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Causal Visual-semantic Correlation for Zero-shot Learning
Anonymous Author(s)

ABSTRACT
Zero-Shot learning (ZSL) correlates visual samples and shared se-
mantic information to transfer knowledge from seen classes to un-
seen classes. Existing methods typically establish visual-semantic
correlation by aligning visual and semantic features, which are ex-
tracted from visual samples and semantic information, respectively.
However, instance-level images, owing to singular observation
perspectives and diverse individuals, cannot exactly match the com-
prehensive semantic information defined at the class level. Direct
feature alignment imposes correlation between mismatched vision
and semantics, resulting in spurious visual-semantic correlation.
To address this, we propose a novel method termed Causal Visual-
semantic Correlation (CVsC) to learn substantive visual-semantic
correlation for ZSL. Specifically, we utilize a Visual Semantic Atten-
tion module to facilitate interaction between vision and semantics,
thereby identifying attribute-related visual features. Furthermore,
we design a Conditional Correlation Loss to properly utilize se-
mantic information as supervision for establishing visual-semantic
correlation. Moreover, we introduce counterfactual intervention
applied to attribute-related visual features, and maximize their im-
pact on semantic and target predictions to enhance substantive
visual-semantic correlation. Extensive experiments conducted on
three benchmark datasets (i.e., CUB, SUN, and AWA2) demonstrate
that our CVSC outperforms existing state-of-the-art methods.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; Com-
puter vision.

KEYWORDS
Zero-Shot Learning, Image Classification, Visual-semantic Correla-
tion, Causal Inference.

1 INTRODUCTION
Zero-Shot Learning (ZSL) stands as a significant research area inma-
chine learning, which imitates human cognitive patterns to endow
computers with ability to recognize new classes [20, 21, 30].1 Hu-
mans can identify new classes by leveraging prior knowledge, even
without direct exposure. ZSL draws inspiration from human cog-
nition, achieving knowledge transfer from seen to unseen classes
by correlating visual samples with shared semantic information
1It is noted that ZSL is typically denoted as zero-shot image classification, and we
follow the standard in this paper.
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Figure 1: Problem Analysis. (a) The ZSL model aims to es-
tablish substantive visual-semantic correlation within seen
classes, facilitating accurate identification of inherent at-
tributes in images. This enables accurate zero-shot predic-
tions when encountering images from unseen classes by
pricely identifying the genuine attributes. (b) Existing ZSL
methods inevitably falls into spurious visual-semantic corre-
lation, primarily caused by mismatches between images and
their corresponding attribute annotations. Such discrepancy
is due to the fact that diverse images within same class do not
have the same attributes consistent with complete attribute
annotations. Thus, the spurious visual-semantic correlation
finally results in poor knowledge transfer.

within seen class. Consequently, by solely relying on the seman-
tic information of unseen classes, models can directly recognize
samples from unseen classes. The semantic information typically
includes attribute annotations [15, 16], word vectors [23, 28], docu-
ment vectors [22, 39] and so on. In this paper, we focus on attribute
annotations as the shared semantic information.

Existing methods establish the visual-semantic correlation by
aligning visual and semantic features, which are extracted from
instance-level images and class-level attribute annotations. Specifi-
cally, these methods map visual and semantic features into common
space and design various objective functions (such as mean squared
loss [52], cross-entropy loss [18], contrastive loss [17], etc.) to facil-
itate alignment between the two. This process ensures that images
and their corresponding attribute annotations get similar repre-
sentations in the common space, thus achieving visual-semantic
correlation. Based on the mapping direction between visual and
semantic space, existing methods are broadly divided into two cat-
egories: visual-to-semantic mapping methods [5, 25, 40, 54] and
semantic-to-visual mapping methods [8, 47, 49]. The existing meth-
ods overcome the heterogeneity between vision and semantics,
correlate the two and achieve knowledge transfer.
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However, the mismatch between vision and semantics leads to
spurious visual-semantic correlation, limiting knowledge transfer,
which has not been well addressed by existing works. As shown in
Figure 1(a), the model aims to establish substantive visual-semantic
correlations within seen classes, enabling the identification of in-
herent attributes present in the images. This facilitates correct
zero-shot predictions when encountering unseen class images by
accurately identifying the attributes genuinely present. However,
attribute annotations are typically comprehensive and defined at
the class level, whereas instance-level images within same class ex-
hibit different attributes due to varying individuals and observation
perspectives. Consequently, vision and semantics cannot exactly
match in practice. As illustrated in Figure 1(b), the model easily falls
into spurious visual-semantic correlation due to directly aligning
mismatched vision and semantics. Such spurious correlation limits
knowledge transfer and results in inferior predictive performance.

Substantive visual-semantic correlation is crucial for ZSL. In-
spired by the analysis above, we are prompted to utilize attribute an-
notations effectively to establish visual-semantic correlation, while
enhancing the substantiveness of the correlation. Considering that
images often contain fewer attributes than those annotated, we
significantly penalize the model for predicting attributes beyond
the annotations. At the same time, the model incurs minor penalties
for missing attributes that present in the annotations but absent
from the images, thus reasonably utilizing the attribute annotations.
Furthermore, causal inference [34, 35], as an effective methodology,
excels at revealing the causal correlation between variables. Hence,
we leverage the tool of causal inference, specifically counterfactual
intervention, to assist the model in establishing substantive visual-
semantic correlation. By applying counterfactual interventions to
intermediate variable within the model’s visual-semantic interac-
tion andmaximizing its impact, we can enhance the substantiveness
of visual-semantic correlation.

We propose Causal Visual-semantic Correlation (CVsC) to es-
tablish a substantive visual-semantic correlation for ZSL. Specif-
ically, CVsC utilizes the Visual Semantic Attention module to fa-
cilitate interaction between vision and semantics, thereby identi-
fying attribute-related visual features. Subsequently, a Semantic
Embedding module maps these features to obtain semantic vector
and determine the category. Furthermore, we design Conditional
Correlation Loss to effectively utilize semantic information as su-
pervision. Finally, we introduce counterfactual causal intervention
applied to attribute-related visual features, and maximize their
impact on semantic and target predictions to enhance substan-
tive visual-semantic correlation. The comprehensive experimen-
tal demonstrates that CVsC effectively mitigates spurious visual-
semantic correlation and significantly enhances the performance
of ZSL.

In summary, our contributions are as follows:

• We explore the significance of visual-semantic correlation
for ZSL and highlight that direct visual-semantic alignment
leads to spurious visual-semantic correlation, thereby con-
straining knowledge transfer.

• We design Causal Visual-semantic Correlation (CVsC) to
establish substantive visual-semantic correlation.

• Extensive experiments on multiple benchmark datasets
demonstrate that CVsC enhances the substantiveness of
visual-semantic correlation and significantly improves the
performance of ZSL.

2 RELATEDWORKS
2.1 Zero-Shot Learning
Zero-Shot Learning (ZSL) [20, 30], which is proposed to address the
data dependency issue in machine learning, can directly identify
unseen class samples. Based on the classes included in the testing
phase, ZSL is typically divided into conventional settings and gen-
eralized settings [37]. In conventional ZSL (CZSL), testing samples
only contain unseen classes, while in generalized ZSL (GZSL), test-
ing samples come from both seen and unseen classes. Inspired by
human cognition, ZSL transfers knowledge from seen to unseen
classes by correlating visual samples with corresponding semantic
information within seen classes [9, 42, 47, 48]. The correlation be-
tween vision and semantics is established by aligning visual and se-
mantic features, which are extracted from instance-level images and
class-level semantic information. Existing methods typically map
images and semantic information into a common space and then de-
sign objective functions to achieve feature alignment. Based on the
mapping direction, existing methods are mainly classified into two
categories: visual-to-semantic mapping methods [3, 5, 25, 40, 54]
and semantic-to-visual mapping methods [8, 42, 47, 49, 57]. These
methods overcome the heterogeneity and correlate visual and se-
mantic information, thereby achieving knowledge transfer.

Despite significant efforts in this field, the challenge of spurious
visual-semantic correlation continues to hamper ZSL performance.
Since instance-level images cannot strictly match attribute annota-
tions defined at the class level, the models easily fall into spurious
visual-semantic correlation. To address this problem, we propose
CVsC, which enhances the substantiveness of visual-semantic corre-
lation by effectively utilizing attribute annotations and introducing
causal inference to correlate vision and semantics.

2.2 Attention Mechanism in ZSL
In ZSL, refining the association between visual and semantic fea-
tures by aligning local visual features can lead to improved perfor-
mance [6, 18]. Early explorations of local representations in ZSL
relied on part detection methods [14, 50], which utilize pre-trained
part detectors for local region representation. However, such meth-
ods are limited by the additional and costly annotation data re-
quired by the part detectors. Attention mechanism, benefiting from
its expertise in extracting discriminative local features, has been
introduced into ZSL. [53] initially proposed a stacked semantic-
guided attention method, enabling the model to learn more dis-
criminative local visual features. [58] introduced a semantic-guided
multi-attention localization model, which can identify the most
discriminative parts of objects without additional supervisory guid-
ance. [18] decoupled class semantic vectors into multiple attribute
vectors, and determined attribute-related visual features by com-
puting attention maps between attribute vectors and local visual
features. In this paper, we adopt the visual-semantic interaction
approach from [18] to design our model.
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Figure 2: The framework of Causal Visual-semantic Correlation (CVsC). CVsC first takes ViT [13] and Glove [36] to extract
regional visual features and attribute vectors, respectively. Next, the Semantic-Visual Attention module facilitates interaction
between regional visual features and attribute vectors, identifying attribute-related visual features. Finally, the Semantic
Embedding module maps semantic vectors, enabling computation of probabilities for unseen classes. To establish substantive
visual-semantic correlation, CVsC employs Conditional Correlation Loss to properly utilize attribute annotations. Additionally,
CVsC introduces causal interference, i.e. Semantic Causal Interference and Target Causal Interference, to strengthen the
substantive correlation between vision and semantics.

2.3 Causal Inference
Causal inference [32, 34, 35, 41] investigates the effects of variables
when some cause is changed, providing researchers with an effec-
tive tool to determine the substantive correlation between variables.
In recent years, there has been a rapid growth of interest in combin-
ing deep learning with causal inference. It has been successfully ap-
plied in various fields, including explainable machine learning [29],
natural language processing [45, 51], computer vision [27, 38, 43],
and others. The substantive visual-semantic correlation is crucial
for ZSL. Therefore, in this paper, we introduce causal inference
to ZSL to establish a substantive visual-semantic correlation. By
imposing counterfactual interventions on attribute-related visual
features learned by the model, we can observe their impact on the
model. By maximizing the impact of counterfactual intervention,
we enhance the effectiveness of attribute-related visual features,
thereby establishing substantive visual-semantic correlation.

3 METHODS
In this section, we first revisit ZSL setting. Then, we introduce the
detailed design of Causal Visual-semantic Correlation (CVsC), the
flowchart of which is illustrated in Figure 2.
ZSL setting ZSL has two sets of classes, i.e. seen classes C𝑠 and
unseen classes C𝑢 . The corresponding samples are denoted as 𝒙 ∈
X𝑠 for seen classes and 𝒙 ∈ X𝑢 for unseen classes, with labels
𝑦 ∈ Y𝑠 for seen classes and 𝑦 ∈ Y𝑢 for unseen classes. The class-
level attribute annotations are encoded to semantic vectors. Here,
we denote the semantic vector of class 𝑐 as 𝑺𝑐 =

[
𝑠𝑐1, . . . , 𝑠

𝑐
𝐾

]⊤,
where 𝑠𝑘𝑐 represents the value of the 𝑘-th attribute in class 𝑐 , and 𝐾
represents the total number of attributes. The class semantic vectors
are available for all classes in both the training and testing phases.
The training set D𝑡𝑟𝑎𝑖𝑛 = {(𝒙, 𝑦)} consists of samples from seen

classes and their corresponding labels. ZSL is categorized into two
types: conventional ZSL (CZSL) and generalized ZSL (GZSL) based
on the scope of the testing set. The goal of CZSL is to predict image
labels from unseen classes (𝒙 ∈ X𝑢 ) in the testing set D𝑡𝑒𝑠𝑡 = {𝒙},
while GZSL aims to predict image labels from both seen and unseen
classes(𝒙 ∈ X𝑠 ∪ X𝑢 in the testing set D𝑡𝑒𝑠𝑡 = {𝒙}).

CVsC takes image and attribute as the input, and employs Seman-
tic Visual Attention to interact with vision and semantics, thereby
obtaining attribute-related visual features. Subsequently, a Seman-
tic Embedding module maps these features into the semantic space,
and calculates the similarity with the class semantic vectors to
obtain the class probabilities. In order to achieve substantive visual-
semantic correlation, CVsC first employs Conditional Correlation
Loss to reasonably utilize semantic information as supervision. Fur-
thermore, we introduce causal interference into CVsC, i.e. Semantic
Causal Interference and Target Causal Interference. By imposing
counterfactual interventions on attribute-related visual features
learned by the model, and maxing their impact, we can get more ef-
fective features and strengthen the substantive correlation between
vision and semantics.

3.1 Semantic Visual Attention
As shown in Figure 2, the Semantic Visual Attention takes the re-
gional visual features and attribute vectors as input. In particular,
The image 𝑥 is divided into 𝑅 patches, and features correspond-
ing to these patches are extracted using the Vision Transformer
(ViT) [13]. Here, we utilize the output of the last layer of ViT, re-
moving the cls token, as the regional visual features, denoted as
𝑭 = [𝒇 1, ...,𝒇𝑟 , ...𝒇𝑅]𝑇 . Simultaneously, we employ Glove [36], the
pre-trained language models, to extract attribute names as attribute
vectors, denoted as 𝑨 = [𝒂1, ..., 𝒂𝑘 , ..., 𝒂𝐾 ]𝑇 .
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Subsequently, we utilize attention mechanisms to facilitate in-
teraction between vision and semantics. Here, we use 𝑄 , 𝐾 , and 𝑉
to respectively denote query, key, and value. They are defined as
follows:

𝑄 = 𝑨𝑾𝑞, 𝐾 = 𝑭 ,𝑉 = 𝑭 . (1)

By taking the attribute as the query, we compute its correlation
matrix with the key (i.e., regional visual feature 𝑭 ) to obtain the
attribute attention map 𝑴 , and scale it using SoftMax. Here, the
attribute vectors 𝑨 are projected to ensure uniform dimensions for
𝑄 , 𝐾 , and 𝑉 , ensuring their dot product computation. Then, the
attribute-related visual features 𝑭𝐴 are obtained by multiplying the
attribute attention map 𝑴 with the 𝑉 :

𝑭𝐴 = 𝑴𝑉 = softmax (𝑄𝐾)𝑉 . (2)

3.2 Semantic Embedding
Next, we employ the Semantic Embedding module to map attribute-
related visual features 𝑭𝐴 to the semantic space, obtaining the
semantic vector for the image, denoted as 𝑺 = [𝑠1, . . . , 𝑠𝐾 ]⊤. Subse-
quently, the final class probabilities are obtained by computing the
similarity between this embedding semantic vector and the class
semantic vectors.

Here, Semantic Embedding module project the attribute vectors
𝑨 to unify the dimensions with 𝑭𝐴 , and compute their similarity
to obtain the attribute score 𝑠𝑘 , given by:

𝑠𝑘 = (𝒂𝑘𝑾𝑠𝑣) 𝒇𝐴𝑘
⊤
. (3)

After obtaining the semantic vector 𝑺 , class probabilities with
scaling can be obtained by calculating the similarity between the
mapping semantic vector and the class semantic vector, which can
be formulated as:

𝑝𝑐 = softmax
(
𝑺⊤𝑺𝑐

)
=

exp
(∑𝐾

𝑘=1 𝑠𝑘 × 𝑠
𝑐
𝑘

)
∑
𝑐′∈C exp

(∑𝐾
𝑘=1 𝑠𝑘 × 𝑠

𝑐′
𝑘

) . (4)

To optimize the model, existing methods typically take cross
entropy loss and calibration loss [6, 18, 26], which can be expressed
as:

L = L𝑐𝑒 + 𝜆𝑐𝑎𝑙L𝑐𝑎𝑙

= − log
(
𝑝𝑦

)
− 𝜆𝑐𝑎𝑙 log ©«

∑︁
𝑐∈𝐶𝑢

𝑝𝑐
ª®¬ ,

(5)

the 𝜆𝑐𝑎𝑙 is the weight to control the weight coefficient of calibration
loss.

We can find that such objective functions primarily utilize class
labels as supervision, while ignoring establishing substantive visual-
semantic correlation for ZSL. Therefore, building upon this, we
design Conditional Correlation Loss to effectively leverage seman-
tic information, and introduce counterfactual causal intervention
(including Semantic Causal Intervention and Target Causal Inter-
vention) to strengthen the substantive visual-semantic correlation.

3.3 Conditional Correlation Loss
As analyzed in the introduction, the mismatch between images
and corresponding attribute annotations hinders substantive visual-
semantic correlation. Such mismatch is caused because instance-
level images can not match the complete attribute annotations
defined at the class level.

Given that the attributes present in images are typically less than
attribute annotations, we impose major penalties on the model for
predicting attributes beyond the annotations. Simultaneously, mi-
nor penalties are applied to themodel for failing to predict attributes
present in the annotations but absent from the images, thus facili-
tating effective utilization of attribute annotations. Therefore, we
define two semantic difference vectors:

Δ𝑺1 =


𝑚𝑎𝑥 (𝑠1 − 𝑠𝑦1 , 0)

.

.

.

𝑚𝑎𝑥 (𝑠𝐾 − 𝑠𝑦
𝐾
, 0)

 ,Δ𝑺2 =


𝑚𝑎𝑥 (𝑠𝑦1 − 𝑠1, 0)

.

.

.

𝑚𝑎𝑥 (𝑠𝑦
𝐾
− 𝑠𝐾 , 0)

 . (6)

Δ𝑺1 represents the excess of predicted semantic information in the
images beyond the predefined semantic information, and Δ𝑺2 repre-
sents the opposite. By imposing differentiated penalties on Δ𝑺1 and
Δ𝑺2, we can effectively utilize semantic information. Meanwhile,
we introduce a regularization term 𝐽 (𝑺) to constrain the distribu-
tion of 𝑺 , which maintains the standard deviation of 𝑺 within the
same range as 𝑺𝑦 . Therefore, the Conditional Correlation Loss is
formulated as:

L𝑐𝑐 = ∥Δ𝑺1∥2 + 𝛼 ∥Δ𝑺2∥2 + 𝐽 (𝑺)
= ∥Δ𝑺1∥2 + 𝛼 ∥Δ𝑺2∥2 +

var
(
𝑺𝑦

)
− var(𝑺)


2 .

(7)

Here, 𝛼 is the coefficient to control the differentiated penalty weight,
we set it to 0.5.

3.4 Causal Intervention for ZSL
Here, we first present the causal perspective within the CVsC, fol-
lowed by the introduction of Semantic Causal Intervention and
Target Causal Intervention that we designed.
Causal View of ZSL We introduce the formulation of causality
for CVsC by using causal graph (also known as structural causal
model [33]). The causal graph is a directed acyclic graph G =

{N , E}, where each variable in the model corresponds to a node in
N , and the causal links in E describe how these variables interact.
As depicted in Figure 3(a), we utilize nodes in the causal graph to
represent the variables involved in our model, including the model
input 𝐼 (comprising images and attributes), 𝐹𝐴 (which corresponds
to attribute-related visual features), semantic prediction 𝑆 , and
target prediction 𝑌 . The link 𝐼 → 𝐹𝐴 denotes the model uses
Semantic Visual Attention to determine the variable 𝐹𝐴 . The link
(𝐼 , 𝐹𝐴) → 𝑆 indicates that the model combines 𝐼 and 𝐹𝐴 to predict

(a) Causal Graph (b) Semantic Intervention (c) Target Intervention

Figure 3: The causal graphs of ZSL.
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𝑆 . As for 𝑆 → 𝑌 , it signifies the prediction of image categories
based on 𝑆 .

The variable 𝐹𝐴 , as the product of visual-semantic interaction,
reflects and influences the substantive nature of visual-semantic
correlation. Traditional methods primarily rely on seen class labels
to optimize models and treat the model as a black box, overlooking
the impact of the quality of 𝐹𝐴 on semantic and target predictions.
Causal inference provides a tool to break free from the black box
by analyzing causal relationships between variables, aiding us in
critical analysis. Therefore, we utilize causality to assess the effec-
tiveness of learned 𝐹𝐴 , then encourage the model to learn more
effective 𝐹𝐴 to establish substantive visual-semantic correlation.

The introduction of a causal graph enables us to analyze the
causalities by manipulating variables and observing their effects.
Such operation is termed intervention in the causal inference [34,
41] and can be represented as 𝑑𝑜 (·). When investigating the impact
of a variable, the intervention involves removing all incoming links
to the variable and assigning it a new value. For instance, in our
causal graph, 𝑑𝑜 (𝐹𝐴 = 𝑭𝐴) denotes setting the variable 𝐹𝐴 to
𝑭𝐴 and severing the link 𝐼 → 𝐹𝐴 , thereby removing the causal
influence from its parent variable 𝐼 .

Inspired by existing causal inference methods [33, 38, 41], we
incorporate counterfactual intervention to investigate the impact
of 𝐹𝐴 . The counterfactual intervention is achieved by an imaginary
intervention altering the state of the variables assumed to be differ-
ent [38, 41]. In our work, we conduct counterfactual intervention
𝑑𝑜 (𝐹𝐴 = 𝑭𝐴, 𝐼 = (𝑭 ,𝑨)) by replacing the learned attribute-related
visual features 𝑭𝐴 with non-existent features 𝑭𝐴 while keeping the
input 𝐼 unchanged. Subsequently, we can observe its impacts on
semantic and target predictions, as depicted in Figure 3(a)(b). By
maxing these impacts, we can make the model learn more efficient
𝐹𝐴 . The specific operations will be detailed in subsequent sections.

3.4.1 Semantic Causal Intervention. The variable 𝐹𝐴 first affects
the semantic prediction results. Thus, we observe its impacts on
semantic prediction. By substituting the learned attribute-related
visual features 𝑭𝐴 with imaginary features 𝑭𝐴 , we implement a
counterfactual intervention 𝑑𝑜 (𝐹𝐴 = 𝑭𝐴). In practice, we replace
𝑭𝐴 with randomly generated features of the same dimensions. Re-
ferring to [33, 38, 41], we can assess the influence of variable 𝐹𝐴
by observing the difference between original semantic predictions
𝑆 (𝐹𝐴 = 𝑭𝐴, 𝐼 = (𝑭 ,𝑨)) and semantic predictions under counterfac-
tual intervention 𝑆 (𝑑𝑜 (𝐹𝐴 = 𝑭𝐴), 𝐼 = (𝑭 ,𝑨)):
𝑆𝑒 𝑓 𝑓 = 𝑆 (𝐹𝐴 = 𝑭𝐴, 𝐼 = (𝑭 ,𝑨)) − 𝑆 (𝑑𝑜 (𝐹𝐴 = 𝑭𝐴), 𝐼 = (𝑭 ,𝑨)).

(8)
𝑆𝑒 𝑓 𝑓 reflects the impact of 𝐹𝐴 for the semantic prediction, thus

maximizing the 𝑆𝑒 𝑓 𝑓 can guide the model to learn more effective
𝐹𝐴 . Additionally, we introduce a regularization term to prevent the
model from simply weakening 𝑆 (𝑑𝑜 (𝐹𝐴 = 𝑭𝐴), 𝐼 = (𝑭 ,𝑨)), which
utilize class semantic vectors to constrain 𝑆𝑒 𝑓 𝑓 . Consequently, the
Semantic Causal Intervention can be finally formulated as the fol-
lowing objective function:

L𝑠𝑐𝑖 = 𝑆𝑒 𝑓 𝑓 + 𝐽 (𝑆𝑒 𝑓 𝑓 )

=

𝑘=𝐾∑︁
𝑘=1

𝑠𝑘 − 𝑠𝑘
(
𝐹𝐴

)
+
𝑺𝑦 − (

𝑺 − 𝑺
(
𝐹𝐴

))
2
.

(9)

3.4.2 Target Causal Intervention. The variable 𝐹𝐴 also influences
the final target prediction. Therefore, we simultaneously maximiz-
ing the impact of 𝐹𝐴 on target prediction to learn effective 𝐹𝐴 .
Similarly, the influence of 𝐹𝐴 on the target prediction 𝑌 can be
represented by the difference between the original 𝑌 (𝐹𝐴 = 𝑭𝐴, 𝐼 =

(𝑭 ,𝑨)) and the counterfactual intervention 𝑌 (𝑑𝑜 (𝐹𝐴 = 𝑭𝐴), 𝐼 =
(𝑭 ,𝑨)):

𝑌𝑒 𝑓 𝑓 = 𝑌 (𝐹𝐴 = 𝑭𝐴, 𝐼 = (𝑭 ,𝑨)) − 𝑌 (𝑑𝑜 (𝐹𝐴 = 𝑭𝐴), 𝐼 = (𝑭 ,𝑨)) .
(10)

Here, we employ cross-entropy to design the objective function
for the Target Causal Intervention, which can be expressed as:

L𝑡𝑐𝑖 = 𝐶𝐸 (𝑌𝑒 𝑓 𝑓 , 𝑦)

= −
∑︁

log
(
𝑝
𝑦

𝑒𝑓 𝑓

)
.

(11)

Through the collaborative effort between Semantic Causal Inter-
vention and Target Causal Intervention, the model is encouraged to
learn effective attribute-related visual features, thereby establishing
substantive visual-semantic correlation.

3.5 Optimization and Zero-Shot Prediction
To optimize our CVSC, we need to minimize the overall objec-
tive function, which comprises the typical loss in 5, Conditional
Correlation Loss, Semantic Causal Intervention and Target Causal
Intervention. This can be represented as:

L𝐶𝑉𝑠𝐶 = L + 𝜆𝑐𝑐L𝑐𝑐 + 𝜆𝑠𝑐𝑖L𝑠𝑐𝑖 + 𝜆𝑡𝑐𝑖L𝑡𝑐𝑖 , (12)

where 𝜆𝑐𝑐 , 𝜆𝑠𝑐𝑖 and 𝜆𝑡𝑐𝑖 are the weight to control the Conditional
Correlation Loss, Semantic Causal Intervention, and Target Causal
Intervention, respectively.

After completing model training, we can directly take the model
to predict the unseen images under the CZSL setting. While, for
the GZSL setting, where test images come from both seen and
unseen classes, the calibration factor [4] is employed to adjust the
model bias towards seen classes. Specifically, the GZSL predicted
expression is defined as:

𝑝𝑐
𝑔𝑧𝑠𝑙

= arg max
𝑐∈C𝑢∪C𝑠

(
𝑝𝑐 + 𝛿I[𝑐∈C𝑢 ]

)
, (13)

where 𝛿1 and 𝛿2 are the calibration factor corresponding to two
subnets, and I[𝑐∈C𝑢 ] is an indicator function.

4 EXPERIMENTS
In this section, we introduce the datasets, evaluation protocols,
and implementation details. Furthermore, we provide a series of
experiment analyses to verify our method.
Datasets. We conduct extensive experiments on three widely used
benchmark datasets, i.e., AWA2 [46], CUB [44] and SUN [31]. AWA2

Table 1: Detailed illustration for the ZSL benchmark datasets.
𝑠 and 𝑢 represent seen and unseen classes, respectively.

Dataset # images # classes (𝑠 |𝑢) # attributes
CUB [44] 11788 200 (150 |50) 312
SUN [31] 14340 717 (645 |72) 102
AWA [46] 37322 50 (40 |10) 85
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Table 2: Results (%) of the state-of-the-art under CZSL and GZSL settings on AWA2, CUB and SUN. The best and the second best
results are marked in red and blue, respectively. The symbol ’-’ indicates no results.

Methods Backbone Image size
CUB SUN AWA2

CZSL GZSL CZSL GZSL CZSL GZSL
acc U S H acc U S H acc U S H

f-VAEGAN-D2 [49] ResNet101 224×224 61.0 48.4 60.1 53.6 64.7 45.1 38.0 41.3 71.1 57.6 70.6 63.5
FREE [8] ResNet101 224×224 - 55.7 59.9 57.7 - 47.4 37.2 41.7 - 60.4 75.4 67.1
HSVA [9] ResNet101 224×224 62.8 52.7 58.3 55.3 63.8 48.6 39.0 43.3 - 59.3 76.6 66.8

CE-GZSL [17] ResNet101 224×224 77.5 63.9 66.8 65.3 63.3 48.8 38.6 43.1 70.4 63.1 78.6 70.0
DAZLE [18] ResNet101 224×224 66.0 56.7 59.6 58.1 59.4 52.3 24.3 33.2 67.9 60.3 75.7 67.1
HAS [11] ResNet101 224×224 76.5 69.6 74.1 71.8 63.2 42.8 38.9 40.8 71.4 63.1 87.3 73.3
MSDN [7] ResNet101 448×448 76.1 68.7 67.5 68.1 65.8 52.2 34.2 41.3 70.1 62.0 74.5 67.7

TransZero [6] ResNet101 448×448 76.8 69.3 68.3 68.8 65.5 52.6 33.4 40.8 70.1 61.3 82.3 70.2
IEAM-ZSL [2] ViT-Large 224×224 - 68.6 73.8 71.1 - 48.2 54.7 51.3 - 53.7 89.9 67.2
ViT-ZSL [1] ViT-Large 224×224 - 67.3 75.2 71.0 - 44.5 55.3 49.3 - 51.9 90.0 68.5
DUET [10] ViT-Base 224×224 72.3 62.9 72.8 67.5 64.4 45.7 45.8 45.8 69.9 63.7 84.7 72.7
PSVMA [24] ViT-Base 224×224 - 70.1 77.8 73.8 - 61.7 45.3 52.3 - 73.6 77.3 75.4

CVsC ViT-Base 224×224 79.1 72.4 78.4 75.3 71.5 61.9 47.6 53.8 73.1 68.0 87.0 76.4

contains 37,322 images from 50 animal categories with 85 attributes.
CUB contains 11,788 images from 200 bird categories with 312
attributes. SUN consists of 14,340 images from 717 scene classes
with 102 attributes. For each dataset, we followed the recommended
splits [46], dividing the classes into seen and unseen, as detailed in
Table 2.
Evaluation Protocols. The performance of ZSL is evaluated by
testing the average top-1 accuracy for each class. In the CZSL
setting, we calculate the accuracy (𝐴𝑐𝑐) by predicting the unseen
classes on the test samples. In GZSL, which testing set consists of
both seen and unseen samples, we need to evaluate the accuracy
separately for the seen classes (𝑆) and unseen classes (𝑈 ). Therefore,
the performance of GZSL is ultimately assessed by using their
harmonic mean, defined as 𝐻 = (2 × 𝑆 ×𝑈 )/(𝑆 +𝑈 ) [46].
Implementation Details. We implemented our method by using
the PyTorch framework2. We employed the ViT [13] pre-trained
on ImageNet [12] as the backbone for visual feature extraction.
The input images were resized to 224 × 224. The attribute vectors
were extracted by using the GloVe model [36] trained on Wikipedia
articles. Themodel was optimized by using the Adam [19] optimizer
on an NVIDIA 3090.

4.1 Comparison with State-of-the-Arts
We compute the performance of CVsC under the CZSL and GZSL
settings on the CUB, SUN, and AWA2. The results of CVsC are
compared with state-of-the-art methods employing different visual
backbones, such as TransZero [6] and MSDN [7] using ResNet as
the backbone, and PSVMA [24] using ViT as the backbone. Ta-
ble 2 shows the comparison results. In the CZSL setting, our CVsC
achieves the best average top-1 accuracies of 79.1%, 71.5% and 73.1%
on CUB, SUN and AWA2, respectively. And under the GZSL set-
ting, CVsC also gets the best results of harmonic mean, e.g., 75.3%,
53.8% and 76.4% on CUB, SUN and AWA2, respectively. These re-
sults demonstrate the superiority of the proposed method, which

2https://pytorch.org/

Table 3: Results (%) of CZSL and GZSL ablation study on CUB,
SUN and AWA2. The CCL represents Conditional Correlation
Loss, The SCI represents Semantic Causal Intervention, and
TCI represents Target Causal Intervention.

Methods
CUB SUN AWA2

CZSL GZSL CZSL GZSL CZSL GZSL
Acc H Acc H Acc H

Baseline 74.3 66.9 68.1 48.7 59.8 58.9
CVsC w/o CCL 77.6 71.4 69.4 49.2 65.4 62.8
CVsC w/o SCI 77.6 73.9 71.2 53.2 72.5 76.3
CVsC w/o TCI 77.1 73.0 70.3 51.7 70.1 73.8

CVsC 79.1 75.3 71.5 53.8 73.1 76.4

benefits from establishing substantive visual-semantic correlations,
enabling effective knowledge transfer in ZSL.

4.2 Ablation
To gain further insights into CVsC, we conducted ablation studies
to evaluate the effectiveness of its key components, namely Condi-
tional Correlation Loss, Semantic Causal Intervention and Target
Causal Intervention.

Here, we take the model with the same model architecture but
without the above threemainmodules as the baseline. Subsequently,
we compared the baseline with CVsC models without Conditional
Correlation Loss (denoted as CVsC w/o CC), without Semantic
Causal Intervention (denoted as CVsC w/o SCI), and without Target
Causal Intervention (denoted as CVsC w/o TCI). We conducted
experiments on CUB, SUN, and AWA2 datasets, and the results are
presented in Table 3. It shows that CVsC exhibits significant perfor-
mance improvement relative to the baseline, while the absence of
the aforementioned three components leads to performance degra-
dation. This indicates that all three components effectively assist
the model in constructing substantive visual-semantic correlation,
thereby enhancing ZSL performance.
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(a) baseline on seen class

(c) baseline on unseen class

(b) CVsC on seen class

(b) CVsC on unseen class

Figure 4: Semantic error visualization on the test set of CUB. (a)(c) are the class-averaged semantic error matrix for the baseline
on seen and unseen class. And (b)(d) are the class-averaged semantic error matrix for CVsC on seen and unseen class.

4.3 Qualitative Evaluation for Visual-semantic
Correlation

In addition to the improvement in accuracy, we conducted quantita-
tive experiments to further demonstrate the ability of our CVSC to
establish more substantive visual-semantic correlation, including
semantic error visualization and attribute attention map visualiza-
tion.

4.3.1 Semantic Error Matrix. Inspired by [52], we calculated the
class-averaged semantic error by computing the difference between
predicted attribute values 𝑠𝑘 and annotated values 𝑠𝑐

𝑘
of class 𝑐 on

the test set. We normalize the predicted attribute values in the same
manner as the annotated attribute values, mitigating the influence
of data outliers on the computation of class-averaged semantic error.
Therefore, the class-averaged semantic error can be calculated as
follows:

𝑒𝑐𝑘 =
1

|N𝑐 |
∑︁
𝑛∈N𝑐

(𝑠𝑛
𝑘
− 𝑠𝑐

𝑘
)2
, (14)

where N𝑐 the sample set of class 𝑐 on the test set, and |N𝑐 | is the
number of corresponding samples.

We adopt the same baseline as in the ablation experiment and
compute the class-averaged semantic error for both the baseline
and CVsC on CUB. Then, we visualize the class-averaged semantic
errors of both the baseline and CVsC for seen and unseen classes
separately using matrices, as illustrated in Figure 4. It can be ob-
served that CVsC significantly reduces semantic errors for both
seen and unseen classes.

Furthermore, we statistically analyzed the overall average errors
for seen and unseen classes, and calculated the increase in error for
unseen classes relative to seen classes, as shown in Table 4. It can be
observed that CVsC not only has lower semantic errors compared
to the baseline but also exhibits significantly lower error increases
for seen classes.

Table 4: Semantic error statistics on the test set of CUB.

method seen class average error unseen class average error
Baseline 0.146 0.174↑19.1%

CVsC 0.089 0.099↑11.9%

These results demonstrate that our CVsC can enhance the sub-
stantiveness of visual-semantic correlation, facilitating knowledge
transfer from seen to unseen classes.

4.3.2 Visualization of Attribute Attention Map. We visualized the
model’s attribute attention maps, implemented by computing the
attribute attention map 𝑴 defined in Eq. 2, to further demonstrate
the role of CVsC in establishing substantive visual-semantic corre-
lation.

Here, we conducted visualizations separately for both the base-
line and CVsC on CUB. The results shown in Figure 5, reveal numer-
ous attribute localization errors in the baseline, whereas CVsC sig-
nificantly improves upon this situation. This observation suggests
that although ViT demonstrates strong representational capabili-
ties, deeper layers are more susceptible to attention collapse [56],
leading to challenges in attribute localization compared to convolu-
tional networks. This difficulty impedes the model from accurately
associating attributes with specific regions, resulting in spurious
visual-semantic correlation and limiting knowledge transfer. How-
ever, our CVsC approach facilitates the establishment of substantive
visual-semantic correlation, enabling accurate attribute localization.

4.4 Hyperparametric Analysis
There are three key factors involved in our method, the weights of
Conditional Correlation Loss, Semantic Causal Intervention and
Target Causal Intervention, i.e., 𝜆𝑐𝑐 , 𝜆𝑠𝑐𝑖 and 𝜆𝑡𝑐𝑖 . To analyze the
robustness of our CVsC and select optimal hyperparameters for it,
we try a wide range of 𝜆𝑐𝑐 , 𝜆𝑠𝑐𝑖 and 𝜆𝑡𝑐𝑖 evaluated on CUB. The
results are shown in Figure 6. It shows that CVsC is robust when the
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Figure 5: Visualization of attribute attention maps learned by baseline and CVsC on CUB. The first column on the left is the
selected input image, and the subsequent five columns on the right are the selected attribute attention maps.

(a) (b) (c)

Figure 6: Hyperparameter analysis of 𝜆𝑐𝑐 , 𝜆𝑠𝑐𝑖 and 𝜆𝑡𝑐𝑖 . We show the CZSL and GZSL performance variations on CUB.

loss weights are set to small, while the performance drops rapidly
when loss weights are set to too large. Because the large loss weights
will hamper the balance of various losses. According to the results
in Figure 6, we set the weights {𝜆𝑐𝑐 , 𝜆𝑠𝑐𝑖 , 𝜆𝑡𝑐𝑖 } to {0.5, 2.0, 2.0}.

5 CONCLUSION
In this paper, we emphasize the significance of visual-semantic
correlation for ZSL, and highlight the presence of spurious visual-
semantic correlation caused by mismatches between instance-level
images and class-level attribute annotations. This inspires us to
propose a novel method termed Causal Visual Semantic Correlation

(CVsC), which can effectively enhance the substantive correlation
between vision and semantics. CVsC first employs Conditional
Correlation Loss to properly use attribute annotations as super-
vision for establishing visual-semantic correlation. Furthermore,
it integrates causal inference techniques to strengthen the sub-
stantive correlation between vision and semantics. Specifically, it
achieves this by applying counterfactual interventions to interme-
diate variables learned during visual-semantic interactions, and
maximizing their impact on semantic and target prediction. Exten-
sive experiments demonstrate the effectiveness of our proposed
model, achieving state-of-the-art performance by establishing sub-
stantive visual-semantic correlation.
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