
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Instruction Vulnerability Prediction for WebAssembly with
Semantic Enhanced Code Property Graph

Anonymous Author(s)
ABSTRACT
WebAssembly (Wasm) is a universal low-level bytecode designed
to build modern web systems. Recent studies have shown that
technologies such as voltage scaling and RowHammer attacks are
expected to increase the likelihood of bit flips, which may cause
unacceptable or catastrophic system failures. This raises concerns
about the impact of bit flips on Wasm programs, which run as in-
structions in web systems, and it is an undeveloped topic since the
features of Wasm differ from traditional programs. In this paper, we
propose a novel paradigm, namely IVPSEG, to understand the error
propagation of bit flips within Wasm programs. Specifically, we
first use Large Language Models (LLMs) to automatically extract
instruction embeddings containing semantic knowledge of each
instruction’s context. Then, we exploit these embeddings and pro-
gram structure (control execution and data transfer) to construct
a semantic enhanced code property graph, which implicates the
potential path of error propagation. Based on this graph, we utilize
graph neural networks and attention diffusion to optimize instruc-
tion embeddings by capturing different error propagation patterns
for instruction vulnerability prediction. In particular, we build a
Wasm compilation and fault generation system to simulate bit flips
at Wasm runtime. Our experimental results with 14 benchmark pro-
grams and test cases show IVPSEG outperforms the state-of-the-art
methods in terms of accuracy (average 13.06%↑), F1-score (average
14.93%↑), and model robustness.

KEYWORDS
WebAssembly, Bit flips, Instruction Vulnerability Prediction, Error
Propagation

1 INTRODUCTION
WebAssembly (a.k.a., Wasm) is an increasingly important low-level
bytecode format with high efficiency and fast execution[24, 38].
It serves as a compilation target for high-level languages such as
C/C++, enabling developers to port native programs to the web[19,
37]. And Wasm’s native-like performance may transform modern
web application development. For example, Figma and Google Earth
are prominent examples of applications leveragingWasm to achieve
high performance [2, 23].

Due to different program features (e.g., frequent memory and
stack operations, no direct system call), Wasm programs have
unique security threats. Recent studies have shown that technolo-
gies such as RowHammer attack [31], Dynamic Voltage Frequency
Scaling (DVFS) attack [36], and clock glitching [42] are expected to
increase the likelihood of bit flips, which may cause unacceptable
or catastrophic system failures by changing the memory data or
instruction sequence of Wasm programs[4, 32]. For example, as
shown in Figure 1(a), bit flips occurring in physical memory or
registers may break the integrity of data or code of Wasm programs
stored in the memory[55], causing errors in web applications. This

raises concerns about the impact of bit flips on Wasm programs,
which is an important and undeveloped topic.

Currently, many methods have been proposed to detect bit flips
at the hardware or software level, such as Error-Correcting Codes
(ECC)[33]. Still, they cannot completely avoid bit flips[12, 15]. Be-
sides, there is a gap in predicting how instructions may cause
program errors when affected by bit flips. Therefore, inspired by
Emscripten[53], ourworkmostly focuses onmore fine-grainedmod-
eling of Wasm program vulnerabilities at the LLVM1 instruction
level (also known as Instruction Vulnerability Prediction[21, 51]).
The most common method is based on hardware fault injection[39,
50], which simulates hardware faults, such as bit flips or memory
modifications, and then identifies vulnerable instructions through
statistical analysis. However, these methods require full fault in-
jection, and the resource consumption grows exponentially with
program size. Thus, to expedite assessments, researchers aim to
reduce the number of required fault injections while keeping the ac-
curacy of instruction vulnerability prediction. Unfortunately, there
are still several challenges:

C1: Insufficient structure semantic for modeling the error
propagation pattern caused by bit flips. Due to the mixture of
control execution, data transfer, and other structures, the propa-
gation of errors through instructions can be extremely complex
during Wasm runtime. As shown in Figure 1(b), the Wasm program
(𝑓 𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙 .𝑤𝑎𝑡) can be interconverted with LLVM (𝑓 𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙 .𝑙𝑙).
And when the memory data “𝑙𝑜𝑐𝑎𝑙 𝑔𝑒𝑡 0” (also expressed as the
register "%3" in the instruction “ 𝑠𝑡𝑜𝑟𝑒 𝑖32 %0, 𝑖32 ∗ %3, 𝑎𝑙𝑖𝑔𝑛 4 ”)
is corrupted, it will not be detected by web systems but propa-
gated to registers operated by subsequent instructions, such as the
path of "%3 → %10 · · · → %15", which eventually leads to incor-
rect returns. However, when the register "%2" in the instruction
"%2 = 𝑎𝑙𝑙𝑜𝑐𝑎𝑖64, 𝑎𝑙𝑖𝑔𝑛8" has an error, it will be masked during prop-
agation. Thus, it is a challenging problem to model the whole path
of error propagation, which can provide better interpretability for
error analysis, and predict truly vulnerable instructions.

C2: Lack of instruction semantic for enhancing the Wasm
program representation. Specifically, some studies[34, 52] focus
on manually designing heuristic features and predicting instruction
vulnerabilities by performing partial fault injection and machine
learning.While reducing resource consumption is a notable achieve-
ment, these heuristic features do not always correlate strongly with
instruction vulnerabilities, especially for Wasm programs. Besides,
they do not clarify the importance of data transfer between instruc-
tions and the inherent semantics of instructions. For example, the
instruction "%5 = icmp eq i32 %4, 0" in Figure 1(b), means comparing
the result "%4" of "load" with 0 and storing the result in "%5", which
is used by "br" instruction. Thus, mining semantic knowledge in
context and extracting robust embeddings to represent programs
fully are crucial for instruction vulnerability prediction.

1https://llvm.org/
1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

……

%2 = alloca i64, align 8

%3 = alloca i32, align 4

store i32 %0, i32* %3, align 4

%4 = load i32, i32* %3, align 4

%5 = icmp eq i32 %4, 0

br i1 %5, label %6, label %7

……

%8 = load i32, i32* %3, align 4

%10 = load i32, i32* %3, align 4

%11 = sub i32 %10, 1

%12 = call i64 @fac(i32 %11)

%13 = mul i64 %8, %12

store i64 %13, i64* %2, align 8

br label %14

……

%15 = load i64, i64* %2, align 8

ret i64 %15

(a) The effect of hardware faults on Wasm programs (b) Complex propagation of errors at the instruction level

factorial.wat (WebAssembly Text)

Register
%3

Error

Register
%15

Error
Return

E
rro

r
p

ro
p

a
g

a
tio

n

factorial.ll (LLVM Bytecode)

Translate via Wabt and LLVM

(module

(type (;0;) (func (param f64) (result f64)))

(func $fac (type 0) (param f64) (result f64)

local.get 0

f64.const 0x1p+0 (;=1;)

f64.lt

if (result f64) ;; label = @1

f64.const 0x1p+0 (;=1;)

else

local.get 0

local.get 0

f64.const 0x1p+0 (;=1;)

f64.sub

call $fac

f64.mul

end)

(export "fac" (func $fac)))

Example of error propagation from register %3 to register %15Example of memory errors (local.get 0)



physical memory
registers

CPU
Wasm module

Wasm

Instructions
Stack

Instance X

memory

0x0001

0x0004

0x0002

0x1D00

0x581A

call 1

0x0004

0
1
2
3
4

push

pop

Instantiation

0x1234

Wasm

Instructions
Stack

memory

0x0001

0x0004

0x0002
0x1D00

0x581A

call 10
1
2
3
4

push

pop

0
x

0
0

0
1

0
x

0
0

0
4

0x0004

0
x

0
0

0
2

0
x

8
F

0
0

…
..
.

Bit flips

0
x

ID
0

0
0

x
5

8
1

A

Instance 1

5

0x0014



Web

Applications

Return

value

Error

address

Error data

…
..
.

E
rro

r m
a
sk

e
d

 in
 p

ro
p

a
g

a
tio

n

0x0014

Not detected by OS

Detected by OS

Figure 1: Schematic diagram of the Wasm program error generation and propagation at the instruction level. As shown in (a),
when a bit flip occurs, the original data "0x0004" may become "0x0014" or the original address "0x1234" may become "0x1235",
which will cause the Wasm instruction to run incorrectly.

To address the above challenges, we develop IVPSEG, a novel
paradigm for ensuring the security of Wasm runtime against po-
tential bit flips. Specifically, to mine the semantics of instructions
in context, we first use the Large Language Model (LLM) to auto-
matically extract the semantic embeddings of instructions. Then,
we notice that errors propagate during control execution and data
transfer at the Wasm runtime. Thus, we exploit the structure and
instruction semantics to construct a semantic-enhanced code prop-
erty graph, which implicates the potential path of error propagation.
In particular, instructions in different basic blocks are distinguished,
which can provide more refined information for locating vulnera-
ble instructions. Finally, we utilize graph neural networks (GNNs)
and attention diffusion to optimize instruction embeddings by cap-
turing different error propagation patterns. Based on WABT2 and
LLFI[27], we build a Wasm compilation and fault generation sys-
tem, which compiles Wasm to LLVM intermediate representation
(IR) and simulates register or memory bit flips at Wasm runtime,
which are carriers for data transfer. The experimental results on
the 14 benchmark programs show the effectiveness of IVPSEG com-
pared to the state-of-the-art methods. Our main contributions are
as follows:
• To our knowledge, we are the first to study the impact of bit

flips on Wasm programs. We propose a novel paradigm for min-
ing error propagation patterns of bit flips by using multi-layer
structure semantics and instruction inherent semantics.

• We leverage the latest LLM technology to extract the context of
data transfer within Wasm programs. This context helps us en-
hance the instruction’s inherent semantics to understand better
how errors are propagated.

• Unlike traditional approaches, our method captures the impor-
tance of numerical carriers in data transfer and the hierarchical
structure of Wasm programs for enhancing the structure seman-
tics. We also adopt GNNs and attention diffusion to model the
error propagation at the instruction level.

• We build aWasm compilation and fault generation system, which
compiles Wasm to IR and performs bit flips during the runtime
of Wasm programs. Extensive experiments with 14 benchmark

2https://github.com/WebAssembly/wabt

programs and test cases are conducted to validate the effective-
ness of our method. The verifiable data and code are published
in https://anonymous.4open.science/r/IVPSEG-9377/3.

2 PRELIMINARIES
We list the main variable notations in Appendix Table 3. Given a
Wasm program 𝑆 (native program or Wasm binary), which can
be compiled/decompiled into the IR instruction sequence Φ =

{𝑛1, 𝑛2, ..., 𝑛𝑁 }, where 𝑁 is the total number of instructions. The
Φ can be divided into a basic block sequence Δ = {𝐵1, 𝐵2, ..., 𝐵𝑀 },
where 𝑀 is the total number of basic blocks. Each basic block 𝐵 𝑗
consist of a set of instructions{𝑛𝑖 |𝑛𝑖 ∈ 𝐵 𝑗 , 𝑛𝑖 ∈ Φ}. Based on the pro-
gram analyzer, we can obtain the instruction execution process, data
dependencies, and semantic text, such as opcodes, operands, and
registers. These can be represented as a set of entity-relation-entity
triples𝑇 = {𝑡1, 𝑡2, ..., 𝑡 𝐽 } and a set of featuresΛ = 𝐴𝑖𝑛𝑠

⋃
𝐴𝑏𝑏 , where

𝐽 is the total number of relations, 𝐴𝑖𝑛𝑠 = {𝐼1, 𝐼2, ..., 𝐼𝑁 } presents
the features of instructions and 𝐴𝑏𝑏 = {𝑏1, 𝑏2, ..., 𝑏𝑀 } presents the
features of basic blocks. Each triple 𝑡𝑖 is in the form of (𝐶𝑖 , 𝑟𝑖 ,𝐶𝑘),
where 𝐶𝑖 ,𝐶𝑘 ∈ Φ

⋃
Δ and 𝑟𝑖 is the relation between the entities

𝐶𝑖 and 𝐶𝑘 . Based on that notations, we can define instruction vul-
nerability and formulate the problem of instruction vulnerability
prediction as follows:

Definition 1 (Instruction Vulnerability). Instruction vulnera-
bility is the probability that the program results may be incorrectly
raised by the change of instruction 𝑛𝑖 due to bit flips during execu-
tion, denoted as 𝑦𝑖 . 𝑌 is the set of all instruction vulnerabilities in the
program 𝑆 .

Problem 1 (Instruction Vulnerability Prediction). Given
a small set of instruction vulnerability 𝑌𝑡𝑟𝑎𝑖𝑛 inferred by methods
like hardware fault injection for training, instruction vulnerability
prediction can be formulated as a semi-supervised learning problem:

{Φ,Δ,𝑇 ,Λ, 𝑌𝑡𝑟𝑎𝑖𝑛}
F(·)
−−−−→ 𝑌 . (1)

3 METHODOLOGY
In this section, we present the proposed IVPSEG, as shown in Fig-
ure 2(a), an intelligent framework for resisting hardware faults,
3The repository is anonymized for peer reviewing.

2

https://anonymous.4open.science/r/IVPSEG-9377/

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Instruction Vulnerability Prediction for WebAssembly with Semantic Enhanced Code Property Graph

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Input

.c/cpp

.wasm

…

LLVM Bytecode

compile

decompile

Instruction Semantic
Mining

Structure Semantic
Mining

CPG

𝑬𝑰
𝑺

%c.addr = alloca i32, align 4

%e.addr = alloca i32, align 4

%add = add nsw i32 %0, %1

ret i32 %add

……

Instruction sequence

Pre-Prompts

You are an expert who has been using LLVM-15 to develop

compilers for many years and have a deep understanding of IR

code semantics.

Data

Transfer

Semantic

Query: All Codes

Gpt-3.5

This is the IR codes for the XX program under LLVM-15, each

line of code represents one of its IR instruction.

Please explain the semantics of each IR instruction line-by-line,

which must include the registers indicated by the percent signs.

……

%2 = alloca i64, align 8

%3 = alloca i32, align 4

store i32 %0, i32* %3,

%4 = load i32, i32* %3,

%5 = icmp eq i32 %4, 0

br i1 %5, label %6, label %7

This IR code adds the values in registers

%0 and %1 with no signed wrap and

stores the result in register %add.

……
Text Embedding

Instruction semantic embedding

Instruction
vulnerability

basic block subgraph
𝒈𝑩

Instruction subgraph𝒈𝑰
GCN

Multi-dimension
Instruction

Representation

𝑬𝑩

𝑛𝑖

𝑛𝑗

𝑛𝑘

𝑛𝑐

𝑛𝑖

𝑛𝑐

𝑛𝑞

𝑛𝑑

𝒈𝑰
𝒅

𝑛𝑖

𝑛𝑗

𝑛𝑘

𝑛𝑐

𝒈𝑰
c

𝑛𝑖

𝑛𝑐

𝑛𝑞

𝑛𝑑

෪𝒈𝑰
𝒄

GAT GAT EGATGAT

𝑬𝑰
𝑺

𝐸𝑐
𝑓

𝐸𝑑
𝑓𝐸𝑑

𝑤𝐸𝑐
𝑤

Aggregation 𝑬𝑰
𝑴 = 𝜶 𝑬𝑰

𝒄 + 𝜷𝑬𝑰
𝒅

MLP

Control Flow Embedding Data Flow Embedding

𝐸𝐼
𝑐 𝐸𝐼

𝑑

Attention diffusionAttention diffusion

Embedding Fusion

Inputs: semantic-enhanced graph 𝑮

BB2

BB1
BB0

alloca alloca

alloca

store

store

br

load

store

load

load

call
ret

alloca

alloca

store

store

load
load

add

ret

Embedding Fusion

Section 3.1

（b）Section 3.1 （d）Section 3.4

Data FlowControl Flow

Instruction node

Basic block node Ownership

෪𝒈𝑰
𝒅

Section 3.2

semantic-enhanced graph 𝑮

（c）Section 3.2

%2 = alloca i64, align 8

br i1 %5, label %6, lable %7
……

Instruction sequence

Wasm Analyzer

LLVM Algorithms

（a）The Framework of IVPSEG

Code Property Graph

control flow

data flow

call and return

jump

Wasm Features

…...

Section 3.4

1. Different number of basic blocks
2. Frequent memory and stack operations

alloca store load getelementptr

25% 17% 18% 10%

3. No direct system call

Figure 2: The overall framework and some details of IVPSEG.

such as bit flips, and assisting engineers in better discoveringWasm
program vulnerabilities before deployment in web applications. We
first discuss how to mine the instruction semantics of Wasm pro-
grams based on LLM (in Section 3.1). Then, we introduce a program
analyzer to effectively extract the contextual structure of Wasm
programs (in Section 3.2). Finally, based on the above information,
we show how to model error propagation for accurately predicting
instruction vulnerabilities (in Sections 3.3 and 3.4).
3.1 Instruction Semantic Mining
As discussed above, current methods are limited in the seman-
tic mining of instructions, as they solely rely on human-selected
heuristic features to represent instructions. To fully utilize instruc-
tion semantics for exploring data transfer in context, we propose a
novel framework called instruction semantic mining. Figure 2(b)
depicts the overall architecture, which offers an elegant approach
for generating instruction embeddings with implicit data transfer.
Given a Wasm program 𝑆 , we compile it to an instruction text se-
quence Φ. Our method initially translates the instruction 𝑛𝑖 into a
readable semantic text 𝜗𝑖 using prompt expert. Then, we use the
pre-trained text embedding model 𝑓𝑒 to generate the instruction
semantic embedding 𝐸𝑆

𝑖
.

3.1.1 Prompt expert. Our instruction semantic mining begins by
configuring a prompt expert to parse the raw instruction 𝑛𝑖 while
preserving its data transfer semantics. Motivated by the great suc-
cess of LLM (e.g., ChatGPT[8]) in understanding natural language,
we initialize our prompt expert with a specific prompt design using
LLM. Specifically, we mine the semantics of raw instructions from
the data transfer perspective, as shown below.
Data Transfer Awareness. In Web systems, the data for instruc-
tion execution is generally transferred through registers (i.e., nu-
merical carriers). In the event of a bit flip, it may propagate with
registers between instructions. Therefore, we use LLM to mine the
instruction semantics and emphasize the required registers. The
primary prompts are shown in Figure 2(b). For instruction text se-
quenceΦ, we prompt LLM tomine the semantics of each instruction

(line-by-line) while preserving the source and destination registers
of the instruction. For example, the instruction "%add = add new i32
%0, %1" will be translated as "This IR code adds the values in registers
%0 and %1 with no signed wrap and stores the result in register %add."
3.1.2 Semantic Encoder. After obtaining the instruction semantic
text, we need to mine the inherent data dependencies between in-
structions. Instead of using shallow embedding models, we aim to
use a smaller LLM (Text-embedding-3-small) to encode the seman-
tics of text. In particular, given the semantic text 𝜗 , the semantic
encoder works as follows:

𝐸𝑆𝐼 = 𝑓𝑒 (𝜗), (2)

where 𝐸𝑆
𝐼
∈ R𝑁×𝐷 denotes the instruction semantic embeddings,

and 𝐷 is the dimension of the embedding vector. Therefore, we
can mine the similarity between instructions at the data level to
enhance the semantics of data dependency and explore possible
error propagation patterns.
3.2 Structure Semantic Mining
To further explore the explicit structure semantics of Wasm pro-
grams, we build an LLVM-based Wasm analyzer, as shown in Fig-
ure 2(c). The key steps are as follows:
3.2.1 Code Property Graph. Each IR instruction can be expressed
as {function + instruction syntax}, where instruction syntax consists
of opcodes, types, and operands. The standard flow analysis in-
volves obtaining the control flow (execution sequence) and data
flow (data transfer) from each function. To mine implicit error
propagation patterns, we extend it to the complete program and
construct a code property graph. Besides, instructions with flow
relations such as 𝑐𝑎𝑙𝑙 and 𝑗𝑢𝑚𝑝 are extended to this graph, enhanc-
ing the structure semantics of programs, as shown in Appendix
Figure 8.
3.2.2 Wasm Related Features. It has been shown that the clear
correspondence between native and Wasm codes is disrupted due
to differences in the number of basic blocks for Wasm and IR[41].
Thus, we split the Wasm program into several basic blocks, which

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

consist of several instructions, and obtain the dependencies be-
tween basic blocks. Besides, the Wasm instructions are stack-based
(i.e., operands are stored in a stack) and mainly involve memory
operations, so we take the number of memory-related instructions
(e.g., 𝑎𝑙𝑙𝑜𝑐𝑎, 𝑙𝑜𝑎𝑑), registers used, predecessors, and successors as
Wasm related features.

3.3 Semantic Enhanced Graph Construction
Up to this point, we have obtained the instruction semantic embed-
dings 𝐸𝑆

𝐼
and code property graph. Now, we will explore how this

information can be used for effective program representation.

3.3.1 Nodes, Relations, and Features Extraction. We can extract the
basic block nodes Δ and instruction nodes Φ from code property
graph. Then, according to these nodes, the control flow relations
between basic blocks, the control flow and data flow relations be-
tween instructions are identified. It is worth mentioning that we
use registers, which are numerical carriers in data transfer, as edge
features of data flow relations to explicitly enhance the structure
semantic, based on the semantic text 𝜗𝑖 . In addition, we extend the
jump and the function call to these two relations, and the ownership
between basic blocks and instructions are also represented as a type
of relations. Then, based on Wasm properties (section 3.2.2), the
basic features of nodes are as follows:
Instruction Features. Here, we first take the basic attributes of
instructions, such as opcodes (𝑂𝑒), number of operands (𝑂𝑑), and
width (𝐵𝑡), as features. Then, considering the spatial structure of
Wasm programs, we include the number of predecessors (𝑃𝑟) and
successors (𝑆𝑟) as features as well. We also found that different
types of instructions have different error rates by analyzing the
results of fault injection, as shown in Appendix Figure 9. To this end,
we take the type (𝑇𝑒) as one of the features. Finally, we also take the
𝐸𝑆𝑣 as one of the features. In summary, the feature of instruction 𝑖
can be expressed as a six-tuple 𝐼𝑖 = {𝑂𝑒 ,𝑂𝑑 , 𝐵

𝑡 , 𝑃𝑟 , 𝑆𝑟 ,𝑇𝑒 , 𝐸
𝑆
𝑣 }.

Basic block Features. We take the number of memory related
instructions (𝑁𝑚) contained in the basic block, predecessors (𝑃𝑑),
and successors (𝑆𝑐) as features. In summary, the feature of basic
block 𝑗 can be expressed as a three-tuple 𝑏 𝑗 = {𝑁𝑚, 𝑃𝑑 , 𝑆𝑐 }.

3.3.2 Graph Construction. To explore how error propagates, we
construct a semantic enhanced code property graph using the ex-
tracted nodes, relations, and features, which is a multi-layer het-
erogeneous graph, as shown in Figure 2(a). The basic blocks are
represented by orange nodes, and the instructions are represented
by blue nodes. Based on DGL[47], we formally represent the se-
mantic enhanced graph and incorporate features into the attributes
of corresponding nodes and registers into the edge attributes of
data flow relations.

3.4 Multi-dimension Instruction Representation
Here, based on the semantic enhanced graph, we develop an instruc-
tion representation model for modeling error propagation patterns.
The framework is shown in Figure 2(d) with two main parts: 1)
Since different basic block architectures significantly affect error
propagation[14], we use graph convolutional network (GCN)[22]
to mine the spatial dependencies of basic blocks. Thus, abnormal
jumps can be detected based on unusual contextual relations, and
the basic block containing faulty instructions can be identified. 2)

Then, we divide the instruction graph into control flow and data
flow subgraphs and use bi-directional graph attention to mine the
effects of execution sequence and data transfer on error propaga-
tion, respectively. Let 𝐺 = (𝑉 , 𝐸) be an instance of the semantic
enhanced graph, 𝑉 represents the set of nodes, including node
features, and 𝐸 represents the set of edges.

3.4.1 Context-dependent Extraction. From 𝐺 , the basic block sub-
graph 𝑔𝐵 = (𝑣𝐵, 𝑒𝐵) is extracted, where 𝑣𝐵 ∈ 𝑉 represents the set
of basic blocks, and 𝑒𝐵 ∈ 𝐸 represents the set of basic block edges.
Then, GCN is used to mine context-dependent basic blocks, defined
as follows:

𝑏𝑙+1𝑖 = 𝜎 (𝑏𝑙 +
∑︁

𝑗∈𝑁 (𝐵𝑖)

1
𝐶𝑖 𝑗

𝑏𝑙𝑗𝑊
𝑙), (3)

where 𝑁 (𝐵𝑖) represents the neighbor of basic block 𝐵𝑖 , 𝐶𝑖 𝑗 is the
product for the square root of node degree, 𝑙 represents the num-
ber of layers, and 𝜎 represents activation function. The value 𝑏0
of the initial layer is 𝐴𝑏𝑏 . Thus, the basic block embeddings are
updated to 𝐵′

= {𝑏𝑙1, 𝑏
𝑙
2, . . . , 𝑏

𝑙
𝑀
}. Then, they are transmitted to the

instruction layer, where each instruction aggregates the embedding
of corresponding basic blocks by tensor splicing. Finally, the raw
instruction feature 𝐴𝑖𝑛𝑠 is updated to 𝐼 ′ = {𝐼 ′1, 𝐼

′
2, . . . , 𝐼

′
𝑁
}.

3.4.2 Error Propagation Pattern Mining. From 𝐺 , we can extract
the instruction subgraph 𝑔𝐼 = (𝑣𝐼 , 𝑒𝐼), where 𝑣𝐼 ∈ 𝑉 represents
the set of instructions, and 𝑒𝐼 ∈ 𝐸 represents the set of instruction
edges. To explore the different patterns of error propagation in
control flow and data flow separately, we divide 𝑔𝐼 into the control
flow graph 𝑔𝑐

𝐼
and data flow graph 𝑔𝑑

𝐼
. Then, two different GNNs,

i.e., bi-directional graph attention networks, are utilized to extract
error propagation patterns for each flow graph.
Modeling Propagation Patterns in Control Flow. The control
flow is the sequence in which instructions are executed, allowing
programs to choose different execution paths based on changes
in logic. Indeed, the execution sequence of instructions can be
influenced by hardware faults such as bit flips, including condi-
tional branching, function calls, etc. Therefore, given the graph
𝑔𝑐
𝐼
= (𝑣𝐼 , 𝑒𝑐𝐼), where 𝑒

𝑐
𝐼
∈ 𝑒𝐼 . We use a bi-directional graph attention

network to mine the patterns of error propagation in the instruc-
tion execution sequence. Specifically, we first use graph attention
network (GAT)[6] to capture the error propagation pattern and
update the weight of edges in 𝑔𝑐

𝐼
. The calculation process can be

summarized as follows:

𝛼𝑖 𝑗 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑎𝑇 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝑊 [ℎ𝑖 ∥ ℎ 𝑗])), (4)

ℎ𝑙+1𝑖 =
∑︁

𝑗∈𝑁 (𝑛𝑖)
𝛼𝑖 𝑗𝑊

𝑙ℎ𝑙𝑗 , (5)

where 𝑁 (𝑛𝑖) represents the neighbor of instruction 𝑛𝑖 . We assume
that every instruction 𝑛𝑖 has an initial representation 𝐼 ′

𝑖
. Then,

we compute the weighted average of the transformed features for
neighbor nodes as the new representation of instruction 𝑛𝑖 . The
representation of all instructions can be denoted as 𝐸 𝑓𝑐 . Besides, to
enhance the correlation between nodes from the opposite direc-
tion, we construct the reverse graph 𝑔𝑐

𝐼
from 𝑔𝑐

𝐼
. Then, taking the

initial representation 𝐼 ′
𝑖
as input, we use GAT to obtain the reverse

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Instruction Vulnerability Prediction for WebAssembly with Semantic Enhanced Code Property Graph

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

representation of instruction 𝑛𝑖 [45]:

𝑞𝑖 𝑗 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝑎𝑇 [𝑊ℎ𝑖 ∥𝑊ℎ 𝑗])), (6)

ℎ𝑙+1𝑖 =
∑︁

𝑗∈𝑁 (𝑛𝑖)
𝑞𝑙𝑖 𝑗𝑊

𝑙ℎ𝑙𝑗 , (7)

Thus, we can get the reverse instruction representation 𝐸𝑤𝑐 . The
updated instruction representation can be calculated by:

𝐸𝑐 =𝑊 𝑐
1 𝐸

𝑓
𝑐 +𝑊 𝑐

2 𝐸
𝑤
𝑐 , (8)

where𝑊 𝑐
1 ,𝑊

𝑐
2 ∈ R𝑁 are learnable parameters. And the model can

focus on more important instructions and excludes unnecessary
features.
Modeling Propagation Patterns in Data Flow. The data flow
is used to describe the data dependencies between instructions,
where data is transferred by registers. Hardware faults, such as data
corruption due to bit flips, are more likely to propagate along the
data flow. Thus, given the graph 𝑔𝑑

𝐼
= (𝑣𝐼 , 𝑒𝑑𝐼), where 𝑒

𝑑
𝐼
∈ 𝑒𝐼 . We

first use EdgeGAT[30] to capture the error propagation pattern and
update the weight of edges in 𝑔𝑑

𝐼
. The representation update for

instruction 𝑛𝑖 is given by:

ℎ
′
𝑖 =𝑊𝑠𝑉𝑖 +

∑︁
𝑗∈𝑁 (𝑛𝑖)

𝛼𝑖 𝑗 (𝑊𝑛ℎ 𝑗 +𝑊𝑒𝑒𝑖 𝑗) (9)

where𝑊𝑠 ,𝑊𝑛,𝑊𝑒 are used to denote the learnable weight matrices
for instruction features, neighboring instructions, and edge features.
The attention weights are obtained by:

𝛼𝑖 𝑗 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝑎𝑇 [𝑊𝑛ℎ𝑖 ∥𝑊𝑛ℎ 𝑗 ∥𝑊𝑒𝑒𝑖 𝑗])), (10)

Thus, we canmine the importance of registers for error propagation,
and the representation of all instructions can be denoted as 𝐸 𝑓

𝑑
.

Similarly, we also construct the reverse graph 𝑔𝑑
𝐼
from 𝑔𝑑

𝐼
, and

can get the reverse instruction representation 𝐸𝑤
𝑑

by equation(6-7).
Finally, the updated instruction representation can be calculated
by:

𝐸𝑑 =𝑊 𝑑
1 𝐸

𝑓

𝑑
+𝑊 𝑑

2 𝐸
𝑤
𝑑
, (11)

where𝑊 𝑑
1 ,𝑊

𝑑
2 ∈ R𝑁 are learnable parameters.

Modeling Multi-hop Propagation Patterns. In fault injection
experiments, we have found that hardware faults propagated along
instruction execution and data transfer over multi-hop. Thus, we
only utilize one layer to update instruction representation, but intro-
duce multi-hop neighbors in the single-layer message propagation,
which can contribute more patterns of the error propagation and re-
duce the over-smoothing problem. Inspired by related work[25, 46],
we define the multi-hop attention diffusion layer as:

𝐻𝑘+1 =𝑊 𝑘
𝛼 𝐴𝐻

𝑘 +𝑊 𝑘
𝛽
𝐻, (12)

where 𝐴 is the one-hop attention matrix, 𝑘 is the number of hops,
𝐻 is the initial input, and𝑊𝛼 ,𝑊𝛽 ∈ R𝑘 are learnable parameters,
𝑊 𝑘

𝛼 +𝑊 𝑘
𝛽
= 1. With 𝐸𝑐 and 𝐸𝑑 as inputs, respectively, we use this

mechanism to obtain the instruction embedding 𝐸𝑐
𝐼
and 𝐸𝑑

𝐼
. This

not only expands the receptive field of the target instruction but
also adapts to changes in the execution of instructions. Finally, we
perform a weighted summation of 𝐸𝑐

𝐼
and 𝐸𝑑

𝐼
to measure the impact

of control flow and data flow on instruction vulnerability prediction.

Then, through a linear layer, we can obtain the predicted instruction
vulnerabilities 𝑌 :

𝐸𝑀𝐼 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝛼𝐸𝑐𝐼 + 𝛽𝐸
𝑑
𝐼), 𝑌 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑀𝐿𝑃 (𝐸𝑀𝐼)), (13)

where 𝛼, 𝛽 are the training parameters.And the cross-entropy loss
is defined as:

L = −
𝑐∑︁
𝑖=1

𝑦 ln𝑌 + 𝜆
𝑝∑︁
𝑖=1

|𝜃𝑖 |, (14)

where 𝑝 is the total parameter of our model.

4 EXPERIMENTS
In this section, we perform comprehensive experiments to validate
the effectiveness of our method. We aim to address the following
research questions:
RQ1 (See §4.3): What is the performance of IVPSEG compared to
state-of-the-art methods regarding prediction accuracy, prediction
quality4 on vulnerable instructions and model robustness against
different training sample sizes?
RQ2 (See §4.4): What is the effect of each module in IVPSEG? For
C1 (insufficient structure semantic) and C2 (lack of instruction se-
mantic), is the performance improvement attributed to the semantic
enhanced graph and GNNs we propose?
RQ3 (See §4.5): Is our method effective in error propagation model-
ing, and how does IVPSEG perform in real-world Wasm programs?

4.1 Implementation
4.1.1 Wasm Compilation and Fault Generation System. The system
is deployed on a high-performance machine equipped with an
Intel(R) Core(TM) i7-14700KF CPU, 64 GB of running memory, and
the operating system Ubuntu 20.04.
Wasm Compilation: As the first stage of Wasm fault injection,
Wasm compilation is used to translate Wasm programs to IR. Specif-
ically, given a Wasm program, we first translate it to native code
usingWABT-basedwat2wasm andwasm2c, which includes a library
that simulates Wasm memory and stack operations, and a mapping
of functions and data structures. Then, we use clang to compile the
native code to LLVM IR, which serves as the input for the Wasm
fault injection model.
Wasm Fault Injection Model: At present, the knowledge about
the impact of bit flips on Wasm programs is scarce, so we design an
autonomous hardware fault injection tool based on LLFI. The main
parameters of the fault model Ψ𝑀 are {𝑆𝑒 , 𝐹𝑇 , 𝑁 𝐹 , 𝑅𝑒𝑔}, where 𝑆𝑒
is the instruction type for fault injection (i.e., all instructions), 𝐹𝑇
is the type of fault (i.e., bit flip), 𝑁 𝐹 represents the total cycle of
fault injections (i.e., max 10000), and 𝑅𝑒𝑔 is the registers for fault
injection (i.e., desreg, srereg1), which are numerical carriers in data
transfer. Based on the 𝑆𝑒 and 𝑅𝑒𝑔, we get the register bit-width 𝑅𝑏𝑛 of
the corresponding instruction, and then flip its machine code bit by
bit, to realize the effect of random bit flips during the execution of
the program. Finally, the error rate for each instruction is calculated
as follows:

𝑃𝐼 =
𝑁𝑢𝑚𝑒𝑟𝑟

𝑅𝑏𝑛 × 𝑁 𝐹
, (15)

4It is a measure of how close the model’s predictions are to the actual values.
5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Comparison of results for instruction vulnerability prediction in benchmarks.

Program GATPS PrograML DegraphCS PerfoGraph MPIGNN IVPSEG

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
Basicmath 88.0±0.5 92.7±0.3 89.7±1.0 93.7±0.6 88.5±0.8 93.0±0.5 85.7±0.8 91.1±0.5 87.4±1.0 92.3±0.6 90.3±1.0 94.2±0.6
Dijkstra 72.8±0.9 25.2±3.2 81.8±1.3 42.9±4.5 84.0±0.7 50.5±3.7 83.6±1.6 57.9±4.9 81.4±0.9 31.6±7.8 90.0±0.6 75.0±1.3
Qsort 66.8±2.6 70.1±2.8 65.2±3.0 67.0±2.4 63.6±2.4 65.4±1.6 59.4±1.4 60.2±1.1 62.4±0.9 68.1±0.7 77.4±1.7 77.5±2.1
Isqrt 95.0±1.1 96.9±0.6 93.7±1.8 96.0±1.1 95.0±0.0 96.7±0.7 97.5±0.0 98.3±0.8 95.0±1.1 96.7±0.7 99.9±0.0 99.9±0.0

Float-mm 74.4±1.1 70.1±2.4 60.0±2.1 55.6±4.5 59.3±2.9 57.5±2.8 74.4±3.5 67.1±4.3 60.0±1.5 47.1±4.4 88.2±0.7 86.1±1.0
Fft 75.1±2.1 79.5±1.6 72.0±1.3 78.2±1.3 68.8±1.0 75.0±1.2 77.3±1.1 81.3±1.0 70.6±0.7 77.3±0.5 87.5±1.0 89.2±0.8

N-body 77.0±0.8 84.9±0.6 77.5±0.4 85.7±0.3 78.2±0.5 86.3±0.3 77.5±1.5 85.0±1.1 76.4±0.4 84.9±0.3 82.5±1.5 87.5±1.2
Towers 71.8±2.2 64.1±4.0 77.2±3.3 65.5±3.9 75.1±1.6 71.0±2.4 77.2±1.8 71.7±1.6 70.8±3.2 63.0±4.5 82.7±0.9 78.2±1.5
Factorial 72.9±2.1 71.3±2.5 68.2±2.6 62.4±3.5 70.5±1.6 70.2±2.3 65.8±1.9 63.5±2.7 78.8±2.1 80.0±1.7 90.5±2.1 89.6±2.3

Rot 75.4±0.8 77.5±0.7 80.0±1.1 72.7±1.7 69.1±0.8 69.8±0.8 75.0±0.5 74.0±1.0 69.5±0.5 71.1±0.5 85.2±1.5 84.9±1.4

where𝑁𝑢𝑚𝑒𝑟𝑟 is the number of errors that occurred in the program.
Based on this model, the bit flips are applied to partial instructions
of Wasm programs, resulting in a total of 1,070,000 fault samples.

4.1.2 Instruction Vulnerability Prediction Model. Based on the IR
and fault samples obtained by the above system, we construct an
instruction vulnerability prediction model. Specifically, the model is
implemented in Pytorch-1.10.2 with Adam optimizer. The learning
rate is set to 0.005. 𝐿𝐸𝐴𝐾𝑌_𝑅𝐸𝐿𝑈 is applied as the activation func-
tion. GPT-3.5 and Text-Embedding-3-small are used for semantic
mining and representation, respectively. The dimension of instruc-
tion semantic embeddings is set to 128.We divide the IR instructions
into two sets: 80% for training, and the remaining instructions for
testing. We select the one with the best performance in the valida-
tion set and then evaluate it on the test set. All hyperparameters
are tuned based on the performance of the validation set.

4.2 Experiment Setup
4.2.1 Dataset. Following previous studies[7, 16, 48], we conduct
experiments on common benchmarks (i.e., MiBench[17] and Jet-
Stream2[18]). We select the most representative programs from
these benchmarks, as they are widely employed in Wasm evalua-
tions and relevant studies[28, 35, 44]. A concise overview of the
programs employed in our experiments is provided in Appendix
Table 4, including Basicmath, Dijkstra, Qsort, Isqrt, Float-mm, Fft,
N-body, Towers, Factorial, and Rot. For these programs, we utilize
the above system to obtain the IR instructions and fault samples.

4.2.2 Baselines. In our experiments, we compare our method with
five state-of-the-art methods.

• GATPS[29], which uses the program relation graph and the
encoding of instructions to predict instruction vulnerabilities.

• PrograML[11], which constructs a graph representation of the
program based on IR and adapts gated graph neural networks to
extract node embeddings.

• DegraphCS[54], which uses variable-based flow graphs to rep-
resent programs and utilizes an improved gated graph neural
network with an attention mechanism to learn instruction rep-
resentation.

• PerfoGraph[43], which captures numerical information and
data structure by introducing new nodes and edges, and proposes
an adapted embedding method to incorporate data awareness.

Basic
math

Dijkstra Qsort
Isq

rt

Float-m
m Fft

Nbody
Towers

Factorial
Rot

0.0

0.5

1.0

R
ec

al
l(

T
P

R
)

 IVPSEG MPIGNN PerfoGraph

 DegraphCS PrograML GATPS

Basic
math

Dijkstra Qsort
Isq

rt

Float-m
m Fft

Nbody
Towers

Factorial
Rot

0.0

0.5

1.0

P
re

ci
si

o
n

1

0.986

0.699 0.714

0.999

0.815
0.892 0.820

0.725

0.875 0.840

0.902
0.815 0.859

0.999
0.914 0.893

0.939
0.855

0.924
0.861

Figure 3: Performance of different methods in prediction
quality for vulnerable instructions.

• MPIGNN[13], which utilizes embeddings and graph attention
convolution to tackle the issue of identifying errors in programs.

4.3 Overall Results
To answer RQ1, we conduct extensive experiments on benchmark
programs for instruction vulnerability prediction. The experimental
results are comprehensively evaluated by four metrics: accuracy
(𝐴𝑐𝑐), precision (𝑃𝑟𝑒), recall (𝑇𝑃𝑅), and 𝐹1-score. The performance
of different training sample sizes is also evaluated. Table 1, Figure 3,
and Figure 4 present the results of IVPSEG compared to other
baselines. We can make the following observations.
1 Our method significantly outperforms the state-of-the-
art methods in all programs. In Table 1, IVPSEG consistently
outperforms all baselines across 10 Wasm programs. Specifically,
compared to the most competitive baseline, our method improves
0.6%-18.5% in 𝐴𝑐𝑐 and 0.5%-22.8% in 𝐹1. Additionally, our method
exhibits excellent adaptability, achieving up to 77.4% accuracy even
in the worst-performing Qsort program. This superiority can be
attributed to the advantage of the proposed semantic enhanced
graph and GNNs, which augments the instruction representation
from the inherent semantic and structure semantic. Thus, IVPSEG
can be used to analyze the instruction vulnerabilities of Wasm
programs during the stages of Web development and testing.
2 IVPSEG’s prediction quality for vulnerable instructions
is superior to most baselines. Based on the prediction values
and the error rates obtained by fault injection, the 𝑃𝑟𝑒 and𝑇𝑃𝑅 are

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Instruction Vulnerability Prediction for WebAssembly with Semantic Enhanced Code Property Graph

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: Ablation performance of different variants.

Model Acc Pre F1
IVPSEG-ns 86.7±1.7 88.9±1.7 85.4±1.6
IVPSEG-nr 85.6±1.0 80.0±3.1 79.6±1.1
IVPSEG-nc 85.7±1.2 87.8±3.2 82.3±2.4
IVPSEG-nd 84.8±1.7 84.6±0.9 84.5±0.9
IVPSEG 87.7±1.0 90.6±1.6 87.0±1.3

derived for vulnerable instructions, and the results are shown in
Figure 3. It can be seen that our method has a good performance
for truly vulnerable instructions. Specifically, compared to the most
competitive baseline, our method improves 6%-27.8% in 𝑃𝑟𝑒 and
0.6%-31.1% in 𝑇𝑃𝑅. Although on the N-body program, IVPSEG has
only 82% in 𝑇𝑃𝑅, its 𝑃𝑟𝑒 is as high as 93.9%. It suggests that our
method can better predict truly vulnerable instructions.
3 Our method has better robustness at different training
sample sizes. To explore how many fault instructions IVPSEG
needs to achieve robust performance, we randomly take a certain
amount of instructions (20∼80%) from the training set to retrain the
model and evaluate the accuracy and F1-score, as shown in Figure 4
and Figure 10 (Appendix). It can be seen that our method always
outperforms the baselines, even at small training samples, which
demonstrates that IVPSEG can better derive instruction vulnera-
bilities from contextual semantics. Besides, the effect of IVPSEG
at small fault samples is similar to that of baselines at large fault
samples (e.g., in the Fft program, the accuracy of IVPSEG is 0.827 at
30% fault instructions, while PerfoGraph’s accuracy is 0.773 at 80%
fault instructions). Thus, our method has high training efficiency,
and its performance is better even with a small number of fault
instructions.

4.4 Ablation Study
For RQ2, several variants of IVPSEG are introduced as other com-
parisons:
• IVPSEG-ns, which removes the instruction semantic mined by

LLM;
• IVPSEG-nr, which removes the reverse graph attention;
• IVPSEG-nc, which removes the control flow of instructions;
• IVPSEG-nd, which removes the data flow of instructions.
For each ablation, we train the model from scratch using an equiva-
lent experimental setup while varying individual components. The
results are shown in Table 2.
1 The effect of the semantic enhanced graph. It can be seen
that the predicted effect of IVPSEG-nd is significantly reduced. The
𝑃𝑟𝑒 decreased by 6%, 𝐴𝑐𝑐 and 𝐹1 decreased by 2.9% and 2.5%, re-
spectively, since the data flow is highly dependent on memory and
registers. When bit flips occur in registers or memory, these er-
rors may be loaded into specific instructions and propagate with
data transfer, affecting the execution of Wasm programs. Addi-
tionally, the semantics of instructions (IVPSEG-ns) and control
flow (IVPSEG-nc) also have an impact on instruction vulnerability
prediction (decreased by 1%-4.7%). It suggests that our semantic
enhanced graph can represent Wasm programs well and explore
error propagation patterns.
2 The effect of the bi-directional graph attention. From Ta-
ble 2, we observe a noticeable performance decline when we only

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.7

0.8

0.9

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.6

0.7

0.8

0.9

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.5

0.6

0.7

0.8

0.9

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.2

0.4

0.6

0.8

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.6

0.7

0.8

0.9

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.5

0.6

0.7

0.8

0.9

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.5

0.6

0.7

0.8

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.6

0.7

0.8

0.9

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.8

0.9

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.4

0.5

0.6

0.7

0.8

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.5

0.6

0.7

0.8

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.8

0.9

Figure 4: Performance at different training sample sizes.
From the fault samples, 20∼80% of instructions are randomly
selected to train the model, and then the remaining instruc-
tions are used to evaluate the prediction performance.
keep the normal attention (IVPSEG-nr). Specifically, The 𝑃𝑟𝑒 de-
creased by 10.6%, 𝐴𝑐𝑐 and 𝐹1 decreased by 2.1% and 7.4%, respec-
tively. This indicates that the introduction of reverse graphs aug-
ments the dependencies between instructions, which provides an
improved way to mine error propagation patterns.

4.5 Case Study
4.5.1 Error Propagation Analysis. For RQ3, we first utilize visual-
ization to analyze how error propagates by examining the learned
edge weights of IVPSEG. In Figure 5, we present the representa-
tion of edge weights learned by IVPSEG for the Factorial program.
Darker colors indicate greater weight values, suggesting a stronger
influence on adjacent instructions and a higher probability of er-
ror propagation with the edge. From Figure 5, it is evident that
IVPSEG mines potential error propagation patterns well. For ex-
ample, our method recognizes that the No.17 instruction largely
propagates the error along the No.49, to No.50 instruction, rather
than along the No.20-24 instruction. In fact, with LLFI, we find
that the error result may be returned through the corresponding
registers "%𝑣𝑎𝑟 → %12" in the event of No.17 errors. Additionally,
since the No.24 instruction overwrites the error value, the path
"%𝑣𝑎𝑟 → %1 → %2 → %3 → %𝑐𝑜𝑛𝑣" has little effect on the pro-
gram. Thus, the essential propagation path of the error in the
data flow can also be more precisely determined by IVPSEG.
It is important to note that data is not typically accessed in the exact
order of program execution, but only the instructions utilizing the
data receive it. As a result, errors are often propagated backward
with the execution of the data flow.

4.5.2 Performance on Real-worldWasm Programs. Then, we choose
one of the most popular Wasm benchmarks from GitHub, called
wasm32-wasi-benchmark5, and perform instruction vulnerability
5https://github.com/second-state/wasm32-wasi-benchmark

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

17
alloca

20
load

%𝑣𝑎𝑟

Data Transfer Path

via LLFI

Edge weights of the data flow. Darker colors indicate higher

probability of error propagation along the edge.

22
icmp

%1

23
zext

%2

24
store

%3

49
load

%𝑣𝑎𝑟

50
ret

%
𝑐𝑜
𝑛
𝑣

Error
Masked

Error
Propagation

%12

Figure 5: The edgeweights of the data flow learned by IVPSEG
on the Factorial program. The left box is the real data transfer
path captured by LLFI.

btree fkch fasta mand
0.2

0.4

0.6

0.8

1.0

A
c
c
u

r
a
c
y

program

 IVPSEG PerfoGraph DeGraphCS

 MPIGNN GATPS PrograML

btree fkch fasta mand
0.2

0.4

0.6

0.8

1.0

F
1

program

+12% +11% +8% +1%
+17% +11% +10%

+1%

Figure 6: Comparison of Accuracy and F1 for instruction
vulnerability prediction in real-world Wasm programs.

0 5 10 15 20 25 30 35

0.0
0.2
0.4
0.6
0.8
1.0

V
u

ln
er

ab
il

it
y

Instruction Index

 Preds TruthsThe vulnerability of the same instruction varies

across different positions

Figure 7: Predicted instruction vulnerabilities vs ground
truths from fault injection in the fkch program.

prediction for all of these available Wasm programs, the results
are shown in Figure 6 and Figure 11 (Appendix). As can be seen,
compared to the most competitive baselines, IVPSEG improves per-
formance by 1∼12% in𝐴𝑐𝑐 and 1∼17% in 𝐹1, which suggests that our
method can well help developers to understand the error resilience
of Wasm programs before deployment. Then, corresponding mea-
sures can be adopted to improve the security of Web systems.

Additionally, we notice an interesting phenomenon: The vul-
nerability of the same instruction varies across different po-
sitions. As depicted in Figure 7, the vulnerability of the No.29 icmp
instruction is as high as 0.98, while the No.17 is only 0.01. The No.17
instruction is "%cmp31 = icmp sgt i32 %33, 0", after the bit flip occurs,
the probability that %33’value less than 0 is very low, so it will not
affect the subsequent instruction to run. And the No.31 instruction
is "%cmp142 = icmp sgt i32 %99, %100", its vulnerability is highly
dependent on "%99" and "%100". Our method demonstrates superior
accuracy in predicting instruction vulnerabilities across different
semantics, enabling efficient identification of high-vulnerability
positions in the program where redundancy can be implemented
to minimize costs.

5 RELATEDWORK
This section summarizes the existing literature related to this work,
which includes Wasm program graph representation and instruc-
tion vulnerability prediction.
5.1 Wasm Program Graph Representation
Due to the syntax and semantic structure of the program, it is natu-
ral to represent it as graph[3], which can be utilized for learning
semantic embeddings[49] and detecting program vulnerability[10].
For example, Cabrera-Arteaga et al.[9] leveraged an e-graph data
structure to represent the Wasm program by analyzing its expres-
sions and operations through the data flow. Breitfelder et al.[5]
developed a static analysis framework for Wasm, which can pro-
vide some necessary information for vulnerability detection, such
as control flow and data flow. TehraniJamsaz, et al.[43] proposed a
graph-based program representation, which aggregated data types
and provided numerical awareness, making it highly effective for
performance optimization tasks. Despite the availability of some
graph representations of programs, they were not well adapted to
instruction vulnerability prediction, lacking hierarchical structure
and inherent semantics of instructions.

5.2 Instruction Vulnerability Prediction
Currently, the field had two main categories: 1) Vulnerability pre-
diction based on fault injection[20, 39]. These methods generated
errors by simulating hardware faults and identified vulnerable in-
structions through statistical analysis. For example, Agarwal et
al.[1] proposed a framework-agnostic fault injection tool for pro-
grams, allowing users to run fault injection at the IR level and better
understand how faults propagate between instructions. Sharma et
al.[40] employed coverage-guided software fault injection to detect
application errors, which was generic and targeted to explore a
given program’s error handling behavior effectively. However, the
cost of hardware fault injection increases with program size. 2) Vul-
nerability prediction based on artificial intelligence[26, 34]. These
methods built a dataset by performing partial fault injection on
program instructions to train the model and identify error-prone
instructions. For example, by creating a heterogeneous graph of
program instructions and utilizing a graph attention network, Ma
et al. [29] proposed a graph attention network, which was able to
predict the different sorts of errors.

6 CONCLUSIONS
In this paper, we proposed a novel paradigm, IVPSEG, which could
accurately predict instruction vulnerabilities and was applicable
to a variety of Wasm programs. Specifically, we first used GPT
to automatically extract semantic embeddings, which contain the
semantic knowledge of instructions in context. Then, we utilized se-
mantic embeddings and program structure to construct a semantic
enhanced graph, which implicates the potential path of error prop-
agation. Based on this graph, we designed graph neural networks
and attention diffusion to predict instruction vulnerabilities by mod-
eling the spatial dependency between instructions and capturing
different error propagation patterns. Finally, we built a Wasm com-
pilation and fault generation system, where we can simulate register
or memory bit flips, which are numerical carriers for data transfer.
The experimental results on the Wasm benchmarks demonstrated
the effectiveness of our method.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Instruction Vulnerability Prediction for WebAssembly with Semantic Enhanced Code Property Graph

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Udit Kumar Agarwal, Abraham Chan, and Karthik Pattabiraman. 2022. Lltfi:

Framework agnostic fault injection for machine learning applications (tools and
artifact track). In 2022 IEEE 33rd International Symposium on Software Reliability
Engineering (ISSRE). IEEE, 286–296.

[2] Toni Alatalo, Timo Koskela, Matti Pouke, Paula Alavesa, and Timo Ojala. 2016.
VirtualOulu: collaborative, immersive and extensible 3D city model on the web.
In Proceedings of the 21st International Conference on Web3D Technology. 95–103.

[3] Miltiadis Allamanis, Marc Brockschmidt, andMahmoud Khademi. 2017. Learning
to represent programs with graphs. arXiv preprint arXiv:1711.00740 (2017).

[4] Tim Blazytko, Matt Bishop, Cornelius Aschermann, Justin Cappos, Moritz
Schlögel, Nadia Korshun, Ali Abbasi, Marco Schweighauser, Sebastian Schinzel,
Sergej Schumilo, et al. 2019. {GRIMOIRE}: Synthesizing structure while fuzzing.
In 28th USENIX Security Symposium (USENIX Security 19). 1985–2002.

[5] Florian Breitfelder, Tobias Roth, Lars Baumgärtner, and Mira Mezini. 2023.
Wasma: A static webassembly analysis framework for everyone. In 2023 IEEE In-
ternational Conference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 753–757.

[6] Shaked Brody, Uri Alon, and Eran Yahav. 2021. How attentive are graph attention
networks? arXiv preprint arXiv:2105.14491 (2021).

[7] Fraser Brown, John Renner, Andres Nötzli, Sorin Lerner, Hovav Shacham, and
Deian Stefan. 2020. Towards a verified range analysis for JavaScript JITs. In
Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation. 135–150.

[8] Tom B Brown. 2020. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165 (2020).

[9] Javier Cabrera-Arteaga, Nicholas Fitzgerald, Martin Monperrus, and Benoit
Baudry. 2024. Wasm-Mutate: Fast and effective binary diversification for We-
bAssembly. Computers & Security 139 (2024), 103731.

[10] Lei Cui, Zhiyu Hao, Yang Jiao, Haiqiang Fei, and Xiaochun Yun. 2020. Vuldetec-
tor: Detecting vulnerabilities using weighted feature graph comparison. IEEE
Transactions on Information Forensics and Security 16 (2020), 2004–2017.

[11] Chris Cummins, Zacharias V Fisches, Tal Ben-Nun, Torsten Hoefler, Michael FP
O’Boyle, and Hugh Leather. 2021. Programl: A graph-based program repre-
sentation for data flow analysis and compiler optimizations. In International
Conference on Machine Learning. PMLR, 2244–2253.

[12] Andrea Di Dio, Koen Koning, Herbert Bos, and Cristiano Giuffrida. 2023. Copy-
on-Flip: Hardening ECC Memory Against Rowhammer Attacks.. In NDSS.

[13] Jad El Karchi, Hanze Chen, Ali TehraniJamsaz, Ali Jannesari, Mihail Popov,
and Emmanuelle Saillard. 2024. MPI Errors Detection using GNN Embedding
and Vector Embedding over LLVM IR. In 2024 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 595–607.

[14] Wentao Fang, Jingjing Gu, Zujia Yan, and Qiuhong Wang. 2021. SDC Error
Detection by Exploring the Importance of Instruction Features. In International
Conference on Wireless Algorithms, Systems, and Applications. Springer, 351–363.

[15] Pietro Frigo, Emanuele Vannacc, Hasan Hassan, Victor Van Der Veen, Onur
Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. 2020. TRRespass:
Exploiting the many sides of target row refresh. In 2020 IEEE Symposium on
Security and Privacy (SP). IEEE, 747–762.

[16] Phani Kishore Gadepalli, Gregor Peach, Ludmila Cherkasova, Rob Aitken, and
Gabriel Parmer. 2019. Challenges and opportunities for efficient serverless
computing at the edge. In 2019 38th Symposium on Reliable Distributed Systems
(SRDS). IEEE, 261–2615.

[17] Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin, Trevor
Mudge, and Richard B Brown. 2001. MiBench: A free, commercially repre-
sentative embedded benchmark suite. In Proceedings of the fourth annual IEEE
international workshop on workload characterization. WWC-4 (Cat. No. 01EX538).
IEEE, 3–14.

[18] David Y Hancock, Jeremy Fischer, John Michael Lowe, Winona Snapp-Childs,
Marlon Pierce, Suresh Marru, J Eric Coulter, Matthew Vaughn, Brian Beck, Nirav
Merchant, et al. 2021. Jetstream2: Accelerating cloud computing via Jetstream.
In Practice and Experience in Advanced Research Computing. 1–8.

[19] Aaron Hilbig, Daniel Lehmann, and Michael Pradel. 2021. An empirical study of
real-world webassembly binaries: Security, languages, use cases. In Proceedings
of the web conference 2021. 2696–2708.

[20] Saurabh Jha, Subho Banerjee, Timothy Tsai, Siva KS Hari, Michael B Sullivan,
Zbigniew T Kalbarczyk, Stephen W Keckler, and Ravishankar K Iyer. 2019. Ml-
based fault injection for autonomous vehicles: A case for bayesian fault injection.
In 2019 49th annual IEEE/IFIP international conference on dependable systems and
networks (DSN). IEEE, 112–124.

[21] Jiajia Jiao, Debjit Pal, Chenhui Deng, and Zhiru Zhang. 2021. Glaive: Graph
learning assisted instruction vulnerability estimation. In 2021 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE, 82–87.

[22] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[23] Daniel Lehmann, Michelle Thalakottur, Frank Tip, and Michael Pradel. 2023.
That’sa Tough Call: Studying the Challenges of Call Graph Construction for

WebAssembly. In Proceedings of the 32nd ACM SIGSOFT International Symposium
on Software Testing and Analysis. 892–903.

[24] Stéphane Letz, Yann Orlarey, and Dominique Fober. 2018. FAUST domain specific
audio DSP language compiled to WebAssembly. In Companion Proceedings of the
The Web Conference 2018. 701–709.

[25] Rui Li, Fan Zhang, Tong Li, Ning Zhang, and Tingting Zhang. 2022. DMGAN:
Dynamic multi-hop graph attention network for traffic forecasting. IEEE Trans-
actions on Knowledge and Data Engineering 35, 9 (2022), 9088–9101.

[26] LiPing Liu, LinLin Ci, Wei Liu, and Hui Yang. 2019. Identifying SDC-causing
Instructions based on Random forests algorithm. KSII Transactions on Internet
and Information Systems (TIIS) 13, 3 (2019), 1566–1582.

[27] Qining Lu, Mostafa Farahani, Jiesheng Wei, Anna Thomas, and Karthik Pattabi-
raman. 2015. Llfi: An intermediate code-level fault injection tool for hardware
faults. In 2015 IEEE International Conference on Software Quality, Reliability and
Security. IEEE, 11–16.

[28] Junchi Ma, Zongtao Duan, and Lei Tang. 2019. A methodology to assess output
vulnerability factors for detecting silent data corruption. IEEE Access 7 (2019),
118135–118145.

[29] Junchi Ma, Zongtao Duan, and Lei Tang. 2021. GATPS: An attention-based graph
neural network for predicting SDC-causing instructions. In 2021 IEEE 39th VLSI
Test Symposium (VTS). IEEE, 1–7.

[30] Thomas Monninger, Julian Schmidt, Jan Rupprecht, David Raba, Julian Jordan,
Daniel Frank, Steffen Staab, and Klaus Dietmayer. 2023. Scene: Reasoning about
traffic scenes using heterogeneous graph neural networks. IEEE Robotics and
Automation Letters 8, 3 (2023), 1531–1538.

[31] Onur Mutlu and Jeremie S Kim. 2019. Rowhammer: A retrospective. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 39, 8
(2019), 1555–1571.

[32] Shravan Narayan, Craig Disselkoen, Daniel Moghimi, Sunjay Cauligi, Evan
Johnson, Zhao Gang, Anjo Vahldiek-Oberwagner, Ravi Sahita, Hovav Shacham,
Dean Tullsen, et al. 2021. Swivel: Hardening {WebAssembly} against spectre.
In 30th USENIX Security Symposium (USENIX Security 21). 1433–1450.

[33] Nick Nikiforakis, Steven Van Acker, Wannes Meert, Lieven Desmet, Frank
Piessens, and Wouter Joosen. 2013. Bitsquatting: Exploiting bit-flips for fun, or
profit?. In Proceedings of the 22nd international conference on World Wide Web.
989–998.

[34] Sushant Kumar Pandey, Ravi Bhushan Mishra, and Anil Kumar Tripathi. 2021.
Machine learning based methods for software fault prediction: A survey. Expert
Systems with Applications 172 (2021), 114595.

[35] George Papadimitriou and Dimitris Gizopoulos. 2023. Silent Data Corruptions:
Microarchitectural Perspectives. IEEE Trans. Comput. (2023).

[36] Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, Ruidong Tian, Chunlu Wang,
and Gang Qu. 2020. Voltjockey: A new dynamic voltage scaling-based fault
injection attack on intel sgx. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 40, 6 (2020), 1130–1143.

[37] Alan Romano, Xinyue Liu, Yonghwi Kwon, and Weihang Wang. 2021. An empiri-
cal study of bugs in webassembly compilers. In 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 42–54.

[38] Alan Romano and Weihang Wang. 2023. Automated WebAssembly Function
Purpose Identification With Semantics-Aware Analysis. In Proceedings of the
ACM Web Conference 2023. 2885–2894.

[39] Horst Schirmeier, Martin Hoffmann, Christian Dietrich, Michael Lenz, Daniel
Lohmann, and Olaf Spinczyk. 2015. FAIL: An open and versatile fault-injection
framework for the assessment of software-implemented hardware fault tolerance.
In 2015 11th european dependable computing conference (edcc). IEEE, 245–255.

[40] Shashank Sharma, Sai Ritvik Tanksalkar, Sourag Cherupattamoolayil, and Ar-
avind Machiry. 2024. Fuzzing API Error Handling Behaviors using Coverage
Guided Fault Injection. In Proceedings of the 19th ACM Asia Conference on Com-
puter and Communications Security. 1495–1509.

[41] Xinyu She, Yanjie Zhao, and Haoyu Wang. 2024. WaDec: Decompile WebAssem-
bly Using Large Language Model. arXiv preprint arXiv:2406.11346 (2024).

[42] Chad Spensky, Aravind Machiry, Nathan Burow, Hamed Okhravi, Rick Hous-
ley, Zhongshu Gu, Hani Jamjoom, Christopher Kruegel, and Giovanni Vigna.
2021. Glitching demystified: analyzing control-flow-based glitching attacks and
defenses. In 2021 51st Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). IEEE, 400–412.

[43] Ali TehraniJamsaz, Quazi IshtiaqueMahmud, Le Chen, Nesreen KAhmed, and Ali
Jannesari. 2024. Perfograph: A numerical aware program graph representation for
performance optimization and program analysis. Advances in Neural Information
Processing Systems 36 (2024).

[44] Hakan Tekgul and Ozcan Ozturk. 2020. Instruction-level Reliability Improvement
for Embedded Systems. In 2020 IEEE International Conference on Design & Test of
Integrated Micro & Nano-Systems (DTS). IEEE, 1–5.

[45] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[46] Guangtao Wang, Rex Ying, Jing Huang, and Jure Leskovec. 2020. Multi-hop
attention graph neural network. arXiv preprint arXiv:2009.14332 (2020).

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[47] Minjie Yu Wang. 2019. Deep graph library: Towards efficient and scalable deep
learning on graphs. In ICLR workshop on representation learning on graphs and
manifolds.

[48] Wenwen Wang. 2022. How far we’ve come–a characterization study of stan-
dalone webassembly runtimes. In 2022 IEEE International Symposium onWorkload
Characterization (IISWC). IEEE, 228–241.

[49] YuWang, Ke Wang, Fengjuan Gao, and LinzhangWang. 2020. Learning semantic
program embeddings with graph interval neural network. Proceedings of the
ACM on Programming Languages 4, OOPSLA (2020), 1–27.

[50] Xin Xu and Man-Lap Li. 2012. Understanding soft error propagation using
efficient vulnerability-driven fault injection. In IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN 2012). IEEE, 1–12.

[51] Zujia Yan, Yi Zhuang, Weining Zheng, and Jingjing Gu. 2023. Multi-bit data flow
error detection method based on SDC vulnerability analysis. ACM Transactions
on Embedded Computing Systems 22, 3 (2023), 1–30.

[52] Hengshan Yue, XiaohuiWei, Guangli Li, Jianpeng Zhao, Nan Jiang, and Jingweijia
Tan. 2021. G-SEPM: building an accurate and efficient soft error prediction model
for GPGPUs. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 1–15.

[53] Alon Zakai. 2011. Emscripten: an LLVM-to-JavaScript compiler. In Proceedings
of the ACM international conference companion on Object oriented programming
systems languages and applications companion. 301–312.

[54] Chen Zeng, Yue Yu, Shanshan Li, Xin Xia, Zhiming Wang, Mingyang Geng, Linx-
iao Bai, Wei Dong, and Xiangke Liao. 2023. degraphcs: Embedding variable-based
flow graph for neural code search. ACM Transactions on Software Engineering
and Methodology 32, 2 (2023), 1–27.

[55] Xiangwei Zhang, Junjie Wang, Xiaoning Du, and Shuang Liu. 2024. WasmC-
Fuzz: Structure-aware Fuzzing for Wasm Compilers. In Proceedings of the 2024
ACM/IEEE 4th International Workshop on Engineering and Cybersecurity of Crit-
ical Systems (EnCyCriS) and 2024 IEEE/ACM Second International Workshop on
Software Vulnerability. 1–5.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Instruction Vulnerability Prediction for WebAssembly with Semantic Enhanced Code Property Graph

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

APPENDIX
A Variable Notations
We list the used variable notations in Table.3.

Table 3: Frequently used notations.

Notations Descriptions
Φ The LLVM IR instruction sequence.
𝑛𝑖 An instruction, 𝑖 = 1, 2, ..., 𝑁 .
𝑁 Total number of instructions.
Δ The basic block sequence.
𝐵𝑖 A basic block, 𝑖 = 1, 2, ..., 𝑀 .
𝑀 Total number of basic blocks.
𝐽 The number of relations;
Λ The set of all features.
𝐸𝑆
𝑖

The semantic embedding of instruction 𝑖 .
𝐼𝑖 The feature of 𝑛𝑖 .
𝑏 𝑗 The feature of 𝐵 𝑗 .
𝐺 A semantic enhanced graph with 𝑉 and 𝐸.
𝑉 The set of nodes in 𝐺 .
𝐸 The set of edges in 𝐺 .
𝑔𝐵 A subgraph of basic block 𝑔𝐵 ∈ 𝐺 .
𝑣𝐵 The set of instructions in 𝑔𝐵 , 𝑣𝐵 ∈ 𝑉 .
𝑒𝐵 The set of edges in 𝑔𝐵 , 𝑒𝐵 ∈ 𝐸.
𝐵
′ The set of updated basic block embedding.

𝑔𝐼 A subgraph of instruction 𝑔𝐼 ∈ 𝐺 .
𝑣𝐼 The set of instructions in 𝑔𝐼 , 𝑣𝐼 ∈ 𝑉 .
𝑒𝐼 The set of edges in 𝑔𝐼 , 𝑒𝐼 ∈ 𝐸.
𝑔𝑐
𝐼

The control flow subgraph, 𝑔𝑐
𝐼
∈ 𝑔𝐼 .

𝑔𝑑
𝐼

The data flow subgraph, 𝑔𝑑
𝐼
∈ 𝑔𝐼 .

𝐸𝑐 The updated instruction embeddings in 𝑔𝑐
𝐼
.

𝐸𝑑 The updated instruction embeddings in 𝑔𝑑
𝐼
.

𝐸𝑀
𝐼

The set of instruction embeddings.
𝑌 The set of predicted instruction vulnerabilities.

B Code Property Graph
Here, we show the extracted graph using the Add program for
example, as shown in Figure 8.

ADD

main-BB2

%1 = load i32, ptr %a, align 4

%2 = load i32, ptr %b, align 4

%call= call i32 @add(i32

noundef %1, i32 noundef %2)

ret i32 %call

main-BB1

%retval= alloca i32,align 4

%a= alloca i32, align 4

%b = alloca i32, align 4

store i32 0,ptr %retval, align 4

store i32 10, ptr %a, align 4

%0 = load i32, ptr %a, align 4

store i32 %0, ptr %b, align 4

br label %3

test-BB0

%c.addr = alloca i32, align 4

%e.addr = alloca i32, align 4

store i32 %c, ptr %c.addr, align 4

store i32 %e, ptr %e.addr, align 4

%0 = load i32, ptr %c.addr, align 4

%1 = load i32,ptr %e.addr, align 4

%add = add nsw i32 %0, %1

ret i32 %add

control flow

data flow

call/return

jump

Figure 8: The code property graph of the Add program.

C Error Rate Statistics
We divide instructions into 8 types based on the official LLVM stan-
dard. We carry out fault injection to programs in the benchmark

based on the system defined in this paper, and calculate the error
rate for each type of instruction, and finally sum-average the result
of each program. The concise overview and results are shown in
Figure 9. The “mem-op” denotes the operations on system memory,
such as 𝑎𝑙𝑙𝑜𝑐𝑎, 𝑠𝑡𝑜𝑟𝑒 . The "ter-op" denotes the termination of basic
blocks or functions in programs, such as 𝑏𝑟, 𝑟𝑒𝑡 . The "cast-op" de-
notes the type-forced conversion, such as 𝑏𝑖𝑡𝑐𝑎𝑠𝑡, 𝑠𝑒𝑥𝑡 . The "comp-
op" denotes the data used for comparison, such as 𝑖𝑐𝑚𝑝, 𝑓 𝑐𝑚𝑝 .
The "int-op" denotes the integer binary operation, such as 𝑠𝑢𝑏, 𝑑𝑖𝑣 .
The "float-op" denotes the floating-point binary operation, such as
𝑓𝑚𝑢𝑙, 𝑓 𝑟𝑒𝑚. The "logic-op" denotes the logical or shift operation,
such as 𝑙𝑠ℎ𝑟, 𝑎𝑛𝑑 . The "other-op" denotes other types of instructions,
such as 𝑝ℎ𝑖, 𝑠𝑒𝑙𝑒𝑐𝑡 .

0.2043

0.3462
0.2936

0.4343 0.4274

0.5338

0.3818

0.1102

mem_op
ter_

op
cast

_op
comp_op

int_op
float_op

logic_op
other_op

0.0

0.1

0.2

0.3

0.4

0.5

0.6

E
r
r
o
r
 r

a
te

Types

1

Figure 9: Error rates for different types of instructions.

D Overview of Wasm Programs
A concise overview of programs employed in our experiments is
provided in Table 4.

Table 4: Statistics of programs studied in our experi-
ments. Float-mm (floating point matrix multiplication), Fft
(fast fourier transform), N-body (multibody problem), Tow-
ers(tower of hanoi), and Rot (encryption and decryption).
These programs consist of hundreds of code segments, each
configured with a test suite.
Programs Instructions Control and Data flow Faults Injected
Basicmath 201 215 + 186 101029
Dijkstra 319 343 + 271 142030
Qsort 211 231 + 210 154147
Isqrt 87 92 + 90 66107

Float-mm 167 180 + 155 107249
Fft 252 261 + 254 114059

Nbody 440 446 + 497 131412
Towers 267 299 + 253 148695
Factorial 162 175 + 160 17340

Rot 547 589 + 576 96358

E Robustness at Different Training Sample
Sizes

To explore how many fault instructions IVPSEG needs to achieve
robust performance, we randomly take a certain amount of instruc-
tions (20 ∼ 80%) from the training set to retrain the model and
evaluate the accuracy and F1-score. The results of other programs
are shown in Figure 10.

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.6

0.7

0.8

0.9

1.0

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.75

0.80

0.85

0.90

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.7

0.8

0.9

1.0

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.70

0.75

0.80

0.85

0.90

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.4

0.6

0.8

1.0

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.80

0.85

0.90

0.95

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.8

0.9

1.0

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.6

0.7

0.8

0.9

1

Figure 10: Performance at different training sample sizes on other Wasm programs

F Performance on Real-world Wasm Programs
Based on the prediction values and the error rates obtained by fault
injection, the 𝑃𝑟𝑒 and 𝑇𝑃𝑅 are derived for vulnerable instructions,
and the results are shown in Figure 11. As can be seen, compared to
the most competitive baselines, IVPSEG improves performance by
6∼19% in 𝑃𝑟𝑒 and 1∼16% in 𝑇𝑃𝑅, which suggests that our method
can better predict truly vulnerable instructions. btree fkch fasta mand

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

program
btree fkch fasta mand

0.2

0.4

0.6

0.8

1.0

R
ec

al
l(

T
P

R
)

program

 IVPSEG PerfoGraph DeGraphCS

 MPIGNN GATPS PrograML

+13% +19% +6% +7%
+16%

+1% +3%

+1%

Figure 11: Comparison of Precision and Recall (TPR) for
instruction vulnerability prediction in real-world Wasm pro-
grams

12

	Abstract
	1 Introduction
	2 PRELIMINARIES
	3 METHODOLOGY
	3.1 Instruction Semantic Mining
	3.2 Structure Semantic Mining
	3.3 Semantic Enhanced Graph Construction
	3.4 Multi-dimension Instruction Representation

	4 EXPERIMENTS
	4.1 Implementation
	4.2 Experiment Setup
	4.3 Overall Results
	4.4 Ablation Study
	4.5 Case Study

	5 RELATED WORK
	5.1 Wasm Program Graph Representation
	5.2 Instruction Vulnerability Prediction

	6 CONCLUSIONS
	References
	A Variable Notations
	B Code Property Graph
	C Error Rate Statistics
	D Overview of Wasm Programs
	E Robustness at Different Training Sample Sizes
	F Performance on Real-world Wasm Programs

