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Abstract001

Large language models (LLMs) have emerged002
as strong contenders in machine translation.003
Yet, they often fall behind specialized neural004
machine translation systems in addressing005
discourse phenomena, such as pronoun res-006
olution and lexical cohesion at the document007
level. In this study, we thoroughly investigate008
the discourse phenomena performance of009
LLMs for document-level translation. We010
demonstrate that discourse knowledge is011
encoded within LLMs and propose the012
use of quality-aware decoding (QAD) to013
effectively extract this knowledge, showcasing014
its superiority over other decoding approaches015
through comprehensive analysis. Furthermore,016
we illustrate that QAD enhances the semantic017
richness of translations and aligns them more018
closely with human preferences.019

1 Introduction020

Large language models (LLMs) have demonstrated021

superior performance in machine translation (MT),022

producing strong results not only for sentence-level023

but also document-level translation (Wang et al.,024

2023; Xu et al., 2023; Alves et al., 2024; Zhu et al.,025

2024). Quality improvements in document-level026

translation are key in producing translations that027

align better with human preferences, since docu-028

ments are the natural way in which we consume and029

produce text (Läubli et al., 2018; Maruf et al., 2022;030

Mohammed and Niculae, 2024b; Dahan et al.,031

2024). However, document-level translation intro-032

duces extra challenges, including inter-sentential033

coreference resolution as well as the need for main-034

taining coherence, style, and formality level across035

the document (Post and Junczys-Dowmunt, 2023).036

At the same time, it has been observed that037

LLM-derived translations frequently feature dif-038

ferent linguistic and semantic characteristics and039

patterns, hence inspiring several works that try to040

trace and understand such patterns and differences041

in neural machine translation (NMT). Thus, recent 042

work ranges from designing linguistic performance 043

test suites (Manakhimova et al., 2024) to analyzing 044

specific aspects such as lexical features, literalness, 045

formality (Wisniewski et al., 2024), gender bias 046

(Kotek et al., 2023; Zhao et al., 2024), and pronoun 047

resolution. These studies uncovered valuable fea- 048

tures of LLMs’ translations, including suboptimal 049

performance compared to NMT systems in several 050

phenomena, such as punctuation, future verb 051

tenses, stripping, function words (Manakhimova 052

et al., 2024), and pronoun resolution (Mohammed 053

and Niculae, 2024a). Other works observed 054

that LLMs show systematic differences to NMT 055

systems in their choice of lexical features, such as 056

Part-of-speech (PoS) patterns (Sizov et al., 2024) 057

as well as their ability to produce less literal trans- 058

lations while remaining competitive quality-wise 059

to NMT translations (Raunak et al., 2023). 060

Despite these insights, fine-grained analyses 061

rarely extend to document-level MT, where dis- 062

course context makes such phenomena even more 063

critical and further underscores the need to un- 064

derstand the linguistic and semantic properties of 065

LLM translations. We thus aim to study the per- 066

formance of LLMs in document-level translation 067

with respect to different discourse phenomena. In- 068

spired by Fernandes et al. (2023), we measure mod- 069

els’ performance on four phenomena: lexical cohe- 070

sion, pronoun resolution, formality, and verb forms. 071

We compare the performance of recent translation- 072

LLMs to encoder-decoder models on the DELA 073

corpus, a high-quality human-curated dataset that 074

is rich in discourse phenomena (Castilho et al., 075

2021). Moreover, we hypothesize that discourse 076

knowledge can be implicitly encoded in LLMs, but 077

is fully exploited by greedy decoding. We thus 078

experiment with quality-aware decoding (Fernan- 079

des et al., 2022) and find that it indeed helps im- 080

prove the discourse phenomena performance of 081

LLMs. We validate our findings through extensive 082
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Lexical EN: The reviewer gave us constructive feedback. We appreciate the reviewer ’s feedback.
cohesion FR: L’examinatrice nous a fait un retour constructif. Nous apprécions le retour de l’ examinatrice .

Pronoun EN: One of the Chinese worked in an amusement park. It was closed for the season.
resolution DE: Ein Chinese arbeitete in einem Vergnügungspark. Er war gerade geschlossen.

Formality EN: How are you my dear friend? Would you like to go to the cinema with me?

DE: Wie geht es dir, mein lieber Freund? Möchtest du mit mir ins Kino gehen?

Verb form EN: Maria said she was too sick. However, she was seen walking in the park.
PT: A Maria disse que estava muito doente. No entanto, ela foi vista a passear no parque.

Table 1: Examples of discourse phenomena. Ambiguous words are highlighted in pink , and supporting context
necessary to resolve the ambiguity is marked in underlined purple text.

experiments on six language pairs from three lan-083

guage families: English to Brazilian-Portuguese,084

German, French, Korean, Arabic and Russian,085

on two datasets, namely, TED2020 (Reimers and086

Gurevych, 2020) and WMT24++ dataset (Deutsch087

et al., 2025).088

Our contributions can be summarized as follows:089

• We design a comprehensive evaluation setup090

leveraging a discourse-rich dataset, showing091

that under greedy decoding, encoder-decoder092

models outperform LLMs in terms of093

discourse performance.094

• We demonstrate through extensive evaluation095

on six language pairs using automatic metrics,096

LLM-as-a-judge, and human assessment097

that QAD improves the translation and the098

discourse performance of LLMs, enabling099

them to surpass encoder-decoders.100

• We conduct a comprehensive analysis on101

the effect of different inference setups on102

discourse performance.103

• We release human annotations based on104

TED2020 that focus on discourse phenomena,105

supporting further research in this area.1106

2 Background107

2.1 Discourse Phenomena in Document-Level108

Translation109

Translating beyond the sentence level brings extra110

challenges that concern inter-sentential coreference111

resolution, lexical cohesion, and coherence. Han-112

dling these challenges is important to ensure reli-113

able, adequate translations that align with human114

preferences. In this work, we focus on four linguis-115

tic phenomena that are relevant to document-level116

translation as proposed by (Fernandes et al., 2023):117

1All code and data will be released upon acceptance.

Lexical cohesion. Entities that are mentioned 118

multiple times across the document should be trans- 119

lated in the same way. 120

Pronoun resolution. For languages that have 121

gendered pronouns, the translation should respect 122

the gender of the referent. 123

Formality. Linguistic indicators such as pro- 124

nouns and honorifics are used when addressing 125

someone formally or expressing respect. 126

Verb form. Verbs should be translated according 127

to the tense, gender, tone, mood, and cohesion of 128

the document. 129

Examples of the phenomena highlighting the 130

ambiguous words and their supporting context are 131

presented in Table 1. 132

2.2 Quality-Aware Decoding (QAD) 133

Quality-aware decoding for machine translation 134

refers to utilizing translation evaluation metrics dur- 135

ing decoding to choose the best candidate among 136

several sampled responses from the model using 137

vanilla temperature sampling or variations of it that 138

truncate the distribution, such as top-k or nucleus 139

sampling (Fan et al., 2018; Holtzman et al., 2020). 140

QAD has been proven to generate better quality 141

translations compared to maximum-a-posteriori 142

(MAP) decoding according to automatic metrics 143

and human evaluation (Fernandes et al., 2022). 144

There are different approaches to quality aware- 145

decoding including reranking (Lee et al., 2021; 146

Bhattacharyya et al., 2021), minimum Bayes risk 147

(MBR) decoding (Eikema and Aziz, 2020, 2022; 148

Müller and Sennrich, 2021), and fusion of samples 149

(Vernikos and Popescu-Belis, 2024). In our work 150

we focus on MBR decoding. 151

A machine translation model defines a probabil- 152

ity distribution p(y|x, θ) over a set of hypothesis Y . 153
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Lexical cohesion Formality Pronouns Verb form Total Sentences Documents

DELA
EN-PT 1322 630 323 – 1866 (50.3) 3710 60

TED2020
EN-PT 6640 3151 2202 – 9877 (49.4) 20003 162
EN-DE 5386 4904 2186 – 10125 (50.4) 20077 160
EN-FR 6346 3315 7486 – 11642 (58.1) 20049 162
EN-KO 2190 1165 – – 3238 (16.2) 20017 162
EN-AR 4109 – 655 – 4654 (23.2) 20034 162
EN-RU 3544 2451 – – 5506 (27.4) 20084 163

WMT24
EN-PT 209 178 59 – 356 (37.1) 960 169
EN-DE 56 199 43 – 263 (27.4) 960 169
EN-FR 189 130 160 67 413 (43.0) 960 169
EN-KO 93 17 – – 109 (11.4) 960 169
EN-AR 166 – 39 – 198 (20.6) 960 169
EN-RU 129 90 – 70 255 (26.6) 960 169

Table 2: Dataset statistics, including counts of each phenomenon, the total number of sentences tagged with
phenomena and their percentage of total sentences (in parentheses), and the total number of sentences and documents
for each dataset and language pair. Note that the total sentence count can be less than the sum of phenomena counts
because we can have multiple phenomena per sentence.

MAP decoding, such as greedy decoding, aims to154

maximize the probability of generated hypothesis:155

ĥ = argmax
y∈Y

p(y|x, θ). (1)156

Given a utility function u that measures the sim-157

ilarity between a hypothesis h and a reference y,158

MBR decoding aims to find the hypothesis that159

maximizes the expected utility (minimizes the loss)160

among a set of sampled hypotheses H. It selects:161

ĥ = argmax
h∈H

Ey∼p(y|x,θ) [u(h, y)]. (2)162

We experiment with different choices for the163

utility function, including lexical, pretrained, and164

discourse-specific metrics for translation evalua-165

tion. We discuss these in more detail in §5.1.166

3 Experiments167

3.1 Data168

We experiment on the DELA corpus (Castilho et al.,169

2021), an English-Brazilian-Portuguese document-170

level corpus annotated with context-related issues.171

The corpus is a collection of documents from dif-172

ferent domains (news, subtitles, literature, legisla-173

tion, reviews, medical) that are manually selected,174

translated, and annotated with context-dependent175

discourse phenomena. Additionally, we experi-176

ment on a 20K subset of TED2020 data (Reimers177

and Gurevych, 2020) available in OPUS (Tiede-178

mann, 2012). We also experiment on WMT24++179

dataset (Deutsch et al., 2025) (results are in ap- 180

pendix A). For both TED2020 and WMT24++, we 181

experiment on six language directions: English 182

(EN) to Brazilian-Portuguese (PT), German (DE), 183

French (FR), Korean (KO), Arabic (AR) and Rus- 184

sian (RU). Dataset statistics for the three corpora, 185

including discourse phenomena statistics, are pre- 186

sented in Table 2. 187

3.2 Models 188

We experiment on strong LLMs for translation, in- 189

cluding TowerInstruct-13B (Alves et al., 2024); 190

an instruction-tuned translation-specialized LLM 191

based on Llama2-13B (Touvron et al., 2023), and 192

EuroLLM-9B-Inst (Martins et al., 2024); a multi- 193

lingual LLM trained from scratch on all European 194

Union languages and additional relevant ones. We 195

also experiment on NLLB-3.3B (Costa-jussà et al., 196

2022) as an encoder-decoder baseline. 197

3.3 Inference 198

We experiment with two decoding setups: greedy 199

decoding, which selects the highest-probability 200

token at each step, and quality-aware decoding 201

(QAD), which uses MBR with 50 samples gener- 202

ated via nucleus sampling (p=0.9). We use BLEU 203

score (Papineni et al., 2002) as the utility function 204

for all our experiments unless stated otherwise. We 205

conducted preliminary experiments on different 206

prompting formats for each model and present only 207

the best setup in this work. For TowerInstruct-13B 208

and EuroLLM-9B-Inst, we employ context-aware 209
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NLLB-3.3B TowerInstruct-13B EuroLLM-9B-Inst
Greedy QAD Greedy QAD Greedy QAD

BLEU 55.2 58.2 41.0 57.4 25.9 52.1
COMET 87.1 87.4 86.0 89.6 80.4 87.8
COMETQE 81.5 81.6 79.1 82.0 76.0 81.9
Lexical cohesion 87.0 85.0 85.0 90.0 79.0 89.0
Formality 75.0 76.0 66.0 76.0 56.0 75.0
Pronouns 45.0 47.0 50.0 60.0 40.0 48.0

Table 3: Translation and discourse phenomena performance of the three models using greedy and QAD setups on
DELA dataset. Bold highlights the best value per row. The numbers presented for phenomena are F1 accuracies
(details in §3.4.2). The results demonstrate that QAD enhances the performance of LLMs.

prompting with the context being (up to) 5 previous210

source-target pairs in the same document (prompt211

formats in Appendix C). For NLLB-3.3B, since the212

model has only been trained on sentence-level data,213

we conduct inference at the sentence level.214

3.4 Evaluation215

We measure both the overall translation perfor-216

mance and the discourse phenomena performance.217

We also include an LLM-based evaluation for com-218

pleteness.219

3.4.1 Overall Translation Evaluation220

We use a lexical metric, BLEU (Papineni et al.,221

2002), a reference-based pretrained metric,222

COMET2 (Rei et al., 2022a) and its reference-free223

variant, COMETQE3 (Rei et al., 2022b).224

3.4.2 Discourse Phenomena Evaluation225

We measure the F1 accuracy of tagged words with226

discourse phenomena in the reference, existing and227

also being tagged in the hypothesis. To do so, we228

utilize the multilingual discourse-aware benchmark229

(MuDA) for discourse phenomena evaluation (Fer-230

nandes et al., 2023). The tagging of words is done231

automatically using a predefined language-specific232

list of pronouns, verb forms, and formality indi-233

cators. For lexical cohesion, the tagging is done234

by obtaining source-target word alignments, if an235

alignment pair occurs more than a specific num-236

ber of times (three in our experiments, following237

MuDA), the word is tagged for lexical cohesion.238

3.4.3 LLM-Based Evaluation239

Evaluating LLMs automatically has become in-240

creasingly difficult due to their rapid advancements.241

Consequently, the use of language models for the242

2https://huggingface.co/Unbabel/wmt22-comet-da
3https://huggingface.co/Unbabel/wmt22-cometkiwi-da

Figure 1: Difference between QAD and greedy LLM-
as-a-judge scores on TED2020 data. The plot demon-
strates that QAD improves the performance of LLMs.

automatic assessment of long-form text (LLM-as-a- 243

judge) is gaining popularity. We employ the multi- 244

lingual M-Prometheus (Pombal et al., 2025) judge 245

in an absolute evaluation setup where the judge is 246

provided with the instruction used to prompt the 247

translation model along with the translation output. 248

The judge then assigns a rating between 1 and 5, ac- 249

companied by an explanation of the decision. Since 250

we use different prompting setups for our models 251

(§3.3), the instructions provided for the judge are 252

different which makes direct comparisons unfair. 253

Therefore, we report only the difference between 254

greedy and QAD scores for each model rather than 255

their absolute scores. Sustainability statement of 256

all experiments in this paper is in Appendix E. 257

4 Results 258

4.1 DELA-Data Results 259

In Table 3, we present the results on the DELA cor- 260

pus. We see that TowerInstruct-13B and EuroLLM- 261

9B-Inst fall behind NLLB-3.3B in translation and 262

discourse phenomena performance when using 263
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Language Pair Metric NLLB-3.3B TowerInstruct-13B EuroLLM-9B-Inst
Greedy QAD Greedy QAD Greedy QAD

EN-PT

BLEU 40.4 41.8 30.4 42.5 21.0 38.9
COMET 87.0 87.2 84.6 88.2 81.1 87.2

COMETQE 82.7 82.9 78.8 82.2 77.7 83.3
Lexical Cohesion 80.0 80.0 78.0 83.0 75.0 83.0

Formality 65.0 67.0 58.0 69.0 53.0 68.0
Pronouns 51.0 51.0 51.0 61.0 47.0 57.0

EN-DE

BLEU 31.3 32.7 21.9 33.1 14.1 29.2
COMET 83.8 84.1 79.9 85.1 76.2 84.1

COMETQE 82.9 82.9 76.8 81.9 76.5 83.0
Lexical Cohesion 69.0 69.0 68.0 76.0 64.0 72.0

Formality 65.0 67.0 67.0 75.0 58.0 70.0
Pronouns 68.0 67.0 63.0 73.0 59.0 69.0

EN-FR

BLEU 41.0 43.0 31.1 42.9 20.5 38.7
COMET 84.0 84.5 81.6 85.7 76.8 84.5

COMETQE 84.1 84.4 80.9 84.1 78.1 84.6
Lexical Cohesion 78.0 79.0 76.0 81.0 70.0 79.0

Formality 75.0 74.0 71.0 79.0 61.0 76.0
Pronouns 75.0 75.0 72.0 79.0 64.0 76.0

EN-RU

BLEU 24.2 24.9 11.7 26.2 15.6 25.4
COMET 84.3 84.3 71.6 85.8 81.0 85.7

COMETQE 82.7 82.6 64.1 81.8 78.8 83.3
Lexical Cohesion 58.0 59.0 44.0 64.0 56.0 62.0

Formality 56.0 56.0 39.0 61.0 48.0 60.0

EN-AR

BLEU 12.5 12.5 N/A N/A 5.2 13.4
COMET 81.3 81.2 N/A N/A 75.0 82.5

COMETQE 79.1 78.7 N/A N/A 70.8 79.5
Lexical Cohesion 55.0 55.0 N/A N/A 53.0 60.0

Pronouns 51.0 49.0 N/A N/A 41.0 50.0

EN-KO

BLEU 20.6 20.9 9.7 20.3 13.6 23.7
COMET 84.7 84.7 80.1 85.9 82.0 86.8

COMETQE 84.7 84.4 74.7 82.6 79.9 85.4
Lexical Cohesion 45.0 46.0 44.0 52.0 45.0 50.0

Formality 26.0 24.0 26.0 39.0 27.0 38.0

Table 4: Translation and discourse phenomena performance of the three models using greedy and QAD setups on
TED2020 dataset. N/A: not applicable as TowerInstruct-13B is not trained on Arabic. Bold highlights the best value
per row. The results demonstrate that QAD enhances the performance of LLMs. The random chance performance
varies depending on the number of elements in the list of ambiguous words, which differs across languages.

BLEU ChrF COMET COMETQE Lexical cohesion Formality Pronouns

TowerInstruct-13B
Greedy 41.0 55.8 86.0 79.1 85.0 66.0 50.0
QAD (BLEU) 57.4 76.3 89.6 82.0 90.0 76.0 60.0
QAD (ChrF) 55.8 76.9 89.7 82.2 90.0 77.0 61.0
QAD (COMET) 54.2 75 90.9 83.1 89.0 76.0 62.0
QAD (LC) 41.3 67.5 84.6 79.6 85.0 64.0 49.0
QAD (DiscoScore) 55.3 75.1 89.4 81.8 89.0 76.0 57.0
Fusion (COMETQE) 41.6 67.8 89.1 85.7 86.0 67.0 46.0
APE 44.3 68.4 87.7 82.0 84.0 69.0 47.0

Table 5: Translation and discourse phenomena performance of different decoding setups using TowerInstruct-13B
on DELA data. Bold highlights the best value per column.
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Figure 2: Human-annotated accuracy of greedy and
QAD outputs in handling discourse phenomena, aver-
aged across all languages where the phenomena occur
( number of languages is shown at the bottom of the
plot). Arabic is excluded from this plot to avoid model-
specific biases.

greedy decoding. Interestingly, we observe that us-264

ing QAD significantly improves both overall trans-265

lation and discourse phenomena handling of LLMs266

allowing them to outperform NLLB-3.3B.267

4.2 TED2020 and WMT24++ Results268

In Table 4 we show the results on the TED2020269

dataset for all language pairs. WMT24++ results270

are deferred to Appendix A as they evidence sim-271

ilar overall trends. The results highlight the sub-272

stantial improvements in discourse and translation273

performance of LLMs using QAD across all lan-274

guage pairs. Moreover, TowerInstruct-13B out-275

performs other tested models, highlighting the ef-276

fectiveness of translation finetuning in encoding277

discourse knowledge in LLMs.278

Additionally, we present the differences be-279

tween greedy and QAD scores from the LLM-as-280

a-judge evaluation for TED2020 data in Figure 1,281

WMT24++ results are in Appendix A. The results282

show that QAD enhances the performance of both283

LLMs (TowerInstruct-13B, EuroLLM-9B-Inst) but284

not NLLB-3.3B, which is consistent with the find-285

ings from automatic metrics.286

5 Analysis287

5.1 Inference Setup Ablation288

We perform an ablation study on DELA data using289

the TowerInstruct-13B model, comparing different290

inference setups. Specifically:291

QAD. We explore the following utility functions:292

• Translation metrics. BLEU, ChrF (Popović,293

2015) and COMET scores. For those metrics,294

Figure 3: Semantic difference vs. preference summed
over all languages (except Arabic).

we perform QAD using MBR with 50 samples 295

generated using nucleus sampling (p=0.9). 296

• Discourse-specific metrics. Lexical cohesion 297

(LC) ratio (Wong and Kit, 2012), which is 298

the number of lexical cohesion devices (rep- 299

etitions, hypernyms, and synonyms) divided 300

by the total number of content words, and Dis- 301

coScore (Zhao et al., 2023), a parametrized 302

metric that uses BERT (Devlin et al., 2019) to 303

model discourse coherence through sentence 304

graphs. Here, we perform QAD using MBR 305

with 20 samples generated using nucleus sam- 306

pling (p=0.9).4 307

Fusion. Proposed by Vernikos and Popescu-Belis 308

(2024), the approach works by combining spans 309

from different candidates generated via nucleus 310

sampling (p=0.9) using a QE metric (COMETQE). 311

Automatic post editing (APE). Editing greedy 312

outputs leveraging XTOWER (Treviso et al., 2024) 313

and XCOMET (Guerreiro et al., 2024), as used 314

by the IT-Unbabel team in their submission to the 315

quality estimation shared task at WMT24 (Zerva 316

et al., 2024). 317

We assess the methods based on their transla- 318

tion and discourse phenomena performance, as 319

shown in Table 5. Our analysis reveals that QAD 320

outperforms other inference approaches, includ- 321

ing fusion and APE. Notably, translation metrics 322

serve as more effective utility functions compared 323

to discourse-specific metrics. Among translation 324

metrics, lexical measures (BLEU, ChrF) slightly 325

outperform the pretrained COMET, though over- 326

all performance remains comparable. To further 327

understand the lexical changes of the different in- 328

ference setups, we analyze the distribution of edit 329

4We used 20 samples instead of 50 due to computational
constraints, as the discourse metrics involve generating an
entity graph for each sample, which becomes impractical with
a higher number of samples.
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Lexical Cohesion Formality Pronouns Verb form Total Total (%)

EN-PT 12 1 7 1 15 60
EN-DE 16 5 15 6 22 88
EN-FR 5 14 10 9 21 84
EN-KO 0 2 4 25 25 100
EN-AR 6 0 10 2 16 64
EN-RU 4 7 7 6 16 64

Table 6: Human-annotated discourse phenomena statistics, including counts of each phenomenon, the total number
of sentences tagged with phenomena and their percentage of total sentences. Note that the total sentence count can
be less than the sum of phenomena counts because we can have multiple phenomena per sentence.

operations (insert, delete, substitute, shift) in their330

outputs compared to greedy outputs to understand331

the lexical choices needed to improve the discourse332

and translation performance. The analysis in Fig-333

ure 4 focuses on sentences tagged with discourse334

phenomena using MuDA (Fernandes et al., 2023).335

We show the percentage and absolute counts of edit336

operations for each setup compared to the greedy337

outputs, along with the overall edit rate on top of338

the bar plots. The analysis highlights that substitu-339

tions are the most frequent edit operation, followed340

by deletions, insertions, and shifts. Additionally,341

the findings indicate that an optimal level of edit342

operations produces strong results, as demonstrated343

by the utility functions BLEU, ChrF, COMET, and344

DiscoScore. However, deviations from this balance,345

whether through fewer edits (LC) or excessive ed-346

its (fusion), lead to poorer performance. These347

observations align with the performance scores re-348

ported in Table 5. Overall, this analysis highlights349

that among the experimented setups, QAD with350

translation metrics is the best setup to improve351

discourse performance.352

5.2 Human Qualitative Analysis353

We conduct a small-scale manual qualitative354

analysis to better understand the impact of QAD355

on translation quality. This analysis helps us356

examine the semantic differences between greedy357

and QAD outputs. Additionally, it allows us to358

confirm findings from the automated evaluation359

of discourse phenomena, which relies on MuDA360

(Fernandes et al., 2023). We use the outputs of the361

best-performing model on TED2020 data, which is362

TowerInstruct-13B for all languages except Arabic,363

where we use EuroLLM-9B-Inst. We randomly364

sample a subset of 25 samples of {source,365

greedy_MT, QAD_MT} for each language, all366

annotated with discourse phenomena via MuDA367

(Fernandes et al., 2023) and accompanied with368

preceding context. We provide these to native or369

Figure 4: Edit rate analysis of inference setups against
greedy outputs. The figure shows the proportion of each
edit type as segments within the bar. The numbers on
top represent the overall edit rate. The legend items,
listed from left to right, correspond to the bar segments
from top to bottom.

bilingual speakers —who voluntarily participated 370

in the annotation process— as we are interested in 371

how non-expert translators from the general public 372

perceive the translations. We mask the MT type 373

information5 and ask them to annotate the data, as 374

follows (full guidelines in Appendix D): 375

• Identify any of the four linguistic phenomena 376

in the source sentence and upon identification 377

* Identify whether the phenomenon is 378

translated correctly in (a) the greedy and 379

(b) the QAD translation. 380

• Annotate the semantic difference between 381

greedy and QAD hypotheses on a Likert scale 382

of 1–5. 383

• Select their preference between the greedy 384

and QAD hypothesis. 385

5Annotators see the translation hypotheses as pairs of
output_1, output_2
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• Optionally, comment on their preference and386

observations.387

Annotation statistics are presented in Table 6,388

where we see a high correlation between automatic389

tags with MuDA and human tags (with an overlap390

of 60%-100%). Figure 2 presents the average391

performance of greedy and QAD outputs across392

languages, showing improved performance for393

QAD across all phenomena, which aligns with the394

results of the automatic evaluation. Results of the395

semantic similarity against preferences are pre-396

sented in Figure 3 (Arabic is excluded from these397

figures to remove model-specific bias; its results in398

Appendix B confirm the same findings). We notice399

that QAD output is generally preferred, while400

greedy output tends to be less frequently chosen401

as the preferred option, especially when there are402

larger semantic differences between the outputs.403

Greedy output is still sometimes preferred in cases404

where the semantic differences are smaller. These405

patterns suggest that QAD generates semantically406

richer samples that align with human prefer-407

ences compared to greedy decoding. In addition,408

analyzing the comments we received from the409

participants, it seems that QAD-based outputs are410

closer to human perception in terms of discourse411

and fluency, even when translation errors occur.412

6 Related Work413

Linguistic analysis of LLMs. Manakhimova414

et al. (2024) develop a fine-grained test suite to415

evaluate the linguistic performance of LLMs in416

MT, finding NMT systems outperform LLMs in417

phenomena like punctuation, future verb tenses,418

stripping, function words, etc. Sizov et al. (2024)419

highlight differences in lexical features between hu-420

man, LLM, and NMT translations, showing LLMs421

align more closely with human translations in ad-422

verbs and auxiliary verbs, while NMT systems dif-423

fer significantly. Raunak et al. (2023) find LLM424

translations are less literal than NMT translations425

but maintain equal or better quality. We extend426

these analyses by focusing on discourse phenom-427

ena and proposing the use of quality-aware decod-428

ing (QAD) to enhance discourse performance.429

LLMs for Document-level translation. Wu430

et al. (2024) analyze LLMs tailored for document-431

level translation, examining translation errors, pro-432

noun resolution, training and inference strategies,433

data efficiency of parallel documents, and zero-shot434

cross-lingual transfer. Efforts to adapt LLMs for 435

document-level translation include finetuning the 436

models using mixed sentence-level and document- 437

level instructions (Li et al., 2024), prompting the 438

models via in-context learning (Cui et al., 2024), 439

and hybrid techniques that combine sentence-level 440

translation models and monolingual document- 441

level language models (Petrick et al., 2023). Unlike 442

prior studies, we hypothesize that LLMs encode 443

discourse knowledge and demonstrate that quality- 444

aware decoding can effectively extract this knowl- 445

edge, enabling LLMs to surpass encoder-decoder 446

models in document-level translation tasks. 447

Gender bias in translation LLMs. As some phe- 448

nomena we study can be affected by gender bias 449

in the tested models, we present relevant works 450

on gender bias in translation. Gender accuracy in 451

translation can impact output fluency, translation 452

accuracy, and ethics. Research efforts include cre- 453

ating challenging datasets (Currey et al., 2022; Rar- 454

rick et al., 2023; Jourdan et al., 2025), analyzing 455

LLMs’ performance (Zhao et al., 2024; Sánchez 456

et al., 2024), identifying gender bias patterns in 457

(Kotek et al., 2023) and mitigating it (Gupta et al., 458

2022; Sant et al., 2024). 459

7 Conclusion 460

We investigate the discourse phenomena perfor- 461

mance of LLMs in document level translation. 462

Specifically, we examine four aspects of discourse: 463

lexical cohesion, formality, pronoun resolution, and 464

verb forms. Our findings reveal that LLMs lag be- 465

hind neural machine translation (NMT) systems 466

in discourse performance when using greedy de- 467

coding. To address this limitation, we propose 468

the use of quality-aware decoding (QAD) to better 469

leverage the discourse knowledge encoded within 470

LLMs. We demonstrate the effectiveness of QAD 471

through extensive automatic evaluations across six 472

language pairs and two datasets. Additionally, we 473

conduct an ablation study comparing different de- 474

coding methods and perform a human assessment 475

on a subset of the data to analyze the lexical and 476

semantic changes introduced by QAD. To support 477

further research, we release the dataset with human 478

annotations of discourse phenomena. Future re- 479

search directions include exploring the use of this 480

annotated data as a reward signal for fine-tuning 481

LLMs to further enhance their discourse phenom- 482

ena performance. 483
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Limitations484

• We rely on MuDA (Fernandes et al., 2023) for485

automatic tagging of discourse phenomena,486

and the tagging quality affects the discourse487

phenomena we are able to analyze. We use its488

default alignment and coreference resolution489

models, which may not represent the state of490

the art. Improving these components with491

better models could enhance tagging quality.492

• We experiment with only one sampling ap-493

proach (nucleus sampling); future work could494

investigate the impact of different sampling495

strategies on discourse performance.496

• We perform the LLM-as-a-judge evaluation497

at the overall translation level, as we utilize498

an off-the-shelf model that was not sensitive499

to specific phenomena changes. Future work500

could focus on adapting LLM judges to dis-501

course phenomena evaluation.502

• We attempt to cover as many languages and503

models as possible, given the experimental504

resources we have. Additional observations505

may arise for languages and models we did506

not cover.507

• We perform the human evaluation on a limited508

amount of data. Based on our conclusions,509

it would be useful to have a larger dataset510

with human annotations, which would allow511

for more detailed experiments, supervision of512

models, etc. However, we leave it to future513

research as it is beyond the scope of this work.514

Ethical Considerations515

Machine translation is a widely adopted technol-516

ogy, sometimes in sensitive, high-risk settings.517

Even though we perform a thorough analysis of518

LLMs’ performance on discourse phenomena dur-519

ing translation, and propose the use of quality520

aware-decoding to improve the performance, we521

still rely heavily on automatic evaluation which is522

imperfect. For systems deployed in critical scenar-523

ios, we advocate for detailed, case-specific assess-524

ments to ensure reliability.525
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A WMT24++ Results 892
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ual qualitative analysis of the translations reveals 896

that the reference translations are of suboptimal 897

quality, often consisting of short sentences. LLM- 898

as-a-judge scores are shown in Figure 5. 899

B Results of Human Qualitative Analysis 900

on Arabic 901

Figure 6 shows the human annotations of the per- 902

formance of QAD and greedy outputs on Arabic. 903

Figure 7 shows the preference and semantic differ- 904

ence relationship for Arabic. 905

C Prompt Formats 906

Figures 8 and 9 present the prompt formats used to 907

prompt the models. 908

D Human Assessment Details 909

Details of the data and instructions given to the 910

annotators are presented in Table 8. 911

E Sustainability Statement 912
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Language Pair Metric NLLB-3.3B TowerInstruct-13B EuroLLM-9B-Inst
Greedy QAD Greedy QAD Greedy QAD

EN-PT

BLEU 33.2 35.2 25.8 35.6 26.4 39.3
COMET 78.8 79.5 79.2 83.2 78.1 83.2

COMETQE 75.7 76.5 73.7 78.4 73.5 79.1
Lexical Cohesion 77.0 76.0 78.0 83.0 79.0 84.0

Formality 58.0 62.0 47.0 61.0 58.0 66.0
Pronouns 49.0 50.0 42.0 49.0 46.0 56.0

EN-DE

BLEU 5.1 5.2 7.9 12.6 3.6 4.8
COMET 48.1 47.5 58.2 63.0 48.2 50.8

COMETQE 77.1 76.9 58.6 65.2 67.4 75.9
Lexical Cohesion 26.0 27.0 22.0 23.0 30.0 29.0

Formality 23.0 23.0 36.0 37.0 24.0 23.0
Pronouns 26.0 23.0 22.0 14.0 26.0 23.0

EN-FR

BLEU 32.8 33.7 25.7 36.9 23.3 32.8
COMET 75.8 75.7 76.6 81.3 74.0 79.7

COMETQE 78.7 78.7 75.5 81.1 74.0 80.1
Lexical Cohesion 70.0 70.0 72.0 80.0 66.0 72.0

Formality 56.0 58.0 57.0 61.0 49.0 58.0
Pronouns 49.0 46.0 50.0 60.0 47.0 53.0
Verb form 37.0 49.0 30.0 45.0 37.0 49.0

EN-RU

BLEU 20.6 20.7 13.7 23.2 15.1 23.5
COMET 76.1 76.2 73.8 81.5 76.0 81.6

COMETQE 75.8 75.5 67.5 77.5 72.2 78.8
Lexical Cohesion 63.0 53.0 65.0 72.0 64.0 75.0

Formality 47.0 48.0 34.0 55.0 49.0 52.0
Verb form 32.0 34.0 21.0 38.0 28.0 37.0

EN-AR

BLEU 17.5 16.9 N/A N/A 10.3 20.6
COMET 77.8 77.1 N/A N/A 75.3 81.7

COMETQE 72.7 71.0 N/A N/A 66.8 75.1
Lexical Cohesion 63.0 60.0 N/A N/A 58.0 75.0

Pronouns 55.0 43.0 N/A N/A 36.0 54.0

EN-KO

BLEU 22.2 21.5 12.0 20.1 17.0 28.6
COMET 80.1 79.2 77.4 83.4 79.9 85.7

COMETQE 79.4 78.3 69.5 77.9 75.4 82.1
Lexical Cohesion 44.0 32.0 34.0 43.0 38.0 57.0

Formality 27.0 29.0 25.0 32.0 09.0 34.0

Table 7: Translation and discourse phenomena performance of the three models using greedy and QAD setups on
WMT24++ dataset. N/A: not applicable as TowerInstruct-13B is not trained on Arabic. Bold highlights the best
value per row. The results demonstrate that QAD enhances the performance of LLMs.
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We present the participants with 25 samples including the following data:

• The source context which was given to the translation model, which are (up to 5) previous
sentences in the source document.

• The English source sentence.

• The output context which was given to the translation model, which are (up to 5) previous
sentences in the output document.

• output 1: the output of the first system

• output 2: the output of the second system

Annotators are asked to assess the following:

• Semantic difference: Rate the semantic difference of the two outputs on a scale of 1 to 5,
ignoring differences in wording. Consider whether they convey the same meaning.

– 1: the two sentences convey the same meaning.
– 5: the two sentences convey completely different meanings.

• Pronoun resolution: Does the source sentence contain an ambiguous pronoun (a pronoun
whose referent is unclear or not explicitly mentioned), and what is it?

– If yes, is it correctly translated in output 1?
– If yes, is it correctly translated in output 2?

• Lexical cohesion: Does the source sentence contain an entity (e.g., noun, occupation) previously
mentioned in the source context, and what is the entity?

– If yes, is it translated consistently with its previous translation in the output context in
output 1?

– If yes, is it translated consistently with its previous translation in the output context in
output 2?

• Formality: Does the source sentence exhibit a formality phenomenon (e.g., addressing someone
formally or expressing respect), and what is the word that exhibits the phenomenon?

– If yes, is it handled in the output 1?
– If yes, is it handled in the output 2?

• Verb form: Does the source sentence contain an ambiguous verb that can have different forms
depending on the gender or formality level of the subject, and what is the verb?

– If yes, is it correctly translated in output 1?
– If yes, is it correctly translated in output 2?

• General comment (optional): Provide comments or observations about the two outputs.
Highlight strengths, weaknesses, or notable phenomena (e.g., mistranslation, cultural adaptation,
or syntactic errors). Please also highlight other linguistic phenomena we may have missed in
the categories provided.

• Preference: Which output do you prefer? (output 1, output 2, equally good, equally bad)

Table 8: Human assessment details.
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Figure 5: Difference between QAD and greedy LLM-
as-a-judge scores on WMT24++ data. The plot demon-
strates that QAD improves the performance of LLMs.

Figure 6: Human-annotated accuracy of greedy and
QAD outputs in handling discourse phenomena for Ara-
bic data.

Figure 7: Semantic difference vs. preference on Arabic
data.
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Translate the following <src_lang> source text to <tgt_lang>:
<src_lang>: <src context 1> <src context 2> <src context 3> <src context 4> <src context 5>

<src_sentence>↪→
<tgt_lang>: <tgt context 1> <tgt context 2> <tgt context 3> <tgt context 4> <tgt context 5>

Figure 8: TowerInstruct-13B prompt format

<src_lang>: <src context 1> <tgt_lang>: <tgt context 1>
<src_lang>: <src context 2> <tgt_lang>: <tgt context 2>
<src_lang>: <src context 3> <tgt_lang>: <tgt context 3>
<src_lang>: <src context 4> <tgt_lang>: <tgt context 4>
<src_lang>: <src context 5> <tgt_lang>: <tgt context 5>
Given the provided parallel sentence pairs, translate the following <src_lang> sentence to

<tgt_lang>:↪→
<src_lang>: <src sentence> <tgt_lang>:

Figure 9: EuroLLM-9B-Inst prompt format
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