial to set a relatively large 𝛼  to 

effectively detect such attacks. In our experiments, a balance 

between precisions and recalls under the stealthy attack can be 

reached around 𝛼=0.2. 

3) Accuracy of RSU-assisted Localization 

Vehicle localization assisted by the RSU can be more 

accurate (in centimeters) than GPS measurements (in meters). 

In practice, the accuracy of RSU-assisted localization could 

depend on factors such as the ranging method applied, how 

RSUs are configured, and the real-time driving environments. 

Here, we check how the accuracy of RSU-assisted localization 

may impact the performance of the proposed method. 

Table V shows three accuracy levels of RSU-based 

localization obtained by tuning the uncertainty parameter 𝜎𝑅𝑆𝑈 

(Section V-A). 𝜎𝑅𝑆𝑈 =0.5 means that about 95% of location 

errors are within one meter, which is often considered as the 

worst scenario for RSU-assisted localization [48]. It can be 

observed that compared with the baseline (𝜎𝑅𝑆𝑈 =0.25), the 

higher accuracy in RSU-assisted localization (𝜎𝑅𝑆𝑈=0.1) has 

nearly no effect on detecting constant bias attacks but does 

improve the performance of detecting stealthy attacks that add 

tiny deviations at the beginning of an attack. A lower location 

accuracy (𝜎𝑅𝑆𝑈=0.5) reduces the performance in both types of 

attacks, with a higher false alarm rate (Fig. 4) and leading to 

larger location estimation errors (in RSME).  

 

 

TABLE V 

IMPACTS OF THE ACCURACY OF RSU-BASED LOCALIZATION 

𝝈𝑹𝑺𝑼 =  0.1 0.25 0.5 

Constant 

bias attack 

F1 Score  0.86 0.86 0.71 

Precision  0.75 0.77 0.55 

Recall  0.98 0.99 0.99 

Detection lag 0 0 0 

RMSE 0.41 0.43 0.81 

Stealthy 

attack 

F1 score  0.77 0.78 0.72 

Precision  0.71 0.76 0.59 

Recall  0.85 0.84 0.94 

Detection lag 3 3 0 

RMSE 0.42 0.42 0.54 

VII. CONCLUSION AND DISCUSSIONS 

In this paper, we proposed an infrastructure-enabled defense 

(IED) framework that utilizes secure RSU data for detecting 

GPS spoofing and correcting location errors from the spoofing. 

Timely detection is achieved by designing and training an 

iForest model using real-time features computed from both 

RSU data and (possibly spoofed) GPS data. Once spoofing is 

detected, GPS data is isolated and the compromised vehicle 

locations are corrected using RSU data. Experimental results 

using both simulation and real-world GPS data demonstrated 

that the IED framework enhances timely detection and 

correction even when RSU data is not spatially continuous. We 

showed that the IED framework is effective in defending 

against state-of-the-art stealthy GPS spoofing models. 

Furthermore, sensitivity analyses produced insights into how 

RSU deployment, hyperparameters, and the accuracy of RSU-

assisted localization impact the IED’s performance.  

The IED framework for GPS spoofing distinguishes itself 

from non-IED methods in three major aspects. First, it relaxes 

the requirement of vehicular sensors, making detection method 

more robust when dealing with spoofing attacks. Second, 

enabled by the secure RSU data, a relatively simple detector 

based on an unsupervised learning algorithm (e.g., iForest or 

OCSVM) can effectively detect GPS spoofing attacks. The 

advantage stems from the fact that the features computed from 

secure RSU data for attack detection are “protected”, relieving 

the challenges of developing attack-resilient algorithms. This 

advantage could be exploited to defend against false data 

injection attacks in general since the GPS spoofing setting 

adopted in this paper is general and can represent other false 

data injection attacks [9]. That is, if the observation deviates too 

much from “the expected value” that is computed using secure 

infrastructure data, the observation is likely under attack.  

Several limitations of the proposed IED framework call for 

future research. First, the detection and correction methods may 

be enhanced by more advanced learning approaches (such as 

deep learning) to further improve their performances. Second, 

more research efforts are needed to design optimal strategies for 

deploying the RSUs. In this study, we assumed RSUs are 

deployed evenly on the roadside and conducted sensitivity 

analyses to understand the impact of the distance between two 

consecutive RSUs on the IED’s performance. For future 

research, the optimal RSU deployment problem may be studied 

to produce RSU deployment strategies that systematically 

consider the deployment cost, traffic environments, road 

geometry, and the performance of the spoofing defense method. 
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Third, future investigations are needed to test the IED’s 

performance in real-world driving scenarios where GPS 

spoofing attacks, infrastructure (RSU and implementation of 

the ranging method in Section V-A), and the IED framework 

are implemented and tested. Fourth, the IED framework may be 

enhanced by incorporating additional (and easily obtained) data 

sources for more robust location estimation and/or attack 

detection. This is particularly so for scenarios where the 

distance between RSUs is large. For instance, the geometric 

outlines of roads may be used as constraints to improve location 

estimation/prediction, which may further improve detection 

accuracy. Last but not least, as infrastructure is becoming more 

important in transportation, the idea of the proposed IED 

framework may be applied to other applications. This may 

include vehicular computer vision systems that are vulnerable 

to data attacks, e.g., adding adversarial images to onboard 

cameras [59], or spoofing attacks on LiDAR data [4]. The 

proposed IED framework may be applied to these applications 

by i) designing specific secure infrastructure data including 

what data to collect and how to secure data transmission, ii) 

computing new features from the infrastructure data to help 

develop effective attack detection methods, and iii) correcting 

possibly corrupted data by using infrastructure data. The 

authors will pursue these research directions, and results may 

be reported in subsequent papers.  
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