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ABSTRACT

Finding suitable embeddings for connectomes (spatially embedded complex net-
works that map neural conections in the brain) is crucial for analyzing and under-
standing cognitive processes. Recent studies has found two-dimensional hyper-
bolic embeddings superior to Euclidean embeddings in modelling connectomes
across species, especially human connectomes. However, those studies had some
limitations: geometries other than Euclidean, hyperbolic or spherical were not
taken into account. Following the suggestion of William Thurston that the net-
works of neurons in the brain could be sucessfully represented in Solv geome-
try, we study goodness-of-fit of the embeddings for 21 connectome networks (8
species). To this end, we suggest an embedding algorithm based on Simulating
Annealing that allows us embed connectomes to Euclidean, Spherical, Hyper-
bolic, Solv, Nil, and also product geometries. Our algorithm tends to find better
embeddings than the state of the art, even in the hyperbolic case. Our findings
suggest that while in many cases, three-dimensional hyperbolic embeddings yield
the best results, Solv embeddings perform reasonably well.

1 INTRODUCTION

Connectomes are comprehensive maps of neural connections in the brain. Understanding the in-
teractions shaped by them is a key to understanding cognititive processes. As connectomes are
spatially embedded complex networks with the structure shaped by physical constraints and com-
munication needs, they seem to be exhibit traits inherent to non-Euclidean geometries. That is why
a vast amount of research interest has been recently devoted to finding the suitable embeddings for
connectome networks. Recent studies (e.g., Whi et al. (2022); Allard & Serrano (2020)) have found
two-dimensional hyperbolic embeddings superior to Euclidean embeddings in modelling connec-
tomes across species, especially human connectomes. However, those studies had some limitations:
geometries other than Euclidean, hyperbolic or spherical were not taken into account.

Our study broadens the perspectives for the suitable embeddings. We analyze the goodness-of-fit
(measured with widely-used quality measures) of the embeddings for 21 connectome networks (8
species) to 15 unique tessellations (Euclidean, Spherical, Hyperbolic, Solv, Nil, and also product
geometries). We include both two-dimensional manifolds and three-dimensional ones. Following
the suggestion of William Thurston that the networks of neurons in the brain could be sucessfully
represented in Solv geometry (one of eight so-called Thurston geometries), we stipulate that this
using this geometry would outperform using hyperbolic geometry.

Against this background, our contribution in this paper can be summarized as follows:

• We provide a new embedding method based on Simulated Annealing (SA). Our experi-
ments show that our algorithm tends to find better embeddings than the state of the art, even
in the hyperbolic case, measured using the standard measures from the literature (mAP,
MeanRank, greedy routing success and stretch).

• To our best knowledge, we are the first to compare embeddings of connectomes to all
Thurston geometries. Thus, we introduce new possibilities in modelling of connectomes.

• We find that while in many cases three-dimensional hyperbolic geometry yields the best
results, there are other geometries worth consideration, e.g., Solv. As our results are based
on an extensive simulation scheme, they are more robust in comparison to previous work.
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Figure 1: Tessellations of the hyperbolic plane. From left to right: (a) bitruncated order-3 heptagonal
tiling ({7, 3}), (b) infinite-order triangular tiling ({3,∞}), (c) binary tiling.

2 HYPERBOLIC EMBEDDINGS

The n-dimensional sphere is Sn = {x ∈ Rn+1 : g(x, x) = 1}, where g is the Euclidean inner
product, g(x, y) = x1y1 + x2y2 + . . . + xn+1yn+1. The distance between two points a, b on the
sphere is the length of the arc connecting a and b, which can be computed as d(a, b) = acos g(a, b).
Similarly, n dimensional hyperbolic geometry can be defined using the Minkowski hyperboloid
model. In this model, Hn = {x ∈ Rd+1 : xd+1 > 0, g−(x, x) = −1, where g− is the Minkowski
inner product, g−(x, y) = x1y1 + x2y2 + . . .+ xnyn. The distance is d(a, b) = acosh g−(a, b).

Figure 1 depicts three tessellations of the hyperbolic plane H2 in the Poincaré disk model—a pro-
jection of H2 to the Euclidean plane that distorts the distances. In each of these tessellations, all
the shapes (of the same color) are actually of the same hyperbolic size, even though ones closer to
the boundary look smaller in the projection. Figure 1 shows the tree-like structure of hyperbolic
geometry. This tree-likeness has found application in the visualization of hierarchical structures
(Lamping et al., 1995; Munzner, 1998), and then in the modelling of complex networks. The hyper-
bolic random graph model (Boguñá et al., 2010) is parameterized by parameters N , R, T , α. Each
node i ∈ {1, . . . , n} is assigned a point m(i) in the hyperbolic disk of radius R; the parameter α
controls the distribution. Then, every pair of points a, b ∈ {1, . . . , n} is connected with probability
1/(1 + exp((d − R)/T )), where d is the hyperbolic distance between a and b. Graphs generated
according to this model have properties typical to scale-free networks, such as high clustering coef-
ficient and power law degree distribution (Papadopoulos et al., 2012; Boguñá et al., 2010).

3 THURSTON GEOMETRIES

By the uniformization theorem, every closed two-dimensional topological surface can be given
spherical (S2), Euclidean (E2), or hyperbolic (H2) geometry, that is, there exists a Riemannian man-
ifold with the same topology as M and locally isometric to a sphere, Euclidean plane, or hyperbolic
plane. William Thurston conjectured (Thurston, 1982) that three-dimensional topological manifolds
can be similarly decomposed into fragments, each of which can be given one of eight Thurston ge-
ometries, which are homogeneous Riemannian manifolds. The eight Thurston geometries include:

• isotropic geometries: spherical (S3), Euclidean (E3), and hyperbolic (H3).
• product geometries: S2 × R and H2 × R, In geometry A × B, the distance dA×B between
(a1, b1), (a2, b2) ∈ A× B is defined using the Pythagorean formula:

dA×B((a1, b1), (a2, b2)) =
√
dA(a1, a2)2 + dB(b1, b2)2.

Intuitively, the third dimension is added to S2 or H2 in the Euclidean way.
• Twisted product geometries: twisted E2 × R, also known as Nil, and twisted H2 × R,

referred to as Twist in this paper, also known as the universal cover of SL(2,R).
• Solv geometry, also known as Solve or Sol, which is fully anisotropic.

In low-dimensional topology, three-dimensional geometry is especially challenging, in particular,
the Poincaré conjecture was the most challenging in three dimensions. On the other hand, our inter-
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est in two-dimensional and three-dimensional geometries is based on their visualization possibilities
(Kopczyński & Celińska-Kopczyńska, 2020; Coulon et al., 2020) and potential application to ge-
ometric embeddings. The original research into geometric embedding of networks used H2; more
recently, higher-dimensional hyperbolic spaces are also studied (Jankowski et al., 2023; Whi et al.,
2022). Similar embeddings are also used in machine learning, in particular, in Gu et al. (2019) prod-
uct geometries are studied. Up to our knowledge, twisted product or Solv geometry have not been
studied in this context. We are especially interested in the intriguing suggestion of William Thurston
from 1997 that the architecture of brain might be based on Solv geometry (Schwartz, 2020).

The more exotic Thurston geometries have been successfully visualized only very recently
(Kopczyński & Celińska-Kopczyńska, 2020; Coulon et al., 2020), and thus are much less known
than isotropic geometries. We refer to these papers and explanatory videos (Rogue, 2023; 2022)
and demos (Coulon et al., 2022) for detailed explanations of Solv and Nil geometries. In the rest of
this section, we include a brief explanation of Solv and an intuitive explanation of twisted product
geometries. We also discuss how their properties might prove beneficial for modeling networks.

To explain Solv, we should start first with the horocyclic coordinate system of H2. Horocycles
are represented in the Poincaré disk model as circles tangent to the boundary; these can be seen as
hyperbolic analogs of circles with infinite radius and circumference, centered in an ideal point (point
on the boundary of the Poincaré disk). Concentric horocycles are seen in Figure 1c; the distance
between two adjacent horocycles in this picture is log(2), and if two points A and B on given
horocycle are in distance x, then the distance between their projections on the next (outer) horocycle
is 2x. For a point P ∈ H2, we project P orthogonally to Q on the horocycle going through the center
C of the Poincaré model. The x coordinate is the (signed) length of the horocyclic arc CQ, and y
is the (signed) length of the segment PQ. (This is similar to the upper half-plane model (Cannon
et al., 1997), except that we take the logarithm of the y coordinate.) In this coordinate system, the
length of the curve ((x(t), y(t)) : t ∈ [a, b]) is defined as

∫ b

a

√
(x′(t) exp yt)2 + y′(t)2dt.

A similar coordinate system for H3 defines the length of the curve ((x(t), y(t), z(t)) : t ∈ [a, b])

as
∫ b

a

√
(x′(t) exp z(t))2 + (y′(t) exp z(t))2 + z′(t)2dt. The surfaces of constant z are called horo-

spheres; the geometry on a horosphere is Euclidean. Solv geometry is obtained by switching the sign
in this formula. That is, each point also has three coordinates (x, y and z), but the length of a curve is
now defined as

∫ b

a

√
(x′(t) exp z(t))2 + (y′(t) exp−z(t))2 + z′(t)2dt. The distance between two

points in the length of the shortest curve connecting them; this length is difficult to compute (Coulon
et al., 2020; Kopczyński & Celińska-Kopczyńska, 2022). Intuituively, the Solv geometry is based
on two hierarchies (the hyperbolic plane y =const and the hyperbolic plane x =const), which are
opposed to each other, due to the opposite sign used with z in the distance formula. This gives us
hope that Solv geometry can be used to represent hierarchies in three-dimensions which cannot be
represented using other two- or three-dimensional geometries exhibiting simpler hierarchical struc-
ture (H2, H3, H2 × R). A similar effect of two opposing hierarchies could be also obtained in
H2 ×H2, however, that is a four-dimensional geometry, and thus less suitable for visualization.

In Nil, we have well-defined directions in every point, which we can intuitively call North, East,
South, West, Up and Down. However, while in Euclidean geometry, after moving 1 unit to the
North, East, South, then West we return to the starting point, in Nil such a loop results in a move
by 1 unit in the Up direction. In general, the vertical movement is equal to the signed area of the
projection of the loop on the horizontal plane. Twist is based on the same idea, but the horizontal
plane is now hyperbolic. An interesting property of Nil geometry is that it is a three-dimensional
geometry where volume of a ball of radius R has Θ(R4) growth, which suggests better embedding
possibilities than E3, but worse than the exponentially-expanding geometries.

4 OUR EMBEDDING ALGORITHM

Our goal is to find good quality embeddings of a connectome (V,E) into some geometry G, that
is, a map m : V → G. As in the hyperbolic random graph model, we assume that our embedding
has two parameters R and T . The probability that an edge exists between i and j is again p1(d) =
1/(1 + exp((d−R)/T )), where d is the distance between m(i) and m(j). We use MLE method to
find the embedding, that is, we aim to maximize the likelihood

∏
1≤i<j≤N p(i, j), where p(i, j) =
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p1(dG(m(i),m(j))) in case if the edge between i and j exists, and p(i, j) = 1−p1(dG(m(i),m(j)))
otherwise. Equivalently, we maximalize the loglikelihood

∑
1≤i<j≤N log p(i, j).

Prior algorithms learning embeddings may be specifically tailored to the specific geometry. Further-
more, prior algorithms assume that dG is easy to compute, which is not the case for Solv. Therefore,
a new embedding algorithm is necessary. As in Celińska-Kopczyńska & Kopczyński (2022), our
algorithm is based on a uniform grid in geometry G. Natural grids exist in all Thurston geometries
of interest. While in the HRG model the network is mapped to a disk of radius R, here we map
the network to the set D of all grid points in G which are in distance at most dR from some fixed
origin. We choose dR so that the number of points inside D is fixed; in most experiments we pick
M = 20000 points (actually, there may be slightly more points due to ties).

We compute the distance dG for every pair of points in D, thus obtaining a |D|×|D| array that can be
used to find the distance between pairs of points quickly. In case of Solv, it turns out that the method
to compute the Solv distances from Kopczyński & Celińska-Kopczyńska (2020), while applicable
to visualization, is not applicable to computing this table of distances due to long ranges. Therefore,
for longer distances, we approximate by d(a, b) as the smallest possible d(a, a1)+d(a1, a2)+ . . .+
d(ak, b), where intermediate points are also in D, and each pair of consecutive points is within the
range of the exact method. Dijkstra’s algorithm is used to find the path (ai).

Now, we use the Simulated Annealing (SA) method to learn the embedding. We start with an
arbitrary embedding m : V → D. Then, we perform the following for i = 1, . . . , NS . First,
introduce a small change m′ to the current embedding m. Then, compute L, the loglikelihood of m,
and L′, the loglikelihood of m′. If L′ > L, always replace m with m′. Otherwise, replace m with
m′ with probability exp((L′ −L)/ exp(T )), where the parameter T depends on the iteration index.

In SA, we start with very high temperature T (to accept all changes and thus explore the full space of
possible embeddings without getting stuck on local maxima) and then we proceed to lower and lower
temperatures (not accepting changes which yield much worse embeddings, but still experimenting
with crossing lower valleys), eventually accepting only the changes which improve the embedding.
In our experiments, T decreases linearly from 10 to -15. We consider local changes of two possible
forms: move m′(i) for a random i to a random point in D, and move m′(i) for a random i to a
random point in D that is close (neighbor) to m(i).

We start with some initial values of R and T . Occassionally during SA we find the values of R and
T that best fit the current embedding, and we use the new values for the remaining iterations. Since
finding the correct values takes time, we do it relatively rarely (every |V | iterations with successful
moves) and only once SA rejects most changes. In our experiments, we repeat this setup 30 times;
in the following iterations, we start with the values of R and T of the best embedding found so far.

5 DATA, TESSELLATIONS, AND THE SETUP OF THE SIMULATION

Our implementation uses the tessellations implemented in RogueViz (Kopczyński & Celińska-
Kopczyńska, 2023) and is based on the existing implementation of SA for finding hyperbolic vi-
sualizations (Celińska & Kopczyński, 2017). For our experiments, we use the same set of publicly
available connectomes as Allard & Serrano (2020)1. See Table 1.

We run 30 iterations of SA to try to find the best R and T , with NS = 10000 · |V |. In the lit-
erature, the quality of embeddings is usually evaluated using the greedy routing measures (in the
network science community, Boguñá et al. (2010)) and MeanRank/mAP measures (in the machine
learning community, Nickel & Kiela (2017)). Thus, we evaluate the quality of embeddings using
the following five measures, from 0 (worst) to 1 (perfect).

SC Greedy routing success rate. This is the standard measure used in the literature on network
embeddings (Boguñá et al., 2010). SC is the probability that, for random pair of vertices
(x, y) ∈ V 2, the greedy routing algorithm starting at x eventually successfully reaches the
target y. This routing algorithm moves in the first step from x to x1, the neighbor of x
which is the closest to y (that is, dG(m(x1),m(y)) is the smallest). If x1 ̸= y, we continue
to x2, the neighbor of x1 which is the closest to y, and so on.

1URL: https://github.com/networkgeometry/navigable_brain_maps_data/
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name node zone |V | |E| source
CElegans cell nervous system 279 2290 Varshney et al. (2011)
Cat1 area cortex 65 730 Scannell et al. (1995)
Cat2 area cortex and thalamus 95 1170 Scannell et al. (1999)
Cat3 area cortex 52 515 Scannell et al. (1999)
Drosophila1 cell optic medulla 350 2886 Shinomiya et al. (2022)
Drosophila2 cell optic medulla 1770 8904 Shinomiya et al. (2022)
Macaque1 area cortex 94 1515 Kaiser & Hilgetag (2006)
Macaque2 area cortex 71 438 Young (1993)
Macaque3 area cortex 242 3054 Harriger et al. (2012)
Macaque4 area cortex 29 322 Markov et al. (2013)
Mouse2 cell retina 916 77584 Helmstaedter et al. (2013)
Mouse3 cell retina 1076 90810 Helmstaedter et al. (2013)
Human1 area cortex 493 7773 Hagmann et al. (2008)
Human2 area cortex 496 8037 Hagmann et al. (2008)
Human6 area whole brain 116 1164 Gray Roncal et al. (2013)
Human7 area whole brain 110 965 Gray Roncal et al. (2013)
Human8 area whole brain 246 11060 Gray Roncal et al. (2013)
Rat1 area nervous system 503 23029 Bota & Swanson (2007)
Rat2 area nervous system 502 24655 Bota & Swanson (2007)
Rat3 area nervous system 493 25978 Bota & Swanson (2007)
ZebraFinch2 cell basal-ganglia (Area X) 610 15342 Dorkenwald et al. (2017)

Table 1: Connectomes in our experiments. Based on Allard & Serrano (2020)

IST Greedy routing stretch. Stretch is the expected ratio of the length of the route found in
the greedy routing procedure, to the length of the shortest route, under the condition that
greedy routing was successful. IST is the reciprocal of stretch.

IMR For an edge (x, y) ∈ E, rank(x, y) is 1 plus the number of vertices which are closer to x
than y, but not connected with an edge. MeanRank is the expected value of (x, y) over all
edges. We use IMR=1/MeanRank.

MAP For an edge (x, y) ∈ E, P (x, y) is the ratio of vertices in distance of at most
dG(m(x),m(y)) to x which are connected with x. AP (x) is the average of P (x, y) for
all y connected with x, and MAP is the average of AP (X) over all X (MAP ∈ [0, 1]).

NLL Last but not least, loglikelihood (LL), which is directly maximized by us, as well as in
many other embedding algorithms. For a given connectome (V,E), the best theoretically
possible loglikelihood is obtained when an edge between x and y occurs if and only iff the
distance dG(m(x),m(y)) is below some threshold value and thus edges can be predicted
with full certainty based on the distance (loglikelihood = 0), and the worst possible is
obtained when the distance gives no information on edges, and thus the probability of
each edge is predicted as |E|/

(|V |
2

)
(loglikelihood = H). Normalized loglikelihood, NLL,

is defined as 1-LL/H, and is again from 0 to 1.

The computations of SC, STR, MR and MAP care on the order of nodes y ∈ V by distance from
x ∈ V . However, since we are using a discrete set D, it is possible that dG(m(x),m(y)) =
dG(m(x),m(z)) for y ̸= z. In the case of tie, we assume a random order of the tied nodes. During
the statistical testing, where necessary, we apply Bonferroni correction for multiple testing.

In our main experiment, we work with the 15 unique tessellations listed in Table 2. Most of our
tessellations are hyperbolic. Subdivided(d) means that each cube of the honeycomb has been subdi-
vided into d×d×d subcubes, and the point D consists of the vertices and centers of these subcubes,
approximating the set of centers of cells of the Euclidean bitruncated cubic honeycomb. In case of
Nil and Solv, we do not get actual cubes, so this construction is approximate. For technical reasons,
distances are rounded to the nearest integer multiple of 1/20 absolute unit, except sphere, where the
unit is 1/200 of absolute unit. Thus, diameter 316 for a continuous tessellation is 15.8 absolute units,
and sphere has diameter (i.e., half the circumference) π.
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name dim geometry closed nodes diameter description of the set D
H2 2 hyperbolic F 20007 304 bitruncated {7, 3} (Figure 1a)
H2& 2 hyperbolic T 17980 157 closed hyperbolic manifold
tree 2 tree F 20002 396 {3,∞} (Figure 1b)
E3 3 euclid F 20107 1070 bitruncated cubic honeycomb
E3& 3 euclid T 19683 450 torus subdivided into 27× 27× 27 cells
H3 3 hyperbolic F 21365 201 {4, 3, 5} hyperbolic honeycomb
H3∗ 3 hyperbolic F 20039 146 {4, 3, 5} subdivided(2)
H3& 3 hyperbolic T 9620 102 subdivided(2) closed hyperbolic manifold
Nil 3 nil F 20009 1000 Z3 grid
Nil* 3 nil F 20208 290 Z3 grid, subdivided(2)
Twist 3 twist F 20138 152 twisted {5, 4} × Z
H2 × R 3 product F 20049 29 bitruncated {7, 3} × Z
Solv 3 solv F 20017 246 analog of Figure 1c
Solv* 3 solv F 20000 143 analog of Figure 1c, subdivided(2)
S3 3 sphere T 21384 628 8-cell, each cell subdivided(11)

Table 2: Details on tessellations used in our study; * denotes finer grids.

6 COMPARISON AT MAXIMUM PERFORMANCES

We start with a naive comparison among the tessellations based on the best results that were obtained
for each tessellation for each connectome. Due to space limitations, we have moved the ranking
figures and descriptive statistics to Appendix D.

connectome NLL MAP IMR SC IST
Cat1 5.47 1.29 10.28 0.40 0.65
Cat2 4.84 3.75 8.94 1.94 1.63
Cat3 6.22 1.35 11.04 0.09 0.66
CElegans 7.46 6.05 8.38 8.89 6.30
Drosophila1 5.46 10.15 8.34 12.19 9.47
Drosophila2 12.52 32.87 11.48 27.32 25.87
Human1 9.13 5.95 29.08 11.94 7.06
Human2 9.19 6.20 28.38 11.62 7.00
Human6 7.69 3.52 26.79 7.29 4.53
Human7 8.13 3.45 25.58 7.23 4.34
Human8 6.38 1.72 17.92 0.23 0.74
Macaque1 3.95 3.93 10.21 2.87 2.21
Macaque2 7.22 3.02 16.74 6.11 3.30
Macaque3 4.99 7.52 9.05 6.88 5.84
Macaque4 9.44 0.27 4.51 0.00 0.00
Mouse2 9.68 7.54 10.86 3.78 4.94
Mouse3 10.85 8.84 10.98 3.58 5.14
Rat1 44.60 32.51 66.25 10.25 8.18
Rat2 44.32 31.33 68.97 10.02 8.13
Rat3 40.76 27.42 62.36 9.85 7.96
ZebraFinch2 14.83 19.70 7.06 16.29 12.50

Table 3: Coefficients of variations (CV, in %) for the max performance of the geometries

According to Table 4, we notice that the assessment of the performance of the geometry may vary
with respect to the quality measure; there are also differences across species. E.g., in general, trees
perform poorly in terms of measures other than greedy success rate, and no matter the measure,
they are always the best choice for Rat’s connectomes (nervous system). Results for Rat’s and
Drosophila2’s connectomes are also characterized by the relatively high variation among species
(Table 3). For other species, the best performances are actually similar with respect to a quality
measure: the differences in best performance among geometries measured with MAP, greedy rate
success, and stretch are small (in most of the cases values of CVs are under 10%); especially for
Cat’s connectomes they tend to be negligible (values of CVs even under 1%).
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Top 5 ranks Bottom 5 ranks
geometry NLL MAP IMR SC IST NLL MAP IMR SC IST
H2 19.05 23.81 14.29 80.95 33.33 57.14 42.86 71.43 0.00 19.05
H2& 0.00 0.00 0.00 0.00 0.00 95.24 85.71 90.48 95.24 90.48
tree 23.81 23.81 14.29 80.95 47.62 66.67 42.86 80.95 0.00 28.57
E3 19.05 23.81 23.81 9.52 14.29 57.14 66.67 38.10 61.90 57.14
E3& 19.05 28.57 47.62 0.00 4.76 52.38 57.14 33.33 90.48 85.71
H3 66.67 61.90 33.33 52.38 66.67 9.52 14.29 42.86 0.00 0.00
H3∗ 66.67 76.19 38.10 61.90 76.19 0.00 0.00 4.76 0.00 0.00
H3& 9.52 19.05 28.57 0.00 4.76 14.29 14.29 4.76 90.48 66.67
Nil 19.05 9.52 33.33 4.76 0.00 4.76 9.52 4.76 4.76 9.52
Nil* 38.10 38.10 57.14 0.00 19.05 28.57 57.14 19.05 14.29 28.57
Twist 61.90 57.14 38.10 57.14 71.43 19.05 19.05 14.29 9.52 4.76
H2 × R 66.67 52.38 52.38 42.86 71.43 0.00 0.00 0.00 0.00 0.00
Solv 52.38 47.62 33.33 47.62 42.86 14.29 14.29 28.57 9.52 4.76
Solv* 38.10 28.57 61.90 9.52 23.81 0.00 0.00 0.00 0.00 0.00
S3 0.00 9.52 23.81 0.00 0.00 80.95 76.19 66.67 85.71 80.95

Table 4: Percentages: how often occurred within top or bottom five ranks (at the max performance)

The results suggest that H2& and S3 seem to be inefficient choices: the first one never enters the
top five ranks; both often occur within the bottom five ranks, at their best performance being even
the worst choices no matter the quality measure. In contrast, H3 and H2 × R perform very well –
they rarely occur within bottom five ranks. Twist and Solv or Solv∗ never happen to be the worst
choices, all of them perform relatively well. Interestingly, the usage of finer grids may not increase
the chance of obtaining the best performace, no matter the quality measure: while for H3∗ vs H3

and Solv* vs Solv we notice that it reduces the chance of occurring within the bottom five ranks, the
best performances of non-fine grids still outperform them when it comes to the occurrences within
the five top ranks. Contrary, finer grid for Nil significantly increases percentage of occurrences
among five best ranks. When it comes to Euclidean geometry, the results are inconsistent. The best
performances of E3 and E3& often occur among the bottom five ranks of the geometries. However,
there are cases in which those geometries perform excellently, e.g., for Human connectomes.

7 COMPARISON OF PERFORMANCES BASED ON DISTRIBUTIONS

Comparison at the maximum performance from the previous section gives us intuition about the
optimistic scenarios – what the limits for our embeddings are. However, due to the nature of SA,
the maximum values we obtained are still realizations of random variables; that is why a closer
inspection including information about the distributions of the simulation results is needed. To this
end, we will compare geometries using voting rules, in particular, we will be interested in finding
Condorcet winners and losers. As Condorcet winner may not exist in the presence of ties, we will
refer to its simple modification: Copeland rule (Maskin & Dasgupta, 2004).

We say “geometry A wins against geometry B” if the probability that (for a given quality measure)
a randomly chosen simulation result obtained by geometry A is greater than a randomly chosen
simulation result obtained by geometry B is greater than 0.5. If that probability is equal to 0.5,
we say that “there is a tie”, and otherwise, “geometry A loses”. To compute the score for a given
geometry, we add 1 for every winning scenario, 0 for every tie, and -1 for every losing scenario. The
geometries with the highest and lowest scores become Copeland winners and losers, respectively
(we allow for more than just one candidate in both cases).

Condorcet winners (as well as the winners based on the Copeland method) have interpretations –
those are the candidates that beat the most of other candidates in pairwise contests. In our case,
we could perceive them as the best options for embeddings. Based on the data in Table 5, we
cannot name one universal winner. While it seems that H3 is a sound choice, we also notice that
Solv and Twist are worthy attention. Interestingly, for Human connectomes, E3 outperforms other
geometries. See Appendix C for weighted directed networks constructed upon the voting rules.
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Copeland winners Copeland losers
connectome NLL MAP IMR SC IST NLL MAP IMR SC IST
Cat1 Solv* H3∗ Solv* H3∗ Solv* H2& tree tree H2& tree
Cat2 H3∗ H3∗ H2 × R Twist H2 × R H2& S3 tree H3& tree
Cat3 Solv* Solv* H3& Nil* H3& H2& tree tree H2& tree
CElegans H3∗ H3 Nil H3∗ Nil H2& H2& tree H2& tree
Drosophila1 Twist H3 H3& H3 H3& H2& S3 tree H2& tree
Drosophila2 H3 H3 H3∗ H3 H3∗ S3 S3 S3 H3& S3
Human1 E3 S3 S3 H3∗ S3 tree tree tree H2& tree
Human2 E3 S3 S3 H3∗ S3 tree tree tree H2& tree
Human6 E3 E3 E3 H3∗ E3 tree tree tree H2& tree
Human7 E3 E3 E3 Solv E3 tree tree tree H2& tree
Human8 H3∗ H3∗ E3 H2 E3 tree tree tree H2& tree
Macaque1 Solv Solv Solv H3∗ Solv S3 S3 tree E3& tree
Macaque2 Nil Nil Nil* H2 Nil* tree tree tree H2& tree
Macaque3 H3∗ H3∗ H2 × R H2 H2 × R H2& S3 tree H2& tree
Macaque4 E3& E3& E3& Twist E3& tree tree tree E3 tree
Mouse2 Twist H3 H2 × R H2 H2 × R S3 S3 H2& S3 H2&
Mouse3 Twist H3 H2 × R H2 H2 × R S3 S3 S3 H2& S3
Rat1 tree tree H3 tree H3 S3 S3 S3 S3 S3
Rat2 tree tree H3 tree H3 S3 S3 S3 E3& S3
Rat3 tree tree H3 tree H3 S3 S3 S3 S3 S3
ZebraFinch2 Solv H3 Solv H3 Solv S3 S3 S3 Solv S3

Table 5: Voting rules: Copeland winners and losers.

8 ROBUSTNESS CHECKS AND THREATS TO VALIDITY

Ideally, there exists optimal embedding of (V,E) into the whole geometry G, where mopt : V → G,
and some values of R and T are used. Unfortunately, the embedding m found by SA might be worse
than mopt due to the following issues. See Appendix B for a detailed analysis.

• The radius dR is too small, making mopt simply not fit,

• The grid used is too coarse, hence the necessity of making m(i) the grid point to closest to
mopt(i), and thus reducing the loglikelihood,

• The number of iterations of SA, NS , is too small – while SA is theoretically guaranteed to
find the optimal embedding for given R and T with high probability as NS tends to infinity,
in practice, we are constrained by time limits,

• The values of the parameters R and T have not been chosen correctly.

Our results vs previous approaches To see how good is SA at obtaining good embeddings, we
can compare it against the previously existing embedders. While we are the first to study Nil and
Solv embeddings, there is a vast number of prior works on H2 and H3 embeddings. We have
compared our results on the CElegans, Drosophila1, Human1 and Mouse3 connectomes. We use
the results of comparison in Anonymous (2023). For H2, we have compared against the BFKL
embedder (Bläsius et al., 2016), Mercator (Garcı́a-Pérez et al., 2019) (fast and full version), 2D
Poincaré embeddings (Nickel & Kiela, 2017) and 2D Lorentz embeddings (Nickel & Kiela, 2018).
Each of the competing algorithms has been run five times, found the best result of these 25 runs, and
compared to our results. We have also performed a similar analysis for H3*, against 3D Poincaré
embeddings (BFKL and Mercator work only in H2). Table 6 list our results for mAP and success
rate (see Appendix E for other measures).

In most cases, our result turned out to give better result in all 30 runs, and in almost all cases, we have
received better results in most of the runs. We have not managed to beat Poincaré 3D embeddings
on greedy success ratio and greedy stretch measures for Mouse3 and CElegans. Furthermore, our
embeddings use smaller radius (7.7 for H2, 3.7 for H3), and use less time than Lorentz or Poincaré
embeddings (about 220 seconds per run on Mouse3 in H3). Smaller radius means that our em-
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connectome dim mAP method rad time ours better
celegans 2 0.500 Poincaré 7.2 278 0.540 30
celegans 3 0.583 Poincaré 10.1 274 0.584 21
drosophila1 2 0.425 Mercator (full) 23.6 14 0.483 30
drosophila1 3 0.488 Poincaré 11.4 365 0.512 30
human1 2 0.651 Lorentz 10.8 1085 0.675 30
human1 3 0.722 Poincaré 9.4 827 0.799 30
mouse3 2 0.585 Mercator (full) 29.9 117 0.612 30
mouse3 3 0.654 Poincaré 12.2 9207 0.655 18
connectome dim success method rad time ours better
celegans 2 0.903 Poincaré 7.2 267 0.931 27
celegans 3 0.958 Poincaré 10.1 274 0.930 0
drosophila1 2 0.769 Mercator (full) 23.6 14 0.847 30
drosophila1 3 0.844 Poincaré 11.4 365 0.843 13
human1 2 0.889 Poincaré 12.2 1185 0.929 21
human1 3 0.926 Poincaré 9.5 835 0.958 24
mouse3 2 0.962 Mercator (full) 34.5 74 0.967 30
mouse3 3 0.971 Poincaré 12.2 8679 0.952 0

Table 6: Our embeddings versus state-of-the-art. For each connectome and dimension, we list the
best prior method and its result, the radius of the embedding, time elapsed in seconds, the best result
of our method, and how many times (out of 30) our result was better.

beddings avoid numerical precision issues that tend to be a serious issue in hyperbolic embeddings
(Bläsius et al., 2018; Sala et al., 2018; Celińska-Kopczyńska & Kopczyński, 2022), are better able
to fully use both the larg-scale (tree-like) and smaller-scale (Euclidean-like) nature of hyperbolic
geometry (while large radius embeddings tend to be tree-like), and making them more applicable
for visualization (in large-radius visualizations, less nodes are visible).

9 CONCLUSIONS

In this paper, we presented an experimental analysis of embeddings of 21 connectomes to various
geometries (both three- and two-dimensional). To our best knowledge, we are the first to compare
embeddings to all Thurston geometries. We provided a new embedding method based on Simulated
Annealing (SA) that outperforms previous methods.

Although earlier studies suggested one universal winner geometry (usually pointing at H2), our
results showed that if we allow for the third dimension, the universal winner ceases to exists. Espe-
cially, H2 embeddings tend to be worse than (non-Euclidean) 3D geometries, even if our H2 embed-
dings are actually good – better than Bläsius et al. (2016); Garcı́a-Pérez et al. (2019); Nickel & Kiela
(2017; 2018). If we were to suggest a set of geometries that are worth attention while modelling
connectomes, we would name H3, Solv, Twist, and H2 ×R. Surprisingly, for Human connectomes,
E3 is a suitable choice. There might be a correlation between the zone of the connectome and the
best choice for the embedding, e.g., trees model nervous systems well.

Our results were based on an extensive simulation scheme with numerous robustness checks. While
our results regarding log-likelihood, MAP, and MeanRank were similar and robust to the changes
in the setup of SA, we noticed that optimizing log-likelihood may affect the quality measured by
greedy success rate and stretch. We suppose that an explanation lies in capturing different aspects
(functions) of the networks by those two groups of quality measure. Finding out the relationships
among connectomes or embeddings characteristics and quality measures exceeds the scope of this
paper and will be a subject of a future work.

REFERENCES
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Rémi Coulon, Elisabetta A. Matsumoto, Henry Segerman, and Steve J. Trettel. Ray-marching
thurston geometries, 2020.

Remi Coulon, Sabetta Matsumoto, Henry Segerman, and Steve Trettel. 3-dimensional space, 2022.
https://3-dimensional.space/.

Sven Dorkenwald, Philipp J Schubert, Marius F Killinger, Gregor Urban, Shawn Mikula, Fabian
Svara, and Joergen Kornfeld. Automated synaptic connectivity inference for volume electron
microscopy. Nat. Methods, February 2017. URL http://dx.doi.org/10.1038/nmeth.
4206.
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name dim geometry closed nodes diameter description of the set D
H2 (d) 2 hyperbolic F 27000 560 bitruncated {7, 3} (Figure 1a)
H2 (c) 2 hyperbolic F 27007 316 bitruncated {7, 3} (Figure 1a)
tree (c) 2 tree F 20002 396 {3,∞} (Figure 1b)
tree (d) 2 tree F 24574 520 binary tree
H3 (c) 3 hyperbolic F 40979 214 {4, 3, 5} hyperbolic honeycomb
H3 (d) 3 hyperbolic F 41511 280 {4, 3, 5} hyperbolic honeycomb
H2 × R (c) 3 product F 20049 222 bitruncated {7, 3}) times Z
H2 × R (a) 3 product F 20022 5637 bitruncated {7, 3}) times Z

Table 7: Details on the preliminary tessellations used in our study.
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Figure 2: Comparison of the goodness-of-fit between pairs of tessellations. Red suggests that the
continuous (non-angular) version yields better results and the difference is significant; orange sug-
gests lack of significant difference, and yellow suggests significantly worse results for continuous
(non-angular) version, respectively.

H2×R, we compare geometric distances (c) to angular distance (a). The angular distance da(X,Y )
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is, intuitively, how small an object at Y appears to an observer placed at X , assuming that the light
travels along geodesics. The angular size of an object in distance d is proportional to 1/d in the
Euclidean case and 1/ exp(d) in the hyperbolic case; for anisotropic geometries, it may depend on
the axis. More precisely, da(X,Y ) is proportional to limr→0 r

2/p(X,Y, r), where p(X,Y, r) is the
probability that a random geodesic starting in X passes within distance of at least r from Y .

It was not certain if we benefit from those technical subtelties. As the data is not normally distributed
and the sample sizes are small (30 observations), we perfomed Wilcoxon tests (with Bonferroni
correction for multiple testing). Figure 2 visualizes the results of the procedure. We notice that
generally we do not benefit from discrete versions of hyperbolic tessellations, that is why we decided
to exclude them from the further analysis. In the case of trees, we notice that the discrete version
yields significantly better results for greedy success rate – for that reason we keep that tessellation.
Finally, we excluded angular version of product geometry H2 × R – we did not notice systematic
gains in comparison to the non-angular version.

B ROBUSTNESS

In this appendix, we will explain how the issues mentioned in Section 8 were combated. We will
also check if they could affect our results. Additionally, we have studied alternative methods of
measuring distances, based on discrete tessellation distances and angular sizes .

Possibly insufficient size of grids. For the sake of comparability, we aimed at keeping the number
of neurons as close to 20,000 as possible. However, one could argue if this is enough. To combat
the first two issues, in some geometries we consider coarser and finer grids: coarser grids are better
at handling the first issue, and finer grids are better at handling the second issue – in both cases, we
expect that increasing dR and grid density beyond some threshold yields diminishing returns. That
is why, based on the results from the previous sections, we have added the so-called big versions –
coarser but larger grids (M = 100000) – for selected, primising manifolds (H3, H3∗, H2 ×R, Solv,
and Twist). We will denote them with **. See Table 8 for the details.

name dim geometry closed nodes diameter description of the set D
H3 ∗ ∗ 3 hyperbolic F 100427 233 {4, 3, 5} hyperbolic honeycomb
(H3∗) ∗ ∗ 3 hyperbolic F 100641 179 {4, 3, 5} subdivided(2)
Twist** 3 twist F 101230 184 twisted {5, 4} × Z
H2 × R ∗ ∗ 3 product F 100030 282 bitruncated {7, 3} × Z
Solv 3 solv F 100041 310 as in Kopczyński & Celińska-Kopczyńska (2020)

Table 8: Details on tessellations used in our study (big versions); * denotes finer grids.

We started by checking if there are significant differences in favour of big versions of manifolds;
to this end we performed Wilcoxon tests with Bonferroni correction for multiple testing. Figure 3
depicts the results of the procedure. According to our results, in most of the cases the differences
are insignificant, which suggests that the size of the manifold is not a severe threat to validity. Usage
of big versions usually results in better embeddings for Rat connectomes; that might be correlated
with a different function of those connectomes in comparison to others in the sample (they describe
nervous systems). Rarely, big versions yield worse embeddings than the standard ones – usually for
Human connectomes; however, no pattern enabling explanation is noticable here.

Next, we checked if the size of the manifolds affects rankings. To this end, we computed weighted
Cohen’s kappas (Cohen, 1968). In kappas, 0 represents the amount of agreement that can be ex-
pected from random chance, and 1 signifies perfect agreement between the raters. Originally, kappas
take into account only agreements of the raters. The the weighted kappas allow disagreements to
be weighted differently which is more suitable for us – we are more interested in the relative place-
ment of the pairs of the geometries in the ranking than in the actual places. E.g., if there are small
differences in ranks by two raters, e.g., by one, the ranks should remain similar to us as embeddings
yielding results of the comparable quality should be still close to each other. Although there are no
universal guidelines for the interpretation of those coefficients, the literature suggests that the values
over 0.61 suggest moderate to substantial agreement between raters and values exceeding 0.81 –
strong to almost perfect agreement (Landis & Koch, 1977).
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(b) H3∗

lo
gl

ik

m
ap m

r

su
cc

es
s

st
re

tc
h

Cat1

Cat2

Cat3

CElegans

Drosophila1

Drosophila2

Human1

Human2

Human6

Human7

Human8

Macaque1

Macaque2

Macaque3

Macaque4

Mouse2

Mouse3

Rat1

Rat2

Rat3

ZebraFinch2

(c) H2 × R
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(d) Twisted
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(e) Solv

Figure 3: Comparison of the goodness-of-fit between regular and big versions of manifolds. Red
suggests that the big version yields better results and the difference is significant; orange suggests
lack of significant difference, and yellow suggests significantly worse results for big version.

Accroding to data in Table 9 rankings obtained from big versions of manifolds in the standard setup
of Simulated Annealing (Ns = 10, 000 iterations) are at least in substantial agreement with rankings
based on standard versions. The high agreement in rankings based on voting rules is unsurprising. It
is in line with the results depicted in Figure 3 – we include more information from the distributions,
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Pair of rankings Max performance Copeland
NLL MAP IMR SC IST NLL MAP IMR SC IST

StandardSA:10,000 vs BigSA:10,000 0.80 0.75 0.84 0.57 0.61 0.86 0.81 0.91 0.71 0.78
(0.72;0.88) (0.66;0.84) (0.77;0.90) (0.40;0.73) (0.47;0.74) (0.79;0.93) (0.74;0.88) (0.87;0.95) (0.61;0.82) (0.69;0.88)

StandardSA:100,000 vs BigSA:100,000 0.78 0.75 0.85 0.52 0.65 0.85 0.83 0.84 0.75 0.82
(0.69;0.88) (0.65;0.85) (0.79;0.91) (0.34;0.70) (0.53;0.77) (0.77;0.92) (0.76;0.89) (0.77;0.91) (0.66;0.84) (0.73;0.90)

StandardSA:10,000 vs StandardSA:100,000 0.95 0.93 0.93 0.86 0.87 0.84 0.82 0.83 0.77 0.83
(0.92;0.97) (0.90;0.96) (0.90;0.96) (0.80;0.92) (0.81;0.92) (0.77;0.90) (0.74;0.89) (0.76;0.91) (0.66;0.88) (0.75;0.91)

BigSA:10,000 vs BigSA:100,000 0.76 0.70 0.78 0.73 0.60 0.79 0.75 0.86 0.69 0.76
(0.66;0.86) (0.59;0.82) (0.69;0.87) (0.59;0.86) (0.44;0.75) (0.70;0.88) (0.66;0.84) (0.80;0.91) (0.55;0.83) (0.66;0.87)

StandardSA:10,000 vs BigSA:100,000 0.74 0.74 0.79 0.51 0.68 0.76 0.76 0.82 0.58 0.79
(0.63;0.85) (0.64;0.83) (0.70;0.89) (0.35;0.68) (0.56;0.8) (0.67;0.85) (0.67;0.85) (0.75;0.90) (0.44;0.72) (0.69;0.89)

Table 9: The agreements between the rankings obtained for different simulation setups (values of
Cohen’s kappa). Standard includes: H3, H3∗, H2 ×R, Solv, and Twist. 95% confidence intervals in
brackets.

so the results should be more robust than those based on max performance (outliers). However, we
recommend treating the results with caution for greedy routing success and stretch.

Possibly insufficient number of iterations for Simulated Annealing. As Simulated Annealing
is a probabilistic technique for approximating the global optimum of a given function, one could
argue that our results could be improved by increasing, e.g., the number of iterations (the third
issue). While in the main paper, we describe the results obtained with Simulated Annealing with
Ns = 10, 000 iterations per simulation iteration, we also checked if our results differ if we perform
Simulated Annealing with Ns = 100, 000 iterations per simulation iteration instead. As expected,
for loglikelihood, MAP, and MR we cannot reject the hypotheses that the results obtained with larger
number of iterations are usually better. However, surprisingly, for greedy success rate and stretch
the results worsen with the increase in the number of iterations (Figure ?? depicts the results of
Wilcoxon tests with Bonferroni correction for multiple testing).

We checked if the number of iterations for Simulated Annealing Ns affected our results regarding
rankings with Cohen’s kappas. Based on the data in Table 9, we notice that pairs of rankings are in
at least substantial agreement. Especially, the results regarding standard grids (presented in the main
part of the paper) are robust to Ns – the values of kappas for optimistic scenario are over 0.85 and for
rankings based on voting rules they usually exceed 0.80. Although the agreements of rankings if we
just change Ns for big grids are still satisfying (most values of kappas over 0.75), the results from
comparison of rankings based on standard grids with shorter time for Simulated Annealing against
the big grids with longer time for Simulated Annealing suggests that the big versions of grids might
be affected by Ns. Again, we notice that greedy routing success rate and stretch seem to be less
immune to the setup of Simulating Annealing, that is why we suggest caution while generalizing the
results obtained for them.

The size of the grid or the setup of the Simulated Annealing may affect the results. In some exper-
iments, standard versions of the grids have obtained significantly better results than the so-called
big versions. Since the difference between these two cases is that the big-variant has simply larger
number of cells, this should not happen, since any embedding in the standard variant is also an em-
bedding in the big-variant. This seems to be caused either by a failure to correctly guess the optimal
values of the parameters, or possibly by Simulated Annealing requiring more iterations to find good
embeddings on larger distances.

Alternative methods of obtaining R and T The fourth issue is challenging. As explained in
Section 5, the values of R and T have been obtained by dynamically adjusting them during the
simulated annealing process (A). We have also experimented with other methods: R is adjusted but
T remains fixed (B), and both R and T remains fixed. We run 30 iterations using method (A), then
30 iterations using method (B), then 30 iterations using method (C). The fixed values of R and T
are based on the best result (by loglikelihood) obtained in the earlier iterations.

If the methods change the results, we should notice level shifts in the time series of the values of
the quality measures – level shift appears as a parallel movement of the trend line. That is why we
started with identification of possible locations of the level shifts in our results. Most of the time
series (identified by a pair animal and geometry) has two level shifts – around 30th and 60th iteration
that correspond to the starting points of new methods (Figure 5).
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(a) H3
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(b) H3∗
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(c) H3 ∗ ∗
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(d) Solv
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(e) Solv*
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(f) Solv**
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(g) H2 × R ∗ ∗
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(h) Twist
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(i) Twist**
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(j) H2
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(k) E3

Figure 4: Comparison of the goodness-of-fit between results of Simulated Annealing with 10.000
vs. 100.000 steps per iteration. Red suggests that the longer version yields better results and the
difference is significant; orange suggests lack of significant difference, and yellow suggests signifi-
cantly worse results for longer version.
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Figure 5: Density plots for changepoints in time series of measures (indicators for level shifts)

To understand the impact of the change in method on the values of the quality measures, we use OLS
regressions. We control for the characteristics of connectomes: number of nodes in the connectome
n, number of edges in the connectome m, its density, assortativity and clustering coefficients, and
the zone of the connectome; we also take into account the number of availabe cells in the grid and
its geometry.

100·NLL 100·mAP 100·IMR 100·SC 100·ISTR
Estimate P (> |t|) Estimate P (> |t|) Estimate P (> |t|) Estimate P (> |t|) Estimate P (> |t|)

(Intercept) 4.737e+00 0.00 2.719e+01 0.00 -4.323e+01 0.00 8.118e+01 0.00 6.930e+01 2.205e-01
n 4.876e-03 0.00 -1.050e-02 0.00 -1.561e-02 0.00 -1.857e-02 0.00 -1.799e-02 1.011e-04
m -6.801e-05 1.65e-11 -1.553e-04 0.00 7.865e-05 1.81e-10 1.032e-04 0.00 6.741e-05 5.579e-06
density -2.428e-01 0.00 9.127e-02 0.00 -8.497e-01 0.00 1.545e-01 0.00 8.551e-02 5.370e-03
assort 1.302e+01 0.00 3.379e+01 0.00 -1.687e+01 0.00 1.431e+01 0.00 3.645e+00 1.991e-01
cluster 8.659e+01 0.00 8.163e+01 0.00 1.428e+02 0.00 1.539e+01 0.00 2.998e+01 2.854e-01
nervous -1.061e+00 5.37e-07 -6.122e+00 0.00 -3.455e+01 0.00 1.285e+00 0.00 -2.679e+00 1.169e-01
other 1.564e+00 0.00 -3.702e+00 0.00 -2.141e+00 0.00 -3.542e+00 0.00 -3.940e-01 9.186e-02
cells 2.347e+00 2.94e-15 4.730e+00 0.00 3.912e+01 0.00 1.425e+00 2.36e-15 4.654e-01 1.642e-01
hyperbolic 8.233e+00 0.00 9.441e+00 0.00 -3.735e-01 0.109924 8.125e+00 0.00 7.031e+00 1.057e-01
other 9.250e+00 0.00 9.527e+00 0.00 3.351e-01 0.202089 6.862e+00 0.00 6.473e+00 1.189e-01
product 8.502e+00 0.00 7.357e+00 0.00 7.195e-01 0.006128 6.931e+00 0.00 6.187e+00 1.188e-01
solv 7.399e+00 0.00 6.787e+00 0.00 8.688e-01 0.000372 5.140e+00 0.00 4.747e+00 1.104e-01
nodes 3.950e-05 0.00 4.645e-05 0.00 1.631e-05 0.00 2.202e-05 0.00 2.445e-05 6.950e-07
B -7.985e-01 5.76e-12 -5.009e-01 4.18e-07 -2.787e-01 0.049061 -4.759e-01 1.19e-11 -5.433e-01 6.406e-02
C 5.925e-01 3.30e-07 4.841e-01 1.02e-06 6.684e-01 2.41e-06 3.999e-01 1.23e-08 3.746e-01 6.412e-02
R2 (adjusted R2) 0.8061 (0.806) 0.8948 (0.8948) 0.8426 (0.8245) 0.8194 (0.8193) 0.8784 (0.8784)
p-value for F-test 0.00 0.00 0.00 0.00 0.00

Table 10: OLS regression results for the determinants of the quality measures. Number of observa-
tions = 24,536.

For all the quality measures, we notice that on average, the method B leads to lower values of the
respective quality measures, and the method C increases the values of the respective quality mea-
sures in comparison to results obtained with method A, ceteris paribus (Table ??). The differences
are statistically significant. However, even if we are aware that with the increase in the number of
observations, the p-values drop to zero, we work here with the multilevel categorical variables, so
we are unable to comment on the size of effect (available methods based on partial regressions and
R2 coefficients would allocate the impact to the constant term). The regressions have substantial
explanatory power (R2 coefficients at least 80%).

To sum up, if one is interested in optimizing the quality measures, we would recommend usage of
the method B. We are fully aware that our choice of method A for Simulated Annealing may affect
the final results, in particular, even our “best” evaluations may not be optimal. However, there are at
least two advantages of our approach. First, allowing the algorithm to optimize does not favor any
of the tessellations – all of them have the same chances to find an optimal solution. This way we
ensure comparability of our results. We have observed that the first iteration may yield worse results
due to the poor initially guessed values of R and T ; however, in the further experiments, while the
initial values of R and T change, it does not affect the end results much. Eventually, we get data
that is independently distributed, i.e., there is no serial correlation (all p-values in Ljung-Box test
smaller than 10−5) which makes statistical analysis of the results significantly easier.
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Figure 6: Normalized loglikelihood

C WEIGHTED NETWORKS

To allow for generalizations, in Figures 6-10 we provide weighted directed networks constructed
upon the voting rules. The weights correspond to the percent of connectomes for which the source
geometry in the edge beats the target geometry. Embeddings to Twist have 100% success rate over
embeddings in H2 (for quality measures different than greedy routing success).

D DETAILED RANKINGS

Figures 11, 12, 15, 14, and 13 visualize the rankings of the tessellations. Table 11 show the descrip-
tive statistics for ranks obtained by geometries.

E COMPARISON

Table 12 is the full version of Table 6. We list our results for four measures (we do not include
loglikelihood since not all of these embedders are based on the maximum loglikelihood method).
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Figure 7: MAP

MIN MED MAX
geometry NLL MAP IMR SC IST NLL MAP IMR SC IST NLL MAP IMR SC IST
H2 2 2 2 2 8 4 10 2 13 9 12 12 12 15 13
H2& 1 1 1 1 1 3 4 3 1 2 6 7 6 8 8
tree 1 1 1 1 8 3 9 1 13 10 15 15 14 15 15
E3 2 2 2 1 3 5 3 6 5 5 14 15 15 13 15
E3& 2 2 2 1 1 5 3 10 3 3 14.5 14.5 15 9 14
H3 4 4 3 8 6 12 13 6 11 12 15 15 15 15 15
H3∗ 9 8 5 6 7 12 13 10 12 14 15 15 15 15 15
H3& 5 5 5 2 2 7 6 8 2 5 14 15 15 8 15
Nil 4 4 5 5 5 8 7 9 7 8 14 13 15 11 10
Nil* 4 4 4 4 5 7 5 11 6 6 14.5 14.5 15 10.5 14
Twist 4 4 4 5 4 13 13 10 11 13 15 14 14 14 15
H2 × R 8 8 7 8 8 12 11 12 10 11 15 15 15 12 15
Solv 5 4 4 4 5 11 10 8 10.5 10 15 15 15 14 15
Solv* 7 7 8 6 7 10 8 11 8 8 15 15 14 11 13
S3 1 1 1 1 1 2 1 4 4 2 9 15 15 9 9

Table 11: Descriptive statistics (minimum, median, maximum) for ranks obtained by geometries (at
the maximum performance)
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connectome dim mAP method rad time ours better
celegans 2 0.500 Poincaré 7.2 278 0.540 30
celegans 3 0.583 Poincaré 10.1 274 0.584 21
drosophila1 2 0.425 Mercator (full) 23.6 14 0.483 30
drosophila1 3 0.488 Poincaré 11.4 365 0.512 30
human1 2 0.651 Lorentz 10.8 1085 0.675 30
human1 3 0.722 Poincaré 9.4 827 0.799 30
mouse3 2 0.585 Mercator (full) 29.9 117 0.612 30
mouse3 3 0.654 Poincaré 12.2 9207 0.655 18
connectome dim MeanRank method rad time ours better
celegans 2 39.5 BFKL 7.8 0 30.1 30
celegans 3 27.3 Poincaré 9.9 277 26.3 29
drosophila1 2 54.4 BFKL 8.2 1 45.0 30
drosophila1 3 39.9 Poincaré 11.6 354 37.1 29
human1 2 43.1 Poincaré 11.9 1284 38.6 23
human1 3 26.9 Poincaré 9.5 835 17.8 30
mouse3 2 103.5 Mercator (fast) 29.1 87 92.4 30
mouse3 3 84.6 Poincaré 12.2 9207 78.5 29
connectome dim success method rad time ours better
celegans 2 0.903 Poincaré 7.2 267 0.931 27
celegans 3 0.958 Poincaré 10.1 274 0.930 0
drosophila1 2 0.769 Mercator (full) 23.6 14 0.847 30
drosophila1 3 0.844 Poincaré 11.4 365 0.843 13
human1 2 0.889 Poincaré 12.2 1185 0.929 21
human1 3 0.926 Poincaré 9.5 835 0.958 24
mouse3 2 0.962 Mercator (full) 34.5 74 0.967 30
mouse3 3 0.971 Poincaré 12.2 8679 0.952 0
connectome dim stretch method rad time ours better
celegans 2 1.970 Mercator (fast) 16.4 6 1.254 30
celegans 3 1.230 Poincaré 9.5 268 1.232 16
drosophila1 2 2.270 Mercator (fast) 23.1 13 1.340 30
drosophila1 3 1.360 Poincaré 10.3 354 1.328 30
human1 2 2.030 Mercator (fast) 20.7 2 1.282 30
human1 3 1.240 Poincaré 9.3 812 1.176 28
mouse3 2 1.260 Mercator (fast) 28.9 40 1.156 30
mouse3 3 1.080 Poincaré 12.2 9207 1.145 0

Table 12: Our embeddings versus state-of-the-art. For each connectome and dimension, we list the
best prior method and its result, the radius of the embedding, time elapsed in seconds, the best result
of our method, and how many times (out of 30) our result was better.
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(a) Normalized log-likelihood

4

8

12

C
at

1

C
at

2

C
at

3

C
E

le
ga

ns

D
ro

so
ph

ila
1

D
ro

so
ph

ila
2

H
um

an
1

H
um

an
2

H
um

an
6

H
um

an
7

H
um

an
8

M
ac

aq
ue

1

M
ac

aq
ue

2

M
ac

aq
ue

3

M
ac

aq
ue

4

M
ou

se
2

M
ou

se
3

R
at

1

R
at

2

R
at

3

Z
eb

ra
F

in
ch

2

graph

R
an

ki
ng

 fo
r 

Lo
g−

lik
el

ih
oo

d

geom2

E3
E3&
H2
H2&
H2xR
H3
H3*
H3&
Nil
Nil*
S3
Solv
Solv*
Tree
Twist

(b) Normalized log-likelihood – ranks

Figure 11: Our best embeddings – log-likelihood. Top = best embedding obtained, bottom = worst
embedding obtained, * = fine grid.

25



0.2

0.4

0.6

0.8

1.0

C
at

1

C
at

2

C
at

3

C
E

le
ga

ns

D
ro

so
ph

ila
1

D
ro

so
ph

ila
2

H
um

an
1

H
um

an
2

H
um

an
6

H
um

an
7

H
um

an
8

M
ac

aq
ue

1

M
ac

aq
ue

2

M
ac

aq
ue

3

M
ac

aq
ue

4

M
ou

se
2

M
ou

se
3

R
at

1

R
at

2

R
at

3

Z
eb

ra
F

in
ch

2

graph

m
A

P

geom2

E3
E3&
H2
H2&
H2xR
H3
H3*
H3&
Nil
Nil*
S3
Solv
Solv*
Tree
Twist

(a) mAP

4

8

12

C
at

1

C
at

2

C
at

3

C
E

le
ga

ns

D
ro

so
ph

ila
1

D
ro

so
ph

ila
2

H
um

an
1

H
um

an
2

H
um

an
6

H
um

an
7

H
um

an
8

M
ac

aq
ue

1

M
ac

aq
ue

2

M
ac

aq
ue

3

M
ac

aq
ue

4

M
ou

se
2

M
ou

se
3

R
at

1

R
at

2

R
at

3

Z
eb

ra
F

in
ch

2

graph

R
an

ki
ng

 fo
r 

m
A

P

geom2

E3
E3&
H2
H2&
H2xR
H3
H3*
H3&
Nil
Nil*
S3
Solv
Solv*
Tree
Twist

(b) mAP – ranks

Figure 12: Our best embeddings – mAP. Top = best embedding obtained, bottom = worst embedding
obtained, * = fine grid.
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(a) 1/MeanRank
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(b) 1/MeanRank – ranks

Figure 13: Our best embeddings – MeanRank. Top = best embedding obtained, bottom = worst
embedding obtained, * = fine grid.
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(a) Greedy success rate
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(b) Greedy success rate – ranks

Figure 14: Our best embeddings – greedy success rate. Top = best embedding obtained, bottom =
worst embedding obtained, * = fine grid.
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(a) 1/stretch
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(b) 1/stretch – ranks

Figure 15: Our best embeddings – stretch. Top = best embedding obtained, bottom = worst embed-
ding obtained, * = fine grid.
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