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Instruction Vulnerability Prediction for WebAssembly with
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ABSTRACT
WebAssembly (Wasm) is a universal low-level bytecode designed
to build modern web systems. Recent studies have shown that
technologies such as voltage scaling and RowHammer attacks are
expected to increase the likelihood of bit flips, which may cause
unacceptable or catastrophic system failures. This raises concerns
about the impact of bit flips on Wasm programs, which run as in-
structions in web systems, and it is an undeveloped topic since the
features of Wasm differ from traditional programs. In this paper, we
propose a novel paradigm, namely IVPSEG, to understand the error
propagation of bit flips within Wasm programs. Specifically, we
first use Large Language Models (LLMs) to automatically extract
instruction embeddings containing semantic knowledge of each
instruction’s context. Then, we exploit these embeddings and pro-
gram structure (control execution and data transfer) to construct
a semantic enhanced code property graph, which implicates the
potential path of error propagation. Based on this graph, we utilize
graph neural networks and attention diffusion to optimize instruc-
tion embeddings by capturing different error propagation patterns
for instruction vulnerability prediction. In particular, we build a
Wasm compilation and fault generation system to simulate bit flips
at Wasm runtime. Our experimental results with 14 benchmark pro-
grams and test cases show IVPSEG outperforms the state-of-the-art
methods in terms of accuracy (average 13.06%↑ ), F1-score (average
14.93%↑), and model robustness.

KEYWORDS
WebAssembly, Bit flips, Instruction Vulnerability Prediction, Error
Propagation

1 INTRODUCTION
WebAssembly (a.k.a., Wasm) is an increasingly important low-level
bytecode format with high efficiency and fast execution[24, 38].
It serves as a compilation target for high-level languages such as
C/C++, enabling developers to port native programs to the web[19,
37]. And Wasm’s native-like performance may transform modern
web application development. For example, Figma and Google Earth
are prominent examples of applications leveragingWasm to achieve
high performance [2, 23].

Due to different program features (e.g., frequent memory and
stack operations, no direct system call), Wasm programs have
unique security threats. Recent studies have shown that technolo-
gies such as RowHammer attack [31], Dynamic Voltage Frequency
Scaling (DVFS) attack [36], and clock glitching [42] are expected to
increase the likelihood of bit flips, which may cause unacceptable
or catastrophic system failures by changing the memory data or
instruction sequence of Wasm programs[4, 32]. For example, as
shown in Figure 1(a), bit flips occurring in physical memory or
registers may break the integrity of data or code of Wasm programs
stored in the memory[55], causing errors in web applications. This

raises concerns about the impact of bit flips on Wasm programs,
which is an important and undeveloped topic.

Currently, many methods have been proposed to detect bit flips
at the hardware or software level, such as Error-Correcting Codes
(ECC)[33]. Still, they cannot completely avoid bit flips[12, 15]. Be-
sides, there is a gap in predicting how instructions may cause
program errors when affected by bit flips. Therefore, inspired by
Emscripten[53], ourworkmostly focuses onmore fine-grainedmod-
eling of Wasm program vulnerabilities at the LLVM1 instruction
level (also known as Instruction Vulnerability Prediction[21, 51]).
The most common method is based on hardware fault injection[39,
50], which simulates hardware faults, such as bit flips or memory
modifications, and then identifies vulnerable instructions through
statistical analysis. However, these methods require full fault in-
jection, and the resource consumption grows exponentially with
program size. Thus, to expedite assessments, researchers aim to
reduce the number of required fault injections while keeping the ac-
curacy of instruction vulnerability prediction. Unfortunately, there
are still several challenges:

C1: Insufficient structure semantic for modeling the error
propagation pattern caused by bit flips. Due to the mixture of
control execution, data transfer, and other structures, the propa-
gation of errors through instructions can be extremely complex
during Wasm runtime. As shown in Figure 1(b), the Wasm program
(𝑓 𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙 .𝑤𝑎𝑡 ) can be interconverted with LLVM (𝑓 𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙 .𝑙𝑙).
And when the memory data “𝑙𝑜𝑐𝑎𝑙 𝑔𝑒𝑡 0” (also expressed as the
register "%3" in the instruction “ 𝑠𝑡𝑜𝑟𝑒 𝑖32 %0, 𝑖32 ∗ %3, 𝑎𝑙𝑖𝑔𝑛 4 ”)
is corrupted, it will not be detected by web systems but propa-
gated to registers operated by subsequent instructions, such as the
path of "%3 → %10 · · · → %15", which eventually leads to incor-
rect returns. However, when the register "%2" in the instruction
"%2 = 𝑎𝑙𝑙𝑜𝑐𝑎𝑖64, 𝑎𝑙𝑖𝑔𝑛8" has an error, it will be masked during prop-
agation. Thus, it is a challenging problem to model the whole path
of error propagation, which can provide better interpretability for
error analysis, and predict truly vulnerable instructions.

C2: Lack of instruction semantic for enhancing the Wasm
program representation. Specifically, some studies[34, 52] focus
on manually designing heuristic features and predicting instruction
vulnerabilities by performing partial fault injection and machine
learning.While reducing resource consumption is a notable achieve-
ment, these heuristic features do not always correlate strongly with
instruction vulnerabilities, especially for Wasm programs. Besides,
they do not clarify the importance of data transfer between instruc-
tions and the inherent semantics of instructions. For example, the
instruction "%5 = icmp eq i32 %4, 0" in Figure 1(b), means comparing
the result "%4" of "load" with 0 and storing the result in "%5", which
is used by "br" instruction. Thus, mining semantic knowledge in
context and extracting robust embeddings to represent programs
fully are crucial for instruction vulnerability prediction.

1https://llvm.org/
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%2 = alloca i64, align 8

%3 = alloca i32, align 4

store i32 %0, i32* %3, align 4

%4 = load i32, i32* %3, align 4

%5 = icmp eq i32 %4, 0

br i1 %5, label %6, label %7

……

%8 = load i32, i32* %3, align 4

%10 = load i32, i32* %3, align 4

%11 = sub i32 %10, 1

%12 = call i64 @fac(i32 %11)

%13 = mul i64 %8, %12

store i64 %13, i64* %2, align 8

br label %14

……

%15 = load i64, i64* %2, align 8

ret i64 %15

(a) The effect of hardware faults on Wasm programs (b) Complex propagation of errors at the instruction level
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Figure 1: Schematic diagram of the Wasm program error generation and propagation at the instruction level. As shown in (a),
when a bit flip occurs, the original data "0x0004" may become "0x0014" or the original address "0x1234" may become "0x1235",
which will cause the Wasm instruction to run incorrectly.

To address the above challenges, we develop IVPSEG, a novel
paradigm for ensuring the security of Wasm runtime against po-
tential bit flips. Specifically, to mine the semantics of instructions
in context, we first use the Large Language Model (LLM) to auto-
matically extract the semantic embeddings of instructions. Then,
we notice that errors propagate during control execution and data
transfer at the Wasm runtime. Thus, we exploit the structure and
instruction semantics to construct a semantic-enhanced code prop-
erty graph, which implicates the potential path of error propagation.
In particular, instructions in different basic blocks are distinguished,
which can provide more refined information for locating vulnera-
ble instructions. Finally, we utilize graph neural networks (GNNs)
and attention diffusion to optimize instruction embeddings by cap-
turing different error propagation patterns. Based on WABT2 and
LLFI[27], we build a Wasm compilation and fault generation sys-
tem, which compiles Wasm to LLVM intermediate representation
(IR) and simulates register or memory bit flips at Wasm runtime,
which are carriers for data transfer. The experimental results on
the 14 benchmark programs show the effectiveness of IVPSEG com-
pared to the state-of-the-art methods. Our main contributions are
as follows:
• To our knowledge, we are the first to study the impact of bit

flips on Wasm programs. We propose a novel paradigm for min-
ing error propagation patterns of bit flips by using multi-layer
structure semantics and instruction inherent semantics.

• We leverage the latest LLM technology to extract the context of
data transfer within Wasm programs. This context helps us en-
hance the instruction’s inherent semantics to understand better
how errors are propagated.

• Unlike traditional approaches, our method captures the impor-
tance of numerical carriers in data transfer and the hierarchical
structure of Wasm programs for enhancing the structure seman-
tics. We also adopt GNNs and attention diffusion to model the
error propagation at the instruction level.

• We build aWasm compilation and fault generation system, which
compiles Wasm to IR and performs bit flips during the runtime
of Wasm programs. Extensive experiments with 14 benchmark

2https://github.com/WebAssembly/wabt

programs and test cases are conducted to validate the effective-
ness of our method. The verifiable data and code are published
in https://anonymous.4open.science/r/IVPSEG-9377/3.

2 PRELIMINARIES
We list the main variable notations in Appendix Table 3. Given a
Wasm program 𝑆 (native program or Wasm binary), which can
be compiled/decompiled into the IR instruction sequence Φ =

{𝑛1, 𝑛2, ..., 𝑛𝑁 }, where 𝑁 is the total number of instructions. The
Φ can be divided into a basic block sequence Δ = {𝐵1, 𝐵2, ..., 𝐵𝑀 },
where 𝑀 is the total number of basic blocks. Each basic block 𝐵 𝑗
consist of a set of instructions{𝑛𝑖 |𝑛𝑖 ∈ 𝐵 𝑗 , 𝑛𝑖 ∈ Φ}. Based on the pro-
gram analyzer, we can obtain the instruction execution process, data
dependencies, and semantic text, such as opcodes, operands, and
registers. These can be represented as a set of entity-relation-entity
triples𝑇 = {𝑡1, 𝑡2, ..., 𝑡 𝐽 } and a set of featuresΛ = 𝐴𝑖𝑛𝑠

⋃
𝐴𝑏𝑏 , where

𝐽 is the total number of relations, 𝐴𝑖𝑛𝑠 = {𝐼1, 𝐼2, ..., 𝐼𝑁 } presents
the features of instructions and 𝐴𝑏𝑏 = {𝑏1, 𝑏2, ..., 𝑏𝑀 } presents the
features of basic blocks. Each triple 𝑡𝑖 is in the form of (𝐶𝑖 , 𝑟𝑖 ,𝐶𝑘 ),
where 𝐶𝑖 ,𝐶𝑘 ∈ Φ

⋃
Δ and 𝑟𝑖 is the relation between the entities

𝐶𝑖 and 𝐶𝑘 . Based on that notations, we can define instruction vul-
nerability and formulate the problem of instruction vulnerability
prediction as follows:

Definition 1 (Instruction Vulnerability). Instruction vulnera-
bility is the probability that the program results may be incorrectly
raised by the change of instruction 𝑛𝑖 due to bit flips during execu-
tion, denoted as 𝑦𝑖 . 𝑌 is the set of all instruction vulnerabilities in the
program 𝑆 .

Problem 1 (Instruction Vulnerability Prediction). Given
a small set of instruction vulnerability 𝑌𝑡𝑟𝑎𝑖𝑛 inferred by methods
like hardware fault injection for training, instruction vulnerability
prediction can be formulated as a semi-supervised learning problem:

{Φ,Δ,𝑇 ,Λ, 𝑌𝑡𝑟𝑎𝑖𝑛}
F(·)
−−−−→ 𝑌 . (1)

3 METHODOLOGY
In this section, we present the proposed IVPSEG, as shown in Fig-
ure 2(a), an intelligent framework for resisting hardware faults,
3The repository is anonymized for peer reviewing.
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Figure 2: The overall framework and some details of IVPSEG.

such as bit flips, and assisting engineers in better discoveringWasm
program vulnerabilities before deployment in web applications. We
first discuss how to mine the instruction semantics of Wasm pro-
grams based on LLM (in Section 3.1). Then, we introduce a program
analyzer to effectively extract the contextual structure of Wasm
programs (in Section 3.2). Finally, based on the above information,
we show how to model error propagation for accurately predicting
instruction vulnerabilities (in Sections 3.3 and 3.4).
3.1 Instruction Semantic Mining
As discussed above, current methods are limited in the seman-
tic mining of instructions, as they solely rely on human-selected
heuristic features to represent instructions. To fully utilize instruc-
tion semantics for exploring data transfer in context, we propose a
novel framework called instruction semantic mining. Figure 2(b)
depicts the overall architecture, which offers an elegant approach
for generating instruction embeddings with implicit data transfer.
Given a Wasm program 𝑆 , we compile it to an instruction text se-
quence Φ. Our method initially translates the instruction 𝑛𝑖 into a
readable semantic text 𝜗𝑖 using prompt expert. Then, we use the
pre-trained text embedding model 𝑓𝑒 to generate the instruction
semantic embedding 𝐸𝑆

𝑖
.

3.1.1 Prompt expert. Our instruction semantic mining begins by
configuring a prompt expert to parse the raw instruction 𝑛𝑖 while
preserving its data transfer semantics. Motivated by the great suc-
cess of LLM (e.g., ChatGPT[8]) in understanding natural language,
we initialize our prompt expert with a specific prompt design using
LLM. Specifically, we mine the semantics of raw instructions from
the data transfer perspective, as shown below.
Data Transfer Awareness. In Web systems, the data for instruc-
tion execution is generally transferred through registers (i.e., nu-
merical carriers). In the event of a bit flip, it may propagate with
registers between instructions. Therefore, we use LLM to mine the
instruction semantics and emphasize the required registers. The
primary prompts are shown in Figure 2(b). For instruction text se-
quenceΦ, we prompt LLM tomine the semantics of each instruction

(line-by-line) while preserving the source and destination registers
of the instruction. For example, the instruction "%add = add new i32
%0, %1" will be translated as "This IR code adds the values in registers
%0 and %1 with no signed wrap and stores the result in register %add."
3.1.2 Semantic Encoder. After obtaining the instruction semantic
text, we need to mine the inherent data dependencies between in-
structions. Instead of using shallow embedding models, we aim to
use a smaller LLM (Text-embedding-3-small) to encode the seman-
tics of text. In particular, given the semantic text 𝜗 , the semantic
encoder works as follows:

𝐸𝑆𝐼 = 𝑓𝑒 (𝜗), (2)

where 𝐸𝑆
𝐼
∈ R𝑁×𝐷 denotes the instruction semantic embeddings,

and 𝐷 is the dimension of the embedding vector. Therefore, we
can mine the similarity between instructions at the data level to
enhance the semantics of data dependency and explore possible
error propagation patterns.
3.2 Structure Semantic Mining
To further explore the explicit structure semantics of Wasm pro-
grams, we build an LLVM-based Wasm analyzer, as shown in Fig-
ure 2(c). The key steps are as follows:
3.2.1 Code Property Graph. Each IR instruction can be expressed
as {function + instruction syntax}, where instruction syntax consists
of opcodes, types, and operands. The standard flow analysis in-
volves obtaining the control flow (execution sequence) and data
flow (data transfer) from each function. To mine implicit error
propagation patterns, we extend it to the complete program and
construct a code property graph. Besides, instructions with flow
relations such as 𝑐𝑎𝑙𝑙 and 𝑗𝑢𝑚𝑝 are extended to this graph, enhanc-
ing the structure semantics of programs, as shown in Appendix
Figure 8.
3.2.2 Wasm Related Features. It has been shown that the clear
correspondence between native and Wasm codes is disrupted due
to differences in the number of basic blocks for Wasm and IR[41].
Thus, we split the Wasm program into several basic blocks, which

3
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consist of several instructions, and obtain the dependencies be-
tween basic blocks. Besides, the Wasm instructions are stack-based
(i.e., operands are stored in a stack) and mainly involve memory
operations, so we take the number of memory-related instructions
(e.g., 𝑎𝑙𝑙𝑜𝑐𝑎, 𝑙𝑜𝑎𝑑), registers used, predecessors, and successors as
Wasm related features.

3.3 Semantic Enhanced Graph Construction
Up to this point, we have obtained the instruction semantic embed-
dings 𝐸𝑆

𝐼
and code property graph. Now, we will explore how this

information can be used for effective program representation.

3.3.1 Nodes, Relations, and Features Extraction. We can extract the
basic block nodes Δ and instruction nodes Φ from code property
graph. Then, according to these nodes, the control flow relations
between basic blocks, the control flow and data flow relations be-
tween instructions are identified. It is worth mentioning that we
use registers, which are numerical carriers in data transfer, as edge
features of data flow relations to explicitly enhance the structure
semantic, based on the semantic text 𝜗𝑖 . In addition, we extend the
jump and the function call to these two relations, and the ownership
between basic blocks and instructions are also represented as a type
of relations. Then, based on Wasm properties (section 3.2.2), the
basic features of nodes are as follows:
Instruction Features. Here, we first take the basic attributes of
instructions, such as opcodes (𝑂𝑒 ), number of operands (𝑂𝑑 ), and
width (𝐵𝑡 ), as features. Then, considering the spatial structure of
Wasm programs, we include the number of predecessors (𝑃𝑟 ) and
successors (𝑆𝑟 ) as features as well. We also found that different
types of instructions have different error rates by analyzing the
results of fault injection, as shown in Appendix Figure 9. To this end,
we take the type (𝑇𝑒 ) as one of the features. Finally, we also take the
𝐸𝑆𝑣 as one of the features. In summary, the feature of instruction 𝑖
can be expressed as a six-tuple 𝐼𝑖 = {𝑂𝑒 ,𝑂𝑑 , 𝐵

𝑡 , 𝑃𝑟 , 𝑆𝑟 ,𝑇𝑒 , 𝐸
𝑆
𝑣 }.

Basic block Features. We take the number of memory related
instructions (𝑁𝑚) contained in the basic block, predecessors (𝑃𝑑 ),
and successors (𝑆𝑐 ) as features. In summary, the feature of basic
block 𝑗 can be expressed as a three-tuple 𝑏 𝑗 = {𝑁𝑚, 𝑃𝑑 , 𝑆𝑐 }.

3.3.2 Graph Construction. To explore how error propagates, we
construct a semantic enhanced code property graph using the ex-
tracted nodes, relations, and features, which is a multi-layer het-
erogeneous graph, as shown in Figure 2(a). The basic blocks are
represented by orange nodes, and the instructions are represented
by blue nodes. Based on DGL[47], we formally represent the se-
mantic enhanced graph and incorporate features into the attributes
of corresponding nodes and registers into the edge attributes of
data flow relations.

3.4 Multi-dimension Instruction Representation
Here, based on the semantic enhanced graph, we develop an instruc-
tion representation model for modeling error propagation patterns.
The framework is shown in Figure 2(d) with two main parts: 1)
Since different basic block architectures significantly affect error
propagation[14], we use graph convolutional network (GCN)[22]
to mine the spatial dependencies of basic blocks. Thus, abnormal
jumps can be detected based on unusual contextual relations, and
the basic block containing faulty instructions can be identified. 2)

Then, we divide the instruction graph into control flow and data
flow subgraphs and use bi-directional graph attention to mine the
effects of execution sequence and data transfer on error propaga-
tion, respectively. Let 𝐺 = (𝑉 , 𝐸) be an instance of the semantic
enhanced graph, 𝑉 represents the set of nodes, including node
features, and 𝐸 represents the set of edges.

3.4.1 Context-dependent Extraction. From 𝐺 , the basic block sub-
graph 𝑔𝐵 = (𝑣𝐵, 𝑒𝐵) is extracted, where 𝑣𝐵 ∈ 𝑉 represents the set
of basic blocks, and 𝑒𝐵 ∈ 𝐸 represents the set of basic block edges.
Then, GCN is used to mine context-dependent basic blocks, defined
as follows:

𝑏𝑙+1𝑖 = 𝜎 (𝑏𝑙 +
∑︁

𝑗∈𝑁 (𝐵𝑖 )

1
𝐶𝑖 𝑗

𝑏𝑙𝑗𝑊
𝑙 ), (3)

where 𝑁 (𝐵𝑖 ) represents the neighbor of basic block 𝐵𝑖 , 𝐶𝑖 𝑗 is the
product for the square root of node degree, 𝑙 represents the num-
ber of layers, and 𝜎 represents activation function. The value 𝑏0
of the initial layer is 𝐴𝑏𝑏 . Thus, the basic block embeddings are
updated to 𝐵′

= {𝑏𝑙1, 𝑏
𝑙
2, . . . , 𝑏

𝑙
𝑀
}. Then, they are transmitted to the

instruction layer, where each instruction aggregates the embedding
of corresponding basic blocks by tensor splicing. Finally, the raw
instruction feature 𝐴𝑖𝑛𝑠 is updated to 𝐼 ′ = {𝐼 ′1, 𝐼

′
2, . . . , 𝐼

′
𝑁
}.

3.4.2 Error Propagation Pattern Mining. From 𝐺 , we can extract
the instruction subgraph 𝑔𝐼 = (𝑣𝐼 , 𝑒𝐼 ), where 𝑣𝐼 ∈ 𝑉 represents
the set of instructions, and 𝑒𝐼 ∈ 𝐸 represents the set of instruction
edges. To explore the different patterns of error propagation in
control flow and data flow separately, we divide 𝑔𝐼 into the control
flow graph 𝑔𝑐

𝐼
and data flow graph 𝑔𝑑

𝐼
. Then, two different GNNs,

i.e., bi-directional graph attention networks, are utilized to extract
error propagation patterns for each flow graph.
Modeling Propagation Patterns in Control Flow. The control
flow is the sequence in which instructions are executed, allowing
programs to choose different execution paths based on changes
in logic. Indeed, the execution sequence of instructions can be
influenced by hardware faults such as bit flips, including condi-
tional branching, function calls, etc. Therefore, given the graph
𝑔𝑐
𝐼
= (𝑣𝐼 , 𝑒𝑐𝐼 ), where 𝑒

𝑐
𝐼
∈ 𝑒𝐼 . We use a bi-directional graph attention

network to mine the patterns of error propagation in the instruc-
tion execution sequence. Specifically, we first use graph attention
network (GAT)[6] to capture the error propagation pattern and
update the weight of edges in 𝑔𝑐

𝐼
. The calculation process can be

summarized as follows:

𝛼𝑖 𝑗 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑎𝑇 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝑊 [ℎ𝑖 ∥ ℎ 𝑗 ])), (4)

ℎ𝑙+1𝑖 =
∑︁

𝑗∈𝑁 (𝑛𝑖 )
𝛼𝑖 𝑗𝑊

𝑙ℎ𝑙𝑗 , (5)

where 𝑁 (𝑛𝑖 ) represents the neighbor of instruction 𝑛𝑖 . We assume
that every instruction 𝑛𝑖 has an initial representation 𝐼 ′

𝑖
. Then,

we compute the weighted average of the transformed features for
neighbor nodes as the new representation of instruction 𝑛𝑖 . The
representation of all instructions can be denoted as 𝐸 𝑓𝑐 . Besides, to
enhance the correlation between nodes from the opposite direc-
tion, we construct the reverse graph 𝑔𝑐

𝐼
from 𝑔𝑐

𝐼
. Then, taking the

initial representation 𝐼 ′
𝑖
as input, we use GAT to obtain the reverse
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representation of instruction 𝑛𝑖 [45]:

𝑞𝑖 𝑗 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝑎𝑇 [𝑊ℎ𝑖 ∥𝑊ℎ 𝑗 ])), (6)

ℎ𝑙+1𝑖 =
∑︁

𝑗∈𝑁 (𝑛𝑖 )
𝑞𝑙𝑖 𝑗𝑊

𝑙ℎ𝑙𝑗 , (7)

Thus, we can get the reverse instruction representation 𝐸𝑤𝑐 . The
updated instruction representation can be calculated by:

𝐸𝑐 =𝑊 𝑐
1 𝐸

𝑓
𝑐 +𝑊 𝑐

2 𝐸
𝑤
𝑐 , (8)

where𝑊 𝑐
1 ,𝑊

𝑐
2 ∈ R𝑁 are learnable parameters. And the model can

focus on more important instructions and excludes unnecessary
features.
Modeling Propagation Patterns in Data Flow. The data flow
is used to describe the data dependencies between instructions,
where data is transferred by registers. Hardware faults, such as data
corruption due to bit flips, are more likely to propagate along the
data flow. Thus, given the graph 𝑔𝑑

𝐼
= (𝑣𝐼 , 𝑒𝑑𝐼 ), where 𝑒

𝑑
𝐼
∈ 𝑒𝐼 . We

first use EdgeGAT[30] to capture the error propagation pattern and
update the weight of edges in 𝑔𝑑

𝐼
. The representation update for

instruction 𝑛𝑖 is given by:

ℎ
′
𝑖 =𝑊𝑠𝑉𝑖 +

∑︁
𝑗∈𝑁 (𝑛𝑖 )

𝛼𝑖 𝑗 (𝑊𝑛ℎ 𝑗 +𝑊𝑒𝑒𝑖 𝑗 ) (9)

where𝑊𝑠 ,𝑊𝑛,𝑊𝑒 are used to denote the learnable weight matrices
for instruction features, neighboring instructions, and edge features.
The attention weights are obtained by:

𝛼𝑖 𝑗 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝑎𝑇 [𝑊𝑛ℎ𝑖 ∥𝑊𝑛ℎ 𝑗 ∥𝑊𝑒𝑒𝑖 𝑗 ])), (10)

Thus, we canmine the importance of registers for error propagation,
and the representation of all instructions can be denoted as 𝐸 𝑓

𝑑
.

Similarly, we also construct the reverse graph 𝑔𝑑
𝐼
from 𝑔𝑑

𝐼
, and

can get the reverse instruction representation 𝐸𝑤
𝑑

by equation(6-7).
Finally, the updated instruction representation can be calculated
by:

𝐸𝑑 =𝑊 𝑑
1 𝐸

𝑓

𝑑
+𝑊 𝑑

2 𝐸
𝑤
𝑑
, (11)

where𝑊 𝑑
1 ,𝑊

𝑑
2 ∈ R𝑁 are learnable parameters.

Modeling Multi-hop Propagation Patterns. In fault injection
experiments, we have found that hardware faults propagated along
instruction execution and data transfer over multi-hop. Thus, we
only utilize one layer to update instruction representation, but intro-
duce multi-hop neighbors in the single-layer message propagation,
which can contribute more patterns of the error propagation and re-
duce the over-smoothing problem. Inspired by related work[25, 46],
we define the multi-hop attention diffusion layer as:

𝐻𝑘+1 =𝑊 𝑘
𝛼 𝐴𝐻

𝑘 +𝑊 𝑘
𝛽
𝐻, (12)

where 𝐴 is the one-hop attention matrix, 𝑘 is the number of hops,
𝐻 is the initial input, and𝑊𝛼 ,𝑊𝛽 ∈ R𝑘 are learnable parameters,
𝑊 𝑘

𝛼 +𝑊 𝑘
𝛽
= 1. With 𝐸𝑐 and 𝐸𝑑 as inputs, respectively, we use this

mechanism to obtain the instruction embedding 𝐸𝑐
𝐼
and 𝐸𝑑

𝐼
. This

not only expands the receptive field of the target instruction but
also adapts to changes in the execution of instructions. Finally, we
perform a weighted summation of 𝐸𝑐

𝐼
and 𝐸𝑑

𝐼
to measure the impact

of control flow and data flow on instruction vulnerability prediction.

Then, through a linear layer, we can obtain the predicted instruction
vulnerabilities 𝑌 :

𝐸𝑀𝐼 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝛼𝐸𝑐𝐼 + 𝛽𝐸
𝑑
𝐼 ), 𝑌 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑀𝐿𝑃 (𝐸𝑀𝐼 )), (13)

where 𝛼, 𝛽 are the training parameters.And the cross-entropy loss
is defined as:

L = −
𝑐∑︁
𝑖=1

𝑦 ln𝑌 + 𝜆
𝑝∑︁
𝑖=1

|𝜃𝑖 |, (14)

where 𝑝 is the total parameter of our model.

4 EXPERIMENTS
In this section, we perform comprehensive experiments to validate
the effectiveness of our method. We aim to address the following
research questions:
RQ1 (See §4.3): What is the performance of IVPSEG compared to
state-of-the-art methods regarding prediction accuracy, prediction
quality4 on vulnerable instructions and model robustness against
different training sample sizes?
RQ2 (See §4.4): What is the effect of each module in IVPSEG? For
C1 (insufficient structure semantic) and C2 (lack of instruction se-
mantic), is the performance improvement attributed to the semantic
enhanced graph and GNNs we propose?
RQ3 (See §4.5): Is our method effective in error propagation model-
ing, and how does IVPSEG perform in real-world Wasm programs?

4.1 Implementation
4.1.1 Wasm Compilation and Fault Generation System. The system
is deployed on a high-performance machine equipped with an
Intel(R) Core(TM) i7-14700KF CPU, 64 GB of running memory, and
the operating system Ubuntu 20.04.
Wasm Compilation: As the first stage of Wasm fault injection,
Wasm compilation is used to translate Wasm programs to IR. Specif-
ically, given a Wasm program, we first translate it to native code
usingWABT-basedwat2wasm andwasm2c, which includes a library
that simulates Wasm memory and stack operations, and a mapping
of functions and data structures. Then, we use clang to compile the
native code to LLVM IR, which serves as the input for the Wasm
fault injection model.
Wasm Fault Injection Model: At present, the knowledge about
the impact of bit flips on Wasm programs is scarce, so we design an
autonomous hardware fault injection tool based on LLFI. The main
parameters of the fault model Ψ𝑀 are {𝑆𝑒 , 𝐹𝑇 , 𝑁 𝐹 , 𝑅𝑒𝑔}, where 𝑆𝑒
is the instruction type for fault injection (i.e., all instructions), 𝐹𝑇
is the type of fault (i.e., bit flip), 𝑁 𝐹 represents the total cycle of
fault injections (i.e., max 10000), and 𝑅𝑒𝑔 is the registers for fault
injection (i.e., desreg, srereg1), which are numerical carriers in data
transfer. Based on the 𝑆𝑒 and 𝑅𝑒𝑔, we get the register bit-width 𝑅𝑏𝑛 of
the corresponding instruction, and then flip its machine code bit by
bit, to realize the effect of random bit flips during the execution of
the program. Finally, the error rate for each instruction is calculated
as follows:

𝑃𝐼 =
𝑁𝑢𝑚𝑒𝑟𝑟

𝑅𝑏𝑛 × 𝑁 𝐹
, (15)

4It is a measure of how close the model’s predictions are to the actual values.
5
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Table 1: Comparison of results for instruction vulnerability prediction in benchmarks.

Program GATPS PrograML DegraphCS PerfoGraph MPIGNN IVPSEG

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
Basicmath 88.0±0.5 92.7±0.3 89.7±1.0 93.7±0.6 88.5±0.8 93.0±0.5 85.7±0.8 91.1±0.5 87.4±1.0 92.3±0.6 90.3±1.0 94.2±0.6
Dijkstra 72.8±0.9 25.2±3.2 81.8±1.3 42.9±4.5 84.0±0.7 50.5±3.7 83.6±1.6 57.9±4.9 81.4±0.9 31.6±7.8 90.0±0.6 75.0±1.3
Qsort 66.8±2.6 70.1±2.8 65.2±3.0 67.0±2.4 63.6±2.4 65.4±1.6 59.4±1.4 60.2±1.1 62.4±0.9 68.1±0.7 77.4±1.7 77.5±2.1
Isqrt 95.0±1.1 96.9±0.6 93.7±1.8 96.0±1.1 95.0±0.0 96.7±0.7 97.5±0.0 98.3±0.8 95.0±1.1 96.7±0.7 99.9±0.0 99.9±0.0

Float-mm 74.4±1.1 70.1±2.4 60.0±2.1 55.6±4.5 59.3±2.9 57.5±2.8 74.4±3.5 67.1±4.3 60.0±1.5 47.1±4.4 88.2±0.7 86.1±1.0
Fft 75.1±2.1 79.5±1.6 72.0±1.3 78.2±1.3 68.8±1.0 75.0±1.2 77.3±1.1 81.3±1.0 70.6±0.7 77.3±0.5 87.5±1.0 89.2±0.8

N-body 77.0±0.8 84.9±0.6 77.5±0.4 85.7±0.3 78.2±0.5 86.3±0.3 77.5±1.5 85.0±1.1 76.4±0.4 84.9±0.3 82.5±1.5 87.5±1.2
Towers 71.8±2.2 64.1±4.0 77.2±3.3 65.5±3.9 75.1±1.6 71.0±2.4 77.2±1.8 71.7±1.6 70.8±3.2 63.0±4.5 82.7±0.9 78.2±1.5
Factorial 72.9±2.1 71.3±2.5 68.2±2.6 62.4±3.5 70.5±1.6 70.2±2.3 65.8±1.9 63.5±2.7 78.8±2.1 80.0±1.7 90.5±2.1 89.6±2.3

Rot 75.4±0.8 77.5±0.7 80.0±1.1 72.7±1.7 69.1±0.8 69.8±0.8 75.0±0.5 74.0±1.0 69.5±0.5 71.1±0.5 85.2±1.5 84.9±1.4

where𝑁𝑢𝑚𝑒𝑟𝑟 is the number of errors that occurred in the program.
Based on this model, the bit flips are applied to partial instructions
of Wasm programs, resulting in a total of 1,070,000 fault samples.

4.1.2 Instruction Vulnerability Prediction Model. Based on the IR
and fault samples obtained by the above system, we construct an
instruction vulnerability prediction model. Specifically, the model is
implemented in Pytorch-1.10.2 with Adam optimizer. The learning
rate is set to 0.005. 𝐿𝐸𝐴𝐾𝑌_𝑅𝐸𝐿𝑈 is applied as the activation func-
tion. GPT-3.5 and Text-Embedding-3-small are used for semantic
mining and representation, respectively. The dimension of instruc-
tion semantic embeddings is set to 128.We divide the IR instructions
into two sets: 80% for training, and the remaining instructions for
testing. We select the one with the best performance in the valida-
tion set and then evaluate it on the test set. All hyperparameters
are tuned based on the performance of the validation set.

4.2 Experiment Setup
4.2.1 Dataset. Following previous studies[7, 16, 48], we conduct
experiments on common benchmarks (i.e., MiBench[17] and Jet-
Stream2[18]). We select the most representative programs from
these benchmarks, as they are widely employed in Wasm evalua-
tions and relevant studies[28, 35, 44]. A concise overview of the
programs employed in our experiments is provided in Appendix
Table 4, including Basicmath, Dijkstra, Qsort, Isqrt, Float-mm, Fft,
N-body, Towers, Factorial, and Rot. For these programs, we utilize
the above system to obtain the IR instructions and fault samples.

4.2.2 Baselines. In our experiments, we compare our method with
five state-of-the-art methods.

• GATPS[29], which uses the program relation graph and the
encoding of instructions to predict instruction vulnerabilities.

• PrograML[11], which constructs a graph representation of the
program based on IR and adapts gated graph neural networks to
extract node embeddings.

• DegraphCS[54], which uses variable-based flow graphs to rep-
resent programs and utilizes an improved gated graph neural
network with an attention mechanism to learn instruction rep-
resentation.

• PerfoGraph[43], which captures numerical information and
data structure by introducing new nodes and edges, and proposes
an adapted embedding method to incorporate data awareness.
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Figure 3: Performance of different methods in prediction
quality for vulnerable instructions.

• MPIGNN[13], which utilizes embeddings and graph attention
convolution to tackle the issue of identifying errors in programs.

4.3 Overall Results
To answer RQ1, we conduct extensive experiments on benchmark
programs for instruction vulnerability prediction. The experimental
results are comprehensively evaluated by four metrics: accuracy
(𝐴𝑐𝑐), precision (𝑃𝑟𝑒), recall (𝑇𝑃𝑅), and 𝐹1-score. The performance
of different training sample sizes is also evaluated. Table 1, Figure 3,
and Figure 4 present the results of IVPSEG compared to other
baselines. We can make the following observations.
1 Our method significantly outperforms the state-of-the-
art methods in all programs. In Table 1, IVPSEG consistently
outperforms all baselines across 10 Wasm programs. Specifically,
compared to the most competitive baseline, our method improves
0.6%-18.5% in 𝐴𝑐𝑐 and 0.5%-22.8% in 𝐹1. Additionally, our method
exhibits excellent adaptability, achieving up to 77.4% accuracy even
in the worst-performing Qsort program. This superiority can be
attributed to the advantage of the proposed semantic enhanced
graph and GNNs, which augments the instruction representation
from the inherent semantic and structure semantic. Thus, IVPSEG
can be used to analyze the instruction vulnerabilities of Wasm
programs during the stages of Web development and testing.
2 IVPSEG’s prediction quality for vulnerable instructions
is superior to most baselines. Based on the prediction values
and the error rates obtained by fault injection, the 𝑃𝑟𝑒 and𝑇𝑃𝑅 are
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Table 2: Ablation performance of different variants.

Model Acc Pre F1
IVPSEG-ns 86.7±1.7 88.9±1.7 85.4±1.6
IVPSEG-nr 85.6±1.0 80.0±3.1 79.6±1.1
IVPSEG-nc 85.7±1.2 87.8±3.2 82.3±2.4
IVPSEG-nd 84.8±1.7 84.6±0.9 84.5±0.9
IVPSEG 87.7±1.0 90.6±1.6 87.0±1.3

derived for vulnerable instructions, and the results are shown in
Figure 3. It can be seen that our method has a good performance
for truly vulnerable instructions. Specifically, compared to the most
competitive baseline, our method improves 6%-27.8% in 𝑃𝑟𝑒 and
0.6%-31.1% in 𝑇𝑃𝑅. Although on the N-body program, IVPSEG has
only 82% in 𝑇𝑃𝑅, its 𝑃𝑟𝑒 is as high as 93.9%. It suggests that our
method can better predict truly vulnerable instructions.
3 Our method has better robustness at different training
sample sizes. To explore how many fault instructions IVPSEG
needs to achieve robust performance, we randomly take a certain
amount of instructions (20∼80%) from the training set to retrain the
model and evaluate the accuracy and F1-score, as shown in Figure 4
and Figure 10 (Appendix). It can be seen that our method always
outperforms the baselines, even at small training samples, which
demonstrates that IVPSEG can better derive instruction vulnera-
bilities from contextual semantics. Besides, the effect of IVPSEG
at small fault samples is similar to that of baselines at large fault
samples (e.g., in the Fft program, the accuracy of IVPSEG is 0.827 at
30% fault instructions, while PerfoGraph’s accuracy is 0.773 at 80%
fault instructions). Thus, our method has high training efficiency,
and its performance is better even with a small number of fault
instructions.

4.4 Ablation Study
For RQ2, several variants of IVPSEG are introduced as other com-
parisons:
• IVPSEG-ns, which removes the instruction semantic mined by

LLM;
• IVPSEG-nr, which removes the reverse graph attention;
• IVPSEG-nc, which removes the control flow of instructions;
• IVPSEG-nd, which removes the data flow of instructions.
For each ablation, we train the model from scratch using an equiva-
lent experimental setup while varying individual components. The
results are shown in Table 2.
1 The effect of the semantic enhanced graph. It can be seen
that the predicted effect of IVPSEG-nd is significantly reduced. The
𝑃𝑟𝑒 decreased by 6%, 𝐴𝑐𝑐 and 𝐹1 decreased by 2.9% and 2.5%, re-
spectively, since the data flow is highly dependent on memory and
registers. When bit flips occur in registers or memory, these er-
rors may be loaded into specific instructions and propagate with
data transfer, affecting the execution of Wasm programs. Addi-
tionally, the semantics of instructions (IVPSEG-ns) and control
flow (IVPSEG-nc) also have an impact on instruction vulnerability
prediction (decreased by 1%-4.7%). It suggests that our semantic
enhanced graph can represent Wasm programs well and explore
error propagation patterns.
2 The effect of the bi-directional graph attention. From Ta-
ble 2, we observe a noticeable performance decline when we only
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Figure 4: Performance at different training sample sizes.
From the fault samples, 20∼80% of instructions are randomly
selected to train the model, and then the remaining instruc-
tions are used to evaluate the prediction performance.
keep the normal attention (IVPSEG-nr). Specifically, The 𝑃𝑟𝑒 de-
creased by 10.6%, 𝐴𝑐𝑐 and 𝐹1 decreased by 2.1% and 7.4%, respec-
tively. This indicates that the introduction of reverse graphs aug-
ments the dependencies between instructions, which provides an
improved way to mine error propagation patterns.

4.5 Case Study
4.5.1 Error Propagation Analysis. For RQ3, we first utilize visual-
ization to analyze how error propagates by examining the learned
edge weights of IVPSEG. In Figure 5, we present the representa-
tion of edge weights learned by IVPSEG for the Factorial program.
Darker colors indicate greater weight values, suggesting a stronger
influence on adjacent instructions and a higher probability of er-
ror propagation with the edge. From Figure 5, it is evident that
IVPSEG mines potential error propagation patterns well. For ex-
ample, our method recognizes that the No.17 instruction largely
propagates the error along the No.49, to No.50 instruction, rather
than along the No.20-24 instruction. In fact, with LLFI, we find
that the error result may be returned through the corresponding
registers "%𝑣𝑎𝑟 → %12" in the event of No.17 errors. Additionally,
since the No.24 instruction overwrites the error value, the path
"%𝑣𝑎𝑟 → %1 → %2 → %3 → %𝑐𝑜𝑛𝑣" has little effect on the pro-
gram. Thus, the essential propagation path of the error in the
data flow can also be more precisely determined by IVPSEG.
It is important to note that data is not typically accessed in the exact
order of program execution, but only the instructions utilizing the
data receive it. As a result, errors are often propagated backward
with the execution of the data flow.

4.5.2 Performance on Real-worldWasm Programs. Then, we choose
one of the most popular Wasm benchmarks from GitHub, called
wasm32-wasi-benchmark5, and perform instruction vulnerability
5https://github.com/second-state/wasm32-wasi-benchmark
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Figure 5: The edgeweights of the data flow learned by IVPSEG
on the Factorial program. The left box is the real data transfer
path captured by LLFI.
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Figure 7: Predicted instruction vulnerabilities vs ground
truths from fault injection in the fkch program.

prediction for all of these available Wasm programs, the results
are shown in Figure 6 and Figure 11 (Appendix). As can be seen,
compared to the most competitive baselines, IVPSEG improves per-
formance by 1∼12% in𝐴𝑐𝑐 and 1∼17% in 𝐹1, which suggests that our
method can well help developers to understand the error resilience
of Wasm programs before deployment. Then, corresponding mea-
sures can be adopted to improve the security of Web systems.

Additionally, we notice an interesting phenomenon: The vul-
nerability of the same instruction varies across different po-
sitions. As depicted in Figure 7, the vulnerability of the No.29 icmp
instruction is as high as 0.98, while the No.17 is only 0.01. The No.17
instruction is "%cmp31 = icmp sgt i32 %33, 0", after the bit flip occurs,
the probability that %33’value less than 0 is very low, so it will not
affect the subsequent instruction to run. And the No.31 instruction
is "%cmp142 = icmp sgt i32 %99, %100", its vulnerability is highly
dependent on "%99" and "%100". Our method demonstrates superior
accuracy in predicting instruction vulnerabilities across different
semantics, enabling efficient identification of high-vulnerability
positions in the program where redundancy can be implemented
to minimize costs.

5 RELATEDWORK
This section summarizes the existing literature related to this work,
which includes Wasm program graph representation and instruc-
tion vulnerability prediction.
5.1 Wasm Program Graph Representation
Due to the syntax and semantic structure of the program, it is natu-
ral to represent it as graph[3], which can be utilized for learning
semantic embeddings[49] and detecting program vulnerability[10].
For example, Cabrera-Arteaga et al.[9] leveraged an e-graph data
structure to represent the Wasm program by analyzing its expres-
sions and operations through the data flow. Breitfelder et al.[5]
developed a static analysis framework for Wasm, which can pro-
vide some necessary information for vulnerability detection, such
as control flow and data flow. TehraniJamsaz, et al.[43] proposed a
graph-based program representation, which aggregated data types
and provided numerical awareness, making it highly effective for
performance optimization tasks. Despite the availability of some
graph representations of programs, they were not well adapted to
instruction vulnerability prediction, lacking hierarchical structure
and inherent semantics of instructions.

5.2 Instruction Vulnerability Prediction
Currently, the field had two main categories: 1) Vulnerability pre-
diction based on fault injection[20, 39]. These methods generated
errors by simulating hardware faults and identified vulnerable in-
structions through statistical analysis. For example, Agarwal et
al.[1] proposed a framework-agnostic fault injection tool for pro-
grams, allowing users to run fault injection at the IR level and better
understand how faults propagate between instructions. Sharma et
al.[40] employed coverage-guided software fault injection to detect
application errors, which was generic and targeted to explore a
given program’s error handling behavior effectively. However, the
cost of hardware fault injection increases with program size. 2) Vul-
nerability prediction based on artificial intelligence[26, 34]. These
methods built a dataset by performing partial fault injection on
program instructions to train the model and identify error-prone
instructions. For example, by creating a heterogeneous graph of
program instructions and utilizing a graph attention network, Ma
et al. [29] proposed a graph attention network, which was able to
predict the different sorts of errors.

6 CONCLUSIONS
In this paper, we proposed a novel paradigm, IVPSEG, which could
accurately predict instruction vulnerabilities and was applicable
to a variety of Wasm programs. Specifically, we first used GPT
to automatically extract semantic embeddings, which contain the
semantic knowledge of instructions in context. Then, we utilized se-
mantic embeddings and program structure to construct a semantic
enhanced graph, which implicates the potential path of error prop-
agation. Based on this graph, we designed graph neural networks
and attention diffusion to predict instruction vulnerabilities by mod-
eling the spatial dependency between instructions and capturing
different error propagation patterns. Finally, we built a Wasm com-
pilation and fault generation system, where we can simulate register
or memory bit flips, which are numerical carriers for data transfer.
The experimental results on the Wasm benchmarks demonstrated
the effectiveness of our method.
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APPENDIX
A Variable Notations
We list the used variable notations in Table.3.

Table 3: Frequently used notations.

Notations Descriptions
Φ The LLVM IR instruction sequence.
𝑛𝑖 An instruction, 𝑖 = 1, 2, ..., 𝑁 .
𝑁 Total number of instructions.
Δ The basic block sequence.
𝐵𝑖 A basic block, 𝑖 = 1, 2, ..., 𝑀 .
𝑀 Total number of basic blocks.
𝐽 The number of relations;
Λ The set of all features.
𝐸𝑆
𝑖

The semantic embedding of instruction 𝑖 .
𝐼𝑖 The feature of 𝑛𝑖 .
𝑏 𝑗 The feature of 𝐵 𝑗 .
𝐺 A semantic enhanced graph with 𝑉 and 𝐸.
𝑉 The set of nodes in 𝐺 .
𝐸 The set of edges in 𝐺 .
𝑔𝐵 A subgraph of basic block 𝑔𝐵 ∈ 𝐺 .
𝑣𝐵 The set of instructions in 𝑔𝐵 , 𝑣𝐵 ∈ 𝑉 .
𝑒𝐵 The set of edges in 𝑔𝐵 , 𝑒𝐵 ∈ 𝐸.
𝐵
′ The set of updated basic block embedding.

𝑔𝐼 A subgraph of instruction 𝑔𝐼 ∈ 𝐺 .
𝑣𝐼 The set of instructions in 𝑔𝐼 , 𝑣𝐼 ∈ 𝑉 .
𝑒𝐼 The set of edges in 𝑔𝐼 , 𝑒𝐼 ∈ 𝐸.
𝑔𝑐
𝐼

The control flow subgraph, 𝑔𝑐
𝐼
∈ 𝑔𝐼 .

𝑔𝑑
𝐼

The data flow subgraph, 𝑔𝑑
𝐼
∈ 𝑔𝐼 .

𝐸𝑐 The updated instruction embeddings in 𝑔𝑐
𝐼
.

𝐸𝑑 The updated instruction embeddings in 𝑔𝑑
𝐼
.

𝐸𝑀
𝐼

The set of instruction embeddings.
𝑌 The set of predicted instruction vulnerabilities.

B Code Property Graph
Here, we show the extracted graph using the Add program for
example, as shown in Figure 8.

ADD

main-BB2

%1 = load i32, ptr %a, align 4

%2 = load i32, ptr %b, align 4

%call= call i32 @add(i32 

noundef %1, i32 noundef %2)

ret i32 %call

main-BB1

%retval= alloca i32,align 4

%a= alloca i32, align 4

%b = alloca i32, align 4

store i32 0,ptr %retval, align 4

store i32 10, ptr %a, align 4

%0 = load i32, ptr %a, align 4

store i32 %0, ptr %b, align 4

br label %3

test-BB0

%c.addr = alloca i32, align 4

%e.addr = alloca i32, align 4

store i32 %c, ptr %c.addr, align 4

store i32 %e, ptr %e.addr, align 4

%0 = load i32, ptr %c.addr, align 4

%1 = load i32,ptr %e.addr, align 4

%add = add nsw i32 %0, %1

ret i32 %add

control flow

data flow

call/return

jump

Figure 8: The code property graph of the Add program.

C Error Rate Statistics
We divide instructions into 8 types based on the official LLVM stan-
dard. We carry out fault injection to programs in the benchmark

based on the system defined in this paper, and calculate the error
rate for each type of instruction, and finally sum-average the result
of each program. The concise overview and results are shown in
Figure 9. The “mem-op” denotes the operations on system memory,
such as 𝑎𝑙𝑙𝑜𝑐𝑎, 𝑠𝑡𝑜𝑟𝑒 . The "ter-op" denotes the termination of basic
blocks or functions in programs, such as 𝑏𝑟, 𝑟𝑒𝑡 . The "cast-op" de-
notes the type-forced conversion, such as 𝑏𝑖𝑡𝑐𝑎𝑠𝑡, 𝑠𝑒𝑥𝑡 . The "comp-
op" denotes the data used for comparison, such as 𝑖𝑐𝑚𝑝, 𝑓 𝑐𝑚𝑝 .
The "int-op" denotes the integer binary operation, such as 𝑠𝑢𝑏, 𝑑𝑖𝑣 .
The "float-op" denotes the floating-point binary operation, such as
𝑓𝑚𝑢𝑙, 𝑓 𝑟𝑒𝑚. The "logic-op" denotes the logical or shift operation,
such as 𝑙𝑠ℎ𝑟, 𝑎𝑛𝑑 . The "other-op" denotes other types of instructions,
such as 𝑝ℎ𝑖, 𝑠𝑒𝑙𝑒𝑐𝑡 .
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Figure 9: Error rates for different types of instructions.

D Overview of Wasm Programs
A concise overview of programs employed in our experiments is
provided in Table 4.

Table 4: Statistics of programs studied in our experi-
ments. Float-mm (floating point matrix multiplication), Fft
(fast fourier transform), N-body (multibody problem), Tow-
ers(tower of hanoi), and Rot (encryption and decryption).
These programs consist of hundreds of code segments, each
configured with a test suite.
Programs Instructions Control and Data flow Faults Injected
Basicmath 201 215 + 186 101029
Dijkstra 319 343 + 271 142030
Qsort 211 231 + 210 154147
Isqrt 87 92 + 90 66107

Float-mm 167 180 + 155 107249
Fft 252 261 + 254 114059

Nbody 440 446 + 497 131412
Towers 267 299 + 253 148695
Factorial 162 175 + 160 17340

Rot 547 589 + 576 96358

E Robustness at Different Training Sample
Sizes

To explore how many fault instructions IVPSEG needs to achieve
robust performance, we randomly take a certain amount of instruc-
tions (20 ∼ 80%) from the training set to retrain the model and
evaluate the accuracy and F1-score. The results of other programs
are shown in Figure 10.
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Figure 10: Performance at different training sample sizes on other Wasm programs

F Performance on Real-world Wasm Programs
Based on the prediction values and the error rates obtained by fault
injection, the 𝑃𝑟𝑒 and 𝑇𝑃𝑅 are derived for vulnerable instructions,
and the results are shown in Figure 11. As can be seen, compared to
the most competitive baselines, IVPSEG improves performance by
6∼19% in 𝑃𝑟𝑒 and 1∼16% in 𝑇𝑃𝑅, which suggests that our method
can better predict truly vulnerable instructions. btree fkch fasta mand
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Figure 11: Comparison of Precision and Recall (TPR) for
instruction vulnerability prediction in real-world Wasm pro-
grams
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