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Abstract

Understanding model’s sensitivity to its training data is crucial but can also be
challenging and costly, especially during training. To simplify such issues, we
present the Memory-Perturbation Equation (MPE) which relates model’s sensitiv-
ity to perturbation in its training data. Derived using Bayesian principles, the MPE
unifies existing sensitivity measures, generalizes them to a wide-variety of models
and algorithms, and unravels useful properties regarding sensitivities. Our empir-
ical results show that sensitivity estimates obtained during training can be used
to faithfully predict generalization on unseen test data. The proposed equation is
expected to be useful for future research on robust and adaptive learning.

1 Introduction

Understanding model’s sensitivity to training data is important to handle issues related to quality, pri-
vacy, and security. For example, we can use it to understand (i) the effect of errors and biases in the
data; (ii) model’s dependence on private information to avoid data leakage; (iii) model’s weakness to
malicious manipulations. Despite their importance, sensitivity properties of machine learning (ML)
models are not well understood in general. Sensitivity is often studied through empirical investiga-
tions, but conclusions drawn this way do not always generalize across models or algorithms. Such
studies are also costly, sometimes requiring thousands of GPUs [38], which can quickly become
infeasible if we need to repeat them every time the model is updated.

A cheaper solution is to use local perturbation methods [21], for instance, influence measures that
study sensitivity of trained model to data removal (Fig. 1(a)) [8, 7]. Such methods too fall short of
providing a clear understanding of sensitivity properties for generic cases. For instance, influence
measures are useful to study trained models but are not suited to analyze training trajectories [14,
54]. Another challenge is in handling non-differentiable loss functions or discrete parameter spaces
where a natural choice of perturbation mechanisms may not always be clear [32]. The measures also
do not directly reveal the causes of sensitivities for generic ML models and algorithms.

In this paper, we simplify these issues by proposing a new method to unify, generalize, and under-
stand perturbation methods for sensitivity analysis. We present the Memory-Perturbation Equation
(MPE) as a unifying equation to understand sensitivity properties of generic ML algorithms. The
equation builds upon the Bayesian learning rule (BLR) [28] which unifies many popular algorithms
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Figure 1: Our main goal is to estimate the sensitivity of the training trajectory when examples are
perturbed or simply removed; see Panel (a). We present the MPE to estimate the sensitivity without
any retraining and use them to faithfully predict the test performance from training data alone; see
Panel (b). The test negative log-likelihood (gray line) for ResNet–20 on CIFAR10 shows similar
trends to the leave-one-out (LOO) score computed on the training data (black line).

from various fields as specific instances of a natural-gradient descent to solve a Bayesian learning
problem. The MPE uses natural-gradients to understand sensitivity of all such algorithms. We use
the MPE to show several new results regarding sensitivity of generic ML algorithms:

1. We show that sensitivity to a group of examples can be estimated by simply adding their
natural-gradients; see Eq. 6. Larger natural-gradients imply higher sensitivity and just a
few such examples can often account for most of the sensitivity. Such examples can be
used to characterize the model’s memory and memory-perturbation refers to the fact that
the model can forget its essential knowledge when those examples are perturbed heavily.

2. We derive Influence Function [8, 31] as a special case of the MPE when natural-gradients
with respect to Gaussian posterior are used. More importantly, we derive new measures
that, unlike influence functions, can be applied during training for all algorithms covered
under the BLR (such as those used in deep learning and optimization). See Table 1.

3. Measures derived using Gaussian posteriors share a common property: sensitivity to an
example depends on the product of its prediction error and variance (Eq. 12). That is, most
sensitive data lies where the model makes the most mistakes and is also least confident. In
many cases, such estimates are extremely cheap to compute.

4. We show that sensitivity of the training data can be used to accurately predict model gen-
eralization, even during training (Fig. 1(b)). This agrees with similar studies which also
show effectiveness of sensitivity in predicting generalization [22, 12, 19, 4].

2 Understanding a Model’s Sensitivity to Its Training Data

Understanding a model’s sensitivity to its training data is important but is often done by a costly
process of retraining the model multiple times. For example, consider a model with a parameter
vector θ ∈ RP trained on data D = {D1,D2, . . . ,DN} by using an algorithm At that generates a
sequence {θt} for iteration t that converges to a minimizer θ∗. Formally, we write

θt ← At (θt−1,L(θ)) where L(θ) =
N∑
i=1

ℓi(θ) +R(θ), (1)

and we use the loss ℓi(θ) for Di and a regularizer R(θ). Because θt are all functions of D or
its subsets, we can analyze their sensitivity by simply ‘perturbing’ the data. For example, we can
remove a subsetM ⊂ D to get a perturbed dataset, denoted by D\M, and retrain the model to get
new iterates θ

\M
t , converging to a minimizer θ\M

∗ . If the deviation θ
\M
t − θt is large for most

t, we may deem the model to be highly sensitive to the examples inM. This is a simple method
for sensitive analysis but requires a costly brute-force retraining [38] which is often infeasible for
long training trajectories, big models, and large datasets. More importantly, conclusions drawn from
retraining are often empirical and may not hold across models or algorithms.
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A cheaper alternative is to use local perturbation methods [21], for instance, influence measures that
estimate the sensitivity without retraining (illustrated in Fig. 1(a) by the dashed red arrow). The
simplest result of this kind is for linear regression which dates back to the 70s [7]. The method
makes use of the stationarity condition to derive deviations in θ∗ due to small perturbations to data.
For linear regression, the deviations can be obtained in closed-form. Consider input-output pairs
(xi, yi) and the loss ℓi(θ) = 1

2 (yi − fi(θ))
2 for fi(θ) = x⊤

i θ and a regularizer R(θ) = δ∥θ∥2/2.
We can obtain closed-form expressions of the deviation due to the removal of the i’th example as
shown below (a proof is included in App. A),

θ\i
∗ − θ∗ = (H\i

∗ )−1xiei, fi(θ
\i
∗ )− fi(θ∗) = v

\i
i ei, (2)

where we denote H\i
∗ = H∗−xix

⊤
i defined using the Hessian H∗ = ∇2L(θ∗). We also denote the

prediction error of θ∗ by ei = x⊤
i θ∗ − yi, and prediction variance of θ\i

∗ by v
\i
i = x⊤

i (H
\i
∗ )−1xi.

The expression shows that the influence is bi-linearly related to both prediction error and variance,
that is, when examples with high error and variance are removed, the model is expected to change a
lot. These ideas are generalized using infinitesimal perturbation [21]. For example, influence func-
tions [8, 32, 31] use a perturbation model θϵi

∗ = argminθ L(θ)− ϵiℓi(θ) with a scalar perturbation
ϵi ∈ R. By using a quadratic approximation, we get the following influence function,

∂θϵi
∗

∂ϵi

∣∣∣∣
ϵi=0

= H−1
∗ ∇ℓi(θ∗). (3)

This works for a generic differentiable loss function and is closely related to Eq. 2. We can choose
other perturbation models, but they often exhibit bi-linear relationships; see App. A for details.

Despite their generality, there remain many open challenges with the local perturbation methods:

1. Influence functions are valid only at a stationary point θ∗ where the gradient is assumed to
be 0, and extending them to iterates θt generated by generic algorithmic-steps At is non-
trivial [14]. This is even more important for deep learning where we may never reach such
a stationary point, for example, due to stochastic training or early stopping [33, 53].

2. Applying influence functions to a non-differentiable loss or discrete parameter spaces is
difficult. This is because the choice of perturbation model is not always obvious [32].

3. Finally, despite their generality, these measures do not directly reveal the causes of high
influence. Does the bi-linear relationship in Eq. 2 hold more generally? If yes, under what
conditions? Answers to such questions are currently unknown.

Studies to fix these issues are rare in ML, rather it is more common to simply use heuristics measures.
Many such measures have been proposed in the recent years, for example, those using derivatives
with respect to inputs [23, 2, 38], variations of Cook’s distance [17], prediction error and/or gradients
[3, 51, 42, 40], backtracking training trajectories [16], or simply by retraining [13]. These works,
although useful, do not directly address the issues. Many of these measures are derived without any
direct connections to perturbation methods. They also appear to be unaware of bi-linear relation-
ships such as those in Eq. 2. Our goal here is to address the issues by unifying and generalizing
perturbation methods of sensitivity analysis.

3 The Memory-Perturbation Equation (MPE)

We propose the memory-perturbation equation (MPE) to unify, generalize, and understand sensitiv-
ity methods in machine learning. We derive the equation by using a property of conjugate Bayesian
models which enables us to derive a closed-form expression for the sensitivity. In a Bayesian set-
ting, data examples can be removed by simply dividing their likelihoods from the posterior [52].
For example, consider a model with prior p0 = p(θ) and likelihood p̃j = p(Dj |θ), giving rise to a
posterior q∗ = p(θ|D) ∝ p0p̃1p̃2 . . . p̃N . To remove p̃j , say for all j ∈ M ⊂ D, we simply divide
q∗ by those p̃j . This is further simplified if we assume conjugate exponential-family form for p0 and
p̃j . Then, the division between two distributions is equivalent to a subtraction between their natural
parameters. This property yields a closed-form expression for the exact deviation, as stated below.
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Theorem 1 Assuming a conjugate exponential-family model, the posterior q
\M
∗ (with natural pa-

rameter λ\M
∗ ) can be written in terms of q∗ (with natural parameter λ∗), as shown below:

q
\M
∗ ∝ q∗∏

j∈M p̃j
=⇒ e⟨λ

\M
∗ ,T(θ)⟩ ∝ e⟨λ∗,T(θ)⟩∏

j∈M e⟨λ̃j ,T(θ)⟩
=⇒ λ\M

∗ = λ∗−
∑
j∈M

λ̃j . (4)

where all exponential families are defined by using inner-product ⟨λ,T(θ)⟩ with natural parameters
λ and sufficient statistics T(θ). The natural parameter of p̃j is denoted by λ̃j .

The deviation λ\M
∗ − λ∗ is obtained by simply adding λ̃j for all j ∈ M. Further explanations and

examples are given in App. B, along with some elementary facts about exponential families. We use
this result to derive an equation that enables us to estimate the sensitivity of generic algorithms.

Our derivation builds on the Bayesian learning rule (BLR) [28] which unifies many algorithms by ex-
pressing their iterations as inference in conjugate Bayesian models [26]. This is done by reformulat-
ing Eq. 1 in a Bayesian setting to find an exponential-family approximation q∗ ≈ p(θ|D) ∝ e−L(θ).
At every iteration t, the BLR updates the natural parameter λt of an exponential-family qt which
can equivalently be expressed as the posterior of a conjugate model (shown on the right),

λt ← (1− ρ)λt−1 − ρ

N∑
j=0

g̃j(λt−1) ⇐⇒ qt ∝ (qt−1)
1−ρ

(p0)
ρ︸ ︷︷ ︸

Prior

N∏
j=1

e⟨−ρg̃j(λt−1),T(θ)⟩︸ ︷︷ ︸
Likelihood

(5)

where g̃j(λ) = F(λ)−1∇λEq[ℓj(θ)] is the natural gradient with respect to λ defined using the
Fisher Information Matrix F(λt) of qt, and ρ > 0 is the learning rate. For simplicity, we denote
ℓ0(θ) = R(θ) = − log p0, and assume p0 to be conjugate. The conjugate model on the right uses
a prior and likelihood both of which, by construction, belong to the same exponential-family as qt.
By choosing an appropriate form for qt and making necessary approximations to g̃j , the BLR can
recover many popular algorithms as special cases. For instance, using a Gaussian qt, we can recover
stochastic gradient descent (SGD), Newton’s method, RMSprop, Adam, etc. For such cases, the
conjugate model at the right is often a linear model [25]. These details, along with a summary of the
BLR, are included in App. C. Our main idea is to study the sensitivity of all the algorithms covered
under the BLR by using the conjugate model in Eq. 5.

Let q\Mt be the posterior obtained with the BLR but without the data in M. We can estimate
its natural parameter λ\M

t in a similar fashion as Eq. 4, that is, by dividing qt by the likelihood
approximation at the current λt. This gives us the following estimate of the deviation obtained by
simply adding the natural-gradients for all examples inM,

λ̂
\M
t − λt = ρ

∑
j∈M

g̃j(λt) (6)

where λ̂
\M
t is an estimate of the true λ

\M
t . We call this the memory-perturbation equation (MPE)

due to a unique property of the equation: the deviation is estimated by a simple addition and charac-
terized solely by the examples inM. Due to the additive nature of the estimate, examples with larger
natural-gradients contribute more to it and so we expect most of the sensitivity to be explained by
just a few examples with largest natural gradients. This is similar to the representer theorem where
just a few support vectors are sufficient to characterize the decision boundary [29, 47, 10]. Here,
such examples can be seen as characterizing the model’s memory because perturbing them can make
the model forget its essential knowledge. The phrase memory-perturbation signifies this.

The equation can be easily adopted to handle an arbitrary perturbation. For instance, consider pertur-
bation L(θ)−

∑
j∈M ϵjℓj(θ). To estimate its effect, we divide qt by the likelihood approximations

raised to ϵi, giving us the following variant,

λ̂
ϵM
t − λt = ρ

∑
j∈M

ϵj g̃j(λt), =⇒ ∂λ̂
ϵM
t

∂ϵj

∣∣∣∣∣
ϵj=0

= ρ g̃j(λt), ∀j ∈M, (7)

where we denote all ϵj inM by ϵM. Setting ϵj = 1 in the left reduces to Eq. 6 which corresponds
to removal. The example demonstrates how to adopt the MPE to handle arbitrary perturbations.
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3.1 Unifying the existing sensitivity measures as special cases of the MPE

The MPE is a unifying equation from which many existing sensitivity measures can be derived as
special cases. We will show three such results. The first result shows that, for conjugate models, the
MPE recovers the exact deviations given in Thm. 1. Such models include textbook examples [6],
such as, mixture models, linear state-space models, and PCA. Below is a formal statement.

Theorem 2 For conjugate exponential-family models, Eq. 4 is obtained as a special case of the
MPE in Eq. 6 evaluated at λ∗ of the exact posterior q∗ when we set ℓj(θ) = − log p̃j and ρ = 1.

The result holds because, for conjugate models, one-step of the BLR is equivalent to Bayes’ rule and
therefore g̃j(λ∗) = −λ̃j (see [24, Sec. 5.1]). A proof is given in App. D along with an illustrative
example on the Beta-Bernoulli model. We note that a recent work in [49] also takes inspiration from
Bayesian models, but their sensitivity measures lack the property discussed above. See also [15] for
a different approach to sensitivity analysis of variational Bayes with a focus on the posterior mean.
The result above also justifies setting ρ to 1, a choice we will often resort to.

Our second result is to show that the MPE recovers the influence function by Cook [7].

Theorem 3 For linear regression, Eq. 2 is obtained as a special case of the MPE in Eq. 6 evaluated
at λ∗ of the exact posterior q∗ = N (θ|θ∗,H

−1
∗ ).

The proof in App. E relies on two facts: first, the natural parameter is λ∗ = (H∗θ∗, − 1
2H∗), and

second, the natural gradients for a Gaussian q with mean m can be written as follows,

g̃i(λ) = (ĝi − Ĥim, 1
2Ĥi), (8)

where ĝi = Eq[∇ℓi(θ)] and Ĥi = Eq[∇2ℓi(θ)]. This is due to [28, Eqs. 10-11], but a proof is
given in Eq. 27 of App. C. The theorem then directly follows by plugging g̃i(λ∗) in Eq. 6. This
derivation is much shorter than the classical techniques which often require inversion lemmas (see
App. A.1). The estimated deviations are exact, which is not a surprise because linear regression
is a conjugate Gaussian model. However, it is interesting (and satisfying) that the deviation in θ∗
naturally emerges from the deviation in λ∗.

Our final result is to recover influence functions for deep learning, specifically Eq. 3. To do so,
we use a Gaussian posterior approximation q∗ = N (θ|θ∗,H

−1
∗ ) obtained by using the so-called

Laplace’s method [34, 50, 37]. The Laplace posterior can be seen a special case of the BLR solution
when the natural gradient is approximated with the delta method [28, Table 1]. Remarkably, using
the same approximation in the MPE, we recover Eq. 3.

Theorem 4 The influence function in Eq. 3 is obtained as a special case of the MPE in Eq. 7
evaluated at λ∗ of the posterior q∗ = N (θ|θ∗,H

−1
∗ ) when we approximate g̃i(λ) of Eq. 8 with the

delta method by substituting Eq∗ [∇ℓi(θ)] ≈ ∇ℓi(θ∗) and Eq∗ [∇2ℓi(θ)] ≈ ∇2ℓi(θ∗).

A proof is in App. F. We note that Eq. 3 can be justified as a Newton-step over the perturbed data but
in the opposite direction [32, 31]. In a similar fashion, Eqs. 6 and 7 can be seen as natural-gradient
steps in the opposite direction. Using the natural-gradient descent, as we have shown, can recover a
variety of existing perturbation methods as special cases.

3.2 Generalizing the perturbation method to estimate sensitivity during training

Influence measures discussed so far assume that the model is already trained and that the loss is
differentiable. We will now present generalizations to obtain new measures that can be applied
during training and do not require differentiability of the loss. We will focus on Gaussian q but the
derivation can be extended to other posterior forms. The main idea is to specialize Eqs. 6 and 7
to the algorithms covered under the BLR, giving rise to new measures that estimate sensitivity by
simply taking a step over the perturbed data but in the opposite direction.

We first discuss sensitivity of an iteration t of the BLR yielding a Gaussian qt = N (θ|mt,S
−1
t ).

The natural parameter is the pair λt = (Stmt, − 1
2St). Using Eq. 8 in Eq. 6, we get

Ŝ
\M
t m̂

\M
t − Stmt = ρ

∑
j∈M

Eqt [∇ℓj(θ)]− Eqt [∇2ℓj(θ)]mt, St − Ŝ
\M
t = ρ

∑
j∈M

Eqt [∇2ℓj(θ)]

(9)
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Algorithm Update Sensitivity
Newton’s method θt ← θt−1 −H−1

t−1∇L(θt−1) H−1
t−1∇ℓi(θt)

Online Newton (ON) [28] θt ← θt−1 − ρS−1
t ∇L(θt−1) S−1

t ∇ℓi(θt)

ON (diagonal+minibatch) [28] θt ← θt−1 − ρ s−1
t · ∇̂L(θt−1) s−1

t · ∇ℓi(θt)

iBLR (diagonal+minibatch) [35] mt ←mt−1 − ρ s−1
t · ∇̂L(θt−1) s−1

t · ∇ℓi(θt)

RMSprop/Adam [30] θt ← θt−1 − ρ s
− 1

2
t · ∇̂L(θt−1) s

− 1
2

t · ∇ℓi(θt)

SGD θt ← θt−1 − ρ ∇̂L(θt−1) ∇ℓi(θt)

Table 1: A list of algorithms and their sensitivity measures derived using Eq. 10. The second column
gives the update, most of which use pre-conditioners that are either matrices (Ht,St) or a vector
(st); see the full update equations in Eqs. 31 to 34 in App. C. The third column shows the associated
sensitivity measure to perturbation in the i’th example which can be interpreted as a step for the i
example but in the opposite direction. We denote the element-wise multiplication between vectors
by “·” and the minibatch gradients by ∇̂. For iBLR, θt is either mt or a sample from qt.

Plugging St from the second equation into the first one, we can recover the following expressions,

m̂
\M
t −mt = ρ

(
Ŝ
\M
t

)−1Eqt

[ ∑
j∈M

∇ℓj(θ)
]
,

∂m̂ϵi
t

∂ϵi

∣∣∣∣
ϵi=0

= ρS−1
t Eqt [∇ℓi(θ)] (10)

For the second equation, we omit the proof but it is similar to App. F, resulting in preconditioning

with St. For computational ease, we will approximate Ŝ
\M
t ≈ St even in the first equation. We will

also approximate the expectation at a sample θt ∼ qt or simply at the mean θt = mt. Ultimately,
the suggestion is to use S−1

t ∇ℓi(θt) as the sensitivity measure, or variations of it, for example, by
using a Monte-Carlo average over multiple samples.

Based on this, a list of algorithms and their corresponding measures is given in Table 1. All of
the algorithms can be derived as special instances of the BLR by making specific approximations
(see App. C.3). The measures are obtained by applying the exact same approximations to Eq. 10.
For example, Newton’s method is obtained when mt = θt, St = Ht−1, and expectations are
approximated by using the delta method at θt (similarly to Thm. 4). With these, we get

S−1
t Eqt [∇ℓi(θ)] ≈ H−1

t−1∇ℓi(θt), (11)
which is the measure shown in the first row of the table. In a similar fashion, we can derive measures
for other algorithms that use a slightly different approximations leading to a different preconditioner.
The exact strategy to update the preconditioners is given in Eqs. 31 to 34 of App. C.3. For all, the
sensitivity measure is simply an update step for the i’th example but in the opposite direction.

Table 1 shows an interplay between the training algorithm and sensitivity measures. For instance,
it suggests that the measure H−1

t−1∇ℓi(θt) is justifiable for Newton’s method but might be inappro-
priate otherwise. In general, it is more appropriate to use the algorithm’s own preconditioner (if
they use one). The quality of preconditioner (and therefore the measure) is tied to the quality of
the posterior approximation. For example, RMSprop’s preconditioner is not a good estimator of the
posterior covariance when minibatch size is large [27, Thm. 1], therefore we should not expect it to
work well for large minibatches. In contrast, the ON method [28] explicitly builds a good estimate
of St during training and we expect it to give better (and more faithful) sensitivity estimates.

For SGD, our approach suggests using the gradient. This goes well with many existing approaches
[40, 42, 51, 3] but also gives a straightforward way to modify them when the training algorithm is
changed. For instance, the TracIn approach [42] builds sensitivity estimates during SGD training by
tracing ∇ℓj(θt)

⊤∇ℓi(θt) for many examples i and j. When the algorithm is switched, say to the
ON method, we simply need to trace ∇ℓj(θt)

⊤S−1
t ∇ℓi(θt). Such a modification is speculated in

[42, Sec 3.2] and the MPE provides a way to accomplish exactly that. It is also possible to mix and
match algorithms with different measures but caution is required. For example, to use the measure in
Eq. 11, say within a first-order method, the algorithm must be modified to build a well-conditioned
estimate of the Hessian. This can be tricky and can make the sensitivity measure fragile [5].

Extensions to non-differentiable loss functions and discontinuous parameter spaces is straightfor-
ward. For example, when using a Gaussian posterior, the measures in Eq. 10 can be modified to
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handle non-differentiable loss function by simply replacing Eqt [∇ℓi(θ)] with∇mEqt [ℓi(θ)], which
is a simple application of the Bonnet theorem [44] (see App. G). The resulting approach is more
principled than [32] which uses an ad-hoc smoothing of the non-differentiable loss: the smoothing
in our approach is automatically done by using the posterior distribution. Handling of discontinuous
parameter spaces follows in a similar fashion. For example, binary variables can be handled by
measuring the sensitivity through the parameter of the Bernoulli distribution (see App. D).

3.3 Understanding the causes of high sensitivity estimates for the Gaussian case

The MPE can be used to understand the causes of high sensitivity-estimates. We will demonstrate
this for Gaussian q but similar analysis can be done for other distributions. We find that sensitivity
measures derived using Gaussian posteriors generally have two causes of high sensitivity.

To see this, consider a loss ℓi(θ) = − log p(yi|σ(fi(θ))) where p(yi|µ) is an exponential-family
distribution with expectation parameter µ, fi(θ) is the model output for the i’th example, and σ(·) is
an activation function, for example, the softmax function. For such loss functions, the gradient takes
a simple form: ∇ℓi(θ) = ∇fi(θ)[σ(fi(θ)) − yi] [6, Eq. 4.124]. Using this, we can approximate
the deviations in model outputs by using a first-order Taylor approximation,

fi(θ
\i
t )− fi(θt)︸ ︷︷ ︸

Deviation in the output

≈ ∇fi(θt)
⊤(θ

\i
t − θt) ≈ ∇fi(θt)

⊤H−1
t−1∇fi(θt)︸ ︷︷ ︸

=vit, prediction variance

[σ(fi(θt))− yi]︸ ︷︷ ︸
=eit, prediction error

.
(12)

where we used θ
\i
t − θt ≈ H−1

t−1∇ℓi(θt) which is based on the measure in the first row of Table 1.
Similarly to Eq. 2, the deviation in the model output is equal to the product of the prediction error
and (linearized) prediction variance of fi(θt) [25, 20]. The change in the model output is expected
to be high, whenever examples with high prediction error and variance are removed.

We can write many such variants with a similar bi-linear relationship. For example, Eq. 12 can be
extended to get deviations in predictions as follows:

σ(fi(θ
\i
t ))− σ(fi(θt)) ≈ σ′(fi(θt))∇fi(θt)

⊤(θ
\i
t − θt) ≈ σ′(fi(θt))viteit. (13)

Eq. 12 estimates the deviation at one example and at a location θt, but we could also write them for
a group of examples and evaluate them at the mean mt or at any sample θ ∼ qt. For example, to
remove a groupM of size M , we can write the deviation of the model-output vector f(θ) ∈ RM ,

f(m
\M
t )− f(mt) ≈ ∇f(mt)

⊤S−1
t ∇f(mt)[σ(f(mt)− y], (14)

where y is the vector of labels and we used the sensitivity measure in Eq. 10. An example for
sparse Gaussian process is in App. H. The measure for SGD in Table 1 can also be used which gives
fi(θ

\i
t )− fi(θt) ≈ ∥∇fi(θ)∥2eit which is similar to the scores used in [40]. The list in Table 1

suggests that such scores can be improved by using Ht or St, essentially, replacing the gradient norm
by an estimate of the prediction variance. Additional benefit can be obtained by further employing
samples from qt instead of using a point estimate θt or mt; see an example in App. H.

It is also clear that all of the deviations above can be obtained cheaply during training by using
already computed quantities. The estimation does not add significant computational overhead and
can be used to efficiently predict the generalization performance during training. For example, using
Eq. 12, we can approximate the leave-one-out (LOO) cross-validation (CV) error as follows,

LOO(θt) =

N∑
i=1

ℓi(θ
\i
t ) = −

N∑
i=1

log p(yi|σ(fi(θ\i
t ))) ≈ −

N∑
i=1

log p(yi|σ(fi(θt) + viteit)). (15)

The approximation eliminates the need to train N models to perform CV, rather just uses eit and
vit which are extremely cheap to compute within algorithms such as ON, RMSprop, and SGD.
Leave-group-out (LGO) estimates can also be built, for example, by using Eq. 14, which enables us
to understand the effect of leaving out a big chunk of training data, for example, an entire class for
classification. The LOO and LGO estimates are closely related to marginal likelihood and sharpness,
both of which are useful to predict generalization performance [22, 12, 19]. Estimates similar to
Eq. 15 have been proposed previously [43, 4] but none of them do so during training.
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(a) MLP on MNIST
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(b) LeNet on FMNIST
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(c) CNN on CIFAR-10

Figure 2: The estimated deviation for an example removal correlates well with the true deviations in
predictions. Each marker represents an example. For each panel, the histogram at the bottom shows
that the majority of examples have low sensitivity and most of the large sensitivities are attributed
to a small fraction of data. We show a few images of high and low sensitivity examples from two
randomly chosen classes, where we observe the high-sensitivity examples to be more interesting
(possibly mislabeled or just ambiguous), while low-sensitivity examples appear more predictable.

4 Experiments

We show experimental results to demonstrate the usefulness of the MPE to understand the sen-
sitivity of deep-learning models. We show the following: (1) we verify that the estimated devi-
ations (sensitivities) for data removal correlate with the truth; (2) we predict the effect of class
removal on generalization error; (3) we estimate the cross-validation curve for hyperparameter tun-
ing; (4) we predict generalization during training; and (5) we study evolution of sensitivities during
training. All details of the experimental setup are included in App. I and the code is available at
https://github.com/team-approx-bayes/memory-perturbation.

Estimated deviations correlate with the truth: Fig. 2 shows a good correlation between the true
deviations σ(fi(θ

\i
∗ ))− σ(fi(θ∗)) and their estimates σ′(fi(θ∗))vi∗ei∗, as shown in Eq. 13. We

show results for three datasets, each using a different architecture but all trained using SGD. To
estimate the Hessian H∗ and compute vi∗ = ∇fi(θ∗)

⊤H−1
∗ ∇fi(θ∗), we use a Kronecker-factored

(K-FAC) approximation implemented in the laplace [11] and ASDL [39] packages. Each marker
represents a data example. The estimate roughly maintains the ranking of examples according to
their sensitivity. Below each panel, a histogram of true deviations is included to show that the
majority of examples have extremely low sensitivity and most of the large sensitivities are attributed
to a small fraction of data. The high-sensitivity examples often include interesting cases (possibly
mislabeled or simply ambiguous), some of which are visualized in each panel along with some
low-sensitivity examples to show the contrast. High-sensitivity examples characterize the model’s
memory because perturbing them leads to a large change in the model. Similar trends are observed
for removal of groups of examples in Fig. 6 of App. I.2.

Predicting the effect of class removal on generalization: Fig. 3(a) shows that the leave-group-out
estimates can be used to faithfully predict the test performance even when a whole class is removed.
The x-axis shows the test negative log-likelihood (NLL) on a held-out test set, while the y-axis
shows the following leave-one-class-out (LOCO) loss on the set C of a left-out class,

LOCOC(θ∗) =
∑
i∈C

ℓi(θ
\C
∗ ) ≈ −

∑
i∈C

log p(yi|σ(fi(θ∗) + vi∗ei∗)).
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Figure 3: Panel (a) shows, in the x-axis, the test NLL of trained models with a class removed. In
the y-axis, we show the respective leave-one-class-out (LOCO) estimates. Each marker correspond
to a specific class removed (text indicates class names). Results for two models on FMNIST are
shown. Both show good correlation between the test NLL and LOCO estimates; see the dashed
lines. Panel (b) shows the evolution of estimated sensitivities during training of LeNet5 on FMNIST.
As training progresses, the model becomes more and more sensitive to a small fraction of data.
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Figure 4a)
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Figure 4: The test NLL (gray) almost perfectly matches the estimated LOO-CV error of Eq. 15
(black). The x-axis shows different values of δ parameter of an L2-regularization δ∥θ∥2/2.

The estimate uses an approximation: fi(θ\C
∗ )− fi(θ∗) ≈ ∇fi(θ∗)

⊤H−1
∗
∑

j∈C ∇ℓj(θ∗) ≈ vi∗ei∗,
which is similar to Eq. 12, but uses an additional approximation

∑
j∈C∇ℓj(θ∗) ≈ ∇ℓi(θ∗) to reduce

the computation due to matrix-vector multiplications (we rely on the same K-FAC approximation
used in the previous experiment). Results might improve when this approximation is relaxed. We
show results for two models: MLP and LeNet. Each marker corresponds to a specific class whose
names are indicated with the text. The dashed lines indicate the general trends, showing a good
correlation between the truth and estimate. The classes Shirt, Pullover are the most sensitive, while
the classes Bag, Trousers are least sensitive. A similar result for MNIST is in Fig. 11(d) of App. I.3.

Predicting generalization for hyperparameter tuning: We consider the tuning of the parameter δ
for the L2-regularizer of form δ∥θ∥2/2. Fig. 4 shows an almost perfect match between the test NLL
and the estimated LOO-CV error of Eq. 15. Additional figures with the test errors visualized on top
are included in Fig. 7 of App. I.4 where we again see a close match to the LOO-CV curves.

Predicting generalization during training: As discussed earlier, existing influence measures are
not designed to analyze sensitivity during training and care needs to be taken when using ad-hoc
strategies. We first show results for our proposed measure in Eq. 10 which gives reliable sensitivity
estimates during training. We use the improved-BLR method [35] which estimates the mean mt and
a vector preconditioner st during training. We can derive an estimate for the LOO error at the mean
mt following a derivation similar to Eqs. 14 and 15,

LOO(mt) ≈ −
N∑
i=1

log p(yi|σ(fi(mt) + viteit)) (16)

9



0 25 50 75 100
Epochs

0.4

0.8

(a) iBLR & LOO of Eq. 16 (b) SGD & diagonal-GGN-LOO

0 25 50 75 100
Epochs

0.4

0.8

(c) SGD & K-FAC-LOO

Figure 5: We compare faithfulness of LOO estimates during training to predict the test NLL. The
first panel shows results for iBLR where a good match is obtained by using the LOO estimate of
Eq. 16 which uses a diagonal preconditioner. The next two panels show results for SGD where
we use the LOO estimate of Eq. 15 but with different Hessian approximations. Panel (b) uses a
diagonal-GGN which does not work very well. Results are improved when K-FAC is used, but they
are still not as good as the iBLR, despite using a non-diagonal Hessian approximation.

where vit = ∇fi(mt)
⊤diag(st)−1∇fi(mt) and eit = σ(fi(mt))− yi.

The first panel in Fig. 5 shows a good match between the above LOO estimate and test NLL. For
comparison, in the next two panels, we show results for SGD training by using two ad-hoc measures
obtained by plugging different Hessian approximations in Eq. 11. The first panel approximates Ht

with a diagonal Generalized Gauss-Newton (GGN) matrix, while the second panel uses a K-FAC
approximation. We see that diagonal-GGN-LOO does not work well at all and, while K-FAC-
LOO improves this, it is still not as good as the iBLR result despite using a non-diagonal Hessian
approximation. Not to mention, the two measures require an additional pass through the data to
compute the Hessian approximation, and also need a careful setting of a damping parameter.

A similar result for iBLR is shown in Fig. 1(b) where we use the larger ResNet–20 on CIFAR10,
and more such results are included in Fig. 8 of App. I.5. We also find that both diagonal-GGN-
LOO or K-FAC-LOO further deteriorate when the model overfits; see Fig. 9. Results for the Adam
optimizer are included in Fig. 10, where we again see that using ad hoc measures may not always
work. Overall, these results show the difficulty of estimating sensitivity during training and suggest
to take caution when using measures that are not naturally suited to analyze the training algorithm.

Evolution of sensitivities during training: Fig. 3(b) shows the evolution of sensitivities of ex-
amples as the training progresses. We use the iBLR algorithm and approximate the deviation as
σ(fi(m

\i
t ))− σ(fi(mt)) ≈ σ′(fi(mt))viteit where vit and eit are obtained similarly to Eq. 16.

The x-axis corresponds to examples sorted from least sensitive to most sensitive examples at con-
vergence. The y-axis shows the histogram of sensitivity estimates. We observe that, as the training
progresses, the distribution concentrates around a small fraction of the data. At the top, we visu-
alize a few examples with high and low sensitivity estimates, where the high-sensitivity examples
included interesting cases (similarly to Fig. 2). The result suggests that the model concentrates more
and more on a small fraction of high-sensitivity examples, and therefore such examples can be used
to characterize the model’s memory. Additional experiments of this kind are included in Fig. 11 of
App. I.6, along with other experiment details.

5 Discussion

We present the memory-perturbation equation by building upon the BLR framework. The equation
suggests to take a step in the direction of the natural gradient of the perturbed examples. Using the
MPE framework, we unify existing influence measures, generalize them to a wide variety of prob-
lems, and unravel useful properties regarding sensitivity. We also show that sensitivity estimation
can be done cheaply and use this to predict generalization performance. An interesting avenue for
future research is to apply the method to larger models and real-world problems. We also need to
understand how our generalization measure compares to other methods, such as those considered
in [22]. We would also like to understand the effect of various posterior approximations. Another
interesting direction is to apply the method to non-Gaussian cases, for example, to study ensemble
methods in deep learning with mixture models.
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A Influence Function for Linear Regression

We consider N input-output pairs (xi, yi). The feature matrix containing x⊤
i as rows is denoted

by X and the output vector of length N is denoted by y. The loss is ℓi(θ) = 1
2 (yi − fi(θ))

2 for
fi(θ) = x⊤

i θ. The regularizer is assumed to beR(θ) = δ∥θ∥2/2. The minimizer is given by

θ∗ = H−1
∗ X⊤y. (17)

We define a perturbation model as follows with ϵi ∈ R:
θϵi
∗ = argmin

θ
L(θ)− ϵiℓi(θ).

For ϵi = 1, it corresponds to example removal. An arbitrary ϵi simply weights the example accord-
ingly. The solution has a closed-form expression,

θϵi
∗ =

(
H∗ − ϵixix

⊤
i

)−1
(
X⊤y − ϵixiyi

)
. (18)

where H∗ =
∑N

i=1 xix
⊤
i + δIP is the Hessian of L(θ). We first derive a closed-form expressions

for θϵi
∗ − θ∗, and then specialize them for different ϵi.

A.1 Derivation of the leave-one-out (LOO) deviation

We denote Σ∗ = H−1
∗ and use the Sherman-Morrison formula to write

θϵi
∗ =

(
Σ∗ +

ϵiΣ∗xix
⊤
i Σ∗

1− ϵix⊤
i Σ∗xi

)(
X⊤y − ϵiyixi

)
= Σ∗X

⊤y + ϵiΣ∗xi

[
x⊤
i Σ∗X

⊤y

1− ϵix⊤
i Σ∗xi

− ϵiyix
⊤
i Σ∗xi

1− ϵix⊤
i Σ∗xi

− yi

]

= θ∗ + ϵiΣ∗xi

[
x⊤
i θ∗

1− ϵivi
− ϵiyivi

1− ϵivi
− yi

]
= θ∗ + ϵiΣ∗xi

[
x⊤
i θ∗ − yi
1− ϵivi

]
= θ∗ +Σ∗xi

ϵiei
1− ϵivi

.

(19)

In line 3 we substitute vi = x⊤
i Σ∗xi and θ∗ = Σ∗X

⊤y and in the last step we use ei = x⊤
i θ∗−yi.

We define e
\i
i = ei/(1− vi) which is the prediction error of θ\i

∗ ,

e
\i
i = x⊤

i θ
\i
∗ − yi = x⊤

i

(
θ∗ +Σ∗xi

ei
1− vi

)
− yi = x⊤

i θ∗ +
vi

1− vi
ei − yi =

ei
1− vi

. (20)

Therefore, we get the following expressions for the deviation,

θ\i
∗ − θ∗ = Σ∗xie

\i
i , fi(θ

\i
∗ )− fi(θ∗) = vie

\i
i .

These expressions can be written in the form of Eq. 2 by left-multiplying with Σ−1
∗ = H\i

∗ +xix
⊤
i ,

(H\i
∗ + xix

⊤
i )(θ

\i
∗ − θ∗) = xi(x

⊤
i θ

\i
∗ − yi) ⇒ θ\i

∗ − θ∗ = (H\i
∗ )

−1
xiei.

A.2 Derivation of the infinitesimal perturbation approach

We differentiate θϵi
∗ in Eq. 19 to get

∂θϵi
∗

∂ϵi
= Σ∗xi

ei
(1− ϵivi)2

, (21)

yielding the following expressions:
∂θϵi

∗
∂ϵi

∣∣∣∣
ϵi=0

= Σ∗xiei,
∂fi(θ

ϵi
∗ )

∂ϵi

∣∣∣∣
ϵi=0

= x⊤
i

∂θϵi
∗

∂ϵi

∣∣∣∣
ϵi=0

= x⊤
i Σ∗xiei = viei. (22)

The second equation in Eq. 22 follows from the chain rule. We get a bi-linear relationship of the in-
fluence measure with respect to vi and prediction error ei. It is also possible to evaluate Eq. 21 at ϵi =
1 representing an infinitesimal perturbation about the LOO estimate, ∂θϵi

∗ /∂ϵi|ϵi=1 = Σ\i
∗ xie

\i
i

From this and Eq. 22, we can interpret Eq. 2 as the average derivative over the interval ϵi ∈ [0, 1] [9]
or the derivative evaluated at some 0 < ϵi < 1 (via an application of the mean value theorem) [41].
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B Conjugate Exponential-Family Models

Exponential-family distributions take the following form:

q = h(θ) exp [⟨λ,T(θ)⟩ −A(λ)] .

where λ ∈ Ω are the natural (or canonical) parameter for which the cumulant (or log partition)
function A(λ) is finite, strictly convex and differentiable over Ω. The quantity T(θ) is the sufficient
statistics, ⟨·, ·⟩ is an inner product and h(θ) is some function. A popular example is the Gaussian
distribution, which can be rearranged to take an exponential-family form written in terms of the
precision matrix S = Σ−1,

N (θ|m,Σ) = |2πΣ|− 1
2 exp

[
− 1

2 (θ −m)⊤Σ−1(θ −m)
]

= exp
[
θ⊤Sm− 1

2θ
⊤Sθ − 1

2

(
m⊤Sm+ log |2πS−1|

)]
.

From this, we can read-off the quantities needed to define an exponential-form,

λ = (Sm, − 1
2S), T(θ) = (θ, θθ⊤), A(λ) = 1

2

(
m⊤Sm+ log |2πS−1|

)
, h(θ) = 1. (23)

Both the natural parameter and sufficient statistics consist of two elements. The inner-product for
the first elements is simply a transpose to get the θ⊤Sm term, while for the second element it is a
trace which gives −Tr(θθ⊤S/2) = − 1

2θ
⊤Sθ.

Conjugate Exponential-Family Models are those where both the likelihoods and prior can be ex-
pressed in terms of the same form of exponential-family distribution with respect to θ. For instance,
in linear regression, both the likelihood and prior take a Gaussian form with respect to θ,

p̃i = p(yi|xi,θ) = N (yi|x⊤
i θ, 1) ∝ exp

[
θ⊤xiyi − 1

2θ
⊤xix

⊤
i θ
]

p0 = p(θ) = N (θ|0, I/δ) ∝ exp
[
− 1

2θ
⊤ (δI)θ

]
.

Note that p̃i is a distribution over yi but it can also be expressed in an (unnormalized) Gaussian
form with respect to θ. The sufficient statistics of both p̃i and p0 correspond to those of a Gaussian
distribution. Therefore, the posterior is also a Gaussian,

q∗ = p(θ|D) ∝ p0p̃1p̃2 . . . p̃N

= exp
[
− 1

2θ
⊤ (δI)θ

] N∏
i=1

exp
[
θ⊤xiyi − 1

2θ
⊤xix

⊤
i θ
]

= exp

[
θ⊤

N∑
i=1

xiyi − 1
2θ

⊤

(
δI+

N∑
i=1

xix
⊤
i

)
θ

]
= exp

[
θ⊤H∗θ∗ − 1

2θ
⊤H∗θ

]
∝ N (θ|θ∗,H

−1
∗ ).

The third line follows because θ∗ = H−1
∗ X⊤y, as shown in Eq. 17.

These computations can be written as conjugate-computations [26] where we simply add the natural
parameters,

p̃i ∝ exp
[
⟨λ̃i,T(θ)⟩

]
, where λ̃i = (xiyi, − 1

2xix
⊤
i )

p0 ∝ exp [⟨λ0,T(θ)⟩] , where λ0 = (0, − 1
2δI)

=⇒ q∗ ∝ exp [⟨λ∗,T(θ)⟩] , where λ∗ = λ0 +

N∑
i=1

λ̃i =
(
H∗θ∗, − 1

2H∗
)
.

In the same fashion, to remove the contributions of certain likelihoods, we can simply subtract their
natural parameters from λ∗. These are the calculations which give rise to the following equation:

q
\M
∗ ∝ q∗∏

j∈M p̃j
=⇒ e⟨T(θ),λ\M

∗ ⟩ ∝ e⟨T(θ),λ∗⟩∏
j∈M e⟨T(θ), λ̃j⟩

=⇒ λ\M
∗ = λ∗ −

∑
j∈M

λ̃j .
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C The Bayesian Learning Rule

The Bayesian learning rule (BLR) aims to find a posterior approximation q(θ) ≈ p(θ|D) ∝ e−L(θ).
Often, one considers a regular, minimal exponential-family q ∈ Q, for example, the class of Gaus-
sian distributions. The approximation is found by optimizing a generalized Bayesian objective,

q∗ = argmin
q∈Q

Eq [L(θ)]−H(q).

where H(q) = Eq[− log q(θ)] is the entropy of q and Q is the class of exponential family approxi-
mation. The objective is equivalent to the Evidence Lower Bound (ELBO) when L(θ) corresponds
to the negative log-joint probability of a Bayesian model; see [28, Sec 1.2].

The BLR uses natural-gradient descent to find q∗, where each iteration t takes the following form,

λt ← λt−1 − ρF(λt−1)
−1 ∂

∂λ
[Eq [L(θ)]−H(q)]

∣∣∣∣
λ=λt−1

(24)

where ρ > 0 is the learning rate. The gradient is computed with respect to λ (through q), and we
scale the gradient by the Fisher Information Matrix (FIM) defined as follows,

F(λ) = Eq

[
(∇λ log q)(∇λ log q)⊤

]
= ∇2

λA(λ).

The second equality shows that, for exponential-family distribution, the above FIM is also the second
derivative of the log-partition function A(λ).

C.1 The BLR of Eq. 5

The BLR in Eq. 5 is obtained by simplifying the natural-gradient using the following identity,

F(λ)−1∇λEq(·) = ∇µEq(·)|µ=∇λA(λ) (25)

where µ is the expectation parameter. The identity works because of the minimality of the
exponential-family which ensures that there is a one-to-one mapping between λ and µ, and also
that the FIM is invertible. Using this, we can show that the natural gradient ofH(q) is simply equal
to −λ; see [28, App. B]. Defining ℓ0(θ) = R(θ), we get the version of the BLR shown in Eq. 5,

λt ← (1− ρ)λt−1 − ρ

N∑
j=0

g̃j(λt−1), where g̃j(λt−1) = ∇µEq[ℓj(θ)]|µ=∇λA(λt−1)
.

C.2 The conjugate-model form of the BLR given in Eq. 5

To express the update in terms of the posterior of a conjugate model, we simply take the inner
product with T(θ) and take the exponential to write the update as

e⟨λt,T(θ)⟩︸ ︷︷ ︸
∝qt

←
(
e⟨λt−1,T(θ)⟩︸ ︷︷ ︸

∝qt−1

)1−ρ(
e⟨−g̃0(λt−1),T(θ)⟩︸ ︷︷ ︸

∝p0

)ρ N∏
j=1

e⟨−ρg̃j(λt−1),T(θ)⟩, (26)

The simplification of the second term on the left to p0 happens when p0 is a conjugate prior, that is,
p0 ∝ exp(⟨λ0,T(θ)⟩) for some λ0 (see an example in App. B where we show that L2 regularizer
leads to such a choice). In such cases, we can simplify,

⟨−g̃0(λ),T(θ)⟩ = ⟨∇µEq[log p0],T(θ)⟩ = ⟨∇µ⟨λ0,µ⟩,T(θ)⟩ = ⟨λ0,T(θ)⟩ = log p0 + const.

Using this in Eq. 26, we recover the conjugate model given in Eq. 5.

C.3 BLR for a Gaussian q and the Variational Online Newton (VON) algorithm

By choosing an appropriate form for qt and making necessary approximations to g̃j , the BLR can
recover many popular algorithms as special cases. We will now give a few examples for the case of a
Gaussian qt = N (θ|mt,Σt) which enables derivation of various first and second-order optimization
algorithms, such as, Newton’s method, RMSprop, Adam, and SGD.
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As shown in Eq. 23, for a Gausian N (θ|m,Σ), the natural parameter and sufficient statistics are
shown below, along with the expectation parameters µ = Eq[T(θ)].

λ = (Sm, − 1
2S), T(θ) = (θ, θθ⊤), µ = (m, mm⊤ +Σ),

Using these, we can write the natural gradients as gradients with respect to µ, , and then using
chain-rule to express them as gradients with respect to m and Σ,

g̃j(λ) = ∇µEq[ℓj(θ)] =

(
∇mEq[ℓj(θ)]

∇mm⊤+ΣEq[ℓj(θ)]

)
=

(
ĝj − Ĥjm

1
2Ĥj ,

)
, (27)

where in the last equation we define two quantities written in terms of∇ℓj(θ) and∇2ℓj(θ) by using
Price’s and Bonnet’s theorem [44],

ĝj = ∇mEq[ℓj(θ)] = Eq[∇ℓj(θ)], Ĥj = 2∇ΣEq[ℓj(θ)] = Eq[∇2ℓj(θ)]. (28)

Plugging these into the BLR update gives us the following update,

Stmt ← (1− ρ)St−1mt−1 + ρ

N∑
j=0

(
Ĥj,t−1mt−1 − ĝj,t−1

)
, St ← (1− ρ)St−1 + ρ

N∑
j=0

Ĥj,t−1

where ĝj,t−1 and Ĥj,t−1 are quantities similar to before but now evaluated at the qt−1. The conju-
gate model can be written as follows,

qt ∝ eθ
⊤Stmt−

1
2θ

⊤Stθ ∝ (qt−1)
1−ρ(p0)

ρ
N∏
j=1

eθ
⊤ îj,t−1−

1
2θ

⊤Îj,t−1θ

The prior above is Gaussian and defined using qt−1 and p0. The model uses likelihoods that are
Gaussian distribution with information vector îj,t−1 = ρ(Ĥj,t−1mt−1 − ĝj,t−1) and information
matrix Îj,t−1 = ρĤj,t−1. The likelihood is allowed to be an improper distribution, meaning that its
integral is not one. This is not a problem as long as St remains positive definite. A valid St can be
ensured by either using a Generalized Gauss-Newton approximation to the Hessian [27] or by using
the improved BLR of [35]. The former strategy is used in [25] to express BLR iterations as linear
models and Gaussian processes. Ultimately, we want to ensure that perturbation in the approximate
likelihoods in qt yields a valid posterior and, as long as this is the case, the conjugate model can be
used safely. For instance, in Thm. 4, this issue poses no problem at all.

The BLR update can be rearranged and written in a Newton-like form show below,

VON: mt ←mt−1−ρS−1
t Eqt−1

[∇L(θ)] , St ← (1−ρ)St−1+ρEqt−1

[
∇2L(θ)

]
. (29)

This is called the Variational Online Newton (VON) algorithm. A full derivation is in [27] with
details on many of its variants in [28]. The simplest variant is the Online Newton (ON) algorithm,
where we use the delta method,

Eqt [∇L(θ)] ≈ ∇L(mt), Eqt

[
∇2L(θ)

]
≈ ∇2L(mt). (30)

Then denoting mt = θt, we get the following ON update,

ON: θt ← θt−1 − ρS−1
t ∇L(θt−1), St ← (1− ρ)St−1 + ρ∇2L(θt−1). (31)

To reduce the cost, we can use a diagonal approximation St = diag(st) where st is a scale vector.
Additionally, we can use minibatching to estimate the gradient and hessian (denoted by ∇̂ and ∇̂2),

ON (diagonal+minibatch): θt ← θt−1 − ρs−1
t · ∇̂L(θt−1),

st ← (1− ρ)st−1 + ρ diag(∇̂2L(θt−1)),
(32)

where · indicates element-wise product two vectors and diag(·) extracts the diagonal of a matrix.

Several optimization algorithms can be obtained as special cases from the above variants. For ex-
ample, to get Newton’s method, we set ρ = 1 in ON to get

θt ← θt−1 − [∇2L(θt−1)]
−1∇L(θt−1). (33)
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RMSprop and Adam can be derived in a similar fashion [28].

In our experiments, we use the improved BLR or iBLR optimizer [35]. We use it to implement an im-
proved version of VON [27, Eqs. 7–8] which ensures that the covariance is always positive-definite,
even when the Hessian estimates are not. We use diagonal approximation St = diag(σ2)−1,
momentum and minibatching as proposed in [27, 35]. For learning rate αt > 0, momentum
β1, β2 ∈ [0, 1) the iterations are written as follows:

iBLR: gt ← β1gt−1 + (1− β1)ĝt−1,

ht ← β2ht−1 + (1− β2)ĥt−1 +
1
2 (1− β2)

2(ht−1 − ĥt−1)
2/(ht−1 + δ),

mt ←mt−1 − αt(gt + δmt−1)/(ht + δ),

σ2
t ← 1/(N(ht + δ)).

(34)

Here, δ > 0 is the L2-regularization parameter and ĝt−1 = 1
|B|
∑

i∈B Eqt−1(θ)[∇ℓi(θ)],
ĥt−1 = 1

|B|
∑

i∈B Eqt−1(θ)[∇ℓi(θ)(θ −mt−1)/σ
2
t−1] denote Monte-Carlo approximations of the

expected stochastic gradient and diagonal Hessian under qt−1(θ) = N (θ |mt−1, diag(σ2
t−1)) and

minibatch B. As suggested in [27, 35], we used the reparametrization trick to estimate the diago-
nal Hessian via gradients only. In practice, we approximate the expectations using a single random
sample. We expect multiple samples to further improve the results.

D Proof of Thm. 2 and the Beta-Bernoulli Model

From Eq. 27, it directly follows that

g̃j(λ) = ∇µEq[− log p̃j ] = −∇µ⟨λ̃j ,Eq[T(θ)]⟩ = −∇µ⟨λ̃j ,µ⟩ = −λ̃j .

Using this in Eq. 6, we get the deviation given in Eq. 4.

We will now show an example on Beta-Bernoulli model, which is a conjugate model. We assume the
model to be p(D, θ) ∝ p(θ)

∏
i p(yi|θ) where the prior is p(θ) = Beta(θ|α0, β0) and likelihoods are

p(yi|θ) = Ber(yi|θ) with Di = yi. This is a conjugate model and the posterior is Beta distribution,
that is, it takes the same form as the prior. An expression is given below,

q∗ = Beta(θ|α∗, β∗), where α∗ = α0 +

N∑
j=1

yj , β∗ = β0 −
N∑
j=1

yj +N.

The posterior for the perturbed dataset D\i is also available in closed-form:

q
\i
∗ = Beta(θ|α\i

∗ , β
\i
∗ ), where α

\i
∗ = α0 +

N∑
j=1,
j ̸=i

yj , β
\i
∗ = β0 −

N∑
j=1,
j ̸=i

yj +N − 1.

Therefore the deviations in the posterior parameters can be simply obtained as follows:

α
\i
∗ − α∗ = −yi, β

\i
∗ − β∗ = yi − 1 (35)

This result can also be straightforwardly obtained using the MPE. For the Beta distribution qλ(θ) =
Beta(θ|α, β), we have λ = (α − 1, β − 1), therefore λ\i

∗ − λ∗ = (α
\i
∗ − α∗, β

\i
∗ − β∗). For Beta

distribution, T(θ) = (log θ, log(1− θ)) and writing the likelihood in an exponential form, we get

p(yi|θ) = Ber(yi|θ) ∝ θyi(1− θ)1−yi ∝ eyi log θ+(1−yi) log(1−θ),

therefore λ̃i = (yi, yi − 1). Setting λ\i
∗ − λ∗ = −λ̃i, we recover the result given in Eq. 35.

E Proof of Thm. 3

For linear regression, we have

∇ℓi(θ) = xi(x
⊤
i θ − yi), ∇2ℓi(θ) = xix

⊤
i .
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Using these in Eq. 8, we get,

g̃i(λ∗) = Eq

[
xi(x

⊤
i θ − yi)− xix

⊤
i θ∗,

1
2xix

⊤
i

]
=
(
−xiyi,

1
2xix

⊤
i

)
,

The natural parameter is λ∗ = (H∗θ∗,− 1
2H∗). In a similar way, we can define q

\i
∗ and its natural

parameter. Using these, we can write Eq. 6 as

H\i
∗ θ\i

∗ −H∗θ∗ = −xiyi, − 1
2H

\i
∗ + 1

2H∗ = 1
2xix

⊤
i .

Substituting the second equation into the first one, we get the first equation below,

H\i
∗ θ\i

∗ −(H
\i
∗ +xix

⊤
i )θ∗ = −xiyi =⇒ θ\i

∗ −θ∗ = (H\i
∗ )−1xi(x

⊤
i θ∗−yi) = (H\i

∗ )−1xiei.

The last equality is exactly Eq. 2. Since linear regression is a conjugate model, an alternate derivation
would be to directly use the parameterization λ̃j of p̃i (derived in App. B) and plug it in Thm. 2.

F Proof of Thm. 4

For simplicity, we denote

∂λ̂
ϵi=0

∗ =
∂λ̂

ϵi
∗

∂ϵi

∣∣∣∣∣
ϵi=0

,

with λ̂
ϵi
∗ as defined in Eq. 7 in the main text. For Gaussian distributions, the natural parameter comes

in a pair λ̂
ϵi
∗ = (Hϵi

∗ θ
ϵi
∗ , − 1

2H
ϵi
∗ ). Its derivative with respect to ϵi at ϵi = 0 can be written as the

following by using the chain rule:

∂λ̂
ϵi=0

∗ =
(
H∗∂θ

ϵi=0
∗ + ∂Hϵi=0

∗ θ∗, − 1
2∂H

ϵi=0
∗

)
.

Here, we use the fact that, as ϵi → 0, we have (θϵi
∗ ,H

ϵi
∗ ) → (θ∗,H∗) and also assumed that the

limit of the product is equal to the product of the individual limits. Next, we need the expression for
the natural gradient, for which we will use Eq. 8 but approximate the expectation by using the delta
approximation Eq∗ [g(θ)] ≈ g(θ∗) for any function g, as shown below to define:

ĝi(λ∗) =
[
∇ℓi(θ∗)−∇2ℓi(θ∗)θ∗,

1
2∇

2ℓi(θ∗)
]

The claim is that if we set the perturbed ∂λ̂
ϵi=0

∗ = ĝi(λ∗) we recover Eq. 3, that is, we set

H∗∂θ
ϵi=0
∗ + ∂Hϵi=0

∗ θ∗ = ∇ℓ(θ∗)−∇2ℓi(θ∗)θ∗, − 1
2∂H

ϵi=0
∗ = 1

2∇
2ℓi(θ∗).

Plugging the second equation into the first, the second term cancels and we recover Eq. 3.

G Extension to Non-Differentiable Loss function

For non-differentiable cases, we can use Eq. 28 to rewrite the BLR of Eq. 29 as

mt ←mt−1 − ρS−1
t ∇mEqt−1

[L(θ)], St ← (1− ρ)St−1 + 2ρ∇ΣEqt−1
[L(θ)], (36)

where Σ = S−1. Essentially, we take derivative outside the expectation instead of inside which
is valid because the expectation of a non-differentiable function is still differentiable (under some
regularity conditions). The same technique can be applied to Eq. 8 to get

g̃i(λ) = (∇mEq[ℓi]− 2∇ΣEq[ℓi(θ)]m, ∇ΣEq[ℓi(θ)]) , (37)

and proceeding in the same fashion we can write: m̂\i
t −mt = (Ŝ

\i
t )−1∇mEqt [ℓi(θ)]. This is the

extension of Eq. 10 to non-differentiable loss functions.
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H Sensitivity Measures for Sparse Variational Gaussian Processes

Sparse variational GP (SVGP) methods optimize the following variational objective to find a Gaus-
sian posterior approximation q(u) over function values u := (f(z1), f(z2), . . . , f(zM )) where
Z := (z1, z2, . . . , zM ) is the set of inducing inputs with M ≪ N :

L(m,Σ,Z,ϕ) :=
N∑
i=1

Eq(fi) [log p(yi|fi)]− DKL(q(u) ∥ p(u))

where p(u) := N (u|0,Kuu) is the prior with Kuu as the covariance function κ(·, ·′) evaluated at
Z , q(fi) = N (fi|a⊤i m,a⊤i Σai + σ2

i ) is the posterior marginal of fi = f(xi) with ai := K−1
uukui

and σ2
i := κii − a⊤i Kuuai as the noise variance of fi conditioned on u. The objective is also used

to optimize hyperparameters ϕ and inducing input set Z .

We can optimize the objective using the BLR for which the resulting update is identical to the
variational online-newton (VON) algorithm. We first write the natural gradients,

∇̃Eqt(fi)[− log p(yi|fi)] =
(
(eit − βita

⊤
i m∗)ai,

1
2βitaia

⊤
i

)
. (38)

where we define

eit = Eqt(fi)[−∇fi log p(yi|fi)], βit = Eqt(fi)[−∇
2
fi log p(yi|fi)]

We define A to be a matrix with a⊤i as rows, and et,βt to be vectors of eit, βit. Using these in the
VON update, we simplify as follows:

St+1 = (1− ρ)St + ρ
[
A⊤diag(βt)A+K−1

uu

]
(39)

mt+1 = S−1
t+1

[
(1− ρ)Stmt − ρ

(
A⊤et −A⊤diag(βt)Amt

)]
= S−1

t+1

[(
(1− ρ)St + ρA⊤diag(βt)A

)
mt − ρA⊤et

]
= S−1

t+1

[(
St+1 − ρK−1

uu

)
mt − ρA⊤et

]
= S−1

t+1

[
St+1mt − ρ

(
A⊤et +K−1

uumt

)]
= mt − ρS−1

t+1

[
A⊤et +K−1

uumt

]
.

(40)

For Gaussian likelihood, the updates in Eqs. 39 and 40 coincide with the method of [18], and for
non-Gaussian likelihood they are similar to the natural-gradient method by [45], but we use the
specific parameterization of [26]. An alternate update rule in terms of site parameters is given by [1]
(see Eqs. 22-24).

We are now ready to write the sensitivity measure essentially substituting the gradient in Eq. 10),

S−1
t ∇mEqt(u)[− log p(yi|fi)] = S−1

t aiEqt(fi)[−∇ log p(yi|fi)] = S−1
t aieit (41)

We can also see the bi-linear relationship by considering the deviation in the mean of the posterior
marginal fi(m) := a⊤i m,

fi(m
\i
t )− fi(mt) ≈ a⊤i (m̂

\i
t −mt) = a⊤i Σtaieit = viteit (42)

where vit = a⊤i Σtai is the marginal variance of fi.

I Experimental Details

I.1 Neural network architectures

Below, we describe different neural networks used in our experiments,

MLP (500, 300): This is a multilayer perceptron (MLP) with two hidden layers of 500 and 300
neurons and a parameter count of around 546 000 (using hyperbolic-tangent activations).

20



MLP (32, 16): This is also an MLP with two hidden layers of 32 and 16 neurons, which accounts
for around 26 000 parameters (also using hyperbolic tangent activations).

LeNet5: This is a standard convolutional neural network (CNN) architecture with three convolution
layers followed by two fully-connected layers, corresponding to around 62 000 parameters.

CNN: This network, taken from the DeepOBS suite [46], consists of three convolution layers fol-
lowed by three fully-connected layers with a parameter count of 895 000.

ResNet–20: This network has around 274 000 parameters. We use filter response normalization
(FRN) [48] as an alternative to batch normalization.

MLP for USPS: For the experiment on binary USPS in Fig. 6(a), we use an MLP with three hidden
layers of 30 neurons each and a total of around 10 000 parameters.

I.2 Details of “Do estimated deviations correlate with the truth?”

In Fig. 2, we train neural network classifiers with a cross-entropy loss to obtain θ∗. Due to the
computational demand of per-example retraining, the removed examples are randomly subsampled
from the training set. We show results over 1000 examples for MNIST and FMNIST and 100
examples for CIFAR10. In the multiclass setting, the expression yields a per-class sensitivity value.
We obtain a scalar value for each example by summing over the absolute values of the per-class
sensitivities. For training both the original model θ∗ and the perturbed models θ\i

∗ , we use SGD
with a momentum parameter of 0.9 and a cosine learning-rate scheduler. To obtain θ\i

∗ , we retrain
a model that is warmstarted at θ∗. Other details regarding the training setup are given in Table 2.
For all models, we do not use data augmentation during training. The resulting θ∗ for MNIST,
FMNIST, and CIFAR10 have training accuracies of 99.9%, 95.0%, and 99.9%, respectively. The
test accuracies for these models are 98.4%, 91.2% and 76.7%.

Dataset Model B δ E∗ LR∗ LR∗
min E\i LR\i LR

\i
min

MNIST MLP (500, 300) 256 100 500 10−2 10−3 300 10−3 10−4

FMNIST LeNet5 256 100 300 10−1 10−3 200 10−3 10−4

CIFAR10 CNN 512 250 500 10−2 10−4 300 10−4 10−6

Table 2: Hyperparameters for predicting true sensitivity in Fig. 2. B, E and LR denote batch size,
training epochs and learning-rates, respectively. The superscripts ∗ and \i indicate hyperparame-
ters for training on all data and warmstarted leave-one-out retraining, respectively. LRmin is the
minimum learning-rate of the cosine scheduler.

Additional group removal experiments: We also study how the deviation for removing a group
of examples in a setM can be estimated using a variation of Eq. 14 for the deviation in predictions
at convergence. Denoting the vector of fi(θ) for i ∈M by fM(θ), we get

σ(fM(θ\M
∗ )− σ(fM(θ∗)) ≈ Λ(θ∗)VM(θ∗)eM(θ∗) ≈

∑
i∈M

σ′(fi∗)vi∗ei∗. (43)

where Λ(θ∗) is a diagonal matrix containing all σ′(fi∗), VM(θ∗) = ∇fM(θ∗)S
−1
∗ ∇fM(θ∗)

⊤ is
the prediction covariance of size M ×M where M is the number of examples inM, and eM(θ∗)
is the vector of prediction errors. The last approximation above is done to avoid building the covari-
ance, where we ignore the off-diagonal entries of VM(θ∗).

In Fig. 6(a) we consider a binary USPS dataset consisting of the classes for the digits 3 and 5. Using
|M| = 16, we show the first and second approximations in Eq. 43 both correlate well with the truth
obtained by removing a group and retraining the model. In Fig. 6(b) we do the same on MNIST
with |M| = 64, where we see similar trends. For the experiment on binary USPS in Fig. 6(a), we
train a MLP with three hidden layers with 30 neurons each. The original model θ∗ is trained for 500
epochs with a learning-rate of 10−3, a batch size of 32 and a L2-regularization parameter δ = 5. It
has 100% training accuracy and 94.8% test accuracy. For the leave-group-out retraining to obtain
θ\M
∗ , we initialize the model at θ∗, use a learning-rate of 10−3 and train for 1000 epochs. For the

MNIST result in Fig. 6(b) we use the MLP (500, 300) model with the same hyperparameters as for
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Figure 6: Panel (a) and Panel (b) show that the estimated deviation for removal of groups of exam-
ples correlates well with the true deviations obtained by retraining. Each marker corresponds to a
removed group of examples. The red circles show the second approximation in Eq. 43. In Panel (a),
we additionally show (with blue squares) the first approximation of Eq. 43. We see that the second
approximation is quite accurate in this case.

θ∗ in Table 2. For θ\M
∗ , we initialize the model at θ∗ and use a cosine schedule of the learning-rate

from 10−4 to 10−5 over 500 epochs. We do not use data augmentation. Similarly to the experiments
on per-example removal, we use a K-FAC approximation.

Dataset Model E LR∗ LR∗
min LR\C LR

\C
min

MNIST MLP (500, 300) 500 10−2 10−3 10−4 10−5

MNIST LeNet5 300 10−1 10−3 10−5 10−6

FMNIST MLP (32, 16) 300 10−2 10−3 10−5 10−6

FMNIST LeNet5 300 10−1 10−3 10−4 10−5

Table 3: Hyperparameters for the class removal experiments in Fig. 3(a) and Fig. 11(d). B, E
and LR denote batch size, training epochs and learning-rates. The superscripts ∗ and \C indicate
hyperparameters for training on all data and warmstarted leave-one-class-out retraining, respectively.
LRmin is the minimum learning-rate of the cosine scheduler.

I.3 Details of “Predicting the effect of class removal on generalization”

For the FMNIST experiment in Fig. 3(a), we use the MLP (32, 16) and LeNet5 models. For the
MNIST experiment in Fig. 11(d), we use the MLP (500, 300) and LeNet5 models. The hyperparam-
eters are given in Table 3. The MLP on MNIST has a training accuracy of 99.9% and a test accuracy
of 98.4%. When using LeNet5, the training and test accuracies are 99.2% and 99.1%. On FMNIST,
the LeNet5 has an accuracy of 95.0% on the training set, and an accuracy of 91.2% on the test set.
On the same dataset, the MLP has a training accuracy of 89.9% and a test accuracy of 86.2%. For all
models, we use a regularization parameter of 100 and a batch size of 256. The leave-one-class-out
training is run for 1000 epochs and the rest of the training setup is same as the previous experiment.

I.4 Details of “Estimating the leave-one-out cross-validation curves for hyperparameter
tuning”

The details of the training setup are in Table 2. Fig. 7 is the same as Fig. 4 but additionally shows
the test errors. For visualization purposes, each plot uses a moving average of the plotted lines with
a smoothing window. Other training details are similar to previous experiments. All models are

22



100 101 102 103

0.1

0.2

2%

3%

4%
Test NLL
LOO-CV
Test error

(a) MNIST, MLP

101 102 103

0.3

0.5

10%

12%

15%

(b) FMNIST, LeNet5

101 102 103

1.2

1.8

30%

40%

50%

60%

Te
st

 e
rro

r

(c) CIFAR10, CNN

Figure 7: Leave-one-out estimation with sensitivities obtained from MPE (Train-LOO-MPE)
can accurately estimate the LOO-CV curve for predicting generalization and tuning of the L2-
regularization parameter on MNIST, FMNIST and CIFAR-10.

trained from scratch where we use Adam for FMNIST, AdamW [36] for CIFAR10, and SGD with
a momentum parameter of 0.9 for MNIST. We use a cosine learning-rate scheduler to anneal the
learning-rate. The other hyperparameters are similar to the settings of the models trained on all data
from the leave-one-out experiments in Table 2, except for the number of epochs for CIFAR10 where
we train for 150 epochs. Similarly to App. I.2, we use a Kronecker-factored Laplace approximation
for variance computation and do not employ data augmentation during training.

Dataset Model Number of δs Range Smoothing window

MNIST MLP (500, 300) 96 100 − 103 3
FMNIST LeNet5 96 101 − 103 5
CIFAR10 CNN 30 101 − 103 3

Table 4: Experimental settings for Fig. 4.

I.5 Details of “Predicting generalization during the training”

Details of the training setup: The experimental details, including test accuracies at the end of
training, are listed in Table 5. We use a grid search to determine the regularization parameter δ. The
learning-rate is decayed according to a cosine schedule. For diagonal-GGN-LOO and K-FAC-LOO,
we use the SGD optimizer with an exception on the FMNIST dataset where we use the AdamW
optimizer [36]. In that experiment, we use a weight decay factor of δ/N replacing the explicit L2-
regularization term in the loss in Eq. 1. The regularizer R(θ) is set to zero. We do not use training
data augmentation. For all plots, the LOO-estimate is evaluated periodically during the training,
which is indicated with markers.

Additional details on hyperparameters of iBLR are as follows, where h0 is the initialization of the
Hessian:

• MNIST, MLP (32, 16): h0 = 0.1

• MNIST, LeNet5: h0 = 0.1

• FMNIST, LeNet5: h0 = 0.1

• CIFAR10, CNN: h0 = 0.05

• CIFAR10, ResNet20: h0 = 0.01

We set β1 = 0.9 and β2 = 0.99999 in all of those experiments. The magnitude of the prediction
variance can depend on h0, which therefore can influence the magnitude of the sensitivities that are
perturbing the function outputs in the LOO estimate of Eq. 16. We choose h0 on a grid of four
values [0.01, 0.05, 0.1, 0.5] to obtain sensitivities that result in a good prediction of generalization
performance.

Additional Results: In Fig. 8, we show additional results for MNIST and CIFAR10 that are not
included in the main text. For MNIST, we evaluate both on a the MLP (32, 16) model and a LeNet5
architecture. For the additional CIFAR10 results, we use the CNN. In Fig. 9 we include an additional
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Dataset Model Method LR LRmin B δ Test acc.

MNIST MLP (32, 16)
iBLR 10−2 10−4 256 80 95.6%

diag.-GGN-LOO 10−3 10−4 256 80 95.8%
K-FAC-LOO 10−3 10−4 256 80 95.8%

MNIST LeNet5
iBLR 10−2 10−4 256 60 97.5%

diag.-GGN-LOO 10−3 10−4 256 60 97.4%
K-FAC-LOO 10−3 10−4 256 60 97.4%

FMNIST LeNet5
iBLR 10−1 0 256 60 90.7%

diag.-GGN-LOO 10−2 10−4 256 60 91.0%
K-FAC-LOO 10−2 10−4 256 60 91.0%

CIFAR10 CNN
iBLR 10−1 10−4 512 250 81.0%

diag.-GGN-LOO 10−1 0 512 250 75.4%
K-FAC-LOO 10−1 0 512 250 73.6%

CIFAR10 ResNet–20 iBLR 2 ∗ 10−1 0 50 10 83.4%

Table 5: Experimental settings for predicting generalization during the training in Fig. 1(b), Fig. 5
and Fig. 8. B and E denote the batch-size and training epochs, respectively. LR and LRmin are
the start and end learning-rates of the cosine scheduler. δ is the regularization parameter. The
specification in brackets in the third column indicates the method for computing sensitivities. We
use either iBLR or SGD with diagonal GGN (diag.GGN) or K-FAC.
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Figure 8: These plots are similar to Fig. 5 but for different model-data pairs. The three rows corre-
spond to MLP on MNIST, LeNet5 on MNIST, and CNN on CIFAR10, respectively. The trends are
almost same as those discussed in the main text.

experiment where the model overfits. The K-FAC-LOO estimate deteriorates in this case, but we
can still use the LOO as a diagnostic for detecting overfitting and as a stopping criterion. We train
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Figure 9: Additional results for training with AdamW where we observe overfitting. We see that
K-FAC-LOO deteriorates when the model start to overfit. Both the LOO measures can still be useful
tools for diagnosing overfitting. Details of training setup are given in Table 6
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Figure 10: LOO-CV estimates with Adam using the measure suggested in Table 1. The two rows
correspond to a batch size of 8 and a batch size of 32, respectively. A smaller batchsize generally
decreases the gap between the test NLL and the estimate. Details of the training setup are given in
Table 7.

a LeNet5 on FMNIST with AdamW and predict generalization. The trend of the estimated NLL
matches the trend of the test NLL in the course of training.

In Fig. 10, we include further results for sensitivity estimation with the Adam optimizer. We use the
following update

rt ← β1rt−1 + (1− β1)gt, st ← β2st−1 + (1− β2) (gt · gt), θt ← θt−1 − ρ rt/(
√

ŝt + ϵ),

where gt is the minibatch gradient, β1 and β2 are coefficients for the running averages, ρ is a
learning-rate, and ϵ a small damping to stabilize. We construct a diagonal matrix St = diag(N

√
st)

to estimate sensitivity with MPE as suggested in Table 1 (N is the number of training examples).
Better results are expected by building better estimates of St as discussed in [27]. As described in
section 3.4 of [27], a smaller batch size should improve the estimate, which we also observe in the
experiment.

I.6 Details of “evolution of sensitivities during training”

We use the MPE with iBLR for neural network classification on MNIST, FMNIST and CIFAR10,
as well as MPE for logistic regression on MNIST. Experiment details are in Table 8.

For the experiment in Fig. 11(a), we consider Bayesian logistic regression. We set δ = 0.1. The
Hessian is always positive-definite due to the convex loss function therefore we use the VON algo-
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Dataset Model Method LR LRmin B δ Test acc.

FMNIST LeNet5 diag., AdamW 10−3 10−3 256 60 88.1%
K-FAC, AdamW 10−3 10−3 256 60 87.6%

Table 6: Experimental settings for predicting generalization during the training in Fig. 9.

Dataset Model LR LRmin δ Test acc. (B = 8) Test acc. (B = 32)

MNIST MLP (32, 16) 10−3 0 80 97.3% 97.4%
MNIST LeNet5 10−3 0 60 99.2% 99.2%
FMNIST LeNet5 10−3 0 60 91.4% 91.2%
CIFAR10 CNN 10−3 0 50 75.2% 78.4%

Table 7: Experimental settings for Fig. 10.
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Figure 11: Additional experiments similar to Fig. 3(b). In Panel (a), we show the evolution of
sensitivities for Bayesian logistic regression on MNIST trained with the VON algorithm. In Panel
(b) we use a MLP trained with the iBLR optimizer. In Panel (c), we use a ResNet–20 trained with
iBLR on CIFAR-10. Panel (d) shows the class removal result similar to Fig. 3(a), but on MNIST
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Dataset Model B δ E

MNIST MLP (500, 300) 256 30 100
FMNIST LeNet5 256 60 100
CIFAR10 ResNet–20 512 35 300

Table 8: Experimental settings for evolution of sensitivities during training in Fig. 3(b), and Fig. 3.

rithm given in Eq. 29. We use 125 updates with batch-size 200, reaching a test accuracy of around
91% using the mean mt. We use linear learning-rate decay from 0.005 to 0.001 for the mean m
and a learning-rate of 10−5 for the precision S. The expectations are approximated using 3 samples
drawn from the posterior. We plot sensitivities at iteration t = 5, 10, 25, 125. For this example, we
use samples from qt to compute the prediction variance and error (150 samples are used). We sort
examples according to their sensitivity at iteration t = 125 and then plot their average sensitivities
in 60 groups with 100 examples in each group.

For the experiments in Fig. 3(b), Fig. 11(b) and Fig. 11(c), we consider neural network models
f(θt) on FMNIST, MNIST and CIFAR10. We do not use training data augmentation. For CIFAR10
we use a ResNet–20. The expectations in the iBLR are approximated using a single sample drawn
from the posterior. For prediction, we use the mean mt. The test accuracies are 91.3% for FMNIST,
98.5% for MNIST and 80.9% for CIFAR10. We use a cosine learning-rate scheduler with an initial
learning-rate of 0.1 and anneal to zero over the course of training. Other experimental details are
stated in Table 8. Similar to before, we use sampling to evaluate sensitivity (150 samples are used).
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K Differences Between Camera-Ready Version and Submitted Version

We made several changes to take the feedback of reviewers into account and improve the paper.

1. The writing and organization of the paper were modified to emphasize the generalization
to a wide variety of models and algorithms and the applicability of MPE during training.

2. The presentation was changed in Section 3 to emphasize the focus on the conjugate model.
Detailed derivations were pushed to the appendices and more focus was put on big picture
ideas. Arbitrary perturbations parts were made explicit. Table 1 was added and more focus
was put on training algorithms.

3. We added experiments using leave-one-out estimation to predict generalization on unseen
test data during traininig. We also added results to study the evolution of sensitivities during
training using MPE with iBLR.
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