
Circumventing Backdoor Space via Weight Symmetry

Jie Peng 1 Hongwei Yang 1 Jing Zhao 1 Hengji Dong 1 Hui He 1 Weizhe Zhang 1 2 Haoyu He 3

Abstract
Deep neural networks are vulnerable to backdoor
attacks, where malicious behaviors are implanted
during training. While existing defenses can effec-
tively purify compromised models, they typically
require labeled data or specific training proce-
dures, making them difficult to apply beyond su-
pervised learning settings. Notably, recent studies
have shown successful backdoor attacks across
various learning paradigms, highlighting a crit-
ical security concern. To address this gap, we
propose Two-stage Symmetry Connectivity (TSC),
a novel backdoor purification defense that oper-
ates independently of data format and requires
only a small fraction of clean samples. Through
theoretical analysis, we prove that by leverag-
ing permutation invariance in neural networks
and quadratic mode connectivity, TSC amplifies
the loss on poisoned samples while maintaining
bounded clean accuracy. Experiments demon-
strate that TSC achieves robust performance com-
parable to state-of-the-art methods in supervised
learning scenarios. Furthermore, TSC generalizes
to self-supervised learning frameworks, such as
SimCLR and CLIP, maintaining its strong defense
capabilities. Our code is available at https:
//github.com/JiePeng104/TSC.

1. Introduction
Modern classifiers require substantial data and computa-
tional resources to achieve high accuracy, providing adver-
saries with opportunities to implant backdoors into deep
neural networks (Gu et al., 2017; Chen et al., 2017). This
vulnerability arises from either injecting poisoned data (Gu
et al., 2017; Turner et al., 2019) (i.e., data-poisoning attack),
or manipulating the training process (Pang et al., 2019;

1School of Cyberspace Science, Harbin Institute of Technol-
ogy, Harbin, China. 2Pengcheng Laboratory, Shenzhen, China.
3Department of Data Science and AI, Faculty of IT, Monash
University, Melbourne, Australia. Correspondence to: Hui He
<hehui@hit.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Image-on-Pair
Dataset

Label 0Label 0Label 0
SGD with
CE lossLabel 0

Implanting
Backdoors

Image-Label
Dataset

SGD with
CE loss

TSC
Algorithm

SimCLR

Implanting
Backdoors

TSC
Algorithm

Down stream
Classifier

Fine
Tuning

CLIP

Implanting
Backdoors

Image-on-Text
Dataset

CLIP

TSC
Algorithm

Label 0Label 0Label 0A photo of
the swan

SimCLR

Backdoored Image
Model/Encoder

Clean Image
Model/Encoder

Final
Model

Final
Model

Traditional Supervise Learning

CLIP Training

Text Encoder

Final Model
(Zero-shot)

Obtaining a small fraction of clean samples

……

……

SimCLR Training

Figure 1. Illustration of the application of TSC in three popu-
lar learning settings. We assume adversaries can perform either
data-poisoning attack or training-manipulation attack to implant
a backdoor into the weights of a classification model or an encoder.
Unlike most existing defenses requiring specific training proce-
dures, TSC provides a framework to remove backdoors using
only a small fraction of clean samples and the original training
process. For instance, in SimCLR (Chen et al., 2020) setting, a
TSC defender can directly remove the backdoor hidden in the
image encoder by combining TSC with the SimCLR training pro-
cedure. This allows for training the downstream classifier without
the adversarial influence inherited from upstream.

Nguyen & Tran, 2020) (i.e., training-manipulation attack).
For instance, recent advancements in self-supervised learn-
ing strategies often rely on large volumes of training data,
which, while circumventing the need for curated or labeled
datasets, can be time-intensive and incur high computational
costs (Radford et al., 2021; He et al., 2022; Chen et al.,
2020). Therefore, many users prefer to delegate model train-
ing to third-party providers or fine-tune publicly available
models on downstream tasks. This practice exposes mod-
els to backdoor attacks. For example, malicious providers
can manipulate the training process to implant backdoors
and then force downstream classifiers to output adversarial
labels (Yao et al., 2019; Saha et al., 2022; Li et al., 2023).

Consequently, many defenses have been developed to elim-
inate backdoors hidden within models. One of the most
prominent mechanisms is post-purification defenses, which
remove backdoors through post-training processes (Liu

1

https://github.com/JiePeng104/TSC
https://github.com/JiePeng104/TSC

Circumventing Backdoor Space via Weight Symmetry

et al., 2018; Wang et al., 2019; Wu & Wang, 2021; Zeng
et al., 2022). Usually, post-purification defenses require only
a small amount of clean data and are effective against both
data-poisoning and training-manipulation attacks. However,
existing approaches focus primarily on supervised learning
scenarios and rely on training methods requiring labeled
data (Wang et al., 2019; Wu & Wang, 2021; Li et al., 2021b;
Chai & Chen, 2022) (e.g., methods working as analogues
to adversarial training). Thus, they are not directly appli-
cable to learning regimes like self-supervised or unsuper-
vised learning. Moreover, some studies have shown that
most current defense mechanisms, whether categorized as
post-purification defenses or not, are vulnerable to attacks
using small poisoning rates or adaptively designed triggers
(Hayase et al., 2021; Qi et al., 2023; Min et al., 2023).

Previous studies have intentionally or unintentionally tried
to address the challenges of robustness and transferability
in backdoor defense. Recent work by Min et al. (2023)
re-investigated fine-tuning (FT) based methods, proposing
to enhance robustness under low poisoning rates. While
achieving promising performance, their methods remain
confined to supervised learning settings. The mode connec-
tivity repair (MCR) (Zhao et al., 2020), which leverages
quadratic mode connectivity (Garipov et al., 2018), offers a
data-format agnostic procedure but shows limited robustness
against various attack methods. To address all these chal-
lenges, in this paper, we explore a robust post-purification
defense that operates independently of the data format.

We propose Two-stage Symmetry Connectivity (TSC), a
novel defense mechanism that leverages weight symme-
try in neural networks to guide compromised models away
from backdoor behaviors without directly unlearning back-
door patterns (i.e., circumventing the backdoor space). Our
approach builds upon two key properties: permutation in-
variance, which allows equivalent model representations
through weight layer permutations (Entezari et al., 2022);
and quadratic mode connectivity (Garipov et al., 2018),
which connects model states through low-loss quadratic
paths.

Our defense process begins by projecting a copy of the com-
promised model into a distinct yet symmetrical loss basin,
leveraging the permutation invariance property of neural
networks. These two models serve as endpoints for a Bézier
curve that is trained using a small clean dataset. We then
pick a point on this trained curve as the purified model,
which completes the first stage of our defense. As the end-
points are in different loss basins and this curve training
utilizes only clean samples, we show that the loss of poi-
soned samples along the curve is amplified. Subsequently,
we merge the purified model and the backdoored model in
the original loss basin to maintain clean accuracy, which
completes the second stage of our defense. Figure 1 illus-

trates how TSC operates across different learning settings,
using only a small fraction of clean samples and a proce-
dure aligned with the original training process. Overall, our
contributions are as follows:

• We discover that the property of weight symmetry en-
able effective backdoor space circumvention. Based
on this insight, TSC provides a unified framework for
backdoor defense across various learning settings.

• Through analysis of the mechanisms behind permu-
tation invariance and mode connectivity, we provide
theoretical guarantees that TSC can amplify the up-
per bound of loss values on poisoned samples while
maintaining accuracy on the initial task.

• Experiments on CIFAR10 (Krizhevsky, 2009), GT-
SRB (Houben et al., 2013), and ImageNet100 (Deng
et al., 2009) under supervised learning demonstrate
that TSC achieves performance comparable to state-of-
the-art methods while maintaining robustness against
various attack settings, including small poisoning rates
and adaptively designed attacks. Moreover, TSC suc-
cessfully counters attacks on image encoders across
different learning frameworks.

2. Related Work
Mode Connectivity. Merging two models with different
initializations usually involves the concept of mode connec-
tivity, which lies at the heart of finding a low-loss linear
or nonlinear path connecting two models (Frankle et al.,
2020; Garipov et al., 2018; Gotmare et al., 2018; Draxler
et al., 2018). Empirical studies have shown that aligning
two models through permutation before merging can greatly
enhance the generalization of models along a linear path
(Entezari et al., 2022; Simsek et al., 2021), or a quadratic
curve (Tatro et al., 2020). Notably, recent research demon-
strates that models aligned within the same loss basin can be
merged effectively by averaging their weights (Ainsworth
et al., 2023; Singh & Jaggi, 2020; Jordan et al., 2023).

Backdoor Attacks. A backdoor adversary aims to make
the victim model maintain accuracy on clean inputs while
assigning target labels to trigger-embedded inputs (Gu et al.,
2017; Chen et al., 2017). Based on the attacker’s capabili-
ties, backdoor attacks can be categorized as data-poisoning
attack and training-manipulation attack. In data-poisoning
attacks, the adversary poisons a portion of the training set by
injecting pre-designed triggers and modifying their labels.
The trigger patterns can range from pixel squares to real-
world objects (Wenger et al., 2022) or invisible patterns (Li
et al., 2021a; Saha et al., 2020; Li et al., 2021c). To avoid
detection of mislabeled samples as outliers, some studies
have developed backdoor attacks that maintain original la-
bels (Turner et al., 2019; Barni et al., 2019; Shafahi et al.,
2018; Zhu et al., 2019). Training-manipulation attackers

2

Circumventing Backdoor Space via Weight Symmetry

have full access to the training process, enabling them to
effectively inject backdoors through specific training-based
methods (Nguyen & Tran, 2020; Pang et al., 2019).

Most backdoor attack studies focus on supervised learning
scenarios. However, recent work has indicated that models
in self-supervised learning settings are vulnerable to back-
door attacks, which may involve the adversary controlling
the training process (Jia et al., 2022), or merely injecting
poisoned samples (Saha et al., 2022; Carlini & Terzis, 2022;
Li et al., 2023; Carlini et al., 2023).

Backdoor Defenses. Current backdoor defenses can be
divided into three categories: training-time defenses, test-
time defenses, and post-purification defenses. Training-time
defenses require training clean models on a polluted dataset
to counteract data-poisoning attacks (Chen et al., 2018; Tran
et al., 2018; Hayase et al., 2021; Li et al., 2021d; Khaddaj
et al., 2023). A recent approach, ASSET (Pan et al., 2023),
extends this concept to handle various attacks and learning
settings. Test-time defenses aim to filter out malicious inputs
during inference rather than directly eliminating backdoor
threats (Gao et al., 2019; Guo et al., 2023; Hou et al., 2024).

In this study, we focus on post-purification defenses (Liu
et al., 2018; Wu & Wang, 2021; Zeng et al., 2022; Wang
et al., 2019; Min et al., 2023) aiming to remove the backdoor
injected into the weights of a model. Existing visual post-
purification defenses mostly require labels accompanied
with the training images, such as adversarial training based
methods (Wu & Wang, 2021; Zeng et al., 2022), limiting
their applicability to other training frameworks without la-
bels. While Feng et al. (2023) proposed a method to identify
backdoors in self-supervised learning settings, it focuses on
detection rather than removal. Recently, Zheng et al. (2024)
extended unlearning methods to self-supervised settings.
Instead of unlearning backdoor patterns, our method lever-
ages weight symmetry to purify models while preserving
performance, generalizing robustly across various learning
scenarios and attack settings.

3. Preliminaries
3.1. Minimum Loss Path
Here, we consider the connecting method with respect to
quadratic mode connectivity (Garipov et al., 2018; Tatro
et al., 2020). Let θA and θB be the weights of two
trained models, and let γθA,B

(t) denote a parametric curve
connecting θA and θB such that γθA,B

(0) = θA and
γθA,B

(1) = θB . To train γθA,B
(t), Garipov et al. (2018)

proposed finding the set of parameters θA,B that minimizes
the expectation of the loss L(γθA,B

(t)) over the distribution
pθA,B

(·) on the curve,

`(θA,B) =

∫ 1

0

L(γθA,B
(t))pθA,B

(t) dt, (1)

where the pθA,B
(t) is the distribution for sampling the mod-

els on the curve indexed by t. For simplicity in computa-
tion, the uniform distribution U(0, 1) is typically chosen
as pθA,B

(·). To characterize the parametric curve γθA,B
(t)

for t ∈ [0, 1], the Bézier curve with 3 bends is commonly
employed and is defined as follows:

γθA,B
(t) = (1− t)2θA + 2t(1− t)θA,B + t2θB . (2)

More details about mode connectivity can be found in Ap-
pendix B.

3.2. Permutation Invariance
For simplicity, we consider an L-layer feedforward neural
network with an element-wise activation function σ and
weights θ. We useWl to denote the weight of the lth layer,
x0 ∈ Rd0 to represent the input data and y ∈ RdL to indi-
cate the output logits (or features). The L-layer feedforward
network can be expressed as:

f(x0,θ) = y = WL ◦ σ ◦WL−1 ◦ ... ◦ σ ◦W1x0, (3)

Moreover, we denote the lth intermediate feature as xl ∈
Rdl and xl = Wl ◦ σ ◦ xl−1.

One of the key techniques central to our defense method is
permutation invariance of neural networks (Entezari et al.,
2022; Tatro et al., 2020; Ainsworth et al., 2023). Let
Pl ∈ Πdl be a permutation matrix that permutes output
feature xl of the lth layer, where Πdl is the set of all pos-
sible dl × dl permutation matrices. Since P>l Pl = I ,
without changing the final output y, we can permuteWl to
PlWlP

>
l−1. We denote this operation as π(θ, S(P)), where

S(P) = {P1,P2, ...,PL−1} is the set of permutation ma-
trices. Consequently, we obtain a new network with weights
θS(P) = π(θ, S(P)) defined as:

W
S(P)
1 = P1W1; W

S(P)
L = WLP

>
L−1;

W
S(P)
l = PlWlP

>
l−1, ∀ l ∈ {2, 3, ..., L− 1}. (4)

The property of a neural network that allows it to be trans-
formed by such permutation, resulting in f(x0,θ

S(P)) =
f(x0,θ), is known as permutation invariance. This prop-
erty implies that two networks can be functionally identical
even if the arrangement of their neurons within each layer
differs. For example, if two parameter sets, θA and θB , sat-
isfy f(x0,θA) = f(x0,θB) for any input x0 ∈ Rd0 , per-
mutation invariance implies that their corresponding layer
weights,WA

i andWB
i , can differ. This observation moti-

vates the concept of neuron alignment.

3.3. Neuron Alignment

Previous studies have found that two functionally identical
networks, θA and θB , when trained independently with the
same architecture but using different random initializations
or yielding different SGD solutions, can be misaligned (i.e.,

3

Circumventing Backdoor Space via Weight Symmetry

their parameters, θA and θB , correspond to different neuron
arrangements). As a result, the loss obtained from a linear
interpolation of their parameters can be quite large.

Recently, research (Entezari et al., 2022; Singh & Jaggi,
2020; Ainsworth et al., 2023; Jordan et al., 2023) has shown
that such misaligned networks could be projected to the
same loss basin using a specific set of permutation matrices
S(P̂). To identify such permutation set S(P̂) and achieve
alignment, we can minimize a cost function cl : Rdl ×
Rdl → R+ with respect to the intermediate features xAl and
xBl to get the P̂l for each layer. In practice, given a dataset
D containing n samples, we minimize the sum of cl across
D. The optimal P̂l can then be found by solving:

P̂l = arg min
Pl∈Πdl

n∑
i

cl(x
A
i, l, Pl x

B
i, l). (5)

This problem is a classic example in the field of optimal
transport (Villani et al., 2009; Singh & Jaggi, 2020), which
could be solved via the Hungarian algorithm (Kuhn, 1955).
Following previous work, we adopt the alignment method
proposed by Li et al. (2015), where cl = 1 − corr(v, z)
and corr(·, ·) denotes the correlation between two vectors.
This makes the minimization procedure is equivalent to
ordinary least squares constrained to the solution space Πdl

(Ainsworth et al., 2023; Tatro et al., 2020). Thus, problem
(5) can be specified as:

P̂l = arg min
Pl∈Πdl

n∑
i

∥∥xAi, l − Pl x
B
i, l

∥∥2
. (6)

Throughout the paper, we defineMl(θA,θB ;D) to measure
the L2 norm feature distance of the lth layer between θA
and θB given dataset D:

Ml(θA,θB ;D) =

n∑
i

∥∥xAi, l − xBi, l
∥∥2
. (7)

Therefore, P̂l can be regarded as the optimal solution
which has the smallest Ml(θA, π(θB , S(P));D) among
all P l ∈ Πl. Additionally, if we denote xAi, l and xBi, l
as samples from two distributions PAl and PBl , the mini-
mal distance in (6) corresponds to the 2-Wasserstein dis-
tance W2(PAl , PBl ;D) between PAl and PBl . Thus, we have
W2(PAl , PBl ;D) = Ml(θA, π(θB , S(P̂));D). A brief ex-
planation can be found in Appendix D.

3.4. Threat Model and Evaluation Metrics

We consider a scenario where an adversary can manipulate
a portion of the training data or access the model training
procedure. The backdoor is assumed to be implanted into
the parameters of a standard neural architecture rather than
a model with specific malicious modules (Bober-Irizar et al.,
2023). A TSC defender requires access to a small fraction
of clean training samples and and the ability to retrain the

model using the original training procedure. A discussion
about the applicability of the proposed defense setting can
be found in Appendix A.

To evaluate the performance of various backdoor defenses,
we consider two primary metrics: Attack Success Rate
(ASR), the proportion of attack samples misclassified as
the target label, and Clean Accuracy (ACC), the prediction
accuracy on benign samples. An effective defense should
achieve a high ACC while maintaining a low ASR.

4. Method
Before formally describing our approach, we first provide
the intuition behind TSC. Removing the implanted backdoor
in a model is equivalent to inducing the model to have a high
loss value for the poisoned samples (i.e., adversarial loss).
However, performing a procedure similar to anti-backdoor
learning (Li et al., 2021d) to increase the loss of the poisoned
samples could be challenging for a post-time defender, as
the trojan method is unknown, and the adversary could inject
various trigger patterns that are difficult to recover (Li et al.,
2021c).

To remove the backdoor, we propose a repairing method
consisting of two stages of mode connectivity. In the first
stage, we amplify the adversarial loss by un-aligning the
malicious model θadv with its own copy θadv′ on the loss
landscape and then training a curve γ1 connecting θadv and
θadv′ with the given benign samples. Since this unalign-
ment process is designed to place the endpoints (θadv and
θadv′) in different loss basins, and the curve γ1 is trained
exclusively with benign samples, models θt along this curve
are expected to exhibit high adversarial loss but low loss on
benign samples. This outcome is consistent with established
properties of quadratic mode connectivity (Garipov et al.,
2018; Tatro et al., 2020). In the second stage, to recover
the clean accuracy, we train another curve that connects the
aligned θadv and θt. This procedure aims to find a curve γ2

with descending adversarial loss along the curve but a much
lower loss for benign samples compared to γ1.

4.1. Adversarial Loss Amplification
We present a case in the left of Figure 2, where the model is
attacked by SSBA (Li et al., 2021c), and the defender sim-
ply trains a Bézier curve connecting the initial backdoored
model θadv and its slightly fine-tuned version, θft (Zhao
et al., 2020). As shown, if the poisoned model θadv and θft
lie in the same loss basin, eliminating the backdoor through
model connection or fusion is difficult, as the adversarial
loss along the curve remains low. To amplify the adver-
sarial loss, we utilize the permutation invariance property
to project θadv to a distinct loss basin to obtain the other
endpoint, θadv′ , rather than fine-tuning θadv. This can be
achieved by finding a set of permutation matrices S(P ′)
that maximize the cost function cl for each layer. In con-

4

Circumventing Backdoor Space via Weight Symmetry

L
o

ss
 o

f
P

o
is

o
n

ed
S

a
m

p
le

s
MCR

L
o

ss
 o

f
B

en
ig

n
S

a
m

p
le

s
Adversarial Loss Amplification (TSC) Clean Accuracy Recovery (TSC)

(Settings) Dataset: CIFAR10, Model Architecture: PreAct-ResNet18, Attack: SSBA, Poisoning Rate: 5%

Figure 2. Loss landscape for poisoned and benign samples, along with trained quadratic curves connecting distinct models. The
backdoored model is a PreAct-ResNet18 trained on CIFAR-10, which contains 5% SSBA poisoned samples (Li et al., 2021c). Left: the
curve identified by MCR. Middle: the curve identified by the first stage of TSC. Right: the curve identified by the second stage of TSC.

trast to neuron alignment in problem (5), our goal is to find
the permutation P ′l for all layers to project the backdoored
model into a distinct loss basin. Specifically, we formulate
the following optimization problem to obtain S(P ′):

P ′l = arg max
Pl∈Πdl

n∑
i

∥∥xadvi, l − Pl x
adv
i, l

∥∥2
. (8)

Then, we get the updated model θadv′ = π(θadv, S(P ′)).
It’s important to note that this procedure does not alter the
output of the backdoored model for any input; consequently,
it does not increase the loss for any sample, though here
we are dealing with a maximization problem. To amplify
the adversarial loss, we then train a Bézier curve, γ1, con-
necting θadv and θadv′ , and subsequently select a model
corresponding to a middle point on this curve.

As shown in the middle of Figure 2, when connecting θadv
and θadv′ , the loss of poisoned samples increases signifi-
cantly along the Bézier curve γ1 (i.e., circumventing the
backdoor space). As expected, the loss landscape becomes
symmetric for both poisoned and benign samples. However,
compared to MCR, we observe an increase in the loss of
benign samples, implying that the models selected from the
curve connecting θadv and θadv′ would perform poorly on
the initial task.

4.2. Clean Accuracy Recovery
To ensure that the purified model maintains better perfor-
mance on benign data, we re-align the model θt found on
γ1 to the benign loss basin of the backdoored model θadv.
We denote the corresponding permutation set as P ∗. Fur-
thermore, empirically, when setting t = 0.4, the model θt
typically exhibits higher loss on both poisoned and benign
samples. We then train another curve γ2 connecting θadv
and θt∗=0.4 = π(θt=0.4, S(P ∗)). The right side of Figure 2
shows that the loss of poisoned samples gradually increases

along the curve from θadv to θt∗=0.4, and the model point
along this curve could also attain a lower loss on benign
samples than θt=0.4. A model along the curve with a high
loss for poisoned samples and a low loss for benign samples
can be selected as the ideal purified model.

Additionally, as shown in Figure 3, we find that performing
one round of TSC is insufficient to remove the backdoor.
In practice, we slightly fine-tune the model obtained from
the second stage of TSC, then use this fine-tuned model as
the input for the next round to mitigate the backdoor threat
step by step. It is evident that as the global epoch ETSC
increases, the ASR of model points along the second-stage
curve of TSC decreases. Empirically, setting ETSC = 3
can effectively eliminate the backdoor while maintaining
good performance on the benign task.

We give the pseudocode in Algorithm 1. Since we as-
sume the defender only has access to a small fraction of
clean samples Dc, both the computation of the permu-
tation and the training of the curve are conducted over
Dc. The function PERMUTELAYERS(θA,θB , D, OPT) in
the pseudocode returns a model by permuting the layers
of θB , aligning or un-aligning it with θA. The function
FITQUADCURVE(θA,θB ,F , D, e) returns the quadratic
Bézier curve connecting θA and θB , trained using method
F over D for e epochs. Moreover, F can be various train-
ing methods tailored to the corresponding data format, as
shown in Figure 1. The function RETRIEVEPOINT(γA,B , t)
returns the model point along γA,B at index t, as described
in Equation (2). See more details in Appendix F.

4.3. Theoretical Analysis of TSC
We consider two feedforward neural networks, as defined
in Equation (3), with weights θ0 and θ1. We say that θ0

and θ1 are L2-norm-consisten if they satisfy the following
condition:

5

Circumventing Backdoor Space via Weight Symmetry

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

Te
st

 A
SR

(%
)

ETSC = 1

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100
ETSC = 2

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100
ETSC = 3

(Settings) Dataset: CIFAR10, Model Architecture: PreAct-ResNet18, Attack: SSBA, Poisoning Rate: 5%

0.00 0.25 0.50 0.75 1.00
t

60

70

80

90

Te
st

 A
CC

(%
)

ETSC = 1

ACC
ACC
ACC

0.00 0.25 0.50 0.75 1.00
t

60
65
70
75
80
85
90

ETSC = 2

ACC
ACC
ACC

0.00 0.25 0.50 0.75 1.00
t

70

75

80

85

90

ETSC = 3

ACC
ACC
ACC

ASR of the 1st Stage ASR of the 2nd Stage ASR of MCR ACC of the 1st Stage ACC of the 2nd Stage ACC of MCR

Figure 3. Test attack success rate (ASR) and accuracy (ACC) on benign samples are evaluated as functions of the points along the Bézier
curve found by MCR and TSC. We assess the performance against SSBA on CIFAR-10 with 5% poison rate using PreAct-ResNet18. We
select model points along the curve at t = 0.4 for each stage and round. Since MCR only trains a single curve for model purification, we
plot the results of MCR at each round of TSC for better comparison.

Algorithm 1 Two-stage Symmetry Connectivity
Require: backdoored model θadv , clean datasetDc, global

epoch ETSC , curve index t, curve training epoch e, train-
ing method F ;

Ensure: purified model θp;
Initialize θp ← θadv;
for i = 1 to ETSC do
B Adversarial Loss Amplification
θp′ ← PERMUTELAYERS(θp,θp, Dc,MAX);
γθp,p′ ← FITQUADCURVE(θp,θp′ ,F , Dc, e);
θt ← RETRIEVEPOINT(γθp,p′ , t);
B Clean Accuracy Recovery
θt∗ ← PERMUTELAYERS(θp,θt, Dc,MIN);
γθp,t∗ ← FITQUADCURVE(θp,θt∗ ,F , Dc, e);
θp ← RETRIEVEPOINT(γθp,t∗ , t);

end for

Definition 4.1 (Weight L2-norm consistency condition).
Let W 0

l and W 1
l be the parameters of the lth layer of θ0

and θ1, respectively. We define that the parameters satisfy
the condition that the L2 norms of the corresponding layer
weights are equal: ‖W 0

l ‖2 = ‖W 1
l ‖2,∀l ∈ {1, 2, ..., L},

where the L2 norm of the matrix refers to the element-wise
L2 norm (i.e., Frobenius norm).

This condition implies that the magnitude of the weights
in each layer is preserved between the two models. Conse-
quently, both models effectively operate at the same scale,
which can be critical for their comparative performance.

Next, considering three optimal independent feedforward
networks with weights θA, θB and θC , we can present a
theorem regarding the upper bounds of the loss `(·) in Equa-
tion (1) over the quadratic curves γθA,B

(t) and γθA,C
(t)

across dataset D. Before stating the theorem, we first refor-
mulate the parametric Bézier curve γθA,B

(t) by replacing
θA,B with its deviation θ̃A,B :

γθ̃A,B
(t) = (1− t)θA + tθB + 2t(1− t)θ̃A,B . (9)

Similarly, we can reformulate γθA,C
(t) to γθ̃A,C

(t). Such
reformulation allows us to express the Bézier curves in a
considerably simpler form, thus facilitating theoretical anal-
ysis. The detailed derivation is provided in Equation (14).
Moreover, we refer to the quantity Ml(θA,θB ;D), as de-
fined in Equation (6), which measures the L2 norm of the
feature distance at the lth layer between models θA and θB
for a given dataset D. We can then derive the following
theorem:

Theorem 4.2. We assume that the activation function σ in
Equation (3) and the loss function L in Equation (1) are
Lipschitz continuous. Let γθ̃A,B

(t) and γθ̃A,C
(t) be two

Bézier curves defined in Equation (9). Then, under the
following conditions:

(1) Ml(θA,θB ;D) ≤ Ml(θA,θC ;D), ∀l ∈ {1, 2, . . . , L};
(2) θB and θC are L2-norm-consistent; (3) θ̃A,B and θ̃A,C
are L2-norm-consistent; there exists upper bounds UA,B
and UA,C for `(·) such that: `(θ̃A,B) ≤ UA,B , `(θ̃A,C) ≤
UA,C , where UA,B ≤ UA,C .

Proof. See Appendix E.1.

A similar theorem can be found in (Tatro et al., 2020). It is
important to note that the theorem demonstrated in (Tatro
et al., 2020) provides only the upper bound relations be-
tween linear paths connecting aligned and unaligned mod-
els, despite Tatro et al. (2020) claiming that their theorem
pertains to quadratic Bézier curves. Moreover, their the-
orem represents only the left inequality of Corollary 4.3,
which is a special case of Theorem 4.2 and is insufficient
for theoretical analysis of TSC.

Increasing the Adversarial Loss. Now, we redirect our
focus to our method and compare the scenarios where one
endpoint is fixed by model θA while the other is settled by
θB , θB̂ = π(θB , S(P̂)) or θB′ = π(θB , S(P ′)). S(P̂)
and S(P ′) correspond to the solutions in problems (6) and
(8), respectively. Then, we have the following corollary:

6

Circumventing Backdoor Space via Weight Symmetry

Corollary 4.3. We assume that the activation function σ and
the loss function L are Lipschitz continuous. Let γθ̃A,B

(t),
γθ̃A,B̂

(t) and γθ̃A,B′
(t) be three Bézier curves defined in

Equation (9). We also assume that θ̃A,B , θ̃A,B̂ and θ̃A,B′
are L2-norm-consistent with each other. Then, there exists
upper bounds UA,B , UA,B̂ and UA,B′ for `(·) such that:
UA,B̂ ≤ UA,B ≤ UA,B′ .

Proof. See Appendix E.2.

Intuitively, to increase the loss with respect to poison sam-
ples along the curve, we can project the copy of backdoored
model θadv to loss basin different from that of the origi-
nal. Theoretically, Corollary 4.3 implies that applying the
permutation by S(P ′) can enlarge the upper bound of the
backdoor loss over the curve, resulting in a more robust
model on the curve when faced with attack samples.

However, Corollary 4.3 also indicates that permuting the
layers via S(P ′), leads to a looser upper bound for the loss
on benign samples compared to models that reside in the
same loss basin. Therefore, an extended method is needed to
ensure that the purified model maintains strong performance
on clean samples.
Reducing the Clean Loss. In the second stage, we train
another curve connecting the origianl backdoored model
and re-aligned model found previously. As demonstrated in
Corollary 4.3, re-aligning the model found on the curve to
the original loss basin of the backdoored model can reduce
the upper bound of loss value along the curve. When align-
ing the model with benign samples, the curve is more likey
to be trained in a loss basin of benign data rather than poi-
soned ones. Thus, the second stage successfully improves
the performance on benign task.

Moreover, let θadv∗ be a model satisfies the follow-
ing three conditions: (1) it is aligned with θadv; (2)
it is L2-norm-consistent with the model θt∗=0.4; and
(3) it achieves higher accuracy on the poisoned dataset
Dadv than θt∗=0.4. Also, consider a curve γadv that
connects θadv∗ and θadv. We can say that the 2-
Wasserstein distance W2(P adv

l ,P adv∗
l ;Dadv) is smaller

than W2(P adv
l ,P t=0.4

l ;Dadv) for each layer, as θadv is
more functionally identical to θadv over Dadv. Thus, we
have Ml(θadv,θadv∗;Dadv) ≤ Ml(θadv,θt∗=0.4;Dadv).
According to Theorem 4.2, if the parameters of γadv and γ2

are L2-norm-consistent, we conclude that the upper bound
of γ2 is higher than that of γadv over the poisoned dataset.
This finding implies that a high loss can be maintained for
poisoned samples along the curve γ2.

Figure 3 compares model performance along curves iden-
tified by MCR and TSC. For each epoch of TSC, as t ap-
proaches 0.5, both ACC and ASR of model points from the
first stage decrease more rapidly than those of MCR and
TSC’s second stage. Besides, model points from the sec-

ond stage exhibit significantly lower ASR than MCR while
maintaining moderate ACC decline compared to the first
stage. These observations support our theoretical analysis.

5. Experiments
5.1. Experimental Settings

Attack Setup. (1) Supervised Learning. We consider
eleven typical backdoor attacks, including eight label-
flipping attacks (BadNet (Gu et al., 2017), Blended (Chen
et al., 2017), SSBA (Li et al., 2021c), LF (Zeng et al., 2021),
WaNet (Nguyen & Tran, 2021), Inputaware (Nguyen & Tran,
2020), SBL (Pham et al., 2024) and SAPA (He et al., 2024))
and three clean label attacks (LC (Turner et al., 2019), SIG
(Barni et al., 2019) and Narcissus (Zeng et al., 2023)). These
attacks are conducted on CIFAR10 (Krizhevsky, 2009) us-
ing PreAct-ResNet18 (He et al., 2016a) and ImageNet100
(Deng et al., 2009) using ResNet50 (He et al., 2016b) with
various poisoning rates. (2) Self-Supervised Learning. We
evaluate two self-supervised learning attacks: BadEncoder
(Jia et al., 2022) and CTRL (Li et al., 2023). BadEncoder is
conducted using two typical SSL training methods, SimCLR
(Chen et al., 2020) and CLIP (Radford et al., 2021). For Sim-
CLR, we utilize publicly available backdoored ResNet18
and ResNet50 encoders on CIFAR10 and ImageNet, respec-
tively, evaluating ACC and ASR through linear probing
(Alain & Bengio, 2017) on downstream datasets STL10
(Coates et al., 2011), GTSRB, and SVHN (Netzer et al.,
2011). For CLIP, following (Jia et al., 2022), we fine-tune
a pre-trained CLIP ResNet501 on ImageNet100 using Sim-
CLR to inject backdoors, and assess performance through
linear probing and zero-shot evaluation on STL10, Food101
(Bossard et al., 2014), and VOC2007 (Everingham et al.).
The CTRL attack is evaluated using the same SimCLR set-
tings. Implementation details are provided in Appendix L.

Defense Setup. In our experiments, we focus on post-
purification defenses methods and provide all defenses with
5% of the clean training dataset, except for the defenses for
the CLIP model. To address the backdoored CLIP visual
model, we employ the entire MS-COCO dataset 2 (Lin et al.,
2014). (1) Supervised Learning. We evaluate six post-
purification defenses methods as baselines: FP (Liu et al.,
2018), NC (Wang et al., 2019), MCR (Zhao et al., 2020),
ANP (Wu & Wang, 2021), FT-SAM (Zhu et al., 2023), I-
BAU (Zeng et al., 2022), and SAU (Wei et al., 2023). For
TSC, we set the global epoch ETSC = 3, curve index t =
0.4, and curve training epoch e = 200. (2) Self-Supervised
Learning. We consider MCR (Zhao et al., 2020) and SSL-

1https://github.com/openai/CLIP
2As the dataset used to train CLIP (Radford et al., 2021) is not

publicly available and involves 400M images, we conduct defenses
with the much smaller MS-COCO-2017 dataset (Lin et al., 2014),
which contains approximately 120K images with 5 captions each.

7

Circumventing Backdoor Space via Weight Symmetry

Table 1. Results on CIFAR10 and ImageNet100 under supervised learning scenarios. Attack Success Rates (ASRs) below 15% are
highlighted in blue to indicate a successful defense, while ASRs above 15% are denoted in red as failed defenses.

Attacks Poison
Rate

No Defense FP NC MCR ANP FT-SAM I-BAU SAU TSC (ours)

ACC(↑) ASR(↓) ACC(↑) ASR(↓) ACC(↑) ASR(↓) ACC(↑) ASR(↓) ACC(↑) ASR(↓) ACC(↑) ASR(↓) ACC(↑) ASR(↓) ACC(↑) ASR(↓) ACC(↑) ASR(↓)

C
IF

A
R

10

BadNet
5% 92.64 88.74 92.26 1.17 90.53 1.01 92.17 7.62 86.45 0.02 92.19 3.50 88.66 0.92 89.32 1.74 89.19 1.90
1% 93.14 74.73 92.59 2.29 92.07 0.77 92.90 18.06 85.82 0.04 92.39 1.57 87.80 2.29 65.38 2.06 90.71 1.26

Blended
5% 93.66 99.61 92.70 49.47 93.67 99.61 93.23 99.01 88.95 18.76 93.00 29.59 88.07 34.86 90.69 7.74 90.14 10.53
1% 93.76 94.88 92.92 69.74 93.76 94.88 93.62 93.10 89.69 60.52 93.00 49.36 89.62 25.74 90.02 36.16 91.12 12.46

LF
5% 93.36 98.03 92.84 59.12 90.98 2.43 93.07 97.32 84.20 2.46 92.89 7.44 88.64 45.66 90.60 1.71 88.50 3.78
1% 93.56 86.44 92.45 65.80 93.56 86.46 93.09 84.11 86.27 11.28 93.47 11.71 90.53 69.28 91.58 18.12 90.68 11.67

SSBA
5% 93.27 94.91 92.55 16.27 93.27 94.91 92.94 92.06 88.72 0.13 92.71 2.87 89.65 1.54 91.30 2.06 89.43 2.18
1% 93.43 73.44 93.01 7.68 91.60 0.46 93.33 65.88 85.33 0.31 93.02 1.49 89.56 4.87 91.38 0.99 91.18 2.18

SBL-BadNet
5% 90.79 93.48 92.59 1.13 92.22 0.59 92.26 91.82 82.82 51.63 92.16 60.03 90.67 27.06 91.31 0.60 91.02 1.12
1% 91.71 88.64 93.10 31.77 91.82 0.72 93.23 86.11 82.71 81.48 92.77 59.58 90.63 2.00 92.32 1.01 91.54 1.93

SAPA
1% 94.01 99.97 92.34 92.22 92.80 2.14 93.83 100.00 86.06 92.68 93.06 79.80 86.69 15.17 91.83 1.96 90.37 7.41

0.5% 93.77 84.80 88.82 82.76 92.74 1.52 93.78 80.83 87.99 81.52 93.23 82.02 90.16 26.48 91.75 0.68 90.98 7.32

LC
5% 93.31 98.33 92.19 72.99 92.32 0.64 92.94 99.94 88.15 13.83 92.59 57.18 90.15 1.99 91.53 1.50 90.04 2.38
1% 93.79 75.93 92.86 29.86 92.31 0.68 93.67 82.54 86.58 31.46 92.83 39.40 89.78 0.71 92.16 3.77 90.08 5.78

Narcissus
1% 93.68 82.87 92.29 44.88 93.68 47.87 93.61 49.79 92.01 27.01 93.05 26.80 90.21 18.67 91.36 3.24 90.65 7.88

0.5% 93.68 80.58 92.94 29.59 93.67 32.57 93.69 32.96 89.35 16.78 93.06 14.08 89.16 21.09 91.74 5.81 91.71 8.02

Im
ag

eN
et

10
0

BadNet
0.5% 84.30 99.78 83.36 9.80 81.92 0.52 85.24 99.66 78.44 94.18 83.70 9.45 73.70 8.34 73.86 0.28 80.20 0.22
1% 84.56 99.86 83.10 9.58 81.92 0.49 85.08 99.86 79.48 93.64 83.88 24.14 71.46 43.66 72.84 0.26 78.06 0.14

Blended
0.5% 84.44 94.32 82.80 63.25 84.44 94.32 85.58 94.97 84.56 93.27 83.40 75.43 74.22 62.34 73.84 3.72 76.58 12.63
1% 84.90 98.04 83.36 69.21 80.21 70.21 85.04 97.58 84.54 97.70 83.86 82.00 73.10 61.25 69.24 0.53 75.88 6.35

LF
0.5% 84.24 98.87 83.10 50.26 84.24 98.87 85.70 97.70 81.32 86.20 83.80 70.48 74.36 74.97 75.22 0.18 78.78 5.39
1% 83.92 99.56 83.00 35.82 76.76 49.87 85.30 99.03 81.10 88.53 83.40 70.69 71.06 22.32 67.38 2.93 78.58 5.41

SSBA
0.5% 84.30 95.31 83.34 46.75 84.30 95.31 85.04 95.13 76.96 6.18 83.16 15.70 71.52 1.19 76.12 0.89 79.56 1.45
1% 84.02 99.43 83.34 59.68 78.47 70.78 85.14 97.72 80.22 22.77 83.50 20.30 72.58 7.45 73.94 0.36 79.88 4.91

SBL-Blended
0.5% 72.52 97.56 85.10 89.29 72.52 97.56 82.54 92.63 68.28 97.05 83.84 89.07 70.78 37.35 73.66 14.87 79.42 7.18
1% 72.68 99.17 83.41 68.24 71.42 70.14 82.82 95.78 72.72 99.15 83.92 92.69 73.52 20.30 76.78 39.29 77.16 8.87

SAPA
0.5% 85.04 98.83 83.44 20.53 78.57 9.20 85.60 93.05 80.42 96.59 83.82 30.04 69.32 18.34 73.34 1.07 79.00 1.74
1% 85.50 98.83 83.34 27.86 77.42 3.52 85.42 95.80 83.12 93.76 83.96 45.88 69.12 41.64 75.42 1.23 78.14 1.41

LC
0.5% 84.22 0.61 83.34 0.20 84.22 0.61 85.04 0.93 84.48 0.57 83.86 0.24 69.72 0.36 76.20 0.16 80.36 0.22
1% 84.10 32.97 83.48 4.28 81.13 0.42 85.48 76.75 84.22 32.42 83.58 8.06 73.52 1.76 70.50 0.79 80.18 0.57

SIG
0.5% 84.20 16.22 83.26 2.22 78.48 0.43 85.18 18.34 84.00 15.86 83.88 4.51 70.76 3.43 75.22 0.12 77.20 0.55
1% 84.16 70.08 83.40 20.48 79.58 0.89 85.02 77.84 80.40 65.68 83.36 44.81 70.98 19.98 73.76 0.30 80.22 9.98

Cleanse (Zheng et al., 2024) as baselines. For TSC, we set
the global epoch ETSC = 2, curve index t = 0.25, and
curve training epoch e = 200 for both SimCLR and CLIP.
Comprehensive settings for all defenses are provided in
Appendix L. For the following experiments, we consider a
defense against an attack successful if the ASR is reduced
to below 15%.

5.2. Results for Supervised Learning

Table 1 compares the performance of TSC with existing
defenses on CIFAR10 and ImageNet100 under supervised
learning scenarios. Comprehensive results for GTSRB and
of other attack settings are provided in Appendix I.

It’s clear that TSC successfully reduces the ASR to below
15% for all attacks on CIFAR10 GTSRB and ImageNet100,
demonstrating its robustness and effectiveness. Among all
attacks, Blended attack with small poisoning rates proves
most challenging to defend against. While other defenses
struggle to contain ASRs below 25%, TSC reduces the ASR
to 12.46% on CIFAR10 (1% poisoning rate) and 12.63%
on ImageNet100 (0.5% poisoning rate). SAU shows strong
backdoor removal capabilities against most attacks but suf-
fers from ACC instability. For example, under BadNet
Attack with 1% poisoning rate on CIFAR10, SAU’s accu-
racy falls below 70%. We attribute this behavior to SAU’s
aggressive unlearning strategy, which leads to catastrophic
decreases in both ACC and ASR. ANP, FT-SAM, and I-BAU
also demonstrate effectiveness, reducing ASRs to below
15% for most attacks on CIFAR10 and GTSRB. However,

their performance diminishes on ImageNet100, particularly
against Blended, Inputaware and LF attacks. While TSC oc-
casionally yields lower initial task accuracy than FT-SAM,
it outperforms ANP and I-BAU in most cases.

To further explore the impact of TSC on ACC, we provide
results for ACC drops on non-backdoored models in Ap-
pendix K. These results indicate that the ACC drop for TSC
is acceptable in scenarios without data poisoning.

5.3. Results for Self-supervised Learning

Tables 2 and 3 show the results against BadEncoder attacks
under SimCLR and CLIP training scenarios, respectively.
We employ different settings for SimCLR and CLIP to
showcase the flexibility of TSC. For SimCLR, encoders are
trained and backdoored independently with specific target
labels for each downstream task. For CLIP, we backdoor a
single visual encoder using ‘truck’ as the target label/caption
and evaluate performance before and after defenses across
downstream tasks. Since Food101 and VOC2007 lack the
‘truck’ label, we augment their training sets with truck im-
ages from STL10 for evaluation of linear probing. Results
indicate the attack remains effective even without targeting
specific downstream datasets. More results for CTRL attack
and SSL-Cleanse are provided in Appendix J.

Under SimCLR, while MCR successfully removes back-
doors targeting STL10 and GTSRB downstream tasks, it
fails against attacks targeting the SVHN dataset. In con-
trast, TSC effectively reduces the ASR to below 11% across

8

Circumventing Backdoor Space via Weight Symmetry

Table 2. Defense results under SimCLR training scenario, where
linear probing is used to evaluate the downstream tasks.

Pre-training
Dataset

Downstream
Dataset

No Defense MCR TSC (ours)

ACC(↑) ASR(↓) ACC(↑) ASR(↓) ACC(↑) ASR(↓)

CIFAR10
STL10 76.74 99.65 74.93 7.92 71.11 4.44
GTSRB 81.12 98.79 75.51 0.54 77.57 1.68
SVHN 63.12 98.71 57.35 65.58 64.13 10.26

ImageNet
STL10 94.93 98.99 90.20 2.08 86.99 3.11
GTSRB 75.94 99.76 72.38 0.13 69.47 6.47
SVHN 72.64 99.21 71.27 34.15 66.44 3.64

Table 3. Defense results under CLIP training scenario, where lin-
ear probing and zero-shot learning are used to evaluate the down-
stream tasks.

Pre-training
Dataset

Downstream
Dataset

No Defense MCR TSC (ours)

ACC(↑) ASR(↓) ACC(↑) ASR(↓) ACC(↑) ASR(↓)

CLIP
(linear probe)

STL10 97.07 99.33 96.43 99.86 94.15 0.67
Food101 72.58 97.91 72.36 96.62 69.33 1.04

VOC 2007 76.07 99.83 75.47 99.92 78.42 0.34

CLIP
(zero-shot)

STL10 94.06 99.86 91.51 99.85 90.25 0.88
Food101 67.72 99.96 66.51 99.56 61.69 0.28

VOC 2007 71.22 99.92 70.09 99.12 75.08 1.45

all downstream tasks. For CLIP, TSC achieves remarkable
performance, reducing ASR below 2%, while MCR proves
ineffective against BadEncoder attacks.

5.4. Resistance to Potential Adaptive Attacks
The previous experiments demonstrate the effectiveness of
TSC against existing backdoor attacks. However, it is es-
sential to consider adpative attacks against TSC. The core
defense mechanism of TSC relies on increasing adversarial
loss along the quadratic Bézier curve by projecting model
θadv to a distinct loss basin to find θadv′ during the first
stage. An adaptive attack would attempt to train and back-
door a model that maintains low backdoor loss along the
curve identified by TSC.

To design such an adaptive attack, we build upon the neural
network subspace learning approach proposed in (Wortsman
et al., 2021), originally developed for improving accuracy
and calibration. Our strategy involves simultaneously train-
ing a curve and updating its endpoints θadv and θadv′ using
the mixture of benign and poisoned data (i.e., learning a
backdoored subspace). After training, we select one end-
point as the final model. We convert all previously evaluated
attacks into adaptive versions under both supervised and self-
supervised learning settings. Experimental results reveal
that TSC remains robust against such attack. The implemen-
tation details and results are provided in Appendix G.

To further validate the robustness of TSC against adaptive
attacks, we present corresponding loss landscape visual-
izations in Appendix G.3. The analysis reveals that the
combination of the permutation mechanism and training
exclusively with benign samples contributes to amplifying
the loss on poisoned samples, even for adaptive attacks.
Moreover, given that our defense involves the concept of
loss landscapes, we also conduct experiments against more

advanced attacks, including SBL (Pham et al., 2024), Narcis-
sus (Zeng et al., 2023), and SAPA (He et al., 2024). These
modern backdoor attacks aim to optimize flatter loss land-
scapes or entangle benign and backdoor features. The results
demonstrate that TSC effectively reduces the ASR to below
15% even against these sophisticated attacks.

5.5. Ablation Studies

We conduct comprehensive ablation studies to analyze the
impact of TSC’s key hyperparameters: the number of global
epochs ETSC and the curve index t. Through extensive
experiments, we find that increasing t (up to 0.5) and ETSC
improves backdoor removal performance but meanwhile
reducing accuracy on benign samples. Moreover, a larger
ETSC leads to more stable performance. Based on empir-
ical results, we recommend t = 0.4 and ETSC = 3 for
supervised learning scenarios, and t = 0.25 and ETSC = 2
for self-supervised learning. Detailed analysis and addi-
tional experimental results can be found in Appendix H.1.

To validate the stability of TSC, we conduct experiments
with VGG19-BN (Simonyan & Zisserman, 2014) and In-
ceptionV3 (Szegedy et al., 2016) on CIFAR10. Results in
Appendix H.2 show the robustness of TSC across different
model architectures.

We opt to use the same t for both stages to maintain a simpler
parameter design. Employing distinct t values for each stage
would lead to numerous parameter combinations, potentially
complicating the algorithm’s overall structure. Moreover,
as shown in Figure 3, the ACC/ASR values in the first
stage exhibit a roughly symmetric pattern with respect to
t, whereas in the second stage, they decrease as t increases.
Although the overall trends for the two stages differ across
t ∈ [0, 1], they both demonstrate a decreasing tendency
within t ∈ [0, 0.5]. Notably, in Stage 2, ASR decreases
effectively while ACC remains high for t values near 0.5.
Considering this observation from Stage 2, the symmetry
in Stage 1, and the consistent trend within t ∈ [0, 0.5], we
suggest selecting t from this range for both stages.

6. Conclusion and Limitation
In this paper, we propose TSC, a novel defense mecha-
nism leveraging permutation invariance. Unlike previous
post-purification defenses, TSC utilizes weight symmetry to
remove backdoors and is applicable to both supervised and
self-supervised learning scenarios, with potential extensions
to other learning paradigms. Our experiments demonstrate
the robustness of TSC under diverse attack settings, achiev-
ing comparable or superior performance to existing defenses.
However, TSC occasionally trades off accuracy on benign
samples for backdoor removal. Future work could focus on
optimizing such trade-off to maintain high ASR reduction
while improving ACC.

9

Circumventing Backdoor Space via Weight Symmetry

Acknowledgements
This work was supported in part by the National Key Re-
search and Development Program of China (Grant No.
2024YFB31NL00101), the National Natural Science Foun-
dation of China (Grant No. U22A2036), and the Na-
tional Natural Science Foundation of China (Grant No.
62472122).

Impact Statement
This paper aims to advance the field of Machine Learning
Security by proposing a novel purification method for re-
moving implanted backdoors. The potential societal benefits
include providing a framework for eliminating backdoor be-
havior across various machine learning scenarios, thereby
enhancing model security. However, new attacks target-
ing our method may emerge in the future. Further work is
needed to validate the effectiveness of our approach on a
broader scale.

References
Ainsworth, S., Hayase, J., and Srinivasa, S. Git re-basin:

Merging models modulo permutation symmetries. In The
Eleventh International Conference on Learning Represen-
tations, 2023. URL https://openreview.net/
forum?id=CQsmMYmlP5T.

Alain, G. and Bengio, Y. Understanding intermediate layers
using linear classifier probes, 2017. URL https://
openreview.net/forum?id=ryF7rTqgl.

Barni, M., Kallas, K., and Tondi, B. A new backdoor attack
in cnns by training set corruption without label poison-
ing. In 2019 IEEE International Conference on Image
Processing, pp. 101–105, 2019.

Bober-Irizar, M., Shumailov, I., Zhao, Y., Mullins, R., and
Papernot, N. Architectural backdoors in neural networks.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 24595–
24604, 2023.

Bossard, L., Guillaumin, M., and Van Gool, L. Food-101 –
mining discriminative components with random forests.
In European Conference on Computer Vision, 2014.

Carlini, N. and Terzis, A. Poisoning and backdooring
contrastive learning. In International Conference on
Learning Representations, 2022. URL https://
openreview.net/forum?id=iC4UHbQ01Mp.

Carlini, N., Jagielski, M., Choquette-Choo, C. A., Paleka,
D., Pearce, W., Anderson, H., Terzis, A., Thomas, K.,
and Tramèr, F. Poisoning web-scale training datasets is
practical. arXiv preprint arXiv:2302.10149, 2023.

Chai, S. and Chen, J. One-shot neural backdoor erasing
via adversarial weight masking. In Thirty-Sixth Confer-
ence on Neural Information Processing Systems (NeurIPS
2022), 2022.

Chen, B., Carvalho, W., Baracaldo, N., Ludwig, H., Ed-
wards, B., Lee, T., Molloy, I., and Srivastava, B. Detecting
backdoor attacks on deep neural networks by activation
clustering. ArXiv, abs/1811.03728, 2018.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. In Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Pro-
ceedings of Machine Learning Research, pp. 1597–1607.
PMLR, 2020. URL https://proceedings.mlr.
press/v119/chen20j.html.

Chen, X., Liu, C., Li, B., Lu, K., and Song, D. Targeted
backdoor attacks on deep learning systems using data
poisoning. arXiv preprint arXiv:1712.05526, 2017.

Coates, A., Ng, A., and Lee, H. An analysis of single-
layer networks in unsupervised feature learning. In Pro-
ceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics, volume 15 of Pro-
ceedings of Machine Learning Research, pp. 215–223,
Fort Lauderdale, FL, USA, 11–13 Apr 2011. PMLR.
URL https://proceedings.mlr.press/v15/
coates11a.html.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and
Fei-Fei, L. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE Conference on Computer Vi-
sion and Pattern Recognition, pp. 248–255, 2009. doi:
10.1109/CVPR.2009.5206848.

Draxler, F., Veschgini, K., Salmhofer, M., and Hamprecht,
F. Essentially no barriers in neural network energy land-
scape. In Proceedings of the 35th International Confer-
ence on Machine Learning, volume 80, pp. 1309–1318.
PMLR, 10–15 Jul 2018.

Entezari, R., Sedghi, H., Saukh, O., and Neyshabur, B.
The role of permutation invariance in linear mode con-
nectivity of neural networks. In International Confer-
ence on Learning Representations, 2022. URL https:
//openreview.net/forum?id=dNigytemkL.

Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J.,
and Zisserman, A. The PASCAL Visual Object Classes
Challenge 2007 (VOC2007) Results. http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html.

Feng, S., Tao, G., Cheng, S., Shen, G., Xu, X., Liu,
Y., Zhang, K., Ma, S., and Zhang, X. Detecting
backdoors in pre-trained encoders. In 2023 IEEE/CVF

10

https://openreview.net/forum?id=CQsmMYmlP5T
https://openreview.net/forum?id=CQsmMYmlP5T
https://openreview.net/forum?id=ryF7rTqgl
https://openreview.net/forum?id=ryF7rTqgl
https://openreview.net/forum?id=iC4UHbQ01Mp
https://openreview.net/forum?id=iC4UHbQ01Mp
https://proceedings.mlr.press/v119/chen20j.html
https://proceedings.mlr.press/v119/chen20j.html
https://proceedings.mlr.press/v15/coates11a.html
https://proceedings.mlr.press/v15/coates11a.html
https://openreview.net/forum?id=dNigytemkL
https://openreview.net/forum?id=dNigytemkL

Circumventing Backdoor Space via Weight Symmetry

Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 16352–16362, 2023. URL
https://doi.ieeecomputersociety.org/
10.1109/CVPR52729.2023.01569.

Foret, P., Kleiner, A., Mobahi, H., and Neyshabur, B.
Sharpness-aware minimization for efficiently improving
generalization. In International Conference on Learning
Representations, 2021.

Frankle, J., Dziugaite, G. K., Roy, D., and Carbin, M. Lin-
ear mode connectivity and the lottery ticket hypothesis.
In Proceedings of the 37th International Conference on
Machine Learning, volume 119, pp. 3259–3269. PMLR,
2020. URL https://proceedings.mlr.press/
v119/frankle20a.html.

Gao, Y., Xu, C., Wang, D., Chen, S., Ranasinghe, D. C.,
and Nepal, S. Strip: A defence against trojan attacks
on deep neural networks. In Proceedings of the 35th
Annual Computer Security Applications Conference, pp.
113–125, 2019. ISBN 9781450376280.

Garipov, T., Izmailov, P., Podoprikhin, D., Vetrov, D. P., and
Wilson, A. G. Loss surfaces, mode connectivity, and fast
ensembling of dnns. In Advances in Neural Information
Processing Systems (NeurIPS 2018), volume 31. Curran
Associates, Inc., 2018.

Gotmare, A. D., Keskar, N. S., Xiong, C., and Socher, R. Us-
ing mode connectivity for loss landscape analysis. ArXiv,
abs/1806.06977, 2018.

Gu, T., Dolan-Gavitt, B., and Garg, S. Badnets: Identify-
ing vulnerabilities in the machine learning model supply
chain. arXiv preprint arXiv:1708.06733, 2017.

Guo, J., Li, Y., Chen, X., Guo, H., Sun, L., and Liu, C.
SCALE-UP: An efficient black-box input-level backdoor
detection via analyzing scaled prediction consistency.
In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.
net/forum?id=o0LFPcoFKnr.

Hayase, J., Kong, W., Somani, R., and Oh, S. Spectre: de-
fending against backdoor attacks using robust statistics.
In Proceedings of the 38th International Conference on
Machine Learning, volume 139 of Proceedings of Ma-
chine Learning Research, pp. 4129–4139. PMLR, 18–24
Jul 2021.

He, K., Zhang, X., Ren, S., and Sun, J. Identity mappings in
deep residual networks. ArXiv, abs/1603.05027, 2016a.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, jun 2016b.

He, K., Chen, X., Xie, S., Li, Y., Dollár, P., and Girshick, R.
Masked autoencoders are scalable vision learners. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pp. 16000–16009,
June 2022.

He, P., Xu, H., Ren, J., Cui, Y., Zeng, S., Liu, H., Aggarwal,
C., and Tang, J. Sharpness-aware data poisoning attack.
In International Conference on Learning Representations,
2024.

Hou, L., Feng, R., Hua, Z., Luo, W., Zhang, L. Y.,
and Li, Y. IBD-PSC: Input-level backdoor detec-
tion via parameter-oriented scaling consistency. In
Proceedings of the 41st International Conference
on Machine Learning, pp. 18992–19022. PMLR,
2024. URL https://proceedings.mlr.press/
v235/hou24a.html.

Houben, S., Stallkamp, J., Salmen, J., Schlipsing, M., and
Igel, C. Detection of traffic signs in real-world images:
The German Traffic Sign Detection Benchmark. In Inter-
national Joint Conference on Neural Networks, number
1288, 2013.

Jia, J., Liu, Y., and Gong, N. Z. BadEncoder: Backdoor
attacks to pre-trained encoders in self-supervised learning.
In IEEE Symposium on Security and Privacy, 2022.

Jordan, K., Sedghi, H., Saukh, O., Entezari, R., and
Neyshabur, B. REPAIR: REnormalizing permuted ac-
tivations for interpolation repair. In The Eleventh In-
ternational Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=gU5sJ6ZggcX.

Khaddaj, A., Leclerc, G., Makelov, A., Georgiev,
K., Salman, H., Ilyas, A., and Madry, A. Re-
thinking backdoor attacks. In Proceedings of the
40th International Conference on Machine Learn-
ing, volume 202 of Proceedings of Machine Learn-
ing Research, pp. 16216–16236. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/
v202/khaddaj23a.html.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Des-
jardins, G., Rusu, A. A., Milan, K., Quan, J., Ramalho, T.,
Grabska-Barwinska, A., Hassabis, D., Clopath, C., Ku-
maran, D., and Hadsell, R. Overcoming catastrophic for-
getting in neural networks. Proceedings of the National
Academy of Sciences, 114(13):3521–3526, 2017. doi: 10.
1073/pnas.1611835114. URL https://www.pnas.
org/doi/abs/10.1073/pnas.1611835114.

Krizhevsky, A. Learning multiple layers of features from
tiny images. 2009.

11

https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01569
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01569
https://proceedings.mlr.press/v119/frankle20a.html
https://proceedings.mlr.press/v119/frankle20a.html
https://openreview.net/forum?id=o0LFPcoFKnr
https://openreview.net/forum?id=o0LFPcoFKnr
https://proceedings.mlr.press/v235/hou24a.html
https://proceedings.mlr.press/v235/hou24a.html
https://openreview.net/forum?id=gU5sJ6ZggcX
https://openreview.net/forum?id=gU5sJ6ZggcX
https://proceedings.mlr.press/v202/khaddaj23a.html
https://proceedings.mlr.press/v202/khaddaj23a.html
https://www.pnas.org/doi/abs/10.1073/pnas.1611835114
https://www.pnas.org/doi/abs/10.1073/pnas.1611835114

Circumventing Backdoor Space via Weight Symmetry

Kuhn, H. W. The hungarian method for the assignment
problem. Naval research logistics quarterly, 2(1-2):83–
97, 1955.

Li, C., Pang, R., Xi, Z., Du, T., Ji, S., Yao, Y., and Wang,
T. An embarrassingly simple backdoor attack on self-
supervised learning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pp.
4367–4378, October 2023.

Li, S., Xue, M., Zhao, B. Z. H., Zhu, H., and Zhang, X.
Invisible backdoor attacks on deep neural networks via
steganography and regularization. IEEE Transactions
on Dependable and Secure Computing, 18:2088–2105,
2021a.

Li, Y., Yosinski, J., Clune, J., Lipson, H., and Hopcroft,
J. Convergent learning: Do different neural networks
learn the same representations? In Proceedings of
the 1st International Workshop on Feature Extraction:
Modern Questions and Challenges at NIPS 2015, vol-
ume 44 of Proceedings of Machine Learning Research,
pp. 196–212, Montreal, Canada, 11 Dec 2015. PMLR.
URL https://proceedings.mlr.press/v44/
li15convergent.html.

Li, Y., Koren, N., Lyu, L., Lyu, X., Li, B., and Ma, X. Neu-
ral attention distillation: Erasing backdoor triggers from
deep neural networks. ArXiv, abs/2101.05930, 2021b.

Li, Y., Li, Y., Wu, B., Li, L., He, R., and Lyu, S. Invisible
backdoor attack with sample-specific triggers. In IEEE
International Conference on Computer Vision (ICCV),
2021c.

Li, Y., Lyu, X., Koren, N., Lyu, L., Li, B., and Ma, X. Anti-
backdoor learning: Training clean models on poisoned
data. Advances in Neural Information Processing Systems
(NeurIPS 2021), 34:14900–14912, 2021d.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ra-
manan, D., Dollár, P., and Zitnick, C. L. Microsoft coco:
Common objects in context. In Computer Vision–ECCV
2014: 13th European Conference, Zurich, Switzerland,
September 6-12, 2014, Proceedings, Part V 13, pp. 740–
755. Springer, 2014.

Liu, K., Dolan-Gavitt, B., and Garg, S. Fine-pruning: De-
fending against backdooring attacks on deep neural net-
works. In RAID, 2018.

Loshchilov, I. and Hutter, F. Sgdr: Stochastic gra-
dient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016.

Min, R., Qin, Z., Shen, L., and Cheng, M. Towards stable
backdoor purification through feature shift tuning. In
Thirty-seventh Conference on Neural Information Pro-
cessing Systems, 2023.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu,
B., and Ng, A. Y. Reading digits in natural
images with unsupervised feature learning. In
NIPS Workshop on Deep Learning and Unsuper-
vised Feature Learning 2011, 2011. URL http:
//ufldl.stanford.edu/housenumbers/
nips2011_housenumbers.pdf.

Nguyen, T. A. and Tran, A. Input-aware dynamic backdoor
attack. In Advances in Neural Information Processing
Systems (NeurIPS 2020), volume 33, pp. 3454–3464. Cur-
ran Associates, Inc., 2020.

Nguyen, T. A. and Tran, A. T. Wanet - imperceptible
warping-based backdoor attack. In International Confer-
ence on Learning Representations, 2021. URL https:
//openreview.net/forum?id=eEn8KTtJOx.

Pan, M., Zeng, Y., Lyu, L., Lin, X., and Jia,
R. ASSET: Robust backdoor data detection across
a multiplicity of deep learning paradigms. In
32nd USENIX Security Symposium (USENIX Se-
curity 23), pp. 2725–2742, Anaheim, CA, 2023.
USENIX Association. ISBN 978-1-939133-37-3.
URL https://www.usenix.org/conference/
usenixsecurity23/presentation/pan.

Pang, R., Shen, H., Zhang, X., Ji, S., Vorobeychik, Y.,
Luo, X., Liu, A. X., and Wang, T. A tale of evil twins:
Adversarial inputs versus poisoned models. Proceedings
of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, 2019.

Pham, H., Ta, T.-A., Tran, A., and Doan, K. D. Flatness-
aware sequential learning generates resilient backdoors.
In Computer Vision – ECCV 2024, pp. 89–107, Cham,
2024. Springer Nature Switzerland.

Qi, X., Xie, T., Li, Y., Mahloujifar, S., and Mittal, P. Revis-
iting the assumption of latent separability for backdoor
defenses. In The Eleventh International Conference on
Learning Representations, 2023.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh,
G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P.,
Clark, J., Krueger, G., and Sutskever, I. Learning trans-
ferable visual models from natural language supervi-
sion. In Proceedings of the 38th International Confer-
ence on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pp. 8748–8763. PMLR,
2021. URL https://proceedings.mlr.press/
v139/radford21a.html.

Saha, A., Subramanya, A., and Pirsiavash, H. Hidden trigger
backdoor attacks. In Proceedings of the AAAI conference
on artificial intelligence, volume 34, pp. 11957–11965,
2020.

12

https://proceedings.mlr.press/v44/li15convergent.html
https://proceedings.mlr.press/v44/li15convergent.html
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
https://openreview.net/forum?id=eEn8KTtJOx
https://openreview.net/forum?id=eEn8KTtJOx
https://www.usenix.org/conference/usenixsecurity23/presentation/pan
https://www.usenix.org/conference/usenixsecurity23/presentation/pan
https://proceedings.mlr.press/v139/radford21a.html
https://proceedings.mlr.press/v139/radford21a.html

Circumventing Backdoor Space via Weight Symmetry

Saha, A., Tejankar, A., Koohpayegani, S. A., and Pirsiavash,
H. Backdoor attacks on self-supervised learning. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 13337–13346, 2022.

Shafahi, A., Huang, W. R., Najibi, M., Suciu, O., Studer,
C., Dumitras, T., and Goldstein, T. Poison frogs! tar-
geted clean-label poisoning attacks on neural networks.
In Advances in Neural Information Processing Systems
(NeurIPS 2018), volume 31. Curran Associates, Inc.,
2018.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014.

Simsek, B., Ged, F., Jacot, A., Spadaro, F., Hongler, C.,
Gerstner, W., and Brea, J. Geometry of the loss landscape
in overparameterized neural networks: Symmetries and
invariances. In Proceedings of the 38th International Con-
ference on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pp. 9722–9732. PMLR,
18–24 Jul 2021. URL https://proceedings.mlr.
press/v139/simsek21a.html.

Singh, S. P. and Jaggi, M. Model fusion via optimal trans-
port. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan,
M., and Lin, H. (eds.), Advances in Neural Information
Processing Systems, volume 33, pp. 22045–22055. Cur-
ran Associates, Inc., 2020.

Souri, H., Fowl, L., Chellappa, R., Goldblum, M., and Gold-
stein, T. Sleeper agent: Scalable hidden trigger backdoors
for neural networks trained from scratch. In Advances in
Neural Information Processing Systems (NeurIPS 2022),
volume 35, pp. 19165–19178, 2022.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. Rethinking the inception architecture for computer vi-
sion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2818–2826, 2016.

Tancik, M., Mildenhall, B., and Ng, R. Stegastamp: Invisi-
ble hyperlinks in physical photographs. 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 2114–2123, 2020.

Tatro, N., Chen, P.-Y., Das, P., Melnyk, I., Sattigeri, P., and
Lai, R. Optimizing mode connectivity via neuron align-
ment. In Advances in Neural Information Processing Sys-
tems, volume 33, pp. 15300–15311. Curran Associates,
Inc., 2020.

Tran, B., Li, J., and Madry, A. Spectral signatures in back-
door attacks. In Neural Information Processing Systems
(NeurIPS 2018), 2018.

Turner, A., Tsipras, D., and Madry, A. Label-consistent
backdoor attacks. ArXiv, abs/1912.02771, 2019.

Villani, C. et al. Optimal transport: old and new, volume
338. Springer, 2009.

Wang, B., Yao, Y., Shan, S., Li, H., Viswanath, B., Zheng,
H., and Zhao, B. Y. Neural cleanse: Identifying and
mitigating backdoor attacks in neural networks. 2019
IEEE Symposium on Security and Privacy (SP), pp. 707–
723, 2019.

Wei, S., Zhang, M., Zha, H., and Wu, B. Shared adversarial
unlearning: Backdoor mitigation by unlearning shared ad-
versarial examples. In Thirty-seventh Conference on Neu-
ral Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=zqOcW3R9rd.

Wenger, E., Bhattacharjee, R., Bhagoji, A. N., Passananti,
J., Andere, E., Zheng, H., and Zhao, B. Finding nat-
urally occurring physical backdoors in image datasets.
In Advances in Neural Information Processing Systems,
volume 35, pp. 22103–22116, 2022.

Wortsman, M., Horton, M. C., Guestrin, C., Farhadi, A.,
and Rastegari, M. Learning neural network subspaces. In
Proceedings of the 38th International Conference on Ma-
chine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 11217–11227. PMLR, 18–24 Jul
2021. URL https://proceedings.mlr.press/
v139/wortsman21a.html.

Wu, B., Chen, H., Zhang, M., Zhu, Z., Wei, S., Yuan, D.,
and Shen, C. Backdoorbench: A comprehensive bench-
mark of backdoor learning. In Thirty-sixth Conference
on Neural Information Processing Systems Datasets and
Benchmarks Track, 2022.

Wu, D. and Wang, Y. Adversarial neuron pruning purifies
backdoored deep models. In Advances in Neural Infor-
mation Processing Systems (NeurIPS 2021), volume 34,
pp. 16913–16925. Curran Associates, Inc., 2021.

Yao, Y., Li, H., Zheng, H., and Zhao, B. Y. Latent
backdoor attacks on deep neural networks. In Pro-
ceedings of the ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’19, pp.
2041–2055, 2019. URL https://doi.org/10.
1145/3319535.3354209.

Zeng, Y., Park, W., Mao, Z., and Jia, R. Rethinking the back-
door attacks’ triggers: A frequency perspective. In 2021
IEEE/CVF International Conference on Computer Vision
(ICCV), pp. 16453–16461, Los Alamitos, CA, USA, 2021.
IEEE Computer Society.

13

https://proceedings.mlr.press/v139/simsek21a.html
https://proceedings.mlr.press/v139/simsek21a.html
https://openreview.net/forum?id=zqOcW3R9rd
https://openreview.net/forum?id=zqOcW3R9rd
https://proceedings.mlr.press/v139/wortsman21a.html
https://proceedings.mlr.press/v139/wortsman21a.html
https://doi.org/10.1145/3319535.3354209
https://doi.org/10.1145/3319535.3354209

Circumventing Backdoor Space via Weight Symmetry

Zeng, Y., Chen, S., Park, W., Mao, Z., Jin, M., and Jia,
R. Adversarial unlearning of backdoors via implicit hy-
pergradient. In International Conference on Learning
Representations, 2022.

Zeng, Y., Pan, M., Just, H. A., Lyu, L., Qiu, M., and Jia, R.
Narcissus: A practical clean-label backdoor attack with
limited information. In Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications
Security, pp. 771–785, 2023. ISBN 9798400700507. doi:
10.1145/3576915.3616617.

Zhao, P., Chen, P.-Y., Das, P., Ramamurthy, K. N., and Lin,
X. Bridging mode connectivity in loss landscapes and
adversarial robustness. In International Conference on
Learning Representations, 2020.

Zheng, M., Xue, J., Wang, Z., Chen, X., Lou, Q., Jiang,
L., and Wang, X. Ssl-cleanse: Trojan detection and miti-
gation in self-supervised learning. In Computer Vision –
ECCV 2024, 2024.

Zhu, C., Huang, W. R., Li, H., Taylor, G., Studer, C., and
Goldstein, T. Transferable clean-label poisoning attacks
on deep neural nets. In Proceedings of the 36th Interna-
tional Conference on Machine Learning, volume 97, pp.
7614–7623. PMLR, 09–15 Jun 2019.

Zhu, M., Wei, S., Shen, L., Fan, Y., and Wu, B. Enhanc-
ing fine-tuning based backdoor defense with sharpness-
aware minimization. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pp.
4466–4477, October 2023.

14

Circumventing Backdoor Space via Weight Symmetry

A. Applicability of the Defense Setting of TSC
As stated in Section 3.4, this paper considers two attack scenarios: one where an adversary can only poison a portion of the
training data, and another where the adversary gains control over the training procedure. In our defense setting, we assume
that the defender has knowledge of the original basic training methods such as Stochastic Gradient Descent (SGD) using a
Cross-Entropy loss function. To address potential concerns about the practical relevance of this defense setting, we provide
here a detailed discussion of how our proposed defense approach applies in real-world scenarios.

A.1. Data-poisoning Attacks

For adversaries employing data poisoning (who have no control over the training process), defenders may repair the
backdoored model post-training using defenses such as TSC or other post-purification techniques. In this scenario, as the
defender has control of the training it’s natural the defender has the knowledge of the training procedure. Thus, the setting in
our paper is applicable in such data poison scenario.

A.2. Training-manipulation Attack

For adversaries have control over the training, we provides two common examples here:

• Public Pre-trained Models: Public repositories or research papers release pre-trained models that may contain backdoors.
Since these sources typically provide detailed descriptions of the model-training procedure, defenders can leverage this
information to apply TSC effectively. Using public large-scale image encoders for downstream tasks is increasingly
common, making our setting practically relevant. Advanced zero-shot deployment models (e.g., CLIP) further exemplify
this applicability.

• Internal Adversary in Organizations: Consider an internal adversary scenario within an organization where malicious
attackers backdoor a model without others’ awareness. Typically, benign team members possess knowledge of the basic
training process but lack insight into the malicious manipulations. In this context, defenders within the organization
can deploy TSC to purify the model without taking retraining from scratch.

Moreover, beyond traditional learning scenarios, our method shows potential for application in other settings. For example,
in federated learning, models are trained collaboratively across many distributed devices, with participants computing and
sending their local gradients for global aggregation. Malicious participants could inject poisoned updates into this system,
thereby introducing backdoors, even without direct access to the overall training procedure. Since a common underlying
training methodology is typically employed by both clients and the server in such federated architectures, defenders in this
setting could apply our method to remove backdoors using only a small amount of data.

B. Quadratic Mode Connectivity
In Section 3.1, we can find a path connecting θA and θB using Equation (1). However, since pθA,B

(t) depends on θA,B , it
is intractable to compute the stochastic gradients of `(θA,B) in Equation (1). To address this, Garipov Garipov et al. (2018)
choose the uniform distribution U(0, 1) over the interval [0, 1] to replace pθA,B

(t), leading to the following loss:

`′(θA,B) =

∫ 1

0

L(γθA,B
(t)) dt = Et∼U(0,1)L(γθA,B

(t)), (10)

The primary contrast between (1) and (10) is that the former calculates the average loss L(γθA,B
(t)) over a uniform

distribution along the curve, while the latter calculates the average loss over a uniform distribution within the interval [0, 1]
for the variable t. To minimize `′(θA,B), at each step one can randomly select a sample t̂ from the uniform distribution over
the interval [0, 1] and update the value of θA,B based on the gradient of the loss function L(γθA,B

(t̂)). This implies that we
can use ∇θA,B

L(γθA,B
(t̂)) to estimate the actual gradient of `′(θA,B),

∇θA,B
`′(θ) = ∇θA,B

Et∼U(0,1)L(γθA,B
(t)) (11)

= Et∼U(0,1)∇θA,B
L(γθA,B

(t)) (12)

w ∇θA,B
L(γθA,B

(t̂)). (13)

15

Circumventing Backdoor Space via Weight Symmetry

We can choose the Bézier curve as the basic parametric function to characterize the parametric curve γθA,B
(t). And we

could initialize θA,B with 1
2 (θA + θB). A Bézier curve provides a convenient parametrization of smooth paths with given

endpoints. We can reform the parametric Bézier curve γθA,B
in Equation (2) by replacing θA,B with its deviation θ̃A,B :

γθA,B
(t) = (1− t)2θA + 2t(1− t)θA,B + t2θB

= (1− t)2θA + 2t(1− t)(θA + θB
2

+ θ̃A,B) + t2θB

= (1− t)θA + tθB + 2t(1− t)θ̃A,B = γθ̃A,B
(t). (14)

C. Permutation Invariance and Neuron Alignment
After applying the permutation operation π(θ, S(P)), the feedforward neural network defined in Equation (3) is transformed
to:

y = WL ◦ σ ◦ P>L−1PL−1WL−1 ◦ ... ◦ σ ◦ P>1 P1W1x0

= WLP
>
L−1 ◦ σ ◦ PL−1WL−1P

>
L−2 ◦ ... ◦ σ ◦ P1W1x0.

(15)

The second equation in (15) follows from the fact that σ is an element-wise function. The weights of the permuted network
can then be obtained as defined in Equation (4).

Previous studies have found that two functionally identical networks θA and θB , trained independently with the same
architecture but different random initializations or SGD solutions, could be misaligned. And the loss of their linearly
interpolated network, represented by θt = tθA + (1− t)θB (where 0 ≤ t ≤ 1), could be quite large (Entezari et al., 2022;
Frankle et al., 2020). However, Entezari et al. (2022) conjecture that if the permutation invariance of neural networks is
taken into account, then networks obtained by all SGD solutions could be linearly connected.

Recently, reserach (Singh & Jaggi, 2020; Ainsworth et al., 2023; Jordan et al., 2023) has shown that such misaligned networks
θA and θB could be projected to the same loss basin using a specific set of permutation matrices S(P̂). Subsequently, these
networks can be fused through a linear path, i.e., they are linear mode connected. For example, one can let θB re-aligned
with θA by permuting θB to θS(P̂)

B , enabling the linearly interpolated network of θA and θS(P̂)
B to exhibit performance

similar to both θA and θB .

To solve the problem defined in Equation (5), various cost functions cl can be employed to compute P̂l (Li et al., 2015;
Singh & Jaggi, 2020; Ainsworth et al., 2023). One commonly used cl is defined as cl = 1− corr(v, z) in (Li et al., 2015),
where the corr compute the correlation between v ∈ Rdl and z ∈ Rdl . Singh & Jaggi (2020) utilized optimal transport to
soft-align neurons before model fusion. Ainsworth et al. (2023) introduced two novel alignment algorithm and compared
them with the method in (Li et al., 2015). Jordan et al. (2023) proposed enhancing the linear mode connectivity after
alignment by renormalizing the activations. While these studies aimed to apply neuron alignment for linear interpolated
networks, Tatro et al. (2020) found that alignment could improve both robustness and accuracy along the quadratic curve
connecting adversarially robust models. Following previous work, we continue to use this alignment method proposed by Li
et al. (2015).

D. Wasserstein distance
Wasserstein distance, a key concept in optimal transport (OT) theory, measures the distance between probability distributions
by considering the cost of transforming one distribution into another (Villani et al., 2009). It provides a geometric perspective
on comparing distributions. Formally, let Pr and Pq be two probability distributions, and Ω(Pr,Pr) denote the set of all joint
distributions ω that have Pr and Pq as their marginal distributions. Then the p-Wasserstein distance can be expressed as:

Wp(Pr,Pq) =

(
inf

ω∈Ω(Pr,Pq)
E(x,y)∼ω ‖x− y‖

p

)1/p

. (16)

The joint distribution ω can be regarded as the optimal transport solution (i.e., the minimal distance) between Pr and Pq.
When we solve the problem outlined in Equation (6) to find the optimal permutation P̂l, we are essentially seeking the
optimal transport ω ∈ Πdl that corresponds to the 2-Wasserstein distance between PAl and PBl .

16

Circumventing Backdoor Space via Weight Symmetry

E. Omitted Proofs
E.1. Proof of Theorem 4.2

Proof. For clarity, we first introduce some notation about θ̃A,B(t). These notations can also be applied to θ̃A,C(t) by
substituting appropriate symbols.

We use θA,B(t) to denote the point sampled from the curve γθ̃A,B
(t). Meanwhile, we consider a dataset containing a single

sample x0. Then, ∀l ∈ {1, 2, . . . , L}, the condition can be reformulated as:

Ml(θA,θB ;x0) ≤Ml(θA,θC ;x0). (17)

Moreover, we use W̃A,B
l to indicate the weight of the lth layer of θ̃A,B . This allows us to construct a feedforward network

respect to θA,B(t):

f(x0,θA,B(t)) =
(

(1− t)WA
L + tWB

L + 2t(1− t)W̃A,B
L

)
σ
(

(1− t)WA
L−1 + tWB

L−1 + 2t(1− t)W̃A,B
L−1

)
. . . σ

(
(1− t)WA

1 + tWB
1 + 2t(1− t)W̃A,B

1

)
x0. (18)

Then, we define the pre-activation and post-activation for each layer as follows:

xA,B1 (t) =
(

(1− t)WA
1 + tWB

1 + 2t(1− t)W̃A,B
1

)
x0, (19)

xA,Bl (t) =
(

(1− t)WA
l−1 + tWB

l−1 + 2t(1− t)W̃A,B
l−1

)
σ xA,Bl−1 (t). (20)

Now, we consider the L2 norm distance between xA,B1 (t) and the endpoints defining the following distances:

dA,B1 (t, 0) = ‖xA,B1 (t)− xA,B1 (0)‖

= ‖t(xA,B1 (1)− xA,B1 (0)) + 2t(1− t)W̃A,B
1 x0‖, (21)

dA,B1 (t, 1) = ‖xA,B1 (t)− xA,B1 (1)‖

= ‖(1− t)(xA,B1 (1)− xA,B1 (0)) + 2t(1− t)W̃A,B
1 x0‖, (22)

Then, we can use Triangle Inequality and Cauchy-Schwarz Inequality to get an upper bound U(dA,B1 (t, 0)) for dA,B1 (t, 0):

dA,B1 (t, 0) ≤ t‖xA,B1 (1)− xA,B1 (0)‖+ 2t(1− t)‖W̃A,B
1 x0‖ (Triangle Inequality)

≤ t‖xA,B1 (1)− xA,B1 (0)‖+ 2t(1− t)‖W̃A,B
1 ‖ · ‖x0‖ (Cauchy-Schwarz Inequality)

= tM1(θA,θB ;x0) + 2t(1− t)‖W̃A,B
1 ‖ · ‖x0‖

= U(dA,B1 (t, 0)) . (23)

Similarly, we can get

U(dA,B1 (t, 1)) =(1− t)M1(θA,θB ;x0) + 2t(1− t)‖W̃A,B
1 ‖ · ‖x0‖, (24)

U(dA,C1 (t, 0)) =tM1(θA,θC ;x0) + 2t(1− t)‖W̃A,C
1 ‖ · ‖x0‖, (25)

U(dA,C1 (t, 1)) =(1− t)M1(θA,θC ;x0) + 2t(1− t)‖W̃A,C
1 ‖ · ‖x0‖, (26)

Since θ̃A,B and θ̃A,C are L2-norm-consistent, and given that θA, θB and θC satisfy the condition (17), we can conclude
that:

U(dA,B1 (t, 0)) ≤ U(dA,C1 (t, 0)), (27)

17

Circumventing Backdoor Space via Weight Symmetry

U(dA,B1 (t, 1)) ≤ U(dA,C1 (t, 1)). (28)

We also consider the L2 norm distance bA,B1 (t, 0) between the post-activation σxA,B1 (t) and the endpoints. Assuming that
σ is Lipschitz continuous, we have:

bA,B1 (t, 0) = ‖σxA,B1 (t)− σxA,B1 (0)‖

≤ Lσ U(dA,B1 (t, 0)), (29)

where the Lσ is the Lipschitz constant of σ. This property holds for other post-activations as well. Thus, both pre-activation
distance dA,B1 (t, 0) and post-activation distance bA,B1 (t, 0) for the first layer of θA,B(t) have tighter upper bounds than those
for θA,C(t).

Let zA,B1 (t) = σxA,Bl (t) be the post-activation for the lth layer of θA,B(t). We can also derive the the upper bound for the
pre-activation distance dA,Bl (t, 0) for deep layer:

dA,Bl (t, 0) = ‖xA,Bl (t)− xA,Bl (0)‖

= ‖(1− t)WA
l (zA,Bl−1 (t)− zA,Bl−1 (0)) + tWB

l (zA,Bl−1 (t)− zA,Bl−1 (1))

+ t(WB
l z

A,B
l−1 (1)−WA

l z
A,B
l−1 (0)) + 2t(1− t)W̃A,B

l (zA,Bl−1 (t)− zA,Bl−1 (0))

+ 2t(1− t)W̃A,B
l zA,Bl−1 (0)‖ (30)

≤ (1− t)‖WA
l ‖b

A,B
l−1 (t, 0) + t ‖WB

l ‖b
A,B
l−1 (t, 1) + t dA,Bl (1, 0)

+ 2t(1− t)‖W̃A,B
l ‖bA,Bl−1 (t, 0) + 2t(1− t)‖W̃A,B

l ‖zAl−1

≤ (1− t)Lσ‖WA
l ‖U(dA,Bl−1 (t, 0)) + tLσ ‖WB

l ‖U(dA,Bl−1 (t, 1)) + tMl(θA,θB ;x0)

+ 2t(1− t)Lσ‖W̃A,B
l ‖U(dA,Bl−1 (t, 0)) + 2t(1− t)‖W̃A,B

l ‖zAl−1

= U(dA,Bl (t, 0)) (31)

To streamline the proof, we ignore the other upper bounds here. Similar to our demonstration for the first layer, we have:

U(dA,Bl (t, 0)) ≤ U(dA,Cl (t, 0)), (32)

U(dA,Bl (t, 1)) ≤ U(dA,Cl (t, 1)). (33)

Finally, since we assume that L is Lipschitz continuous, there exists a constant LL such that:

L(f(x0,θA,B(t))− y) ≤ LL‖f(x0,θA,B(t))− y‖

= LL‖xA,BL (t)− y‖

≤ LLU(‖xA,BL (t)− y‖)

= UA,B(t), (34)

where y is the ground truth label (or feature). As θA, θB , and θC are three optimal networks, we can find a constant ε and
specify them as ε optimal networs such that ‖f(x0,θα(t))− y‖, for α ∈ {A,B,C}. Then, we have:

‖xA,BL (t)− y‖ = ‖(1− t)WA
L (zA,BL−1(t)− zA,BL−1(0)) + tWB

L (zA,BL−1(t)− zA,BL−1(1))

+ (1− t)WA
L (zA,BL−1(0)− y) + tWB

L (zA,BL−1(1)− y)

+ 2t(1− t)W̃A,B
L zA,BL−1(t)‖ (35)

≤ (1− t)Lσ‖WA
L ‖U(dA,BL−1(t, 0)) + tLσ ‖WB

L ‖U(dA,BL−1(t, 1)) + ε

+ 2t(1− t)Lσ‖W̃A,B
L ‖U(dA,BL−1(t, 0)) + 2t(1− t)‖W̃A,B

L ‖zAL−1

= U(‖xA,BL (t)− y‖). (36)

18

Circumventing Backdoor Space via Weight Symmetry

Following the above scaling, we can also get UA,C(t) and derive UA,B(t) ≤ UA,C(t). Thus, for the upper bounds of loss
value over the curves γθ̃A,B

(t) and γθ̃A,C
(t), we have `(θ̃A,B) ≤ UA,B , `(θ̃A,C) ≤ UA,C , where UA,B ≤ UA,C , finishing

the proof.

E.2. Proof of Corollary 4.3

Proof. Since S(P ′) and S(P̂) are the sets consisting of permutation matrices, the Frobenius norms of the weights in each
layer of θB̂ and θB′ are identical to those of θB . Thus, θB̂ , θB′ , and θB are L2-norm-consistent with each other, according
to Definition 4.1.

As S(P̂) and S(P ′) are solutions to the optimization problems (6) and (8), respectively, we derive the following relations
for all l ∈ {1, 2, . . . , L}:

Ml(θA,θB̂ ;D) ≤Ml(θA,θB ;D) ≤Ml(θA,θB′ ;D).

By Theorem 4.2, we conclude that UA,B̂ ≤ UA,B ≤ UA,B′ , completing the proof.

F. Practical Algorithm
F.1. Computing the Permutation for Each Model Layer

PERMUTELAYERS(θA,θB , D, OPT) in Algorithm 1 returns a model by permuting the layers of θB , aligning or un-aligning
it with θA. To compute the permutation of the lth layer of θA for alignment with θB , we first obtain the corresponding
activations xAi, l and xBi, l for each sample x(i) ∈ D. We then employ the cost function cl = 1− corr(v, z) and compute the
sum of the cross-correlation matrices Ri,l of the normalized xAi, l and xBi, l as follows:

Rl =

|D|∑
i=1

Ri,l =

|D|∑
i=1

xAi, l − µxA
i, l

ΣxA
i, l

xBi, l − µxB
i, l

ΣxB
i, l

. (37)

Finally, we use the Hungarian algorithm (Kuhn, 1955) to solve the maximization problem (or equivalently the minimization
problem) according to OPT. It is noteworthy that, to stay consistent with previous work, we compute the cross-correlation
matrix here rather than the cost function defined in Equation (6) or Equation (8). This minimization or maximization
procedure is still equivalent to ordinary least squares constrained to the solution space Πdl (Ainsworth et al., 2023; Tatro
et al., 2020). We give the pseudocode of computing the permutation matrices for feedforward networks in Algorithm 2.
For more complex model architectures, the same principles apply, but the implementation details may vary. We refer
readers to Ainsworth et al. (2023) and Jordan et al. (2023) for more details on computing the permutation matrices for other
architectures, such as ResNet-18 (He et al., 2016b) and VGG19-BN (Simonyan & Zisserman, 2014).

Algorithm 2 PERMUTELAYERS (Compute Permutation Matrices for Layer Alignment/Un-alignment)
Require: model θA, model θB , dataset D, optimization OPT;

Set assignment problemO with minimization/maximization objective according to OPT;
for each layer l in {1, 2, . . . , L− 1} do

for each sample xi, 0 in dataset D do
Compute xAi, l ← σ ◦WA

l ◦ ... ◦ σ ◦WA
1 xi, 0, xBi, l ← σ ◦WB

l ◦ ... ◦ σ ◦WB
1 xi, 0;

end for
Compute the correlation matrix Rl using Equation (37);
Compute Pl by solving theO with Rl using Hungarian algorithm;
UpdateWB

l ← PlW
B
l , WB

l+1 ←WB
l+1P

>
l ;

end for
Ensure: permuted model θB ;

F.2. Training the Quadratic Bézier Curve

FITQUADCURVE(θA,θB ,F , D, e) returns the quadratic Bézier curve connecting θA and θB , trained using method F over
D for e epochs. As mentioned in Appendix B, at each step, we randomly select a sample t̂ from the uniform distribution

19

Circumventing Backdoor Space via Weight Symmetry

over the interval [0, 1] and update the value of θA,B based on the gradient of the loss computed using the training method F .
This is achieved by computing the loss of θt̂ over the dataset D using F , and then calculating the gradient of θA,B (i.e., the
weights of the curve γθA,B

(t)) via the chain rule. The pseudocode is provided in Algorithm 3.

Algorithm 3 FITQUADCURVE (Train Quadratic Bézier Curve)
Require: model θA, model θB , training method F , dataset D, curve training epoch e;

Initialize θA,B ← 1
2 (θA + θB);

Initialize parametric curve γθA,B
(t)← (1− t)2θA + 2t(1− t)θA,B + t2θB ;

for i = 1 to e do
Sample t̂ from the distribution U(0, 1);
θt̂ ← RETRIEVEPOINT(γθA,B

, t̂);
Update θA,B , the weights of the curve γθA,B

(t), using the loss computed by F with respect to θt̂ over the dataset D;
end for

Ensure: quadratic Bézier curve γθA,B
;

G. Evaluating TSC’s Robustness Against Adaptive Attacks
G.1. Apdative Attack Design

The key defense mechanism of TSC relies on increasing adversarial loss along the quadratic Bézier curve by projecting
model θadv to a distinct loss basin to find θadv′ during its first stage. An adaptive attack would aim to create a backdoored
model maintaining low backdoor loss along this defensive curve.

Here, we assume the adversary has access to the model training procedure. Building upon the neural network subspace
learning approach from (Wortsman et al., 2021), originally developed for accuracy and calibration improvements, we design
an adaptive attack strategy. The key insight is to place θadv and its symmetric point θadv′ in a subspace that minimizes loss
on poisoned samples. Our approach simultaneously trains a curve and updates its endpoints θadv and θadv′ using mixed
benign and poisoned data (i.e., learning a backdoored subspace). After training, we select one endpoint as the final model.

The implementation details are provided in Algorithm 4. We first project the backdoored model θadv to a symmetric loss
basin to obtain θadv′ by solving Equation (8), similar to TSC’s initial process. We then train the curve connecting θadv and
θadv′ over Dadv without fixed endpoints, ensuring the curve lies within the backdoored subspace. Finally, we return θadv as
the output model, which is expected to achieves lower loss along the curve found by TSC compared to the original model.

Algorithm 4 Adaptive Attack against TSC
Require: backdoored model θadv , training method F , poisoned dataset Dadv , curve training epoch e;
B Projecting backdoored model to symmetric subspace
θadv′ ← PERMUTELAYERS(θadv,θadv, Dadv,MAX);
Initialize θm−adv ← 1

2 (θadv + θadv′);
Initialize parametric curve γθadv

(t)← (1− t)2θadv + 2t(1− t)θm−adv + t2θadv′ ;
B Learning Symmetric Backdoored Subspace
for i = 1 to e do

Sample t̂ from the distribution U(0, 1);
θt̂,adv ← RETRIEVEPOINT(γθadv

, t̂);
Update the weights of θadv, θm−adv and θadv′ simultaneously, using the loss computed by F with respect to θt̂,adv
over the dataset Dadv;

end for
Ensure: backdoored model θadv;

G.2. Empirical Evaluation Against Adaptive Attack

To evaluate TSC’s robustness against adaptive attacks, we apply Algorithm 4 to convert models backdoored by BadNet (Gu
et al., 2017), Blended (Chen et al., 2017), SSBA (Li et al., 2021c), LF (Zeng et al., 2021), WaNet (Nguyen & Tran, 2021),
Input-aware (Nguyen & Tran, 2020), LC (Turner et al., 2019), and SIG (Barni et al., 2019) under supervised learning. We

20

Circumventing Backdoor Space via Weight Symmetry

Table 4. Performance of TSC against adaptive attacks on
CIFAR-10 under supervised learning.

CIFAR10 No Defense TSC
(Poisoning rate-5%) ACC(↑) ASR(↓) ACC(↑) ASR(↓)

Adap-BadNet 92.43 91.26 91.47 2.07
Adap-Blended 93.12 99.23 90.88 7.26

Adap-Inputaware 92.11 90.18 90.21 4.85
Adap-LC 93.27 98.14 89.87 2.92
Adap-LF 92.46 97.91 88.66 3.39
Adap-SIG 92.33 94.99 90.34 1.82

Adap-SSBA 92.39 94.87 89.33 2.68
Adap-WaNet 92.61 87.29 90.19 1.59

Table 5. Performance of TSC against adaptive attacks on Im-
ageNet100 under supervised learning.

ImageNet100 No Defense TSC
(Poisoning rate-1%) ACC(↑) ASR(↓) ACC(↑) ASR(↓)

Adap-BadNet 83.64 99.47 78.22 0.23
Adap-Blended 84.42 98.15 78.85 9.61

Adap-Inputaware 79.42 70.44 77.04 0.82
Adap-LC 84.22 42.67 80.44 0.36
Adap-LF 83.61 99.66 78.18 3.26
Adap-SIG 83.39 69.86 79.55 5.61

Adap-SSBA 83.13 99.32 80.19 7.67
Adap-WaNet 81.75 88.04 80.31 0.26

Table 6. Performance of TSC against adaptive attacks using SimCLR with
CIFAR-10 and ImageNet100 pretraining (self-supervised learning).

Pre-training
Dataset

Downstream
Dataset

No Defense TSC (ours)

ACC(↑) ASR(↓) ACC(↑) ASR(↓)

CIFAR10
STL10 76.51 99.80 72.62 4.83
GTSRB 82.47 98.94 77.77 1.90
SVHN 64.90 98.74 64.41 5.13

ImageNet
STL10 94.94 98.87 88.24 3.42
GTSRB 75.81 99.90 70.94 6.13
SVHN 73.62 99.32 68.18 3.42

conduct experiments on CIFAR10 using PreAct-ResNet with 5% poisoning rate and ImageNet using ResNet50 with 1%
poisoning rate.

For self-supervised learning, we adapt BadEncoder (Jia et al., 2022) into our adaptive attack framework. Using SimCLR, we
utilize publicly available backdoored ResNet18 and ResNet50 encoders on CIFAR10 and ImageNet, respectively, evaluating
ASR and ACC through linear probing on downstream datasets STL10, GTSRB, and SVHN.

Since our adaptive attack is designed to exlpore the robustness of TSC, we do not consider other defenses here. For fair
evaluation, we use the default settings of TSC: global epoch ETSC = 3, curve index t = 0.4, and curve training epoch
e = 200 for supervised learning; ETSC = 2, t = 0.25, and e = 200 for SimCLR. We provide defenders with 5% clean
samples. Additional experimental settings follow Appendix L.

The defense results are presented in Tables 4 to 6. After retraining the backdoored models using Algorithm 4, we observe
slight improvements in both ACC and ASR compared to the original models. We suspect that such improvements are due to
the benefits of the subspace learning approach (Wortsman et al., 2021). Importantly, TSC maintains its robustness against
these adaptive attacks across both supervised and self-supervised learning settings.

G.3. Loss Landscape Visualization of Adaptive Attack

To further explore the effectiveness of our defense against adaptive attacks, we present a loss landscape visualization for
Adap-BadNet before and after applying TSC, as shown in Figure 4. The left plot shows that the adaptive attack’s curve
training procedure successfully places its backdoored model, θadv, and its corresponding symmetric point, θadv′ , in a
subspace that minimizes loss on poisoned samples. However, as depicted in the middle plot, the curve identified by the first
stage of TSC traverses a loss basin characterized by considerably higher loss on poisoned samples, rather than the basin
exploited by the adaptive attack. We attribute this to TSC’s training procedure, which exclusively uses benign samples,
thereby guiding the curve to circumvent the loss basin optimized by the adaptive attack. Moreover, the permutation operation
in the first stage of TSC could also find an endpoint in a different loss basin from both θadv and θadv′ , as there are multiple
permutations matrices that satisfy the maximization objective in Equation (8) (Entezari et al., 2022).

21

Circumventing Backdoor Space via Weight Symmetry

L
o
ss

 o
f

 P
o
is

o
n

ed
S

a
m

p
le

s
Bézier Curve after Adap-attack Training

(Settings) Dataset: CIFAR10, Model Architecture: PreAct-ResNet18, Attack: Adap-BadNet, Poisoning Rate: 5%

Bézier Curve of Stage 1 (TSC) Bézier Curve of Stage 2 (TSC)

Figure 4. Loss landscape for poisoned samples of Adap-Badnet, along with trained quadratic curves connecting distinct models. The
backdoored model is a PreAct-ResNet18 trained on CIFAR-10, which contains 5% poisoned samples. Left: the curve identified by our
adaptive attack. Middle: the curve identified by the first stage of TSC. Right: the curve identified by the second stage of TSC.

Overall, the combination of the permutation mechanism and training exclusively with benign samples contributes to
amplifying the loss on poisoned samples.

H. Ablation Studies
H.1. Sensitivity Analysis on Global Epochs ETSC and the Curve Index t

TSC has two key hyperparameters: the number of global epochs ETSC and the curve index t.

For supervised learning, we investigate their impact through ablation studies on CIFAR10 using PreAct-ResNet18 with a 5%
poisoning rate under supervised learning. Figure 5 illustrates the purification performance of TSC under varying ETSC and
t. Each data point represents averaged results against twelve attacks: BadNet (Gu et al., 2017), Blended (Chen et al., 2017),
SSBA (Li et al., 2021c), LF (Zeng et al., 2021), WaNet (Nguyen & Tran, 2021), Inputaware (Nguyen & Tran, 2020), LC
(Turner et al., 2019), SIG (Barni et al., 2019), SBL-BadNet, SBL-Blended (Pham et al., 2024), Narcissus (Zeng et al., 2023)
and SAPA (He et al., 2024).

For self-supervised learning, we conduct experiments on pre-training dataset CIFAR10 and downstream dataset STL10
using ResNet18 to evaluate the performance of TSC against BadEncoder (Jia et al., 2022). Figure 6 shows the results of
TSC under different ETSC and t values.

Importantly, each point in Figures 5 and 6 shows the final ACC and ASR values of TSC using different combinations of
ETSC and t. This differs from Figure 3, Figure 7, and similar figures, which display ACC and ASR values evaluated along
the curve at each round of ETSC with fixed t.

The results in Figure 5 demonstrate that increasing the curve index t to 0.5 enhances purification performance at the cost of
slightly reduced clean accuracy (ACC) per epoch. Similarly, as t increases from 0.5 to 0.95, ACC improves but purification
effectiveness decreases. As previously noted, when t ≥ 0.4 (or t ≤ 0.6), a single epoch of TSC proves insufficient for
backdoor removal. Furthermore, increasing the number of global epochs ETSC could enhance the stability of the defense
performance against various attacks. Our empirical analysis suggests t = 0.4 and ETSC = 3 as optimal parameters for
supervised learning settings.

We can observe that the performance of TSC on self-supervised learning is consistent with that of supervised learning.
The key difference is that a smaller curve index t suffices for backdoor removal in self-supervised learning. Though
Figure 6 (left) demonstrates that setting t = 0.2 and ETSC = 1 achieves effective purification, we opt for more conservative
hyperparameters (t = 0.25 and ETSC = 2) to ensure robust performance across diverse attack scenarios.

Additional results for ACC and ASR along the curve with fixed t = 0.4 are presented in Figures 7, 8, 11 and 12. While
ETSC = 1 or ETSC = 2 can occasionally reduce ASR to near zero, ETSC = 3 provides more consistent robustness across
different attacks. For conservative defenders, we recommend larger values of ETSC and t as the hyperparameters.

H.2. Analysis on Model Architecture

To evaluate the stability of TSC across different architectures, we conduct experiments using VGG19-BN (Simonyan &
Zisserman, 2014) and InceptionV3 (Szegedy et al., 2016) on the CIFAR10 dataset under supervised learning settings. We

22

Circumventing Backdoor Space via Weight Symmetry

10 20 30 40 50 60 70 80 90
t (×10−2)

0

20

40

60

80

100
Te

st
 A

CC
 /

AS
R(

%
)

ETSC = 1

ASR
ACC

10 20 30 40 50 60 70 80 90
t (×10−2)

0

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

ETSC = 2

ASR
ACC

10 20 30 40 50 60 70 80 90
t (×10−2)

0

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

ETSC = 3

ASR
ACC

Figure 5. (Supervised Learning) Effect of global epoch ETSC and the curve index t on TSC defense. We evaluate the performance of
TSC on CIFAR10 with 5% poisoning rate using PreAct-ResNet18. Each point is averaged over the results of TSC against 12 attacks.

10 20 30 40 50 60 70 80 90
t (×10−2)

0

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

ETSC = 1
ASR
ACC

10 20 30 40 50 60 70 80 90
t (×10−2)

0

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

ETSC = 2
ASR
ACC

10 20 30 40 50 60 70 80 90
t (×10−2)

0

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

ETSC = 3
ASR
ACC

Figure 6. (Self-Supervised Learning, SimCLR) Effect of global epoch ETSC and the curve index t on TSC defense. We evaluate the
performance of TSC against BadEncoder on pre-training dataset CIFAR10 and downstream dataset STL10 with ResNet18. We performed
3 defense runs for each point and averaged the results in the figure.

Table 7. (Supervised Learning) Performance of MCR and TSC
on CIFAR-10 with 5% poisoning rate using VGG19-BN.

CIFAR10 No Defense MCR TSC
(Poisoning rate-5%) ACC(↑) ASR(↓) ACC(↑) ASR(↓) ACC(↑) ASR(↓)

BadNet 91.19 93.92 90.44 55.21 90.69 1.76
Blended 92.24 99.43 91.29 96.56 90.46 9.09

Inputaware 89.22 93.34 90.96 5.44 90.58 6.32
LC 91.78 99.21 91.05 100.00 89.82 3.23
LF 89.27 96.29 90.22 1.02 88.97 1.38
SIG 91.91 97.23 91.09 99.87 89.25 8.22

SSBA 91.53 90.39 91.05 81.84 91.03 7.92
WaNet 87.42 94.32 92.04 2.45 90.36 1.91

Table 8. (Supervised Learning) Performance of MCR and TSC
on CIFAR-10 with 5% poisoning rate using Inception-v3.

CIFAR10 No Defense MCR TSC
(Poisoning rate-5%) ACC(↑) ASR(↓) ACC(↑) ASR(↓) ACC(↑) ASR(↓)

BadNet 90.23 95.82 89.74 70.16 90.78 1.88
Blended 90.16 99.40 90.69 91.57 90.36 6.93

Inputaware 89.01 93.50 90.94 1.42 90.71 2.27
LC 92.19 99.31 90.06 96.57 90.76 3.09
LF 91.43 93.12 90.28 22.22 91.00 1.31
SIG 90.89 91.29 91.49 92.04 89.44 2.36

SSBA 90.53 89.24 90.86 62.65 90.81 3.85
WaNet 89.34 91.26 90.13 5.44 90.51 1.87

set the poisoning rate to 5% for all attacks and employ the default hyperparameters for MCR and TSC. The results are
presented in Table 7 and Table 8 respectively.

The results demonstrate that TSC maintains robust performance across different model architectures. While TSC occasionally
shows marginally lower ACC compared to MCR, it consistently demonstrates superior robustness against all considered
attacks.

I. Additional Results for Supervised Learning
In this section, we provide comprehensive results for supervised learning settings.

Figures 7 to 10 illustrates the performance of TSC and MCR on CIFAR10 with 10%, 5%, and 1% poisoning rates,
respectively. Figures 11 and 12 present the results on ImageNet100 with 1% and 0.5% poisoning rates, respectively. Taking
CIFAR10 as an example, we observe that backdoors are more effectively eliminated by TSC when the poisoning rate is
relatively high. When the poisoning rate is 10%, a small number of global epochs ETSC is sufficient to remove backdoors
implanted by attacks such as BadNet, InputAware, and LC. However, when the poisoning rate decreases to 1%, ETSC = 3
is required to defend against all attacks. TSC demonstrates similar behavior on the ImageNet100 dataset. These findings
further indicate that conservative hyperparameter settings are reasonable in supervised learning scenarios.

Tables 9 to 11 summarize the defense results of TSC and other baseline defenses on CIFAR10, ImageNet100, and GTSRB,

23

Circumventing Backdoor Space via Weight Symmetry

respectively. Tables 9 to 11 summarize the defense results of TSC and other baseline defenses on CIFAR10, ImageNet100,
and GTSRB, respectively.

The experimental results reveal that while lower poisoning rates can increase the robustness of attack, excessively low
poisoning rates sometimes result in diminished ASRs on the original model. For instance, with a 1% poisoning rate, WaNet
attack achieves only 12.63% initial ASR on CIFAR10; with a 0.5% poisoning rate, LC attack yields merely 0.61% ASR on
ImageNet100. Although these attacks are not considered successful backdoor attacks, we include them in our evaluation for
completeness.

Notably, TSC successfully reduces the attack success rate of all attacks to below 15%. As mentioned in our main paper,
ANP (Wu & Wang, 2021), FT-SAM (Zhu et al., 2023), and I-BAU (Zeng et al., 2022) perform well on smaller datasets like
CIFAR10 and GTSRB, particularly with higher poisoning rates. However, their effectiveness is limited on the ImageNet100
dataset. While SAU (Wei et al., 2023) demonstrates good defense capabilities, it sometimes reduces clean accuracy (ACC)
to suboptimal levels. We attribute this phenomenon to the lack of theoretical convergence guarantees for the unlearning loss
function employed by SAU.

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

ETSC = 1

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

Badnet

ETSC = 2

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100
ETSC = 3

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

ETSC = 1

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

Blended

ETSC = 2

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100
ETSC = 3

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

Inputaware

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

LC

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

LF

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

SIG

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

SSBA

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

WaNet

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

SBL-BadNet

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

SBL-Blended

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

ASR of the 1st Stage (TSC) ACC of the 1st Stage (TSC) ASR of the 2nd Stage (TSC) ACC of the 2nd Stage (TSC) ASR of MCR ACC of MCR

Figure 7. (Supervised Learning) Performance of TSC and MCR on CIFAR-10 with 10% poisoning rate using PreAct-ResNet18. Test
accuracy (ACC) on benign samples and the attack success rate (ASR) are evaluated as functions of the points along the quadratic Bézier
curve found by MCR and TSC. We select model points along the curve at t = 0.4 for each stage and round.

24

Circumventing Backdoor Space via Weight Symmetry

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

Te
st

 A
CC

 /
AS

R(
%

)

ETSC = 1

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

Badnet

ETSC = 2

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

ETSC = 3

0.00 0.25 0.50 0.75 1.00
t

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

ETSC = 1

0.00 0.25 0.50 0.75 1.00
t

20

40

60

80

100

Blended

ETSC = 2

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100
ETSC = 3

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

Inputaware

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)
0.00 0.25 0.50 0.75 1.00

t

0

20

40

60

80

100

LC

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

LF

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

SIG

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

SSBA

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

WaNet

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

Te
st

 A
CC

 /
AS

R(
%

)

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

SBL-BadNet

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

SBL-Blended

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

0.00 0.25 0.50 0.75 1.00
t

20

40

60

80

Te
st

 A
CC

 /
AS

R(
%

)

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

Narcissus

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

SAPA

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

ASR of the 1st Stage (TSC) ACC of the 1st Stage (TSC) ASR of the 2nd Stage (TSC) ACC of the 2nd Stage (TSC) ASR of MCR ACC of MCR

Figure 8. (Supervised Learning) Performance of TSC and MCR on CIFAR-10 with 5% poisoning rate using PreAct-ResNet18. We
select model points along the curve at t = 0.4 for each stage and round.

25

Circumventing Backdoor Space via Weight Symmetry

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

Te
st

 A
CC

 /
AS

R(
%

)

ETSC = 1

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

Badnet

ETSC = 2

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

ETSC = 3

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

ETSC = 1

0.00 0.25 0.50 0.75 1.00
t

20

40

60

80

Blended

ETSC = 2

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

ETSC = 3

0.00 0.25 0.50 0.75 1.00
t

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

0.00 0.25 0.50 0.75 1.00
t

20

40

60

80

100

Inputaware

0.00 0.25 0.50 0.75 1.00
t

20

40

60

80

100

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

Te
st

 A
CC

 /
AS

R(
%

)

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

LC

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

0.00 0.25 0.50 0.75 1.00
t

20

40

60

80

Te
st

 A
CC

 /
AS

R(
%

)

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

LF

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

Te
st

 A
CC

 /
AS

R(
%

)
0.00 0.25 0.50 0.75 1.00

t

0

20

40

60

80

SIG

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

Te
st

 A
CC

 /
AS

R(
%

)

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

SSBA

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

Te
st

 A
CC

 /
AS

R(
%

)

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

WaNet

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

Te
st

 A
CC

 /
AS

R(
%

)

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

SBL-BadNet

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

0.00 0.25 0.50 0.75 1.00
t

20

40

60

80

Te
st

 A
CC

 /
AS

R(
%

)

0.00 0.25 0.50 0.75 1.00
t

20

40

60

80

SBL-Blended

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

Te
st

 A
CC

 /
AS

R(
%

)

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

Narcissus

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

0.00 0.25 0.50 0.75 1.00
t

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

0.00 0.25 0.50 0.75 1.00
t

20

40

60

80

100

SAPA

0.00 0.25 0.50 0.75 1.00
t

20

40

60

80

100

ASR of the 1st Stage (TSC) ACC of the 1st Stage (TSC) ASR of the 2nd Stage (TSC) ACC of the 2nd Stage (TSC) ASR of MCR ACC of MCR

Figure 9. (Supervised Learning) Performance of TSC and MCR on CIFAR-10 with 1% poisoning rate using PreAct-ResNet18. We
select model points along the curve at t = 0.4 for each stage and round.

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

Te
st

 A
CC

 /
AS

R(
%

)

ETSC = 1

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

Narcissus

ETSC = 2

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

ETSC = 3

0.00 0.25 0.50 0.75 1.00
t

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

ETSC = 1

0.00 0.25 0.50 0.75 1.00
t

20

40

60

80

100

SAPA

ETSC = 2

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100
ETSC = 3

ASR of the 1st Stage (TSC) ACC of the 1st Stage (TSC) ASR of the 2nd Stage (TSC) ACC of the 2nd Stage (TSC) ASR of MCR ACC of MCR

Figure 10. (Supervised Learning) Performance of TSC and MCR on CIFAR-10 with 0.5% poisoning rate using PreAct-ResNet18
against Narcissus and SAPA attacks. We select model points along the curve at t = 0.4 for each stage and round.

26

Circumventing Backdoor Space via Weight Symmetry

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

ETSC = 1

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

Badnet

ETSC = 2

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100
ETSC = 3

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

ETSC = 1

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

Blended

ETSC = 2

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100
ETSC = 3

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

Te
st

 A
CC

 /
AS

R(
%

)

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

Inputaware

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

Te
st

 A
CC

 /
AS

R(
%

)
0.00 0.25 0.50 0.75 1.00

t

0

20

40

60

80

LC

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

LF

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

Te
st

 A
CC

 /
AS

R(
%

)

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

SIG

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

SSBA

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

Te
st

 A
CC

 /
AS

R(
%

)

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

WaNet

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

SBL-BadNet

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

SBL-Blended

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

SAPA

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

ASR of the 1st Stage (TSC) ACC of the 1st Stage (TSC) ASR of the 2nd Stage (TSC) ACC of the 2nd Stage (TSC) ASR of MCR ACC of MCR

Figure 11. (Supervised Learning) Performance of TSC and MCR on ImageNet100 with 1% poisoning rate using ResNet50. We select
model points along the curve at t = 0.4 for each stage and round.

27

Circumventing Backdoor Space via Weight Symmetry

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

ETSC = 1

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

Badnet

ETSC = 2

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100
ETSC = 3

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

ETSC = 1

0.00 0.25 0.50 0.75 1.00
t

20

40

60

80

100

Blended

ETSC = 2

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100
ETSC = 3

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

Te
st

 A
CC

 /
AS

R(
%

)

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

Inputaware

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

Te
st

 A
CC

 /
AS

R(
%

)
0.00 0.25 0.50 0.75 1.00

t

0

20

40

60

80

LC

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

LF

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

Te
st

 A
CC

 /
AS

R(
%

)

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

SIG

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

SSBA

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

Te
st

 A
CC

 /
AS

R(
%

)

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

WaNet

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

SBL-BadNet

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

SBL-Blended

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

SAPA

0.00 0.25 0.50 0.75 1.00
t

0

20

40

60

80

100

ASR of the 1st Stage (TSC) ACC of the 1st Stage (TSC) ASR of the 2nd Stage (TSC) ACC of the 2nd Stage (TSC) ASR of MCR ACC of MCR

Figure 12. (Supervised Learning) Performance of TSC and MCR on ImageNet100 with 0.5% poisoning rate using ResNet50. We select
model points along the curve at t = 0.4 for each stage and round.

28

Circumventing Backdoor Space via Weight Symmetry

Table 9. Results on CIFAR10 under supervised learning scenarios. Attack Success Rates (ASRs) below 15% are highlighted in blue to
indicate a successful defense, while ASRs above 15% are denoted in red as failed defenses.

Attacks Poison
Rate

No Defense FP NC MCR ANP FT-SAM I-BAU SAU TSC (ours)

ACC(↑) ASR(↓) ACC(↑) ASR(↓) ACC(↑) ASR(↓) ACC(↑) ASR(↓) ACC(↑) ASR(↓) ACC(↑) ASR(↓) ACC(↑) ASR(↓) ACC(↑) ASR(↓) ACC(↑) ASR(↓)

C
IF

A
R

10

BadNet

10% 91.63 93.88 91.88 0.82 90.47 1.08 90.98 2.01 84.03 0.00 91.84 1.63 88.45 2.40 90.74 1.08 90.09 1.16

5% 92.64 88.74 92.26 1.17 90.53 1.01 92.17 7.62 86.45 0.02 92.19 3.50 88.66 0.92 89.32 1.74 89.19 1.90

1% 93.14 74.73 92.59 2.29 92.07 0.77 92.90 18.06 85.82 0.04 92.39 1.57 87.80 2.29 65.38 2.06 90.71 1.26

Blended

10% 93.46 99.78 91.97 18.42 90.75 2.44 92.93 97.87 84.91 6.14 92.48 11.38 88.86 9.52 90.39 9.57 90.33 8.79

5% 93.66 99.61 92.70 49.47 93.67 99.61 93.23 99.01 88.95 18.76 93.00 29.59 88.07 34.86 90.69 7.74 90.14 10.53

1% 93.76 94.88 92.92 69.74 93.76 94.88 93.62 93.10 89.69 60.52 93.00 49.36 89.62 25.74 90.02 36.16 91.12 12.46

Inputaware

10% 91.54 88.34 93.29 15.36 92.77 5.57 93.25 60.84 87.30 0.20 93.32 2.66 90.62 0.78 91.94 1.40 92.05 3.11

5% 91.51 90.20 93.25 35.21 91.52 90.20 92.94 95.49 88.75 0.22 93.32 2.88 91.31 8.43 91.62 1.67 90.40 5.07

1% 91.74 79.18 93.16 8.58 91.74 79.19 93.09 79.62 83.95 1.32 93.83 10.42 90.98 6.36 91.60 2.53 92.04 9.52

LF

10% 93.19 99.28 92.37 42.14 91.43 2.50 92.73 94.66 87.60 0.74 92.68 7.10 86.45 28.03 85.40 2.01 90.66 3.90

5% 93.36 98.03 92.84 59.12 90.98 2.43 93.07 97.32 84.20 2.46 92.89 7.44 88.64 45.66 90.60 1.71 88.50 3.78

1% 93.56 86.44 92.45 65.80 93.56 86.46 93.09 84.11 86.27 11.28 93.47 11.71 90.53 69.28 91.58 18.12 90.68 11.67

SSBA

10% 92.88 97.07 92.15 19.20 92.88 97.07 92.49 88.49 84.86 0.03 92.18 4.07 88.61 3.84 88.75 1.80 90.54 3.67

5% 93.27 94.91 92.55 16.27 93.27 94.91 92.94 92.06 88.72 0.13 92.71 2.87 89.65 1.54 91.30 2.06 89.43 2.18

1% 93.43 73.44 93.01 7.68 91.60 0.46 93.33 65.88 85.33 0.31 93.02 1.49 89.56 4.87 91.38 0.99 91.18 2.18

WaNet

10% 90.56 96.92 93.18 0.81 90.56 96.92 93.10 0.71 89.11 0.42 93.73 0.74 91.94 13.44 91.73 0.80 92.00 0.98

5% 91.76 85.50 93.66 7.51 91.76 85.50 93.25 20.83 87.64 0.72 93.85 1.00 90.66 4.43 91.70 1.98 90.46 1.34

1% 90.65 12.63 93.47 0.51 92.55 0.64 93.48 0.77 83.25 0.12 93.96 0.72 91.87 1.32 91.90 1.20 91.40 0.87

SBL-BadNet

10% 91.30 95.11 92.00 91.07 91.63 0.34 91.37 70.99 90.72 0.00 91.41 89.13 88.99 17.09 90.63 1.52 90.36 0.21

5% 90.79 93.48 92.59 1.13 92.22 0.59 92.26 91.82 82.82 51.63 92.16 60.03 90.67 27.06 91.31 0.60 91.02 1.12

1% 91.71 88.64 93.10 31.77 91.82 0.72 93.23 86.11 82.71 81.48 92.77 59.58 90.63 2.00 92.32 1.01 91.54 1.93

SBL-Blended

10% 90.46 94.12 92.49 29.61 90.46 88.12 92.51 99.91 86.32 52.96 92.40 74.02 91.44 22.79 88.11 9.09 90.98 8.27

5% 91.70 97.67 92.97 79.74 91.70 97.67 92.75 99.61 85.13 20.48 92.50 77.90 89.65 57.41 91.43 11.53 90.47 8.94

1% 92.07 91.84 93.43 83.80 92.07 91.84 93.37 95.02 85.30 58.19 93.31 82.64 90.67 64.08 92.34 16.31 90.11 6.70

SAPA

5% 93.57 100.00 92.56 41.88 92.76 2.51 93.25 100.00 84.83 1.14 92.80 8.40 88.51 1.44 91.39 3.30 91.13 4.51

1% 94.01 99.97 92.34 92.22 92.80 2.14 93.83 100.00 86.06 92.68 93.06 79.80 86.69 15.17 91.83 1.96 90.37 7.41

0.5% 93.77 84.80 88.82 82.76 92.74 1.52 93.78 80.83 87.99 81.52 93.23 82.02 90.16 26.48 91.75 0.68 90.98 7.32

LC

10% 84.49 99.68 89.90 2.82 90.17 2.02 89.95 12.82 84.08 90.01 91.32 3.09 86.28 3.80 88.78 0.36 89.95 2.74

5% 93.31 98.33 92.19 72.99 92.32 0.64 92.94 99.94 88.15 13.83 92.59 57.18 90.15 1.99 91.53 1.50 90.04 2.38

1% 93.79 75.93 92.86 29.86 92.31 0.68 93.67 82.54 86.58 31.46 92.83 39.40 89.78 0.71 92.16 3.77 90.08 5.78

SIG

10% 84.48 97.43 89.95 0.69 84.48 97.43 90.06 1.33 80.94 0.01 91.61 0.24 86.39 3.61 89.40 2.87 89.67 0.64

5% 93.29 95.06 92.81 43.02 93.28 95.06 92.96 95.82 86.51 4.76 92.62 0.94 87.98 7.54 90.63 0.40 90.39 2.19

1% 93.82 83.40 93.00 70.51 93.82 83.40 93.56 86.31 91.49 52.69 93.20 37.74 88.18 38.01 91.07 33.71 91.67 10.97

Narcissus

5% 93.72 90.91 91.93 68.61 93.72 80.91 93.63 86.64 87.87 49.27 93.19 27.92 87.82 73.79 90.72 1.57 91.35 14.48

1% 93.68 82.87 92.29 44.88 93.68 47.87 93.61 49.79 92.01 27.01 93.05 26.80 90.21 18.67 91.36 3.24 90.65 7.88

0.5% 93.68 80.58 92.94 29.59 93.67 32.57 93.69 32.96 89.35 16.78 93.06 14.08 89.16 21.09 91.74 5.81 91.71 8.02

29

Circumventing Backdoor Space via Weight Symmetry

Table 10. Results on ImageNet100 under supervised learning scenarios.

Attacks Poison
Rate

No Defense FP NC MCR ANP FT-SAM I-BAU SAU TSC (ours)

ACC(↑) ASR(↓) ACC(↑) ASR(↓) ACC(↑) ASR(↓) ACC(↑) ASR(↓) ACC(↑) ASR(↓) ACC(↑) ASR(↓) ACC(↑) ASR(↓) ACC(↑) ASR(↓) ACC(↑) ASR(↓)

Im
ag

eN
et

10
0

BadNet
0.5% 84.30 99.78 83.36 9.80 81.92 0.52 85.24 99.66 78.44 94.18 83.70 9.45 73.70 8.34 73.86 0.28 80.20 0.22

1% 84.56 99.86 83.10 9.58 81.92 0.49 85.08 99.86 79.48 93.64 83.88 24.14 71.46 43.66 72.84 0.26 78.06 0.14

Blended
0.5% 84.44 94.32 82.80 63.25 84.44 94.32 85.58 94.97 84.56 93.27 83.40 75.43 74.22 62.34 73.84 3.72 76.58 12.63

1% 84.90 98.04 83.36 69.21 80.21 70.21 85.04 97.58 84.54 97.70 83.86 82.00 73.10 61.25 69.24 0.53 75.88 6.35

Inputaware
0.5% 76.62 69.94 83.56 16.57 76.62 69.94 83.56 51.52 73.82 42.20 82.96 39.23 71.80 43.11 76.18 1.27 80.10 4.63

1% 77.66 65.13 83.54 25.23 72.66 43.62 83.54 68.55 70.56 56.24 82.60 54.46 73.64 56.53 70.86 24.63 76.46 1.09

LF
0.5% 84.24 98.87 83.10 50.26 84.24 98.87 85.70 97.70 81.32 86.20 83.80 70.48 74.36 74.97 75.22 0.18 78.78 5.39

1% 83.92 99.56 83.00 35.82 76.76 49.87 85.30 99.03 81.10 88.53 83.40 70.69 71.06 22.32 67.38 2.93 78.58 5.41

SSBA
0.5% 84.30 95.31 83.34 46.75 84.30 95.31 85.04 95.13 76.96 6.18 83.16 15.70 71.52 1.19 76.12 0.89 79.56 1.45

1% 84.02 99.43 83.34 59.68 78.47 70.78 85.14 97.72 80.22 22.77 83.50 20.30 72.58 7.45 73.94 0.36 79.88 4.91

WaNet
0.5% 83.34 53.92 84.04 0.95 77.34 22.66 85.30 14.34 79.66 0.00 83.90 0.12 72.46 0.00 76.18 0.18 80.70 0.28

1% 79.62 90.69 84.90 4.87 78.34 14.12 85.44 25.52 78.56 0.04 83.28 0.26 71.24 1.56 76.42 1.23 80.20 0.32

SBL-BadNet
0.5% 72.50 100.00 85.10 67.07 70.15 3.62 82.76 88.61 65.40 89.49 83.98 40.71 72.34 3.52 78.54 2.57 80.32 0.34

1% 72.64 100.00 85.36 79.82 69.97 1.95 82.24 90.44 67.36 89.49 83.68 64.97 74.02 19.33 78.14 0.36 77.48 0.22

SBL-Blended
0.5% 72.52 97.56 85.10 89.29 72.52 97.56 82.54 92.63 68.28 97.05 83.84 89.07 70.78 37.35 73.66 14.87 79.42 7.18

1% 72.68 99.17 83.41 68.24 71.42 70.14 82.82 95.78 72.72 99.15 83.92 92.69 73.52 20.30 76.78 39.29 77.16 8.87

SAPA
0.5% 85.04 98.83 83.44 20.53 78.57 9.20 85.60 93.05 80.42 96.59 83.82 30.04 69.32 18.34 73.34 1.07 79.00 1.74

1% 85.50 98.79 83.34 27.86 77.42 3.52 85.42 95.80 83.12 93.76 83.96 45.88 69.12 41.64 75.42 1.23 78.14 1.41

LC
0.5% 84.22 0.61 83.34 0.20 84.22 0.61 85.04 0.93 84.48 0.57 83.86 0.24 69.72 0.36 76.20 0.16 80.36 0.22

1% 84.10 32.97 83.48 4.28 81.13 0.42 85.48 76.75 84.22 32.42 83.58 8.06 73.52 1.76 70.50 0.79 80.18 0.57

SIG
0.5% 84.20 16.22 83.26 2.22 78.48 0.43 85.18 18.34 84.00 15.86 83.88 4.51 70.76 3.43 75.22 0.12 77.20 0.55

1% 84.16 70.08 83.40 20.48 79.58 0.89 85.02 77.84 80.40 65.68 83.36 44.81 70.98 19.98 73.76 0.30 80.22 9.98

Table 11. Results on GTSRB under supervised learning scenarios.

Attacks Poison
Rate

No Defense FP NC MCR ANP FT-SAM I-BAU SAU TSC (ours)

ACC(↑) ASR(↓) ACC(↑) ASR(↓) ACC(↑) ASR(↓) ACC(↑) ASR(↓) ACC(↑) ASR(↓) ACC(↑) ASR(↓) ACC(↑) ASR(↓) ACC(↑) ASR(↓) ACC(↑) ASR(↓)

G
T

SR
B

BadNet

10% 97.62 95.48 98.21 0.09 97.48 0.01 98.68 4.18 95.86 0.00 98.82 0.31 96.47 0.02 97.75 0.02 98.05 0.01

5% 97.89 93.00 97.86 2.11 97.09 0.00 97.99 4.02 92.72 0.00 98.96 0.09 14.43 0.00 94.65 0.00 98.15 0.00

1% 98.39 79.23 98.48 0.01 97.20 0.00 98.32 3.33 93.99 0.00 98.73 0.00 93.80 0.02 10.30 0.00 98.20 0.01

Blended

10% 98.62 100.00 98.38 100.00 97.76 8.03 98.62 100.00 95.85 42.80 98.38 49.82 92.35 86.35 96.15 6.51 97.67 11.95

5% 98.86 99.96 98.75 99.93 96.64 3.14 98.79 99.87 93.92 68.09 98.48 25.18 84.63 0.00 92.80 4.53 97.18 12.59

1% 98.80 96.95 98.71 95.87 97.00 10.88 98.75 96.00 92.78 79.88 98.57 38.01 93.98 27.85 95.32 2.55 97.11 12.98

Inputaware

10% 98.76 95.93 98.91 4.46 98.76 95.92 99.00 13.88 98.19 0.00 99.45 0.07 97.09 0.52 98.37 0.08 99.11 0.02

5% 98.26 92.84 98.93 4.07 98.26 92.84 99.21 17.58 98.82 0.00 99.53 0.01 98.61 0.07 98.64 0.00 99.37 0.01

1% 98.75 7.05 99.45 0.03 99.12 0.61 99.15 11.13 98.44 0.03 99.62 0.14 97.87 0.00 98.43 0.37 99.40 0.02

LF

10% 97.89 99.36 98.28 82.28 97.23 0.27 97.93 98.81 96.07 0.00 98.03 3.93 95.78 16.15 96.45 0.76 98.33 3.91

5% 98.16 98.81 97.89 98.17 97.74 0.02 97.95 98.90 89.10 2.16 98.47 0.99 87.54 1.40 95.88 0.01 98.31 2.05

1% 98.17 96.11 97.63 71.56 97.55 0.49 98.11 95.86 88.60 15.49 98.34 1.28 96.70 68.50 94.74 0.01 97.52 2.62

SSBA

10% 97.90 99.47 97.75 99.46 97.72 0.29 97.95 99.33 88.47 0.00 98.32 34.71 96.14 1.88 96.55 0.32 97.63 6.23

5% 98.01 99.22 98.12 99.12 97.03 0.33 97.97 98.98 90.29 6.09 97.66 4.93 6.12 0.00 6.32 0.00 98.03 3.12

1% 98.84 94.51 98.78 91.38 97.51 0.12 98.78 91.65 89.87 0.02 98.40 6.55 86.37 0.96 93.94 1.96 97.48 0.64

WaNet

10% 97.74 94.25 97.62 88.07 98.25 0.00 98.52 1.94 97.08 0.00 0.00 0.00 96.72 0.00 98.91 0.04 98.71 0.00

5% 97.42 92.85 98.00 12.24 97.42 92.85 98.67 5.80 97.09 0.00 98.97 0.00 97.93 0.25 98.19 0.05 98.86 0.00

1% 97.08 62.24 98.08 1.14 98.88 9.67 98.51 53.94 97.66 0.00 99.04 0.35 96.27 0.00 97.73 0.06 98.50 0.00

SBL-BadNet

10% 88.84 95.47 97.50 0.13 96.44 0.04 96.95 0.00 98.52 0.00 92.06 0.00 97.13 0.00 97.13 0.00 97.56 0.03

5% 89.21 95.10 97.78 0.18 97.27 0.00 97.67 1.36 98.42 51.52 92.84 0.00 93.73 0.00 93.73 0.00 98.09 0.00

1% 88.93 89.72 97.76 10.56 97.03 0.00 97.47 21.06 98.43 8.64 92.29 0.02 96.86 0.03 96.86 0.03 98.05 0.00

SAPA

5% 98.31 100.00 98.00 97.31 96.18 0.83 98.24 100.00 98.03 0.02 96.12 0.00 96.42 0.06 96.42 0.06 98.18 0.10

1% 98.28 100.00 98.16 89.42 98.00 0.25 98.27 99.96 98.06 0.02 90.67 0.00 96.22 0.00 96.22 0.00 97.56 0.64

0.5% 98.44 100.00 98.43 55.10 97.95 0.09 98.46 0.00 98.63 0.00 93.15 0.00 68.65 0.27 68.65 0.27 97.64 0.02

LC
0.5% 98.02 0.00 97.76 0.01 98.02 0.00 98.03 0.01 98.02 0.00 97.93 0.00 94.66 0.00 68.80 0.43 98.01 0.00

0.1% 98.46 0.01 98.37 0.00 98.46 0.01 98.53 0.01 98.46 0.01 98.27 0.00 93.29 0.03 95.34 0.02 98.10 0.00

SIG
0.5% 98.52 71.33 98.38 71.26 98.52 71.30 98.57 68.54 94.24 58.47 97.98 0.63 68.45 0.00 94.39 0.79 98.03 3.33

0.1% 98.69 58.09 98.84 56.11 98.69 58.09 98.70 57.91 91.21 33.44 98.38 0.91 94.07 0.57 89.16 0.36 98.22 0.08

30

Circumventing Backdoor Space via Weight Symmetry

J. Additional Results for Self-supervised Learning
J.1. Self-supervised Learning with SimCLR
Figure 13 illustrates the performance of TSC and MCR against BadEncoder (Jia et al., 2022) on CIFAR10 and ImageNet
using SimCLR (Chen et al., 2020). Table 12 presents the corresponding ultimate defense results of TSC and other baseline
defenses. Table 12 shows the defense results against CTRL (Li et al., 2023) on CIFAR10 and ImageNet100.

Notably, for the BadEncoder attack, we utilize publicly available backdoored model checkpoints 3 as the original model,
which was trained on ImageNet containing 1,000 classes with image dimensions of 224× 224. As the original model for
the CTRL attack is not publicly available, we follow the settings described in the original paper and train the corresponding
encoder on ImageNet-100. This version of ImageNet-100 contains 100 classes. During training, we scale the image
dimensions to 64× 64. Furthermore, we adopt the evaluation methodology from the BadEncoder paper, which employs
linear probe evaluation on downstream tasks. For the CTRL attack, we also follow the evaluation methods from the original
paper: in addition to using linear probe, we employ the K-Nearest Neighbor (KNN) method to evaluate ACC and ASR on
the pre-training dataset.

In defending against BadEncoder attacks, we observe that MCR, SSL-Cleanse (Zheng et al., 2024), and TSC all successfully
reduce the ASR values. However, MCR fails to counter backdoor attacks targeting SVHN downstream task. SSL-Cleanse
and TSC show similar defense effectiveness, successfully defending against BadEncoder attacks while maintaining high
ACC values on downstream tasks. For CTRL attacks, MCR is only effective against STL10 dataset. In contrast, both
SSL-Cleanse and TSC consistently maintain strong defense performance.

J.2. Self-supervised Learning with CLIP
Table 14 presents the defense results of TSC and MCR against BadEncoder under CLIP (Radford et al., 2021). Since
the unlearning algorithm used in SSL-Cleanse defense is based on the simCLR training method, and the original paper
of SSL-Cleanse did not conduct experiments in the CLIP learning scenario, we do not test the defense performance of
SSL-Cleanse against BadEncoder in this work.

We test on downstream datasets (STL10, GTSRB, CIFAR10, Food101 (Bossard et al., 2014), and Pascal VOC 2007
(Everingham et al.)) and report ACC and ASR using zero-shot a nd linear probe methods. TSC maintains strong defense
performance against BadEncoder, though it shows lower ACC on GTSRB and CIFAR10. In contrast, it outperforms the
backdoored model on Pascal VOC 2007. This may be due to the use of MS-COCO (Lin et al., 2014) for post-training.
MS-COCO shares more similarity with Pascal VOC 2007, while its images differ from those in GTSRB and CIFAR10,
leading the CLIP model to “forget” features for the latter datasets.

0.0 0.2 0.4 0.6 0.8 1.0
t

0

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

ETSC = 1

0.0 0.2 0.4 0.6 0.8 1.0
t

0

20

40

60

80

100

Pre-training-CIFAR10, Downstream-STL10

ETSC = 2

0.0 0.2 0.4 0.6 0.8 1.0
t

0

20

40

60

80

100
ETSC = 3

0.0 0.2 0.4 0.6 0.8 1.0
t

0

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

ETSC = 1

0.0 0.2 0.4 0.6 0.8 1.0
t

0

20

40

60

80

100

Pre-training-CIFAR10, Downstream-GTSRB

ETSC = 2

0.0 0.2 0.4 0.6 0.8 1.0
t

0

20

40

60

80

100
ETSC = 3

0.0 0.2 0.4 0.6 0.8 1.0
t

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

0.0 0.2 0.4 0.6 0.8 1.0
t

20

40

60

80

100

Pre-training-CIFAR10, Downstream-SVHN

0.0 0.2 0.4 0.6 0.8 1.0
t

20

40

60

80

100

0.0 0.2 0.4 0.6 0.8 1.0
t

0

20

40

60

80

Te
st

 A
CC

 /
AS

R(
%

)

0.0 0.2 0.4 0.6 0.8 1.0
t

0

20

40

60

80

Pre-training-ImageNet, Downstream-STL10

0.0 0.2 0.4 0.6 0.8 1.0
t

0

20

40

60

80

0.0 0.2 0.4 0.6 0.8 1.0
t

0

20

40

60

80

100

Te
st

 A
CC

 /
AS

R(
%

)

0.0 0.2 0.4 0.6 0.8 1.0
t

0

20

40

60

80

100

Pre-training-ImageNet, Downstream-GTSRB

0.0 0.2 0.4 0.6 0.8 1.0
t

0

20

40

60

80

100

0.0 0.2 0.4 0.6 0.8 1.0
t

0

20

40

60

80

Te
st

 A
CC

 /
AS

R(
%

)

0.0 0.2 0.4 0.6 0.8 1.0
t

0

20

40

60

80

Pre-training-ImageNet, Downstream-SVHN

0.0 0.2 0.4 0.6 0.8 1.0
t

0

20

40

60

80

ASR of the 1st Stage (TSC) ACC of the 1st Stage (TSC) ASR of the 2nd Stage (TSC) ACC of the 2nd Stage (TSC) ASR of MCR ACC of MCR

Figure 13. (Self-supervised Learning, SimCLR) Performance comparison of TSC and MCR against BadEncoder (Jia et al., 2022)
attacks using CIFAR10 and ImageNet as pre-training datasets. Model checkpoints are selected at t = 0.25 for each stage and round.

3https://github.com/jinyuan-jia/BadEncoder

31

Circumventing Backdoor Space via Weight Symmetry

Table 12. Defense results under self-supervised learning (SimCLR) settings. We evaluate MCR (Zhao et al.,
2020), SSL-Cleanse (Zheng et al., 2024), and TSC against the BadEncoder attack (Jia et al., 2022).

Pre-training
Dataset

Downstream
Dataset

No Defense MCR SSL-Cleanse TSC (ours)

ACC(↑) ASR(↓) ACC(↑) ASR(↓) ACC(↑) ASR(↓) ACC(↑) ASR(↓)

CIFAR10
STL10 76.74 99.65 74.93 7.92 70.51 2.44 71.11 4.44
GTSRB 81.12 98.79 75.51 0.54 75.50 1.23 77.57 1.68
SVHN 63.12 98.71 57.35 65.58 61.01 7.95 64.13 10.26

ImageNet
STL10 94.93 98.99 90.20 2.08 88.72 1.69 86.99 3.11
GTSRB 75.94 99.76 72.38 0.13 67.55 1.81 69.47 6.47
SVHN 72.64 99.21 71.27 34.15 67.96 8.00 66.44 3.64

Table 13. Defense results under self-supervised learning (SimCLR) settings. We evaluate MCR (Zhao et al.,
2020), SSL-Cleanse (Zheng et al., 2024), and TSC against the CTRL attack (Li et al., 2023). Following
CTRL’s evaluation methodology, we also assess ACC and ASR on the pre-training dataset using K-Nearest
Neighbor (KNN) classification.

Pre-training
Dataset

Evaluation
Dataset

No Defense MCR SSL-Cleanse TSC (ours)

ACC(↑) ASR(↓) ACC(↑) ASR(↓) ACC(↑) ASR(↓) ACC(↑) ASR(↓)

CIFAR10
(Poisoning rate-5%)

CIFAR10 (KNN) 84.66 93.84 81.45 44.64 80.05 2.95 82.25 3.95
STL10 (linear probe) 74.69 25.60 70.48 13.72 70.55 1.28 71.29 2.45
GTSRB (linear probe) 72.65 41.80 71.05 24.54 69.55 4.16 70.95 4.25
SVHN (linear probe) 60.42 62.64 57.35 32.58 59.22 0.24 58.91 7.42

ImageNet100
(Poisoning rate-5%)

ImageNet100 (KNN) 43.66 42.53 42.39 34.24 41.20 1.86 41.80 0.24
STL10 (linear probe) 74.96 17.27 70.24 12.33 69.47 1.43 72.05 3.37
GTSRB (linear probe) 63.58 68.20 60.85 50.41 61.85 5.41 60.73 1.62
SVHN (linear probe) 56.73 90.77 56.27 52.77 53.70 10.04 54.39 1.21

Table 14. Defense results under self-supervised learning (CLIP) settings. We evaluate MCR
(Zhao et al., 2020) and and TSC against the BadEncoder attack (Jia et al., 2022).

Pre-training
Dataset

Downstream
Dataset

No Defense MCR TSC (ours)

ACC(↑) ASR(↓) ACC(↑) ASR(↓) ACC(↑) ASR(↓)

CLIP
(linear probe)

STL10 97.07 99.33 96.43 99.86 94.15 0.67
GTSRB 82.36 99.40 78.22 99.21 72.42 5.32

CIFAR10 86.36 99.98 84.36 99.45 79.31 1.32
Food101 72.58 97.91 72.36 96.62 69.33 1.04

Pascal VOC 2007 76.07 99.83 75.47 99.92 78.42 0.34

CLIP
(zero-shot)

STL10 94.06 99.86 91.51 99.85 90.25 0.88
GTSRB 29.94 99.44 24.66 99.34 17.24 2.01

CIFAR10 69.95 99.39 62.51 99.10 41.59 1.28
Food101 67.72 99.96 66.51 99.56 61.69 0.28

Pascal VOC 2007 71.22 99.92 70.09 99.12 75.08 1.45

J.3. Evaluation of I-BAU and SAU in Self-supervised Learning

Previously, we have presented the defense results of TSC against BadEncoder and CTRL attacks. Our defense, as shown
in Figure 1, specifically targets self-supervised learning (SSL) scenarios by directly purifying the encoder. The other SSL
defenses we evaluated, such as MCR and SSL-Cleanse, also follow this workflow. This design enables TSC to be effectively
applied to zero-shot scenarios, such as CLIP, where neither a linear classifier nor fine-tuning is required.

It might be noted that other defenses designed for supervised learning (SL) settings, such as I-BAU and SAU, could also
be applied to the combined encoder and linear classifier after fine-tuning. Initially, we excluded those defenses from SSL
comparisons to maintain fairness and methodological consistency. To address this, we conducted additional experiments

32

Circumventing Backdoor Space via Weight Symmetry

to evaluate the performance of I-BAU and SAU against BadEncoder with 5% clean downstream training data. The other
defense settings are consistent with the SL scenarios involving models trained on CIFAR10 and ImageNet100. Table 15
presents the corresponding results.

It’s clear that while I-BAU and SAU reduce the ASR, they significantly degrade benign accuracy (ACC). For instance, on
CIFAR10-STL10 settings, the ACC dropped from 76.73% to 30.13% with I-BAU and further to 21.52% with SAU. We
suspect this decline occurs because I-BAU and SAU employ post-training methods analogous to adversarial training in SL,
potentially harming the representation extraction capability of encoders trained via SSL methods like SimCLR. As these
specific findings extend beyond the primary scope of this paper, we reserve a more extensive exploration for future work.

Table 15. Defense results of I-BAU (Zeng et al., 2022) and SAU (Wei et al., 2023)
under SimCLR training scenario, where linear probing is used to evaluate the
downstream tasks.

Pre-training
Dataset

Downstream
Dataset

No Defense I-BAU SAU

ACC(↑) ASR(↓) ACC(↑) ASR(↓) ACC(↑) ASR(↓)

CIFAR10
STL10 76.74 99.65 30.13 12.42 21.52 7.22
GTSRB 81.12 98.79 22.36 15.10 47.45 5.52
SVHN 63.12 98.71 43.44 17.11 24.07 7.25

ImageNet100
STL10 94.93 98.99 74.62 10.32 81.24 11.83
GTSRB 75.94 99.76 39.85 7.34 10.75 0.80
SVHN 72.64 99.21 25.27 13.70 24.37 4.10

K. Clean Accuracy Drops for Non-backdoored Models
To illustrate the impact of TSC on non-backdoored models, in this section, we provide additional results on the clean
accuracy (ACC) drops for no poison scenarios when applying TSC and other baseline defenses. Tables 16 and 17 present the
clean ACC drops of non-backdoored models under supervised learning and self-supervised learning (SimCLR), respectively.

Except for settings specific to the attacks, the experimental configurations are consistent with those detailed in previous
tables. While the ACC drops for TSC are not the lowest among all defenses, they are considered acceptable. Furthermore,
the reason why NC always achieves the same ACC as the original model is that NC would check if the model is backdoored
before applying it’s corresponding unlearning method. The intermediate results of Table 16 show that NC successfully
classifies the model as non-backdoored, thus it does not apply any unlearning method.

Table 16. (Supervised Learning) Clean Accuracy (ACC) drop results of various defenses on
CIFAR10, GTSRB and ImageNet100 with poisoning rate of 0 (no poison).

Dataset No Defense FP NC MCR ANP FT-SAM I-BAU SAU TSC (ours)

CIFAR10 93.12 92.10 93.12 90.98 83.09 91.32 87.47 89.97 91.12

GTSRB 99.20 99.11 99.20 98.14 95.43 98.04 95.40 96.84 98.31

ImageNet100 84.32 82.22 84.32 81.46 77.78 82.90 77.10 76.93 81.44

Table 17. (Self-supervised Learning) Clean Accuracy (ACC) drop results for SimCLR
of various defenses on CIFAR10 and ImageNet100 with poisoning rate of 0 (no poison).

Pre-training Downstream No Defense MCR SSL-Cleanse TSC (ours)

STL10 79.50 77.63 73.01 74.60
CIFAR10 GTSRB 83.68 78.02 78.30 80.39

SVHN 66.57 60.19 63.55 63.41

STL10 95.62 90.92 89.27 89.81
ImageNet100 GTSRB 77.58 74.41 69.90 71.74

SVHN 74.98 72.98 70.14 68.10

33

Circumventing Backdoor Space via Weight Symmetry

L. Experimental Setup
Our deep learning training algorithm is implemented using PyTorch. All experiments were run on one Ubuntu 18.04
server equipped with four NVIDIA RTX V100 GPUs. Our implementation for supervised learning is mainly based on
BackdoorBench 4 (Wu et al., 2022). For self-supervised learning, we use the official implementation of BadEncoder 5 (Jia
et al., 2022) and CTRL 6 (Li et al., 2023) to conduct attacks and defenses experiments.

L.1. Attack Settings

(a) BadNets (SBL-BadNets) (b) Blend (SBL-Blended) (c) SSBA (d) LF

(e) InputAware (f) WaNet (g) LC (h) SIG

(i) SAPA (j) Narcissus

Figure 14. Examples of 12 supervised learning backdoor trigger patterns on ImageNet100. The triggers of SBL-BadNets and SBL-Blended
are as same as those of BadNets and Blend, respectively.

(1) Supervised Learning. We employed the stochastic gradient descent (SGD) optimization method with a batch size of
256. We set the initial learning rate to 0.01 and decayed it using the cosine annealing strategy (Loshchilov & Hutter, 2016).
For the CIFAR-10 and GTSRB datasets, we trained for a total of 100 epochs. In the case of the ImageNet100 dataset, we
trained for 200 epochs.

Generally, on the CIFAR10, ImageNet100 and GTSRB datasets, the target label for all backdoor attacks is class 0,
corresponding to the specific class names “airplane”, “tench” and “Speed limit 20km/h”. The CIFAR10 and GTSRB images
are resized to 32× 32, while the ImageNet100 images are resized to 224× 224.

The trigger patterns for BadNet (Gu et al., 2017), Blended (Chen et al., 2017), SSBA (Li et al., 2021c), LF (Zeng et al.,
2021), WaNet (Nguyen & Tran, 2021), Inputaware (Nguyen & Tran, 2020), LC (Turner et al., 2019), SIG (Barni et al.,
2019), SBL (Pham et al., 2024), Narcissus (Zeng et al., 2023) and SAPA (He et al., 2024) are shown in Figure 14. BadNet,
Blended, SSBA, LF, WaNet, Inputaware, SBL and SAPA are label-flipping attacks, which turns the original label of the
poisoned data to the target label. LC, SIG and Narcissus are clean label attacks, which utilize the data beloning to the target
class to generate poisoned samples. The implementation details for each backdoor attack are as follows:

• BadNets attack (Gu et al., 2017) employs a white square placed at the bottom-right corner as the trigger pattern.

• Blended attack (Chen et al., 2017) poisons the data by introducing a Hello Kitty image trigger. We implement the
blended injection strategy, denoted as αt+ (1− α)x, to incorporate the trigger t into the benign sample x with a value

4https://github.com/SCLBD/BackdoorBench/
5https://github.com/jinyuan-jia/BadEncoder
6https://github.com/meet-cjli/CTRL

34

Circumventing Backdoor Space via Weight Symmetry

of α = 0.2.

• SSBA (Li et al., 2021c) utilizes the StegaStemp algorithm (Tancik et al., 2020) to generate specific triggers for poison
samples across various classes.

• LF (Zeng et al., 2021) employs frequency domain analysis and optimization algorithms to create poison samples.

• InputAware (Nguyen & Tran, 2020) attack requires the attacker to control the entire training process. During training,
the attacker not only trains the model but also trains a generator to produce unique triggers for different samples. The
generator continuously optimizes the trigger design while minimizing its size, ensuring a high attack success rate.

• WaNet (Nguyen & Tran, 2021) uses image embedding to generate invisible triggers for poisoned samples. To enhance
attack robustness, WaNet introduces Gaussian noise to poisoned samples with a certain probability during training and
restores the original labels of these poisoned samples.

• LC attack (Turner et al., 2019) utilizes a checkboard pattern positioned in the four corners as the trigger. To establish
a link between the trigger and the target label, LC attacks initially employ the Projection Gradient Descent (PGD)
method to introduce adversarial perturbations to the images before incorporating the trigger.

• SIG attack (Barni et al., 2019) utilizes a sinusoidal signal that is seamlessly integrated into the image as the trigger.

• SBL-BadNet and SBL-Blended attacks (Pham et al., 2024) employ continual learning algorithm to fine-tune poisoned
models to generate backdoors that are resilient against previous fine-tuning defenses. We used EWC (Kirkpatrick et al.,
2017) as the continual learning algorithm, with BadNet and Blended as base attacks.

• Narcissus attack (Zeng et al., 2023) optimizes a universal trigger pattern based a the surrogate (target) model. For fair
comparison, we used the open-source trigger for CIFAR10 from Zeng et al. (2023), with target label “bird”.

• SAPA attack (He et al., 2024) combines sharpness-aware minimization (Foret et al., 2021) with the Sleeper-Agent
(Souri et al., 2022) backdoor attack to smooth the poison loss landscape. We utilized the colorful patch from (Souri
et al., 2022) as the trigger. For CIFAR10 and GTSRB, we used an 8 × 8 pixel patch; for ImageNet100, a 16 × 16
pixel patch was employed. Other recommended parameters for generating the poisoned samples were adopted from
the SAPA and Sleeper-Agent. These included: sharpness sigma = 0.01, number of source samples = 1000, R = 250
optimization steps, T = 4 retraining periods, and an L∞-norm perturbation bound of 16/255.

(2) Self-Supervised Learning.

(a) BadEncoder (b) CTRL

Figure 15. Examples of 2 self-supervised learning backdoor trigger patterns on STL10.

We use publicly available backdoored ResNet18 and ResNet50 models as encoders with SimCLR in the BadEncoder attack
(Jia et al., 2022). For CLIP, following the BadEncoder approach, we fine-tune a pre-trained CLIP ResNet50 on ImageNet100
using SimCLR for 200 epochs to inject backdoors. For the CTRL (Li et al., 2023) attack with SimCLR, we apply the cosine
annealing strategy for the learning rate. For the CIFAR10 dataset under CTRL, we set the initial learning rate to 0.06 and run
for 800 epochs. For the ImageNet100 dataset under CTRL, the initial learning rate is set to 0.02 with 1000 training epochs.

Tables 18 and 19 show the dataset and target class settings for BadEncoder and CTRL in different learning scenarios. The
post-training dataset refers to the fine-tuning dataset used by each defense method. When the downstream dataset lacks the
target class, we add the corresponding class and include target class data from the pre-training dataset to evaluate ACC and
ASR. To align with the CTRL paper’s settings, we use a 64× 64 ImageNet100 dataset as the pre-training dataset.

The implementation details for BadEncoder and CTRL attacks are as follows:

35

Circumventing Backdoor Space via Weight Symmetry

Table 18. Dataset and target class settings for BadEncoder attack. If the “Requiring extra data” column is marked as ‘!’, it indicates that
the downstream dataset lacks the target class and we manually add the target class and data to the dataset for evaluating ACC and ASR.

Method Image Size Pre-training Downstream Post-training Target class Requiring extra data
simCLR 32×32 CIFAR10 STL10 CIFAR10 truck %

simCLR 32×32 CIFAR10 GTSRB CIFAR10 priority road sign %

simCLR 32×32 CIFAR10 SVHN CIFAR10 1 %

simCLR 224×224 ImageNet STL10 ImageNet100 truck %

simCLR 224×224 ImageNet GTSRB ImageNet100 priority road sign %

simCLR 224×224 ImageNet SVHN ImageNet100 1 %

CLIP 224×224 CLIP STL10 MS-COCO truck %

CLIP 224×224 CLIP GTSRB MS-COCO stop sign %

CLIP 224×224 CLIP SVHN MS-COCO 0 %

CLIP 224×224 CLIP Food101, VOC 2007 MS-COCO truck !

Table 19. Dataset and target class settings for CTRL attack.

Method Image Size Pre-training Downstream Post-training Target class Requiring extra data
simCLR 32×32 CIFAR10 STL10 CIFAR10 airplane %

simCLR 32×32 CIFAR10 GTSRB CIFAR10 airplane !

simCLR 32×32 CIFAR10 SVHN CIFAR10 airplane !

simCLR 64×64 ImageNet100 STL10 ImageNet100 tench %

simCLR 64×64 ImageNet100 GTSRB ImageNet100 tench !

simCLR 64×64 ImageNet100 SVHN ImageNet100 tench !

• BadEncoder attack (Jia et al., 2022) requires the attacker to control the training process. During training, the attacker
uses the SimCLR loss function to optimize the similarity between poisoned samples and target class images. Similar to
BadNets, we use a white square in the bottom-right corner as the trigger. The loss function assigns equal weight to
clean and poisoned samples, i.e., λ1 = λ2 = 1.

• CTRL attack (Li et al., 2023) uses a invisible frequency trigger to generate poisoned samples. Following the rec-
ommended settings, we set the poisoning rate to 0.5% and the trigger window size to 32. For CIFAR10, the trigger
magnitude is set to 100. For ImageNet100, we use a magnitude of 100 for the first 700 epochs and a magnitude of 200
for the remaining 300 epochs.

L.2. Defense Settings

We allocate 5% of the clean training samples from each dataset to the defender. For all other settings not specified below, we
follow the default settings outlined in their publications or public implementation.

Since we use the original mathematical symbols from each publication, please note that some symbols and terms may
conflict with each other. All symbols and terms below are specific to the parameters in their respective papers.

(1) Supervised Learning.

• FP (Liu et al., 2018): In the experiment, we use SGD as the base fine-tuning method with a learning rate of 0.01. The
pruning rate for all models is set to 1%, and the number of fine-tuning epochs is 100.

• NC (Wang et al., 2019): We set the threshold of the Anomaly Index at 2 for all the datasets. For models with an
Anomaly Index higher than 2 (marked as attacked), we conduct the unlearning procedure for 40 epochs, utilizing 5% of
the training data and applying the reversed trigger to 20% of these samples.

• ANP (Wu & Wang, 2021): We set the learning rate to 0.2 for optimizing the neuron mask with SGD. After optimization,
neurons with a mask value smaller than the threshold of 0.2 are pruned. Additionally, we set the tradeoff coefficient α
to 0.2 and the perturbation budget ε to 0.4 for a total of 2000 iterations.

36

Circumventing Backdoor Space via Weight Symmetry

• FT-SAM (Zhu et al., 2023): SGD is used as the base fine-tuning method with a learning rate of 0.01. The label
smoothing rate is set to 0.1, and the SAM (Sharpness-aware Minimization) (Foret et al., 2021) optimization method
uses a Neighborhood size of ρ = 0.2. The number of fine-tuning epochs is 100.

• I-BAU (Zeng et al., 2022): We follow the default settings provided in the public implementation of I-BAU. We use
Adam with a learning rate of 1e−3 to optimize the outer loop. And, we set the maximum number of unlearning rounds
to 5 and the maximum number of fixed-point iterations to 5.

• SAU (Wei et al., 2023): We iterate 5 times to compute the adversarial perturbation, using an `∞ norm with perturbation
bound 0.2 and adversarial learning rate 0.2. The total epochs for CIFAR10 and GTSRB are 100, and for ImageNet100,
50 epochs. We set the unlearning weights as λ1 = λ2 = λ4 = 1 and λ3 = 0.1.

• TSC (ours): We set the global number of epochs ETSC = 3, curve index t = 0.4, and curve training epochs e = 200.
The initial learning rate is set to 0.02, with cosine annealing used for post-training. After every round of TSC, we
slightly fine-tune the model extracted from the second stage for 5 epochs with a learning rate of 1e−4.

• MCR (Zhao et al., 2020): For a fair comparison with TSC, we set the curve index t = 0.4 and curve training epochs
e = 200. The initial learning rate is 0.02, and cosine annealing is used for post-training.

(2) Self-Supervised Learning.

• SSL-Cleanse (Zheng et al., 2024): This method is specifically designed for defending against backdoors in self-
supervised learning. Similar to NC, it first attempts to restore the trigger pattern and then applies an unlearning method
to remove the backdoor. We set the initial value of λ to 0.01 and use a learning rate of 0.01.

• TSC (ours): We set the global number of epochs ETSC = 2 and the curve index t = 0.25. All learning rates use a
cosine annealing strategy for iteration. (1) For SimCLR, we set the batch size to 256, the curve training epochs e = 200,
and use Adam with an initial learning rate of 5e−3 for CIFAR10 and 2e−3 for ImageNet100. After every round of TSC,
we slightly fine-tune the model extracted from the second stage for 5 epochs with a learning rate of 5e−5. (2) For CLIP,
we follow the training method proposed by Radford et al. (2021), setting the batch size to 32768 and using Adam with
an initial learning rate of 1e−4 (β1 = 0.9, β2 = 0.999). For such a large batch size, we use gradient accumulation to
update the model, with each stage training for only 2 epochs. After every round of TSC, we do not fine-tune the model
extracted from the second stage.

• MCR (Zhao et al., 2020): We set the curve index t = 0.25. All other parameters are the same as those used in TSC.

37

