
An Efficient Memory Module for Graph Few-Shot
Class-Incremental Learning

Dong Li2,3, Aijia Zhang4, Junqi Gao4, Biqing Qi1,2∗
1 Department of Electronic Engineering, Tsinghua University,

2 Shanghai Artificial Intelligence Laboratory,
3 Institute for Advanced Study in Mathematics, Harbin Institute of Technology,

4 School of Mathematics, Harbin Institute of Technology
{arvinlee826, zhangaijia065, gjunqi97, qibiqing7}@gmail.com

Abstract

Incremental graph learning has gained significant attention for its ability to address
the catastrophic forgetting problem in graph representation learning. However,
traditional methods often rely on a large number of labels for node classification,
which is impractical in real-world applications. This makes few-shot incremental
learning on graphs a pressing need. Current methods typically require extensive
training samples from meta-learning to build memory and perform intensive fine-
tuning of GNN parameters, leading to high memory consumption and potential
loss of previously learned knowledge. To tackle these challenges, we introduce
Mecoin, an efficient method for building and maintaining memory. Mecoin em-
ploys Structured Memory Units to cache prototypes of learned categories, as well
as Memory Construction Modules to update these prototypes for new categories
through interactions between the nodes and the cached prototypes. Additionally,
we have designed a Memory Representation Adaptation Module to store prob-
abilities associated with each class prototype, reducing the need for parameter
fine-tuning and lowering the forgetting rate. When a sample matches its corre-
sponding class prototype, the relevant probabilities are retrieved from the MRaM.
Knowledge is then distilled back into the GNN through a Graph Knowledge Dis-
tillation Module, preserving the model’s memory. We analyze the effectiveness of
Mecoin in terms of generalization error and explore the impact of different distil-
lation strategies on model performance through experiments and VC-dimension
analysis. Compared to other related works, Mecoin shows superior performance
in accuracy and forgetting rate. Our code is publicly available on the Mecoin-
GFSCIL.

1 Introduction

In the field of graph learning, conventional methods often assume that graphs are static[1]. However,
in the real world, graphs tend to grow over time, with new nodes and edges gradually emerging. For
example, in citation networks, new papers are published and cited; in e-commerce, new products
are introduced and updated; and in social networks, new social groups form as users join. In these
dynamic contexts, simply updating graph representation learning methods with new data often leads
to catastrophic forgetting of previously acquired knowledge.

Despite numerous methods proposed to mitigate the catastrophic forgetting problem in Graph Neu-
ral Networks(GNNs)[2, 3, 4], a critical and frequently neglected challenge is the scarcity of labels
for newly introduced nodes. Most current graph incremental learning methods [5, 6] combat catas-
trophic forgetting by retaining a substantial number of nodes from previous graphs to preserve prior
knowledge. However, these methods become impractical in graph few-shot class-incremental learn-

∗Corresponding author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/Arvin0313/Mecoin-GFSCIL.git
https://github.com/Arvin0313/Mecoin-GFSCIL.git

ing(GFSCIL) scenarios due to the limited labeled node samples. Some methods[7, 1] employ reg-
ularization to maintain the stability of parameters critical to the graph’s topology. Yet, in GFSCIL,
the label scarcity complicates accurate assessment of the relationship between parameter importance
and the underlying graph structure, thus increasing the difficulty of designing effective regularization
strategies. Consequently, the issue of label scarcity hampers the ability of existing graph continual
learning methods to effectively generalize in graph few-shot learning scenarios.

GFSCIL presents two critical challenges: 1)How can we empower models to learn effectively
from limited samples? 2)How can we efficiently retain prior knowledge with imited samples?
While the first challenge has been extensively explored in graph few-shot learning contexts[8, 9],
this paper focuses on the second. Currently, discussions on the latter issue within GFSCIL are rela-
tively scarce. Existing methods[10, 11] primarily focus on enhancing models’ ability to learn from
few-shot graphs and preserve prior knowledge by learning class prototypes through meta-learning
and attention mechanisms. However, to strengthen inductive bias towards graph structures and learn
more representative class prototypes, these approaches require caching numerous training samples
from the meta-learning process for subsequent GFSCIL tasks. This caching not only consumes
significant memory but also imposes substantial computational costs. Furthermore, these meth-
ods extensively adjust parameters during prototype updates, risking the loss of previously acquired
knowledge[12, 13]. These challenges underscore the need for innovative strategies that maintain ef-
ficiency without compromising the retention of valuable historical data—achieved through minimal
memory footprint, high computational efficiency, and limited parameter adjustments.

To address the aforementioned challenges, we introduce Mecoin, an efficient memory construc-
tion and interaction module. Mecoin consists of two core components: the Structured Memory
Unit(SMU) for learning and storing class prototypes, and the Memory Representation Adaptive
Module(MRaM) for dynamic memory interactions with the GNN. To effectively leverage graph
structural information, we design the Memory Construction module(MeCs) within the SMU. MeCs
facilitates interaction between features of the input node and prototype representations stored in the
SMU through self-attention mechanisms, thereby updating sample representations. Then, it utilizes
the local structural information of input nodes to extract local graph structural information and com-
pute a local graph structure information matrix(GraphInfo). The updated sample representations and
GraphInfo are used to calculate class prototypes for the input nodes. These newly obtained proto-
types are compared with those stored in the SMU using Euclidean distance to determine whether
the input samples belong to seen classes. If a sample belongs to a seen class, the corresponding
prototype in the SMU remains unchanged. Conversely, if a sample belongs to an unseen class, its
calculated prototype is added to the SMU.

To address catastrophic forgetting in class prototype learning caused by model parameter updates,
we introduce the MRaM mechanism within Mecoin. MRaM stores probability distributions for each
class prototype, allowing direct access via indexing once input nodes are processed through MeCs
and corresponding class prototypes are retrieved from SMU. This mechanism separates class pro-
totype learning from node probability distribution learning, effectively mitigating forgetting issues
caused by parameter updates. Additionally, to enhance the maintenance and updating of knowledge
base, we integrate a Graph Knowledge Interaction Module (GKIM) within MRaM. GKIM transfers
information about identified classes from MRaM to GNN and extracts knowledge of new classes
from GNN back to MRaM, facilitating continuous knowledge updating and maintenance.

Contributions. The main contributions of this paper are as follows: i) We design Mecoin, a novel
framework that effectively mitigates catastrophic forgetting in GFSCIL by integrating the SMU and
MRaM; ii) We design the SMU, which efficiently learns class prototypes by facilitating interaction
between node features and existing class prototypes, while extracting local graph structures of input
nodes; iii) We propose the MRaM, which reduces the loss of prior knowledge during parameter
fine-tuning by decoupling the learning of class prototypes from node probability distributions; iv)
We analyze the benefits of separating class prototype learning from node probability distribution
learning, considering generalization error bounds and VC dimensions. We also explore how different
MRaM-GNN interaction patterns affect model performance; v) Through extensive empirical studies,
we demonstrate Mecoin’s significant advantages over current state-of-the-art methods.

2

GNN Encoder

Graph data

Classifier

Prototype

Representations

=

=
matching

Memory losses

for keeping memory

Updating losses

for new knowledge

class

representation

(a) Graph neural network

(c) Structured Memory Unit

(f) Memory Representation Adaptive Module

=

…

…

Interaction with

old knowledge

extracts local graph

structure information

(b) MeCs

New class

representation

(d) GKIM

Figure 1: Overview of the Mecoin framework for GFSCIL. (a)Graph neural network: Consists of a
GNN encoder and a classifier(MLP) pre-trained by GNN. In GFSCIL tasks, the encoder parameters
are frozen. (b)Structured Memory Unit: Constructs class prototypes through MeCs and stores them
in SMU. (c)Memory Representation Adaptive Module: Facilitates adaptive knowledge interaction
with the GNN model.

2 Notation

Let G0 = (V0, E0) be the base graph with node set V0 and edge set E0. We consider T temporal
snapshots of G0, each corresponding to a GFSCIL task or session. Denote S = {S0, S1, . . . , ST } as
the set of sessions including the pre-training session S0, and C = {C0, C1, . . . , CT } as the family
of class sets within each session. The graph under session Si(i = 1, 2, ..., T) is denoted as Gi =

(Vi, Ei), with node feature matrix and adjacency matrix represented by Xi = (x1
i , ...,x

|Vi|
i)⊤ ∈

R|Vi|×d and Ai ∈ Rd×d respectively. For session Si, let Xtr
i ∈ RK|Ci|×d and Ytr

i be the features
and corresponding labels of the training nodes respectively, where K is the sample size of each class
in Ci, thus defining a Ci-way K-shot GFSCIL task. Let Yi be the label space of session Si , and we
assume that the label spaces of different sessions are disjoint, i.e., Yi ∩ Yj = ∅ if i ̸= j. Our goal
is to learn a model fθ across successive sessions that maintains strong performance in the current
session and also retains memory of the past sessions.

3 Efficient Memory Construction and Interaction Module

In this section, we present a comprehensive overview of our proposed framework, Mecoin. Unlike
previous methods that are hampered by inefficient memory construction, low computational effi-
ciency, and extensive parameter tuning—which often lead to the loss of prior knowledge—Mecoin
enhances the learning of representative class prototypes. It achieves this by facilitating interaction
between input nodes and seen class prototypes stored in the SMU, while integrating local graph
structure information of the input nodes. Moreover, Mecoin decouples the learning of class proto-
types from their corresponding probability distributions, thereby mitigating the loss of prior knowl-
edge during both the prototype learning and classification processes. Fig. 1 illustrates the architec-
ture of Mecoin.

3.1 Structured Memory Unit

To acquire and store representative class prototypes, we develop SMU within Mecoin. Let M be
the set of class prototypes {m0,m1, . . . ,mn−1}, where n = |CT−1| refers to the total number of
classes learned from the past T − 1 sessions, with each mi ∈ Rk(∀i ∈ [n]). For current session ST ,

3

the training node features Xtr
T are encoded through a pre-trained GNN model gϕ:

ZT = gϕ(AT ,X
tr
T), (1)

where ZT ∈ R(|CT |K)×h. During the training process, the parameters of the pre-trained GNN,
denoted as ϕ , remain fixed, and the training set used for pre-training is excluded from the sub-
sequent GFSCIL tasks. To mitigate the significant memory usage resulting from caching meta-
learning samples and incorporate as much graph structural information as possible, we design MeCs
within the SMU. MeCs merges graph structure information from the past sessions with that of the
current session by interacting the encoded features of node ZT with the class prototypes in M.
Specifically, MeCs firstly facilitates the interaction between ZT and the SMU-stored prototypes
M0:T−1 ≜ (m0,m1, . . . ,mn−1)

⊤ through a self-attention mechanism:

HT := softmax(
(ZTWQ)(M0:T−1WK)⊤√

m
)M0:T−1WV (2)

where WQ ∈ Rh×m,WK ∈ Rk×m,WV ∈ Rk×h are learnable weight matrices and HT ∈
R(|CT |K)×h. Subsequently, to reduce memory consumption, we perform dimensionality reduction
on HT through Gaussian random projection, resulting in H̃T ∈ R(|CT |K)×r, where 0 < r < k < h.
MeCs then extracts local graph structure information of GT via the vanilla self-attention on Xtr

T , and
preserves this information in the GraphInfo GT :

GT := ATTENTION(Xtr
T). (3)

where GT ∈ R(|CT |K)×(k−r) and is integrated with H̃T by concatenation:

UT = (GT , H̃T). (4)

To determine the class prototypes under session ST , we perform k-means clustering on UT :

MT := k-means(UT), (5)

where MT ∈ R|CT |×k. In addition, to improve the utilization of graph structural information, we
optimize UT by the edge loss Ledge defined as follows:

Ledge = ∥Xtr
T · (Xtr

T)⊤ −UT · (UT)
⊤∥22. (6)

For each node feature(i.e. each row) in Xi, We identify the nearest class prototype by minimizing
the Euclidean distance:

m∗
j = argminmj∈M ||ul

i −mj ||2, (7)

where ul
i is the l-th row in Ui.

3.2 Memory Representation Adaptive Module

In the traditional GFSCIL paradigm, adapting to evolving graph structures requires continuous learn-
ing and updating of class prototypes based on the current task’s graph structure, alongside classifier
retraining. This process, which involves adjusting parameters during class prototype learning, can
lead the classifier to forget information about past categories, exacerbating the model’s catastrophic
forgetting. To address this, we introduce the MRaM within Mecoin. MRaM tackles this challenge
by decoupling class prototype learning from class representation learning, caching probability dis-
tributions of seen categories. This separation ensures that class prototype updates don’t affect the
model’s memory of probability distributions for nodes in seen categories, thus enhancing the stabil-
ity of prior knowledge retention [14, 15, 16].

To maintain the model’s memory of the prior knowledge, we introduce GKIM into MRaM for infor-
mation exchange between Mecoin and the model. Specifically, let P = {p0,p1, . . . ,pn−1} denote
the class representations learned from the GNN and stored in MRaM, where each pi corresponds to
its respective class prototype mi. For a node feature xs from the seen classes with its class repre-
sentation pxs

, let pMLP
xs

be the category predicted probabilities learned from GNN and MLP, then
GKIM transfers the prior knowledge stored in Mecoin to the model through distillation that based
on the memory loss function:

Lmemory =
1

Ns

Ns∑
i=1

KL(pi∥pMLP
xs

) =
1

Ns

Ns∑
i=1

pi log
pi

pMLP
xs

, (8)

4

where Ns is the total number of samples from the seen classes.

Furthermore, to update the category representations of new classes in MRaM, GKIM updates the
newly learned knowledge from the model to Mecoin via distillation with the update loss function
in Eq.9. For any node feature xu from the unseen classes, its category representation is randomly
initialized as p0

xu
, and its predicted probability vector is pMLP

xu
. Through distillation, p0

xu
is updated

to incorporate the new classes’ representations which are thus stored in Mecoin.

Lupdate =
1

Nu

Nu∑
i=1

KL(pMLP
xu

∥pi) =
1

Nu

Nu∑
i=1

pMLP
xu

log
pMLP
xu

pi
. (9)

where Nu is the total number of samples from the unseen classes. The overall loss of Mecoin
consists of the MLP classification loss Lcls,Ledge,Lmemory and Lupdate.

LMecoin = Lcls + Ledge + Lmemory + Lupdate. (10)

3.3 Theoretical Analysis

In this section, we analyze the advantages of Mecoin and how it improves models generalization
from the perspective of generalization error. Besides, we also provide insights from the viewpoint of
VC-dimension by comparing GKIM with non-parametric methods and MLPs in classifying category
representations stored in MRaM, and distilling Mecoin as a teacher model with GNN model.

What are the advantages of Mecoin over other models? In few-shot learning, the limited training
data and the overall samples in current session ST often have different distributions, which leads to
overfitting. However, Mecoin can mitigate overfitting since it has a lower bound of generalization
error than other corresponding models (Thm.1). Before introducing our theoretical result, we first
supplement some notations. For the current session ST , let XT and YT be the sample space and label
space of Xtr

T respectively, and TT = {(xi
T ,y

i
T)}Ni=1 be the training samples. Let F be a hypothesis

class, fM
θ and f̂ ∈ F be Mecoin and other corresponding models trained on TT , and assume that

the inputs xT ∈ XT undergo distributional shifts through any function gϵ. Then by comparing the
generalization error bounds of fM

θ with f̂ , we demonstrate in Thm.1 (proof in Appendix B.1) that
Mecoin excels in distributional shifts, indicating its stronger generalization capability. The result is
given in Thm.1, which is derived from theorem 3.1 in [12].

Theorem 1: For any model f ∈ {fM
θ , f̂} trained on TT , denote R as its generalization error,

then there exists a constant c such that for any δ > 0, the following holds with probability at least
1− δ:

R ≤ Rϵ + Bf̂ I{f = f̂}+ c

√
2 ln(e/δ)

N
, (11)

where Rϵ =
1
N

∑
yT∈YT

∑
m∈I

yT
M

|IyT
m |Ez[Eϵ[ℓ(f(gϵ(xT)),yT)]− ℓ(f(xT),yT)|z ∈ CyT

m], Bf̂ =

1
N

∑
yT ,m 2ETT ,ξ[supf̂∈F

∑|IyT
m |

i=1 ξiℓ(f̂(x
i
T)y

i
T)|xi

T ∈ Cm,yi
T = yT] + c

√
ln(2e/δ)/2N where

{ξi}i are i.i.d. random variables uniformly taking values in {−1, 1}, and ℓ is the loss function
LMecoin, z = (xT ,yT), CyT

m = {(x,y) ∈ XT × YT | y = yT ,m = argmini∈[N]d(kα(x),mi)},
IyT
m = {i ∈ [N] | xi

T ∈ Cm,yi
T = yT }, Cm = {x ∈ XT | m = argmini∈[|M|]d(kα(x,mi)},

IyT

M = m ∈ [|M|] | |IyT
m | ≥ 1} and kα is the MeCs operation.

Why use GKIM to interact with GNN models? Unlike traditional knowledge distillation techniques
that rely on high-capacity teacher models, GKIM uses probability distributions stored in MRaM
to preserve node of seen class distributions. This prevents knowledge loss in GNN during teacher
model training. For unseen classes, the classifier learns and stores their probability distributions
in MRaM. Notably, updating unseen class distributions and extracting seen class distributions can
also use non-parametric methods [12]. Thus, we must examine GKIM’s advantages over conven-
tional distillation and non-parametric methods. We analyze the VC dimension when category repre-
sentations in MRaM are distilled into models, comparing scenarios where MRaM, non-parametric
methods, and multi-layer perceptrons (MLPs) act as teacher models.

5

Theorem 2: If n class representations are selected from GKIM, i.e. n is the input size of GNN,
then the VC dimension of GKIM is:

V CD =

O(n+ 1) voting classifier
O(p2H2) MLP
O(p2n2H2) GKIM

(12)

where H is the number of hidden neurons in MLP and p denotes the number of parameters of GNN.

In the above theorem, we take the common voting classifier as an example for non-parametric meth-
ods. It averages the category representations stored in MRaM and updates them through backpropa-
gation. While this method has lower complexity, it is highly sensitive to the initialization of category
representations due to its reliance solely on the average while computing the prediction probabilities.
When using MLP to update category representations, its parameters require fine-tuning to accommo-
date new categories that will lead to the forgetting of prior knowledge. In contrast, GKIM exhibits
a higher VC-dimension compared to the other two methods, indicating superior expressive power.
Additionally, GKIM selectively updates category representations in MRaM locally, preserving the
model’s memory of prior knowledge.

4 Experiments

In this section, we will evaluate Mecoin through experiments and address the following research
questions: Q1). Does Mecoin have advantages in the scenarios of graph few-shot continual learning?
Q2). How does MeCs improve the representativeness of class prototypes? Q3). What are the
advantages of GKIM over other distillation methods?

4.1 Graph Few-Shot Continual Learning (Q1)

Experimental setting. We assess Mecoin’s performance on three real-world graph datasets: Cora-
Full, CS, and Computers, comprising two citation networks and one product network. Datasets are
split into a Base set for GNN pretraining and a Novel set for incremental learning. Tab.1 provides
the statistics and partitions of the datasets. In our experiments, we freeze the pretrained GNN pa-
rameters and utilize them as encoders for subsequent few-shot class-incremental learning on graphs.
For CoraFull, the Novel set is divided into 10 sessions, each with two classes, using a 2-way 5-shot
GFSCIL setup. CS’s Novel set is split into 10 sessions, each with one class, adopting a 1-way 5-shot
GFSCIL configuration. Computers’ Novel set is segmented into 5 sessions, each with one class, also
using a 1-way 5-shot GFSCIL setup. During the training process, the training samples for session
0 are randomly selected from each class of the pre-trained testing set, with 5 samples chosen as the
training set and the remaining testing samples used as the test set for training. It is worth noting that
for each session, during the testing phase, we construct a new test set using all the testing samples of
seen classes to evaluate the model’s memory of all prior knowledge after training on the new graph
data. Our GNN and GAT models feature two hidden layers. The GNN has a consistent dimension
of 128, while GAT varies with 64 for CoraFull and 16 for CS and Computers. Training parameters
are set at 2000 epochs and a learning rate of 0.005.

Table 1: Information of the expermental datasets.

Dataset CoraFull CS Computers
Nodes 19,793 18,333 13,752
Edges 126,842 163,788 491,722

Features 8,710 6805 767
Labels 70 15 10

Training set 50 5 5
Novel set 20 10 5

Baselines. 1) Elastic Weight Consolidation
(EWC) [17]-imposes a quadratic penalty on
weights to preserve performance on prior tasks.
2) Learning without Forgetting (LwF) [18]-
retains previous knowledge by minimizing the
discrepancy between old and new model out-
puts. 3) Topology-aware Weight Preserving
(TWP) [7]-identifies and regularizes parame-
ters critical for graph topology to maintain
task performance. 4) Gradient Episodic Mem-
ory (GEM) [19]-employs an episodic memory
to adjust gradients during learning, preventing
loss increase from prior tasks. 5) Experience
Replay GNN (ER-GNN) [3]- incorporates memory replay into GNN by storing key nodes from
prior tasks. 6) Memory Aware Synapses (MAS) [20] evaluates parameter importance through sensi-

6

Table 2: Comparison with SOTA methods on CoraFull dataset for GFSCIL.

Method Acc. in each session (%) ↑ PD ↓ Average
ACC ↑backbone 0 1 2 3 4 5 6 7 8 9 10

ERGNN GCN 73.43 77.64 29.38 32.14 20.93 21.84 16.13 15.28 15.2 11.77 11.30 62.13 29.55
GAT 73.43 77.64 29.38 32.14 20.93 21.84 16.13 15.28 15.20 11.77 11.30 62.13 29.55

Mecoin GCN 73.43 45.92 25.20 18.40 19.44 13.69 11.70 11.47 9.86 8.83 8.27 65.16 22.38
GAT 69.06 49.49 25.30 19.85 19.44 14.78 12.79 11.91 9.90 9.15 7.52 61.54 22.65

MAS GCN 73.43 46.40 25.20 18.40 19.44 13.69 11.70 11.47 9.86 8.83 8.27 65.16 22.38
GAT 69.06 66.64 44.45 48.13 37.08 47.04 48.58 49.16 44.26 49.13 46.39 22.67 49.99

LWF GCN 73.43 45.92 25.75 17.82 19.71 14.16 10.95 11.38 9.90 8.08 7.73 65.7 22.26
GAT 73.60 48.83 24.59 24.03 19.95 13.91 13.76 13.24 10.83 14.02 7.46 66.14 24.02

EWC GCN 73.43 45.92 26.48 18.52 20.27 14.59 11.41 11.59 10.04 7.79 7.75 65.68 22.53
GAT 69.06 48.5 25.58 25.34 20.39 18.59 14.86 22.71 19.7 21.31 12.55 56.51 27.14

TWP GCN 70.54 44.90 26.71 20.65 24.16 14.56 18.77 14.37 19.37 12.48 14.48 56.06 25.54
GAT 69.06 50.27 26.53 28.27 21.4 23.29 15.04 26.74 14.86 17.03 13.77 55.29 27.84

HAG-Meta / 87.62 82.78 79.01 74.5 67.65 63.38 60.00 57.36 55.5 52.98 51.47 36.15 66.57
Geometer / 72.23 61.73 43.34 37.61 36.24 32.79 29.97 22.11 21.01 17.34 16.32 55.91 35.52

OURS GCN 82.18 81.56 77.47 71.53 70.43 69.70 68.78 68.07 66.70 62.10 61.36 20.82 70.90
GAT 75.53 73.04 70.74 67.52 66.05 64.97 64.18 63.68 62.02 60.62 60.10 15.43 66.22

HAG-Meta Geometer OURS
(a)

0

10

20

30

40

50

60

70

Av
er

ag
e A

cc
ur

ac
y

2 4 6 8 10

(b)

20

30

40

50

60

70

80

90

Ac
cu

ra
cy

HAG-Meta
Geometer
OURS

HAG-Meta Geometer OURS
(c)

0

100

200

300

400

500

600

M
em

or
y U

sa
ge

Figure 2: The comparative analysis of the mean performance, accuracy curves and memory uti-
lization of HAG-Meta, Geometer and Mecoin across 10 sessions on CoraFull, conducted under the
experimental conditions delineated in their respective publications.

tivity to predictions, distinct from regularization-based EWC and TWP. 7) HAG-Meta [10],a GFS-
CIL approach, preserves model memory of prior knowledge via task-level attention and node class
prototypes. 8) Geometer [11]- adjusts attention-based prototypes based on geometric criteria, ad-
dressing catastrophic forgetting and imbalanced labeling through knowledge distillation and biased
sampling in GFSCIL.

Experimental results. We execute 10 tests for each method across three datasets, varying the ran-
dom seed, and detailed the mean test accuracy in Tables 2, 3, and 4. Key findings are as follows:1)
Mecoin surpasses other benchmarks on CoraFull, CS, and Computers datasets, exemplified by a
66.72% improvement over the best baseline on the Computers dataset across all sessions. 2) Mecoin
maintains a performance edge and exhibits reduced forgetting rates, substantiating its efficacy in
mitigating catastrophic forgetting. 3) Geometer and HAG-Meta perform poorly in our task setting,
likely because, to ensure a fair comparison, the models do not use any training data from the meta-
learning or pre-training processes during training. The computation of class prototypes in these two
methods heavily relies on the graph structure information provided by this data. Additionally, in
Fig.2, we compare the results of Geometer and HAG-Meta tested under the experimental conditions
given in their papers with the results of Mecoin on the CoraFull dataset. The experimental results in-
dicate that our method still achieves better performance and forgetting rates than these two methods
under low memory conditions, demonstrating the efficiency of our method in terms of memory.

4.2 MeCs for Memory (Q2)

We conduct relevant ablation experiments on MeCs across the CoraFull, CS, and Computers
datasets:1) Comparing the impact of MeCs usage on model performance and memory retention;
2) Analyzing the effect of feature of node interaction with class prototypes stored in SMU on model

7

Table 3: Comparison with SOTA methods on Computers dataset for GFSCIL.

Method Acc. in each session (%) ↑ PD ↓ Average
ACC ↑backbone 0 1 2 3 4 5

ERGNN GCN 100.00 50.00 33.33 25.00 20.00 16.67 83.33 40.83
GAT 100.00 50.00 33.33 25.00 20.00 16.67 83.33 40.83

Mecoin GCN 100.00 50.00 33.33 25.00 20.00 16.67 83.33 40.83
GAT 100.00 50.00 33.33 25.00 20.00 16.67 83.33 40.83

MAS GCN 100.00 50.00 33.33 25.00 20.00 16.67 83.33 40.83
GAT 100.00 50.00 33.57 37.39 25.90 21.64 78.36 44.75

LWF GCN 100.00 50.00 33.33 25.00 20.00 16.67 83.33 40.83
GAT 100.00 50.00 33.33 25.00 20.00 16.84 83.16 40.86

EWC GCN 100.00 50.00 33.33 25.00 20.00 16.67 83.33 40.83
GAT 100.00 50.00 33.33 25.00 20.00 16.67 83.33 40.83

TWP GCN 100.00 50.00 33.33 25.00 20.00 16.67 83.33 40.83
GAT 100.00 50.00 33.33 25.00 20.00 16.67 83.33 40.83

HAG-Meta / 20.00 16.67 14.28 12.5 11.11 10.00 10.00 14.09
Geometer / 59.40 33.00 23.57 18.56 15.40 13.20 46.20 27.19

OURS GCN 89.65 88.49 69.77 73.32 74.67 68.43 21.22 77.39
GAT 91.44 91.44 54.94 68.73 73.64 67.66 23.78 74.64

Table 4: Comparison with SOTA methods on CS dataset for GFSCIL.

Method Acc. in each session (%) ↑ PD ↓ Average
ACC ↑backbone 0 1 2 3 4 5 6 7 8 9 10

ERGNN GCN 100 50.00 33.33 25.00 20.00 16.67 14.29 12.5 11.11 10.00 14.02 85.98 27.90
GAT 100 50.00 33.33 46.17 33.95 36.93 24.64 23.34 18.60 25.44 30.12 69.88 38.41

Mecoin GCN 100 50.00 33.33 25.00 20.00 16.67 14.29 12.50 11.11 10.00 12.12 87.88 27.73
GAT 100 50.00 38.71 25.00 20.00 17.03 14.85 13.98 14.17 21.52 18.09 81.91 30.30

MAS GCN 100 50.00 33.33 25.27 20.00 16.67 14.29 12.36 11.11 18.75 9.70 90.30 28.32
GAT 100 50.00 34.05 48.23 56.16 59.54 65.57 64.28 61.41 64.36 63.92 36.08 60.68

LWF GCN 100 50.00 33.33 25.00 20.00 16.73 14.29 12.36 11.11 16.36 15.44 84.56 28.60
GAT 100 50.00 33.33 24.71 36.28 36.40 28.92 28.84 21.23 29.12 32.51 67.49 38.30

EWC GCN 100 50.00 33.33 25.00 20.00 16.67 14.29 12.5 11.11 10.00 12.12 87.88 27.73
GAT 100 50.00 33.33 31.65 38.60 36.62 25.64 29.04 16.19 26.44 38.63 61.37 38.74

TWP GCN 100 50.00 33.33 25.00 20.00 16.67 14.29 12.43 11.04 16.81 15.03 84.97 28.6
GAT 100 50.35 33.33 25.18 38.14 47.14 39.34 27.67 30.52 45.11 52.02 47.98 44.44

HAG-Meta / 20.00 16.67 14.29 12.50 11.11 10.00 9.09 8.33 7.69 7.14 6.66 13.34 11.24
Geometer / 60.60 33.85 24.05 19.03 24.87 28.86 24.46 18.18 19.30 26.39 29.63 30.97 28.11

OURS GCN 98.07 94.09 91.01 73.75 79.95 82.21 74.13 72.17 69.48 63.01 59.66 38.41 77.96
GAT 97.83 95.13 90.75 68.02 71.79 77.88 75.35 75.06 72.52 65.92 62.21 35.62 77.50

performance and memory retention;3)Assessing the impact of using graphInfo on model perfor-
mance and memory retention. We conduct a randomized selection of ten classes from the test set,
extracting 100 nodes per class to form clusters with their corresponding class prototypes within the
SMU. Subsequently, we assess the efficacy of MeCs and its constituent elements on model perfor-
mance and the rate of forgetting. In cases where the MeCs was not utilized, we employ the k-means
method to compute class prototypes. In experiment, we use GCN as backbone. The experimental
parameters and configurations adhered to the standards established in prior studies.

Experimental Results. The results of the ablation experiments on CoraFull and CS are shown in
Fig.3 and results on other datasets are shown in Appendix.A. We deduce several key findings from
the figure:1) The class prototypes learned by MeCs assist the model in learning more representative
prototype representations, demonstrating the effectiveness of the MeCs method. 2) The difference
in accuracy between scenarios where graphInfo is not used and where there is no interaction with
class prototypes is negligible. However, the scenario without graphInfo exhibits a higher forgetting
rate, indicating that local graph structural information provides greater assistance to model memory.
This may be because local structural information reduces the intra-class distance of nodes, thereby
helping the model learn more discriminative prototype representations.

8

10 5 0 5 10
12.5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

With MeCs, Ave_acc:70.80%, PD:17.26%

10 5 0 5 10

10

5

0

5

10

No Inter, Ave_acc:67.78%, PD:23.96%

10 5 0 5 10
12.5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

No GraphInfo, Ave_acc:67.61%, PD:24.83%

5 0 5 10
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

No MeCs, Ave_acc:63.38%, PD:39.34%
Class 0
Class 1
Class 2
Class 3
Class 4
Class 5
Class 6
Class 7
Class 8
Class 9
Class Centers

Matching of test samples to SMU prototypes under different methods

10 5 0 5 10

10

5

0

5

10

With MeCs, Ave_acc:80.02%, PD:12.81%

10 5 0 5 10

10

5

0

5

10

No Inter, Ave_acc:78.49%, PD:13.27%

10 5 0 5 10

10

5

0

5

10

No GraphInfo, Ave_acc:79.19%, PD:12.36%

10 5 0 5 10
12.5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

No MeCs, Ave_acc:76.94%, PD:11.37%
Class 0
Class 1
Class 2
Class 3
Class 4
Class 5
Class 6
Class 7
Class 8
Class 9
Class Centers

Matching of test samples to SMU prototypes under different methods

10 5 0 5 10

10

5

0

5

10

With MeCs, Ave_acc:79.04%, PD:19.03%

10 5 0 5
10

5

0

5

10

No Inter, Ave_acc:78.31%, PD:18.55%

10 5 0 5 10

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
No GraphInfo, Ave_acc:78.26%, PD:18.76%

10 5 0 5
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

No MeCs, Ave_acc:77.89%, PD:18.71%
Class 0
Class 1
Class 2
Class 3
Class 4
Class 5
Class 6
Class 7
Class 8
Class 9
Class Centers

Matching of test samples to SMU prototypes under different methods

Figure 3: The outcomes of GKIM when conducting the few-shot continuous learning task on the
CoraFull, Computers and CS datasets. The results are presented sequentially from left to right:
GKIM with full capabilities, GKIM where node features do not interact with class prototypes in the
SMU, GKIM without GraphInfo and GKIM without MeCs . The experimental results for CoraFull
are shown in the above figure, the results for Computers are in the middle and the results for CS are
in the figure below.

4.3 GKIM for Memory (Q3)

In our experimental investigation across three distinct datasets, we scrutinized the influence of vary-
ing interaction modalities between MRaM and GNN models on model performance and the propen-
sity for forgetting. We delineate three distinct scenarios for analysis: 1) Class representations stored
in MRaM are classified using non-parametric methods and used as the teacher model to interact
with the GNN. 2) Class representations stored in MRaM are classified using MLP and Mecoin is
employed as the teacher model to transfer knowledge to the GNN model. 3) GNN models are de-
ployed in isolation for classification tasks, without any interaction with Mecoin. In this experiment,
we use GCN as backbone. Throughout the experimental process, model parameters were held con-
stant, and the experimental configurations were aligned with those of preceding studies. Due to
space constraints, we include the results on the Computers dataset in the Appendix.A.

Experimental Results. It is worth noting that due to the one-to-one matching between MRaM
and SMU via non-parametric indexing, there is no gradient back-propagation between these two
components. This implies that updates to MRaM during training do not affect the matching between
node features and class prototypes. Our experimental findings are depicted in Fig.4, and they yield
several key insights: 1) GKIM outperforms all other interaction methods, thereby substantiating
its efficacy. 2) The second interaction mode exhibits superior performance compared to the first and
third methods. This is attributed to the MLP’s higher VC-dimension compared to the non-parametric

9

2 4 6 8 10

CoraFull
0

20

40

60

80

Ac
cu

ra
cy

OURS
no-mecoin
non-para
mlp

2 4 6 8 10

CS
0

20

40

60

80

100

Ac
cu

ra
cy

OURS
no-mecoin
non-para
mlp

OURS no-mecoin non-para mlp
CoraFull

0

10

20

30

40

50

60

70

80

PD

16.24

80.12

22.74

36.15

OURS no-mecoin non-para mlp
CS

0

20

40

60

80

PD

37.41

88.56

42.93
38.11

Figure 4: Left 2 columns: Line charts depict the performance of models across various sessions
on the CoraFull and CS datasets when using different distillation methods; Right 2 columns: His-
tograms illustrate the forgetting rates of different distillation methods on these two datasets.

method, which gives it greater expressive power to handle more complex sample representations.
However, the use of MLP results in a higher forgetting rate compared to the non-parametric method.
This is because when encountering samples from new classes, the parameters of MLP undergo
changes, leading to the loss of prior knowledge. For the third method, extensive parameter fine-
tuning leads to significant forgetting of prior knowledge. Method one performs less effectively than
GKIM, primarily because GKIM, with its larger VC-dimension, ensures that the process of updating
class representations does not affect representations of other classes stored in MRaM.

5 Conclusion

Current GFSCIL methods typically require a large number of labeled samples and cache extensive
past task data to maintain memory of prior knowledge. Alternatively, they may fine-tune model
parameters at the expense of sacrificing the model’s adaptability to current tasks. To address these
challenges, we propose the Mecoin for building and interacting with memory. Mecoin is made up
of two main parts: the Structured Memory Unit (SMU), which learns and keeps class prototypes,
and the Memory Representation Adaptive Module (MRaM), which helps the GNN preserve prior
knowledge. To leverage the graph structure information for learning representative class prototypes,
SMU leverages MeCs to integrate past graph structural information with interactions between sam-
ples and the class prototypes stored in SMU. Additionally, Mecoin introduces the MRaM, which
separates the learning of class prototypes and category representations to avoid excessive parameter
fine-tuning during prototype updates, thereby preventing the loss of prior knowledge. Furthermore,
MRaM injects knowledge stored in Mecoin into the GNN model through GKIM, preventing knowl-
edge forgetting. We demonstrate our framework’s superiority in graph few-shot continual learning
with respect to both generalization error and VC dimension, and we empirically show its advantages
in accuracy and forgetting rate compared to other graph continual learning methods.

6 Acknowledgement

This work is supported by the National Science and Technology Major Project (2023ZD0121403).
We extend our gratitude to the anonymous reviewers for their insightful feedback, which has great-
lycontributed to the improvement of this paper.

References
[1] Junshan Wang, Guojie Song, Yi Wu, and Liang Wang. Streaming graph neural networks via

continual learning. In Proceedings of the 29th ACM international conference on information
& knowledge management, pages 1515–1524, 2020.

[2] Hongbo Bo, Ryan McConville, Jun Hong, and Weiru Liu. Ego-graph replay based continual
learning for misinformation engagement prediction. In 2022 International Joint Conference
on Neural Networks (IJCNN), pages 01–08. IEEE, 2022.

10

[3] Fan Zhou and Chengtai Cao. Overcoming catastrophic forgetting in graph neural networks
with experience replay. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 4714–4722, 2021.

[4] Yilun Liu, Ruihong Qiu, and Zi Huang. Cat: Balanced continual graph learning with graph
condensation. In 2023 IEEE International Conference on Data Mining (ICDM), pages 1157–
1162. IEEE, 2023.

[5] Xikun Zhang, Dongjin Song, and Dacheng Tao. Ricci curvature-based graph sparsification for
continual graph representation learning. IEEE Transactions on Neural Networks and Learning
Systems, 2023.

[6] Xikun Zhang, Dongjin Song, and Dacheng Tao. Hierarchical prototype networks for continual
graph representation learning. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 45(4):4622–4636, 2022.

[7] Huihui Liu, Yiding Yang, and Xinchao Wang. Overcoming catastrophic forgetting in graph
neural networks. In Proceedings of the AAAI conference on artificial intelligence, volume 35,
pages 8653–8661, 2021.

[8] Victor Garcia and Joan Bruna. Few-shot learning with graph neural networks. arXiv preprint
arXiv:1711.04043, 2017.

[9] Kaize Ding, Jianling Wang, Jundong Li, Kai Shu, Chenghao Liu, and Huan Liu. Graph proto-
typical networks for few-shot learning on attributed networks. In Proceedings of the 29th ACM
International Conference on Information & Knowledge Management, pages 295–304, 2020.

[10] Zhen Tan, Kaize Ding, Ruocheng Guo, and Huan Liu. Graph few-shot class-incremental learn-
ing. In Proceedings of the fifteenth ACM international conference on web search and data
mining, pages 987–996, 2022.

[11] Bin Lu, Xiaoying Gan, Lina Yang, Weinan Zhang, Luoyi Fu, and Xinbing Wang. Geometer:
Graph few-shot class-incremental learning via prototype representation. In Proceedings of the
28th ACM SIGKDD conference on knowledge discovery and data mining, pages 1152–1161,
2022.

[12] Frederik Träuble, Anirudh Goyal, Nasim Rahaman, Michael Curtis Mozer, Kenji Kawaguchi,
Yoshua Bengio, and Bernhard Schölkopf. Discrete key-value bottleneck. In International
Conference on Machine Learning, pages 34431–34455. PMLR, 2023.

[13] Biqing Qi, Xinquan Chen, Junqi Gao, Dong Li, Jianxing Liu, Ligang Wu, and Bowen Zhou.
Interactive continual learning: Fast and slow thinking. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages 12882–12892, 2024.

[14] Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald
Tesauro. Learning to learn without forgetting by maximizing transfer and minimizing interfer-
ence. arXiv preprint arXiv:1810.11910, 2018.

[15] Biqing Qi, Junqi Gao, Xingquan Chen, Dong Li, Jianxing Liu, Ligang Wu, and Bowen Zhou.
Contrastive augmented graph2graph memory interaction for few shot continual learning. arXiv
preprint arXiv:2403.04140, 2024.

[16] Biqing Qi, Junqi Gao, Xinquan Chen, Dong Li, Weinan Zhang, and Bowen Zhou. Sr-cis:
Self-reflective incremental system with decoupled memory and reasoning. arXiv preprint
arXiv:2408.01970, 2024.

[17] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, An-
drei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.
Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy
of sciences, 114(13):3521–3526, 2017.

[18] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern
analysis and machine intelligence, 40(12):2935–2947, 2017.

11

[19] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learn-
ing. Advances in neural information processing systems, 30, 2017.

[20] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuyte-
laars. Memory aware synapses: Learning what (not) to forget. In Proceedings of the European
conference on computer vision (ECCV), pages 139–154, 2018.

[21] Marek Karpinski and Angus Macintyre. Polynomial bounds for vc dimension of sigmoidal and
general pfaffian neural networks. Journal of Computer and System Sciences, 54(1):169–176,
1997.

[22] Stefanie Jegelka. Theory of graph neural networks: Representation and learning. In The
International Congress of Mathematicians, 2022.

12

A Ablation Experiments

In Section 4.2, we presented the relevant ablation experiments on the CoraFull and CS dataset.
Below are the experimental results of the model on the Computers datasets.

5 0 5 10

5

0

5

10

With MECO, Ave_acc:79.22%, PD:12.02%

10 5 0 510

8

6

4

2

0

2

4

6

No Inter, Ave_acc:78.57%, PD:13.35%

8 6 4 2 0 2 4 6

8

6

4

2

0

2

4

No GraphInfo, Ave_acc:79.27%, PD:12.44%

10 5 0 5 10

10

5

0

5

10

No MECO, Ave_acc:78.21%, PD:12.94%
Category 0
Category 1
Category 2
Category 3
Class Centers

Matching of test samples to SMU prototypes under different methods

Figure 5: From left to right are the results of GKIM, without using GraphInfo, node features not
interacting with class prototypes in SMU and without using MeCs , when performing the graph
small-sample continuous learning task in the Computers dataset, four randomly selected categories
from session1 and 400 randomly selected samples from the four categories are clustered at the class
center of the class prototypes bit class centers obtained from the learning during the training process.

The experimental results in this section are similar to those on the CoraFull and CS dataset, and
relevant experimental analyses can be referred to in the main text. Additionally, we designed re-
lated ablation experiments on the dimensions of GraphInfo and its integration position with node
features. Detailed results are shown in tab.5, 6. From these results, we can draw the following
conclusions:1)It is evident from the tables that concatenating GraphInfo to the left of node features
with a dimension of 1 yields the best performance; 2)The model’s performance decreases as the
dimension of GraphInfo increases, while the forgetting rate generally exhibits a decreasing trend.
This indicates that local graph structural information provides some assistance to the model’s mem-
ory. When the dimension of class prototypes is fixed, an increase in the dimension of GraphInfo
implies less graph structural information extracted from prototypes of seen classes in past sessions.
Consequently, MeCs integrates less graph structural information, making it difficult for the model
to learn representative class prototypes, thereby limiting the model’s performance.

Table 5: The table counts the effect of GraphInfo dimension change on the model’s performance
on the CoraFull dataset as well as the forgetting rate when concatenating GraphInfo to the left-hand
side of the node features.

Method Acc. in each session (%) ↑ PD ↓ Average
ACC ↑0 1 2 3 4 5 6 7 8 9 10

GraphInfo(13-1) 81.01 80.49 77.25 72.62 71.8 70.8 69.21 68.82 67.94 65.39 64.77 16.24 71.83

GraphInfo(12-2) 79.66 79.33 76.61 71.96 71.02 69.96 68.62 68.15 67.04 64.19 63.76 15.9 70.94

GraphInfo(11-3) 80.25 80.19 76.35 71.49 70.43 69.35 67.7 67.26 66.5 64.38 63.65 16.6 70.69

GraphInfo(10-4) 79.7 79.12 76.14 71.53 70.4 68.77 66.94 67.13 66.01 63.39 62.48 17.22 70.15

GraphInfo(9-5) 79.63 79.04 76.14 72.15 70.97 69.88 68.55 68.1 67.03 63.97 63.44 16.19 70.81

GraphInfo(8-6) 79.19 78.88 75.48 71.22 70.16 69.15 68.15 67.17 66.44 63.01 62.68 16.51 70.14

GraphInfo(7-7) 79.28 78.73 75.54 71.5 70.76 69.87 68.11 67.82 66.62 63.28 62.88 16.4 70.40

GraphInfo(6-8) 78.45 78.37 74.87 70.51 70.11 68.93 67.42 66.63 65.68 63.43 62.49 15.96 69.72

GraphInfo(5-9) 77.04 76.21 72.67 68.99 67.57 66.59 65.54 65.27 64.12 61.55 61.3 15.74 67.90

GraphInfo(4-10) 76.45 75.19 72.29 68.43 67.8 66.74 64.66 64.75 64.34 61.35 60.84 15.61 67.53

GraphInfo(3-11) 77.07 76.46 74.24 69.54 68.58 67.86 66.21 65.65 64.28 61.56 60.23 16.84 68.33

GraphInfo(4-12) 73.33 72.87 70.34 65.7 65.18 64.73 62.84 62.66 61.83 57.88 57.48 15.85 64.99

GraphInfo(1-13) 74.93 74.59 72.38 67.3 66.13 64.86 63.3 62.65 61.79 59.36 58.73 16.2 66.00

Furthermore, for Section 4.3, the relevant ablation experiment results on the Computers dataset can
be found in Figure 8.

13

Table 6: The table counts the effect of GraphInfo dimension change on the model’s performance on
the CoraFull dataset as well as the forgetting rate when concatenating GraphInfo to the right-hand
side of the node features.

Method Acc. in each session (%) ↑ PD ↓ Average
ACC ↑0 1 2 3 4 5 6 7 8 9 10

GraphInfo(13-1) 79.33 79.06 75.65 71.5 70.77 69.7 67.98 67.55 66.56 64.15 63.52 15.81 70.52

GraphInfo(12-2) 78.22 77.77 75.36 71.15 70.05 69.1 67.49 67.14 66.18 63.43 62.53 15.69 69.86

GraphInfo(11-3) 78.65 78 75.09 70.95 69.94 68.79 67.28 66.9 66.04 63.48 63.06 15.59 69.83

GraphInfo(10-4) 78.95 78.35 75.62 71.09 70.18 69.12 67.57 67.2 66.04 63.6 63.14 15.81 70.08

GraphInfo(9-5) 79.68 79.22 76.18 72.4 71.23 70 68.29 67.72 66.61 63.06 62.54 17.14 70.63

GraphInfo(8-6) 79.53 79.05 75.02 71.19 70.13 68.96 67.3 66.78 65.92 62.61 62.3 17.23 69.89

GraphInfo(7-7) 79.36 78.96 75.19 71.39 70.51 69.39 67.86 67.6 66.69 63.99 62.96 16.4 70.35

GraphInfo(6-8) 78.94 78.27 75.2 71.16 70.06 68.62 67.26 66.82 66.19 62.69 62.36 16.58 69.78

GraphInfo(5-9) 77.84 77.25 74.27 70.05 68.72 68.05 66.49 66.35 65.70 62.51 61.64 16.2 68.99

GraphInfo(4-10) 76.28 75.31 72.81 68.77 67.84 66.54 65.14 65.29 64.42 61.36 60.88 15.4 67.69

GraphInfo(3-11) 76.78 75.94 73.53 69.02 67.76 67.19 65.44 64.41 63.95 61.23 60.69 16.09 67.81

GraphInfo(2-12) 71.92 71.51 68.48 64.94 64.46 63.99 62.36 60.89 60.04 57.95 57.32 14.6 63.95

GraphInfo(1-13) 76.16 75.55 72.37 68.92 67.41 66.67 64.8 64.71 63.87 60.7 59.68 16.48 67.35

1 2 5 6
0

20

40

60

80

Ac
cu

ra
cy

OURS
no-mecoin
non-para
mlp

mlp0

10

20

30

40

50

60

70

80

PD

12.02

76.53

21.01

12.61

OURS no-mecoin non-para
Computer

3 4

Computers
Figure 6: HAG-Meta, Geometer, and Mecoin methods’ average performance, performance curves,
and memory consumption over 10 sessions on the Computers dataset under conditions set forth in
their papers.

B Proof of Theorems

B.1 Proof of Theorem 1

Proof. By instituting CyT
m with Cy

k , Cm with Ck, IyT
m with Iy

k , IyT

M with IyK, mi with Ki, and kα with
kβ ◦zα, our proof is similar to the proof of theorem 3.1 in [12] (please refer to [12] for more details).
For f ∈ {fM

θ , f̂}, through similar procedure in the proof of [12], we obtain the coarse upper bound

14

of generalization error R:

R = Ez,ϵ[ℓ(f(gϵ(xT)),yT)]−
1

N

N∑
i=1

ℓ(f(xi
T),y

i
T)

≤ 1

N

∑
yT∈YT

∑
m∈I

yT
M

|IyT
m |Ez[Eϵ[ℓ(f(gϵ(xT)),yT)]− ℓ(f(xT),yT)|z ∈ CyT

m]

+
1

N

∑
yT∈YT

∑
m∈I

yT
M

|IyT
m |

Ez[ℓ(f(xT),yT)|z ∈ CyT
m]− 1

|IyT
m |

∑
i∈IyT

m

ℓ(f(xi
T),y

i
T)

+ c

√
2 ln(e/δ)

N
.

(13)

We then further conduct the tighter generalization bound for f̂ and fM
θ separately based on Eq.13.

Consider the case of f = f̂ , for the second term of right hand side of equation (13), according to
Lemma 4 of (Pham et al., 2021) and the fact that

∑
yT∈YT

∑
m∈I

yT
M

|IyT
m | = N , we obtain that for

any δ > 0, with probability at least 1− δ,

1

N

∑
yT∈YT

∑
m∈I

yT
M

|IyT
m |

Ez[ℓ(f̂(xT),yT)|z ∈ CyT
m]− 1

|IyT
m |

∑
i∈IyT

m

ℓ(f̂(xi
T),y

i
T)

≤ 2

∑
yT∈YT

∑
m∈I

yT
M

|IyT
m |RyT ,m(l ◦ F̂)

N
+M

√
ln(|YT ||M|/δ)

2N

∑
yT∈YT

∑
m∈I

yT
M

√
|IyT

m |
N

,

(14)

where RyT ,m(l ◦ F̂) = ETT ,ξ[supf̂∈F
∑|IyT

m |
i=1 ξiℓ(f̂(x

i
T)y

i
T)|xi

T ∈ Cm,yi
T = yT], and {ξi}i are

independently and identically distributed random variables that randomly taking values in {−1, 1}.
Moreover, using Cauchy-Schwarz inequality, we have that∑

yT∈YT

∑
m∈I

yT
M

|IyT
m |
N

≤
√
|YT ||M|. (15)

Then by ln(|YT ||M|/δ) ≤ max(1, ln(|YT ||M|)) ln(e/δ), we obtain the final tighter generalization
upper bound of f̂ :

Ez,ϵ[ℓ(f̂(gϵ(xT)),yT)]−
1

N

N∑
i=1

ℓ(f̂(xi
T),y

i
T)

≤ 1

N

∑
yT∈YT

∑
m∈I

yT
M

|IyT
m |Ez[Eϵ[ℓ(f(gϵ(xT)),yT)]− ℓ(f(xT),yT)|z ∈ CyT

m]

+ 2
∑

yT∈YT

∑
m∈I

yT
M

|IyT
m |RyT ,m(l ◦ F̂)

N
+ c(

√
2 ln(e/δ)

N
+

√
ln(e/δ)

2N
).

(16)

For the case of f = fM
θ , the second term in the right hand side of equation (13) equals 0. In fact,

based on the definition of CyT
m ,IyT

m and IyT

M , and the matching method (i.e. based on the smallest
Euclidean distance) between the input node features xT and the class prototypes m in Mecoin, we
have that

Ez[ℓ(f
M
θ (xT),yT)|z ∈ CyT

m]− 1

|IyT
m |

∑
i∈IyT

m

ℓ(fM
θ (xi

T),y
i
T)

= Ez[ℓ(hθ(pT),yT)|z ∈ CyT
m]− 1

|IyT
m |

∑
i∈IyT

m

ℓ(hθ(pT),yT)

= ℓ(hθ(pT),yT)− ℓ(hθ(pT),yT) = 0,

(17)

where pT is the value that is uniquely corresponding to the class prototype m = kα(xT), and hθ

represents the knowledge interchange process in GKIM.
□

15

B.2 Proof of Theorem 2

proof: When we use a simple non-parametric decoder function which uses average pooling to cal-
culate the element-wise average of all the fetched memory representation and then applies a softmax
function to the output, the decoder is the same as a single hidden layer nets with fixed input weights.
This network can be formulated as follows

f(u) = c0 +

n∑
i=1

ciσ(Aiu+ bi) (18)

where Ai is the i-th row of weight matrix, bi is the bias, ci is the output layer weights. For average
pooling, ci and bi is 0, and Ai is 1

n . So is easy to prove that the VC-dimension is n + 1. Then,
according to [21], the VC-dimension of MLP with one hidden layer is n2H2. Then we consider the
case when graph structure information is induced. When we use the distillation technique to inject
graph structure information into GKIM via graph neural networks, the upper bound on the capacity
of memory representation in GKIM is the expressive capacity of the graph neural networks. Thus,
according to [22], we have that the VC-dimensinon of GKIM with graph structure information is
p2n2H2. In summary, when graph structure information is introduced, the upper bound of the VC
dimension of GKIM is increased and its expressive power is also enhanced.

C Parameters and Devices

The relevant experimental parameters in this paper were determined through grid search. The pa-
rameter settings for each dataset are shown in Table 7.

Table 7: Parameters used in each data set.

Datasets Backbone Hidden dim Epoch Learning rate weight decay Dropout prototype dim

CoraFull GCN 128 2000 0.0005 0 0.5 14
GAT 64 2000 0.0005 0 0.5 14

CS GCN 128 2000 0.0005 0 0.5 14
GAT 16 2000 0.0005 0 0.5 8

Computers GCN 128 2000 0.0005 0 0.5 14
GAT 16 2000 0.0005 0 0.5 8

The environment in which we run experiments is:

• CPU information:24 vCPU AMD EPYC 7642 48-Core Processor
• GPU information:RTX A6000(48GB)

D Limitations

While our method has shown promising performance in graph few-shot incremental learning, there
are still some issues that need to be addressed: 1) Our approach assumes that the graph structures
across all sessions originate from the same graph. However, in real-world scenarios, data from
different graphs may be encountered, and we have not thoroughly explored this issue; 2) Although
our method currently maintains model performance with only a small number of samples, further
validation is needed to assess whether it can still achieve excellent performance under low-resource
conditions where graph structural information is scarce.

16

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Contributions are detailed in the last paragraph of the Introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We give the limitations in Appendix D.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

17

Justification: Theoretical results are detailed in Section3.3 and Appendix B.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We report all settings and details of reproducible experiments in Section 4
and Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

18

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We will make our code public after the paper is accepted.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We report all settings and details of experiments in Section 4 and Appendix
C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not reported because we repeated each experiment in the paper
10 times and reported the mean of the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

19

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Appendix C of the paper reports the computer resources needed to reproduce
the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the thesis complied with the NeurIPS Code of
Ethics in all respects.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our approach does not address social impacts and this question is not appli-
cable to our approach.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

20

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets used in the paper are properly cred-
ited and the license and terms of use explicitly are mentioned and properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

21

• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

22

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

23

10 5 0 5 10
12.5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

With MeCs, Ave_acc:70.80%, PD:17.26%

10 5 0 5 10

10

5

0

5

10

No Inter, Ave_acc:67.78%, PD:23.96%

10 5 0 5 10
12.5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

No GraphInfo, Ave_acc:67.61%, PD:24.83%

5 0 5 10
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

No MeCs, Ave_acc:63.38%, PD:39.34%
Class 0
Class 1
Class 2
Class 3
Class 4
Class 5
Class 6
Class 7
Class 8
Class 9
Class Centers

Matching of test samples to SMU prototypes under different methods

10 5 0 5 10

10

5

0

5

10

With MeCs, Ave_acc:80.02%, PD:12.81%

10 5 0 5 10

10

5

0

5

10

No Inter, Ave_acc:78.49%, PD:13.27%

10 5 0 5 10

10

5

0

5

10

No GraphInfo, Ave_acc:79.19%, PD:12.36%

10 5 0 5 10
12.5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

No MeCs, Ave_acc:76.94%, PD:11.37%
Class 0
Class 1
Class 2
Class 3
Class 4
Class 5
Class 6
Class 7
Class 8
Class 9
Class Centers

Matching of test samples to SMU prototypes under different methods

Figure 7: Caption for Image 2

10 5 0 5 10

10

5

0

5

10

With MeCs, Ave_acc:79.04%, PD:19.03%

10 5 0 5
10

5

0

5

10

No Inter, Ave_acc:78.31%, PD:18.55%

10 5 0 5 10

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
No GraphInfo, Ave_acc:78.26%, PD:18.76%

10 5 0 5
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

No MeCs, Ave_acc:77.89%, PD:18.71%
Class 0
Class 1
Class 2
Class 3
Class 4
Class 5
Class 6
Class 7
Class 8
Class 9
Class Centers

Matching of test samples to SMU prototypes under different methods

Figure 8: Caption for Image 2

Figure 9: The outcomes of GKIM when conducting the few-shot continuous learning task on the
CoraFull and CS dataset. MeCs is the new name for MeCo(according to R3’s suggestion). The
results are presented sequentially from left to right: GKIM with full capabilities, GKIM where node
features do not interact with class prototypes in the SMU, GKIM without GraphInfo and GKIM
without MeCs . The experimental results for CoraFull are shown in the above figure, and the results
for CS are in the figure below.

24

GNN Encoder

Graph data

Classifier

Prototype

Representations

=

=
matching

Memory losses

for keeping memory

Updating losses

for new knowledge

class

representation

(a) Graph neural network

(c) Structured Memory Unit

(f) Memory Representation Adaptive Module

=

…

…

Interaction with

old knowledge

extracts local graph

structure information

(b) MeCs

New class

representation

(d) GKIM

Figure 10: Overview of the Mecoin framework for GFSCIL. (a)Graph neural network: Consists of a
GNN encoder and a classifier(MLP) pre-trained by GNN. In GFSCIL tasks, the encoder parameters
are frozen. (b)Structured Memory Unit: Constructs class prototypes through MeCs and stores them
in SMU. (c)Memory Representation Adaptive Module: Facilitates adaptive knowledge interaction
with the GNN model.

25

	Introduction
	Notation
	Efficient Memory Construction and Interaction Module
	Structured Memory Unit
	Memory Representation Adaptive Module
	Theoretical Analysis

	Experiments
	Graph Few-Shot Continual Learning (Q1)
	MeCs for Memory (Q2)
	GKIM for Memory (Q3)

	Conclusion
	Acknowledgement
	Ablation Experiments
	Proof of Theorems
	Proof of Theorem 1
	Proof of Theorem 2

	Parameters and Devices
	Limitations

