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Abstract

We characterize how memorization is represented in Transformer networks. We1

find that supervised memorization-removal models trained on a targeted set also2

suppress untargeted memorization, implying a shared representational structure for3

memorized data. Building on links between memorization and loss curvature, we4

show this structure is disentangled in weight space when expressed in the eigenbasis5

of the (K-FAC) Fisher information. Using this decomposition, we propose an6

unsupervised parameter-ablation method that outperforms a supervised method7

in suppression of memorization, yields more natural generations in LMs, and8

improves generalization in label-noisy ViTs. Our work expands the understanding9

of verbatim memorization in neural networks, and points to practical mitigation10

methods for suppressing it in trained models.11

1 Introduction12

Memorization of training data in neural networks has been extensively studied in the past but13

still eludes our full understanding. In generative models, memorization can lead to leakage of14

training data [Carlini et al., 2019, Shokri et al., 2017], which is possibly private or sensitive, or can15

violate copyright [Karamolegkou et al., 2023]. Although data filtering and deduplication are key in16

preventing memorization before training ends [Huang et al., 2024, Biderman et al., 2023], this is17

typically infeasible to do thoroughly [Goldblum et al., 2022], especially as today’s systems scale the18

amount of data used to train them [Kaplan et al., 2020]. Mitigating memorization, therefore, remains19

a high priority for making models trustworthy and safe [Team et al., 2025].20

From an interpretability perspective, understanding memorization is particularly interesting. How21

models generalize in some cases, but recite verbatim in others is both of practical and scientific interest22

to the community. Disentangling these behaviors can shed light on the internal representations that23

govern recall versus abstraction, helping us more accurately evaluate model capabilities. Removing24

or preventing memorization during training can make models safer and more reliable.25

In this work, we study how memorization is structured in Transformer neural networks (ViTs and26

LMs). We observe that supervised methods for removing specific sets of memorized data generalize,27

and end up removing other memorized sequences not in the intended set, indicating that there is28

some shared representational structure controlling memorization. The most effective way we find to29

interpret this structure is from the lens of the curvature of the loss landscape w.r.t. weight matrices30

in the model, based on prior work connecting the loss curvature to generalization performance31

Foret et al. [2021], Hochreiter and Schmidhuber [1997], LeCun et al. [1989], Hassibi et al. [1993],32

Keskar et al. [2017] and memorization [Garg et al., 2024, Ravikumar et al., 2024, Jeon et al., 2024,33

Kim et al., 2023]. We find very distinct disentanglement in the eigenbasis of the Hessian of weight34

matrices between generalizing weight components, and those involved in memorization. Based on this35

understanding, we design an unsupervised model compression (Figure 1) technique for suppressing36
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Figure 1: (Left) We find that existing supervised memory unlearning methods ‘censor’ memorized
data that was not involved in the unlearning procedure, indicating shared structure involved in reciting
memorized data. (Right) We interpret the basis for this structure in the weights of models, and use
our understanding to design an unsupervised method for removing memorization based on directions
in weight space that produce specific kinds of curvature in the loss landscape. Since our method does
not involve gradient ascent, the edited model produces much more naturalistic generations. Prompts
are in gray, generations in black.

memorized data that prunes directions in weight space that correspond to parameters likely involved37

in memorization. Despite requiring no labels of memorized data, our method is competitive with,38

and in some cases better, than a SotA supervised memorization removal technique (BalancedSubnet;39

Sakarvadia et al. [2025]). Since our method does not involve gradient ascent on memorized examples,40

models edited this way replace memorized examples with diverse but plausible generations, rather41

than random tokens (Figure 1), which may be preferable in some settings. Our contributions can be42

summarized as follows:43

1. Whereas most previous work has studied memorization on a per-example basis, we demon-44

strate the existence of structure shared across memorized examples. In both ViTs and LMs,45

the eigenbasis of each layer’s curvature (via K-FAC) isolates memorization directions from46

those supporting generalization.47

2. We propose a new method for model compression that involves pruning this shared struc-48

ture without supervision of what data is memorized. This method is outperforms a SotA49

supervised method in removal of verbatim memorization in diverse settings, and retains50

generation diversity in LMs.51

3. We discuss the implications of shared memorization structure for other interpretability work,52

and provide practical considerations of dealing with memorization in neural networks based53

on our findings.54

2 Methods55

In this section, we operationalize how we measure memorization and the methods we use to under-56

stand it. This paper explores memorization in transformer models [Vaswani et al., 2017] trained for57

both image classification and language modeling. We analyze both modalities/tasks to provide a more58

robust account of memorization and to show the effectiveness of our method across diverse setups.59

Memorization takes a different form in both, however, and we outline how we measure them here.60

2.1 Evaluating Memorization in Language Models61

We use the OLMo2 family of models [OLMo et al., 2024] because they have openly accessible62

pretraining data and high performance on language modeling tasks. Previous work on evaluating63
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memorization in LMs [Carlini et al., 2019, Huang et al., 2024, Shokri et al., 2017, Carlini et al., 2022]64

sample sequences from the pretraining data using some prefix P , and determine that a sequence65

is memorized if greedy decoding produces some suffix S. We use |P | = 64 and |S| = 48 for the66

experiments in this paper, unless noted otherwise. Our metrics for measuring memorization are strict67

accuracy which measures the proportion of memorized sequences for which the model generates68

S exactly given P , loose accuracy, which measures the fraction of examples with token-level69

Levenshtein similarity ≥0.75 to the target (includes near-copies/paraphrases), and avg. Levenshtein70

which measures the mean of d/|S| per example, where d is token edit distance and |S| is suffix length.71

0 = identical, 1 = maximally different.72

2.1.1 BalancedSubnet73

Sakarvadia et al. [2025] perform a comprehensive analysis on suppression of memorization in74

LMs across various different techniques. They introduce a simple and high-performing method75

for suppressing memorization called BalancedSubnet (BSN). The approach in BSN is to learn a76

binary mask over individual parameters in MLP matrices of models while increasing loss on a set of77

memorized sequences (the forget set), while decreasing loss on a set of non-memorized sequences78

(the retain set). The intuition is to learn the minimal binary mask that maximizes loss on the forget79

set without destroying general model capabilities. We implement this method for OLMo to better80

understand memorization in LMs and to compare to our proposed approach. We train a binary mask81

for 2 epochs on 500 sequences with prefix length 64 and suffix length 48. Hyperparameters can be82

found in Appendix C.83

2.2 Evaluating Memorization in Vision Models84

In image classification models, memorization has been well studied, and there are simple recipes for85

producing models that memorize specific images. We train a family of 86M parameter ViT-Base86

models [Dosovitskiy et al., 2020] with 16x16 image patches at image resolution 224x224. We follow87

Dosovitskiy et al. [2020] training recipe on the ILSVRC 2012 ImageNet dataset [Russakovsky et al.,88

2015]. In order to control memorization, we train ViT variants where a subset of training images have89

randomly assigned (‘noised’) labels. The only way for a model to reduce the loss on these images is90

to memorize these input-label pairs exactly. This is a standard setup for evaluating memorization in91

image classifiers [Zhang et al., 2017]. Our default for evaluation is to train with 10% noised labels92

for 300 epochs. This model achieves a top-1 accuracy on the validation set of 68.7%. When training93

with no noise, our model achieves 77.2% top-1 accuracy.94

2.3 Background on Loss Curvature and K-FAC95

Following Martens and Grosse [2015], Foret et al. [2021], we study memorization and generalization
through the lens of loss curvature. Like previous investigators, we consider the loss as a function of
the model’s weights, and hypothesize that sharp curvature indicates directions in weight space used
for memorization, while flatter directions are used for generalization. Mathematically, the curvature
of the loss landscape is captured by the Hessian H = ∇2

θL(θ), where L is the loss function and θ is
the vector of flattened model weights. Each eigenvalue of H gives the amount of curvature along its
corresponding eigenvector. Practically, though, H is not tractably computable for any but the smallest
models, as its size is quadratic in the number of model weights. In order to approximate the structure
of H, we turn to the Kronecker-Factored Approximate Curvature (K-FAC) introduced in Martens and
Grosse [2015]. K-FAC was introduced as an efficient natural-gradient method that approximates the
Fisher Information Matrix (FIM), providing a structured approximation to the loss curvature without
forming the full Hessian. For a model trained with softmax cross-entropy loss, the relationship of the
FIM Fto the curvature of parameters is given by:

F = ED[∇θ log pθ(y | x, θ)∇θ log pθ(y | x, θ)T ] = ED[∇2
θ(−logpθ(y|x))]

Here, D is a dataset consisting of input-label pairs (x, y), and pθ(y | x) is the model’s predicted label96

distribution for input x. For an individual matrix W ∈ Rdout×din with incoming activations a and97

backpropagated gradients g, K-FAC gives an easily computable approximation to a block of F:98

F ≈ G⊗A = E[ggT ]⊗ E[aaT ] (1)
In words, this is the Kronecker product of the (uncentered) second-moment matrices of the activations99

going into the layer and the gradients coming out. Thus, K-FAC factorizes the Fisher block as the100
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Figure 2: Comparison of K-FAC vs. SVD sensitivity to memorized vs. clean data for the first and last
MLP down-projections in ViT-Base trained with 10% label noise. As measured by the magnitude of
activation of memorized vs. clean data, the K-FAC eigenbasis identifies directions in weight space
that fire 10x more strongly on clean data (left) and 3.5x more strongly for memorized data
(right). For comparison, we include projections for projections on singular vectors of the weight
matrices, where the balance is about even (i.e., no disentanglement).

Average Levenshtein Distance ↑ nDCG@10 ↑
Mem-Train Mem-Heldout Non-Memorized
0.93 0.86 0.9134

Table 1: Avg. Levenshtein distance on memorized and nDCG@10 on non-memorized heldout
sequences after BalancedSubnet show that the edit generalizes to memorized sequences that were not
seen in training, while affecting non-memorized sequences much less. We hypothesize this is due to
shared structure in weights that is used in recitation of memorized data more generally.

product between A ∈ Rdin×din and G ∈ Rdout×dout . We can compute the eigendecomposition of our101

approximated average Hessian using the eigendecomposition of A and G (see Appendix A). Rather102

than taking y to be supervised labels, we sample ŷ from the model’s predicted label distribution. Not103

only is this important for computing the correct FIM[Martens and Grosse, 2015], but it also makes104

our method entirely unsupervised.105

3 Memorized Representations Share Common Structure106

This section presents evidence for our claim that memorized data learned by neural networks shares a107

common representational signature, and that we can find this signature in the weights of models. We108

first observe that BalancedSubnet [Sakarvadia et al., 2025], a supervised method for suppressing a109

predetermined set of verbatim memorized sequences from a language model generalizes to nontrivial110

memorized sequences that were not seen in training of the BSN subnetwork. Table 1 shows that BSN111

drops accuracy on 115 heldout memorized sequences that are different from the data used to train112

the subnetwork mask; an example is shown in 1. Since BSN does not harm more general language-113

modeling faculties, this generalization is unlikely to arise from generally destructive lesioning.114

Instead, we hypothesize that diverse memories, both in and out of the ‘forget’ set share a common115

substrate, so that forgetting the targeted memories disrupts other memories too. In the following116

section, we interpret this behavior and explore the hypothesis that shared weight components control117

recitation of memorized sequences.118

3.1 Disentangling Memorization Parameter Components in the K-FAC Eigenbasis119

Building on prior work like [Hochreiter and Schmidhuber, 1997, Foret et al., 2021, Kim et al., 2023],120

we hypothesize that the structure shared across diverse memories takes the form of directions in121

weight space, and that we can use the K-FAC machinery introduced in 2.3 to locate these directions.122
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Setup Equation 1 gives us a proxy for the curvature of the loss around a given weight matrix W123

computed as the Kronecker product of A, the covariances of W’s incoming activations, and G, the124

covariances of W output-side gradients. Materializing this product is computationally infeasible,125

but hypothetically, the eigendecomposition of it will give us a basis ordered by how much the loss126

landscape curves in each direction. We can project hidden states in the model (right before W)127

onto subsets of this basis and measure the norm, in order to understand . If A has eigenpairs (λ,v)128

and G has eigenpairs (µ,u) (i.e., the ith eigenvalue and eigenvector), then an eigenvalue of F is129

κ = λµ and the corresponding eigenvector is z = v ⊗ u. Note that for a weight matrix W ∈ Rm×n,130

then z ∈ Rmn. Let Z := unvec(z) ∈ Rm×n. For a hidden state x, we take the L2 norm of Zx to131

measure this mode-specific response/sensitivity of the output to moving W along the eigenvector z.132

We hypothesize that memorized and non-memorized data have different activations along different133

percentile bands of the curvature spectrum, indicating disentanglement in this basis. We sort the134

eigenvalues of the approximate Fisher by λiµj and sample eigenvectors1 from the top 10%, 10-25%,135

25-50%, and bottom 50% of eigenvectors, computing ||Zx||2 for each sampled Z over 10k hidden136

states. We report the average norm for data in each of these bands. For computational efficiency, we137

compute these values with the ViT-Base model we train with 10% label noise (rather than the billion138

param. LMs we use).139

Results We hypothesize that different parts of the curvature spectrum will have different activations140

for generalizing vs. memorizing data. We study the ViT model with implanted memories described in141

2.2, and report MLP layers 0 and 11 (down-projection matrices), which we find to have the sharpest142

distinctions in activation, as measured by the ratio of activation magnitude of memorized images over143

non-memorized images. Figure 2 shows that non-memorized data activates up to 10x more strongly144

to the lower eigenvalue band in MLP 0. In MLP 11, activations for the 25-50th percentile bands145

activate about 3.5x more strongly for memorized images. As a baseline, we also computed the SVD146

of these MLP weight matrices, We find that this separation does not occur in the spectrum of the SVD147

of these weight matrices, indicating that viewing the weights in the basis of directions with more/less148

curvature uniquely separate these values. Prior work demonstrates that for a single example, the149

curvature of the loss is higher for memorized examples [Garg et al., 2024, Ravikumar et al., 2024,150

Jeon et al., 2024]. Our finding is consistent with that finding, but differs because we are looking at a151

proxy for the average curvature over a dataset. A direction in weights that is high curvature for a152

single memorized example is low curvature for most other examples, whereas directions used for153

many examples (non-memorized) have some amount of curvature across the whole dataset.154

4 Suppressing Memorization with K-FAC Weight Projections155

If there are disentangled representations for memorized and non-memorized data within the parame-156

ters of models, then we should be able to remove them without negatively impacting generalization157

performance. In this section, we propose a model compression strategy that involves ablating di-158

rections in weight space that are involved in the recitation of memorized data. In Section 3.1, we159

show that the eigenbasis of the Fisher block at some layers can strongly disentangle memorized160

representations (see also Appendix B). These computations do not involve a dataset labeled for161

memorized sequences, but do require a sample of (unlabeled) data to collect activations and gradients162

for a layer. Following results in Figure 2, we propose a pruning method based on truncating the163

bottom k% of eigendirections of a layer’s Fisher block. Intuitively, the top eigendirections of the164

Fisher block are directions in weight space that, when perturbed, affect the loss substantially across165

a dataset, and the bottom eigendirections affect the loss little, or only matter for a few examples.166

Pruning the bottom-most directions may seem inconsistent with prior work Garg et al. [2024], LeCun167

et al. [1989], Hassibi et al. [1993], which shows that memorized data has higher curvature than168

non-memorized data at an instance level. The key intuition is that since K-FAC gives us a proxy for169

average curvature across the dataset, highly curved directions for memorized data are actually flat for170

most inputs, and the directions that change loss consistently across examples correspond to weights171

for generalizing features (firing for the majority of data).172

To ablate lower eigenvalue directions, we sample from the top eigenvalues of the Hessian (computed173

as the products between eigenvalues of A and G), and retain the corresponding eigenvector directions,174

continuing until the total energy of eigenvalues surpasses the a threshold percentage of the total175

1We sample instead of computing each one, since there are millions.
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Figure 3: Editing results for BalancedSubnet, and truncating weight matrices according to SVD or
K-FAC directions in OLMo2 7B. K-FAC has the best memorization suppression, going from 99% to
4% strict matching, and extends the best to a difficult quotes domain.

Memorized Data Variation
Average Levenshtein Distance

Non-memorized Data Preservation
nDCG@10

Dolma Quotes
Pre-edit 0.01 0.01 1.00
BSN 0.86 0.21 0.91
SVD 0.64 0.58 0.90
K-FAC 0.72 0.64 0.91

Table 2: Additional statistics for editing metrics showing variation from memorized suffixes (measured
by Levenshtein distance) and non-memorized data’s preservation of the unedited model’s top 10 next
token predictions. All metrics retain faithfulness to non-memorized data. BSN transfers the least to
the quotes dataset, and K-FAC is the most balanced. For all metrics, higher is better.

energy.In general, we keep the top k=90% of energy of the eigenspectrum. We then project out the176

remaining directions as follows:177

PA = UA[:, :keep_idxs_A]
PG = UG[:, :keep_idxs_G]

Ŵ = PGPT
GWPAPT

A

4.1 Experimental Setup178

We test our compression procedure on both OLMo-2 LMs and ViT-base on an image classification179

task. We search layer-wise for the best single-layer editing strategy, and additionally perform a180

coarse-grained search for the best multi-layer edit. We expect that since our procedure edits out181

low variance directions in weight space, we may be able to disrupt them by truncating low variance182

singular values as well, which would be a cheaper and data-free alternative. So, in addition to the183

K-FAC projection edit we described in the previous section, we also run a baseline testing whether184

keeping the top [1, 2, 5, 10, 20, 30, 50] percent of singular values from the same layers can perform185

similarly to K-FAC. For image models, we use a subset of 10k images from the ImageNet training186

set, and for OLMo LMs, we use 2M tokens from the Dolma training corpus. In fully unsupervised187

settings, our results suggest editing the earliest few layers, and in some cases include the last layer for188

best expected results.189

4.2 Results190

4.2.1 Language Models191

We evaluate our editing procedures on 125 memorized sequences from Dolma (not used to calculate A192

and G) with a suffix length (|S|) of 48 and a dataset of 125 memorized historical quotes with a suffix193
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Figure 4: Comparison of K-FAC compression and SVD per MLP block (top) and with the best
configuration (bottom) in a ViT model. We find that K-FAC compression generally outperforms SVD,
and the best results (compressing layers 0 and 11 simultaneously) aligns with the results in §3.1,
where these layers showed the greatest disentanglement between memorized data and generalizing
data. Note that with K-FAC we are able to effectively remove memorization while substantially
improving generalization performance (validation), and recovering more of the ground truth label on
the previously memorized set than SVD.

length of 8. For BalancedSubnet, we train on 500 memorized sequences from Dolma and evaluate194

on the 125 heldout memorized Dolma sequences and 125 quotes. The quotes are included because195

they are more challenging due to probable high repetition in the pretraining data, and evaluating on196

the next 8 tokens. The quotes are also truly heldout: In all cases, the quotes were not used to adjust197

any hyperparameters in K-FAC, SVD, or BSN. This setting also tests both length generalization and198

generalization to a domain that isn’t web text. For K-FAC pruning, we keep the top 80% of energy in199

the first three MLPs; for SVD, we use the top 20% singular values for these layers. Figure 3 shows200

our results on all procedures. We find that K-FAC outperforms BalancedSubnet on recitation of201

Dolma sequences, producing half as many memories, and outperforms all other methods on historical202

quotes, indicating that K-FAC pruning find the most general weights responsible for memorization,203

despite not training with any signal on what was memorized. Table 2 shows token level variation204

through Levenshtein distance on memorized heldout sequences. Unsuprisingly, BSN poduces the205

most distinct text (since it generates random numbers when it detects in-domain memorization; Figure206

1), but fails to generalize out of its training distribution: on quotes, BSN gets only 0.21 average207

Levenshtein, while SVD gets 0.58, and K-FAC does the best with 0.64. On heldout, non-memorized208

sequences, the top-10 next token predictions are very close to the unedited model’s set, as measured209

by nDCC@10. The generations resulting after K-FAC and SVD editing on these matrices are much210

more naturalistic than BSN, since we do not involve gradient ascent. We include sample generations211

from memorized and non-memorized prompts in Appendix D.212

4.2.2 Vision Transformers213

Figure 4 shows the results for editing ViT-Base with 10% training noise in various settings. On a per-214

layer basis, we see that pruning the earliest and latest layers provides the best results across the board.215

For both K-FACWe achieve the best performance when we prune MLPs 0 and 11 simultaneously,216

driving memorization performance down to 3.5% from over 80%. K-FAC also increases the validation217

accuracy over 4% from 67% to 71.7%, while SVD only increases performance around 1%. If we have218

successfully targeted memorized features, then we should see that the images that were memorized219

should switch to predicting their ground truth (GT) labels. K-FAC successfully raises the ground220

truth accuracy up to 66.5% while SVD reaches 58.9%.221
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4.3 Final Remarks222

Our results provide a deeper understanding of memorization in neural networks trained in two distinct223

settings, and show that recitation of memorized data shares common structure in the weight space224

of models, especially in the early layers (consistent with [Stoehr et al., 2024, Maini et al., 2023]).225

The method we propose could still be better understood and improved upon. We discuss practical226

recommendations and important limitations of our results in the following sections.227

5 Related Work228

Memorization in neural networks has been explored from many angles, and often as an overfit-229

ting/generalization problem, making it one of the most widely studied in deep learning. With230

increasing LLM scale [Kaplan et al., 2020], there is building interest in understanding the sheer231

amount of data such models memorize [Carlini et al., 2022, Morris et al., 2025, Karamolegkou et al.,232

2023]. Relatedly, there is great interest in compressing models using low-rank structure in gradients233

[Zhao et al., 2024] in order to collapse weight matrices into low-rank approximations [JAISWAL234

et al., 2025]; also using the SVD [Sharma et al., 2023]. Memorization and generalization in terms of235

spectral dynamics has also been explored [Yunis et al., 2024]. We do not explore this direction deeply,236

but our K-FAC-based method can be used to reduce the rank of weights (and SVD always reduces the237

rank). Other work on memorization focuses on the question of whether memories can be localized238

in model weights [Maini et al., 2023, Chang et al., 2024]. Our work suggests, aligning to previous239

work [Hase et al., 2023], that memorization is hard to pinpoint (and likely highly distributed), but240

distinctly loss-curved directions related to recitation of memorized data can be localized to some241

(early/late layers). This connects to interpretability work on finding distinct processes involved in242

fact retrieval within models [Geva et al., 2021, Gur-Arieh et al., 2025, Meng et al., 2022, Dai et al.,243

2022, Rajamanoharan et al., 2023, Merullo et al., 2024, Menta et al., 2025]. Further work is needed244

to combine views differentiating memorization from structured mechanisms for fact retrieval.245

6 Discussion246

We have taken a step towards understanding memorization of training data in both ViT and LM247

Transformer models,and find consistent structure in the weight space, especially in early layers,248

that seems to be shared across memories. This is surprising, perhaps, as knowledge in neural249

networks is often considered highly distributed, an idea supported by classic studies on “graceful250

degradation" to neuron ablations [Rumelhart et al., 1986], and more recently by interpretability work251

on “microfeatures" [Rajamanoharan et al., 2023]. While our results do not make strong claims about252

‘localization’ of memories to any particular point, we find that the curvature-basis of weights nicely253

disentangles parameter directions involved in memorization,indicating significant spatial organization254

of memory storage.255

6.1 Practical Considerations for De-Memorizing Models256

Our work is motivated in understanding the representational differences between memorizing and257

generalizing components of models, and our pruning procedure is designed to demonstrate the258

precision of our findings. While our results show that this approach is effective across models, we259

do not claim that this method will fully remove memorized data from a model. Unlearning methods260

are known to ‘suppress’ rather than fully remove the target domain [Hong et al., 2024, Lee et al.,261

2025, Barez et al., 2025]. As our method relates to unlearning, K-FAC pruning suffers from the same262

issues. Lee et al. [2025] discuss making unlearning more robust by distilling the model after applying263

unlearning to it, which could work in our setting.264

When considering editing a model, it can vary what the desired properties are. In some cases, the more265

targeted appraoch of BalancedSubnet [Sakarvadia et al., 2025] that censors generations predicted266

as memorized may be preferable. Our approach aims at the most general purpose treatment of267

memorization in models; suppressing it in the widest range of settings. However, we also aim to268

maintain naturalistic generations after the edit. For some uses, this is desirable. In others, subtly269

wrong but believable outputs are troublesome. Therefore, we do not suggest that any one method270

presented in this paper is always the most effective in every setting.271
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6.2 Memorization and Policy around Model Disgorgement272

Memorization presents a real problem for deploying neural networks into the world that we can273

trust. As models become more widely used across and ubiquitous in daily life, their responsible274

use and enforcement of user protections becomes more important. In order to prevent leaks of275

harmful training data, governing bodies may require re-training or model deletion, but our current276

understanding of information representation within models does not currently afford knowing when277

information might fully be removed from a model, or if deletion is necessary. Regulators have already278

shown they will reach past raw datasets to the models themselves. In the United States, the Federal279

Trade Commission has repeatedly ordered “algorithmic disgorgement,” requiring companies to delete280

models trained on unlawfully obtained or processed data [Goland, 2022].281

The temporary withdrawal and later “safety-revised” re-release of LAION-5B [Schuhmann et al.,282

2022] after the discovery of links to illegal content illustrates how quickly a widely used corpus can283

become legally non-deployable. When a foundation dataset is implicated, models trained with some284

subset of it are implicated as well. This creates cascading costs: product freezes, re-training, and285

potential disgorgement.286

It is clear that current post-training/mitigation methods are not enough to prevent verbatim production287

of training data [Nasr et al., 2025]. Formal machine unlearning remains immature at the scale and288

heterogeneity of modern pretraining. We see interpretability as one way to address complications289

related to data leakage in a way that does not require the exorbitantly expensive and environmentally290

harmful costs of retraining an affected model. our work presents a step toward better understanding of291

the representation of memorized data within the weights of a network. Advancing this understanding292

will allow us to more accurately judge the permanence of the imprint training data leaves on a model,293

and what interventions may be necessary to remove it.294

7 Conclusion295

We have shown curvature of the loss around weight matrices in Transformer models identifies296

structure across memorized examples in LMs and ViTs. This work explores using this insight to297

design a simple, label-free way to prune memorization across different domains, and shows this298

method is effective at reducing verbatim memorization while maintaining naturalistic generations (in299

LMs) and good downstream performance (in ViTs). Future work could explore improvements to our300

proposed pruning method, extend the method to more aggressively shrink model parameter counts, or301

better understand generalization in models.302
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A Primer on the Eigendecomposition of A and G443

This section provides background on how to think about the eigenvectors and eigenvalues of the444

Hessian, as approximated by the K-FAC factorization F ≈ G⊗A. For a given weight matrix, recall445

that A is the covariance matrix of the activations going into it, and that A ∈ Rdin×din . G is the446

covariance matrix of the gradients on the output side of the matrix, and G ∈ Rdout×dout .447

Notice that we have din ∗ dout eigenpairs in the Hessian. The approximate eigenvalues of the FIM448

are the products between each of the eigenvalues of the G and A matrices from K-FAC, and the449

corresponding eigenvectors are the Kronecker products between the eigenvectors of G and A.450

B Further Eigenspectrum Analysis for ViT Models451

In this section we will describe how we computed the eigenspectrum analysis that compared activa-452

tions of memorized vs. clean inputs453

B.1 Shared Structure Appears Beyond Weight Decay Threshold454

Following Dosovitskiy et al. [2020], we use a weight decay of 0.3 to train ViT-Base on ImageNet,455

but we explore how memorization structure in the weights appears as we vary this value. We find456

a sharp increase in disentanglement in the K-FAC basis right around this value of 0.3 (specifically,457

right below it at 0.27). These results are shown in Figure 5, where we also include all layers.458
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WD=0.05 WD=0.1 WD=0.2 WD=0.27 WD=0.3 WD=0.35 WD=0.6

top_10%

10-25%

25-50%

bottom_50%

0.987*** 0.987*** 0.972*** 0.956*** 0.927*** 0.991*** 0.961*

0.987*** 0.981 1.088*** 0.533*** 0.955 0.961* 0.911***

1.108** 0.988*** 0.996 0.027** 0.742** 0.924 0.803***

0.985 0.953*** 0.941 0.491* 0.449 0.813** 0.160**

blocks.0.mlp.fc1

WD=0.05 WD=0.1 WD=0.2 WD=0.27 WD=0.3 WD=0.35 WD=0.6

top_10%

10-25%

25-50%

bottom_50%

1.002 1.002* 0.984*** 0.958*** 0.859*** 0.996*** 0.965***

1.212*** 0.991 0.885 0.079 0.130* 0.453 0.123

1.246*** 0.981 0.272* 0.030 0.070** 0.090 0.070

1.016 0.995 0.856 0.092 0.119 0.799 0.144

blocks.0.mlp.fc2

WD=0.05 WD=0.1 WD=0.2 WD=0.27 WD=0.3 WD=0.35 WD=0.6

top_10%

10-25%

25-50%

bottom_50%

1.006** 1.000 0.991*** 0.991*** 0.987*** 0.990*** 0.996**

1.008 1.079*** 1.066** 1.060* 1.185*** 1.064* 0.996**

1.043* 1.132*** 0.992 1.087** 0.987*** 0.990*** 0.999

1.006** 1.001 0.998 0.981 0.906*** 1.036 1.007

blocks.1.mlp.fc1

WD=0.05 WD=0.1 WD=0.2 WD=0.27 WD=0.3 WD=0.35 WD=0.6

top_10%

10-25%

25-50%

bottom_50%

0.999 0.995*** 0.991*** 0.988*** 1.001 0.998** 0.998***

1.003 1.074** 1.053*** 1.034** 1.067*** 1.056*** 1.068***

0.985 1.054* 0.916** 0.920*** 1.023*** 0.942*** 1.009**

0.996 1.025 0.867** 0.900 0.964*** 1.032*** 1.012***

blocks.1.mlp.fc2

WD=0.05 WD=0.1 WD=0.2 WD=0.27 WD=0.3 WD=0.35 WD=0.6

top_10%

10-25%

25-50%

bottom_50%

1.003* 1.016*** 0.994 0.997 0.996 0.991*** 0.998

0.997 1.016 1.053* 1.024 0.958 0.703*** 1.053**

1.003* 1.052** 1.026 1.042 1.038 0.990*** 1.015

1.226*** 1.016*** 0.995 0.941* 1.142*** 1.136*** 1.058***

blocks.2.mlp.fc1

WD=0.05 WD=0.1 WD=0.2 WD=0.27 WD=0.3 WD=0.35 WD=0.6

top_10%

10-25%

25-50%

bottom_50%

1.107*** 0.921*** 0.997*** 0.999 0.993*** 0.993*** 1.008***

0.852*** 0.952* 0.937* 1.016 1.020* 1.061*** 0.702***

0.936** 0.980 1.021 1.017 0.967 1.058*** 0.253***

0.984 0.974 0.981 0.986* 0.944 1.024*** 0.564*

blocks.2.mlp.fc2

WD=0.05 WD=0.1 WD=0.2 WD=0.27 WD=0.3 WD=0.35 WD=0.6

top_10%

10-25%

25-50%

bottom_50%

0.989*** 1.005** 0.998 0.997 1.001 0.997 1.003**

0.990 1.048* 1.013 0.974 0.714*** 1.064* 0.994

0.977 1.045* 1.013 1.060** 1.076* 0.737*** 1.003*

1.009 1.068*** 0.998 1.095*** 1.000 1.015 0.971

blocks.3.mlp.fc1

WD=0.05 WD=0.1 WD=0.2 WD=0.27 WD=0.3 WD=0.35 WD=0.6

top_10%

10-25%

25-50%

bottom_50%

0.973*** 0.953*** 1.014*** 0.991*** 0.992*** 0.996*** 0.979***

1.046 1.009 0.946*** 1.121*** 1.010 1.006 1.038***

0.972 1.157*** 0.978 1.015 0.973 1.012 0.881

0.941** 1.076*** 0.931** 0.985 0.878** 0.989 0.873

blocks.3.mlp.fc2

WD=0.05 WD=0.1 WD=0.2 WD=0.27 WD=0.3 WD=0.35 WD=0.6

top_10%

10-25%

25-50%

bottom_50%

0.995*** 0.950*** 1.002 1.017*** 1.028*** 1.024*** 1.024***

1.031 1.087*** 1.032 1.017*** 1.030 1.023*** 1.020***

0.995*** 1.111*** 1.002 1.087** 1.099*** 1.024*** 0.980

0.995*** 1.080*** 1.002 0.932** 0.897*** 1.100*** 1.026

blocks.4.mlp.fc1

WD=0.05 WD=0.1 WD=0.2 WD=0.27 WD=0.3 WD=0.35 WD=0.6

top_10%

10-25%

25-50%

bottom_50%

0.991*** 0.758*** 1.004* 0.992*** 0.991*** 0.983*** 1.007***

0.983*** 1.076*** 0.583*** 1.066** 0.989 0.958** 0.994*

1.035** 1.671*** 0.892*** 1.010 1.000 1.021 0.416***

0.996* 1.075** 0.959** 0.983 0.963 1.002 0.488*

blocks.4.mlp.fc2

WD=0.05 WD=0.1 WD=0.2 WD=0.27 WD=0.3 WD=0.35 WD=0.6

top_10%

10-25%

25-50%

bottom_50%

0.996*** 0.956*** 1.004*** 1.006*** 0.995* 0.960*** 1.051***

0.979 1.070*** 1.036 1.051* 1.093*** 1.580*** 1.052*

0.996*** 1.073*** 1.018 1.006*** 1.044 1.528*** 1.051***

0.996*** 0.955*** 1.004*** 1.038* 1.092** 1.100*** 1.061*

blocks.5.mlp.fc1

WD=0.05 WD=0.1 WD=0.2 WD=0.27 WD=0.3 WD=0.35 WD=0.6

top_10%

10-25%

25-50%

bottom_50%

0.992** 0.953*** 1.017*** 0.987*** 0.970*** 0.918*** 1.005***

1.021 1.142*** 1.095** 1.019 1.065* 1.078** 0.999

1.027 1.034 1.059* 1.055*** 1.037* 0.984 1.008

1.048*** 1.113*** 0.990 1.007 1.056*** 1.069*** 0.986

blocks.5.mlp.fc2

WD=0.05 WD=0.1 WD=0.2 WD=0.27 WD=0.3 WD=0.35 WD=0.6

top_10%

10-25%

25-50%

bottom_50%

0.993*** 0.975*** 1.003*** 0.998** 0.905*** 0.874*** 0.992***

1.093*** 1.030 1.004 1.107*** 1.614*** 0.874*** 1.118***

0.993*** 0.975*** 1.003*** 1.142*** 1.021 1.214*** 1.174***

1.058*** 1.036* 1.027 0.998* 1.119*** 2.260*** 1.151***

blocks.6.mlp.fc1

WD=0.05 WD=0.1 WD=0.2 WD=0.27 WD=0.3 WD=0.35 WD=0.6

top_10%

10-25%

25-50%

bottom_50%

0.996** 0.997*** 1.001** 1.009*** 0.894*** 0.917*** 0.961***

1.067** 1.084*** 1.149*** 1.184*** 0.768*** 1.260*** 1.124***

1.060*** 1.073** 1.018 1.187*** 1.165*** 1.835*** 1.157***

1.035* 1.110*** 0.978 1.092** 1.160*** 1.271*** 1.154***

blocks.6.mlp.fc2

WD=0.05 WD=0.1 WD=0.2 WD=0.27 WD=0.3 WD=0.35 WD=0.6

top_10%

10-25%

25-50%

bottom_50%

0.996*** 0.996*** 1.001*** 0.997*** 0.890*** 0.923*** 0.947***

1.056*** 0.937*** 1.067*** 1.054** 1.203*** 1.291*** 1.141***

0.996*** 0.996*** 1.001*** 1.062*** 1.354*** 1.190*** 0.950***

0.996*** 0.996*** 1.049*** 1.179*** 1.164*** 1.280*** 1.116***

blocks.7.mlp.fc1

WD=0.05 WD=0.1 WD=0.2 WD=0.27 WD=0.3 WD=0.35 WD=0.6

top_10%

10-25%

25-50%

bottom_50%

0.991*** 1.002*** 0.999*** 1.010*** 0.893*** 1.031*** 0.917***

1.070*** 1.019 1.082** 1.096*** 1.176*** 0.886*** 1.148***

1.072** 1.044* 1.031** 1.042* 0.901*** 1.241*** 1.119***

1.054** 1.016 0.964 1.019 1.427*** 1.287*** 1.193***

blocks.7.mlp.fc2

WD=0.05 WD=0.1 WD=0.2 WD=0.27 WD=0.3 WD=0.35 WD=0.6

top_10%

10-25%

25-50%

bottom_50%

0.998*** 1.001*** 1.000 0.999*** 0.954*** 0.945*** 0.945***

1.046*** 0.959*** 1.047** 1.046** 1.062*** 2.675*** 2.217***

0.998*** 1.001*** 1.000 1.031 1.152*** 1.070*** 2.141***

0.998*** 1.001*** 1.089*** 0.999*** 1.156*** 1.013 0.945***

blocks.8.mlp.fc1

WD=0.05 WD=0.1 WD=0.2 WD=0.27 WD=0.3 WD=0.35 WD=0.6

top_10%

10-25%

25-50%

bottom_50%

0.996*** 1.001 0.999** 1.008*** 1.056*** 1.002 0.901***

1.082*** 1.023 1.057*** 1.063*** 1.287*** 0.885*** 1.132***

1.096** 2.447*** 1.037* 1.060** 1.089*** 1.021 1.189***

1.037* 1.014 1.035* 1.027* 1.346*** 1.232*** 1.179***

blocks.8.mlp.fc2

WD=0.05 WD=0.1 WD=0.2 WD=0.27 WD=0.3 WD=0.35 WD=0.6

top_10%

10-25%

25-50%

bottom_50%

0.998*** 1.002*** 1.000 0.999*** 0.971*** 0.951*** 0.911***

1.018 1.005 1.048*** 1.018 0.948*** 1.011 1.062***

0.998*** 1.002*** 1.000 0.999*** 1.013 0.979 0.955**

1.045*** 1.002*** 1.039** 1.038** 1.092*** 0.995 2.455***

blocks.9.mlp.fc1

WD=0.05 WD=0.1 WD=0.2 WD=0.27 WD=0.3 WD=0.35 WD=0.6

top_10%

10-25%

25-50%

bottom_50%

0.994*** 0.997*** 1.000 1.003*** 1.036*** 1.027*** 1.019***

1.042* 0.986 1.125*** 1.003*** 1.162*** 1.028 0.945*

1.479*** 0.998 0.694*** 1.029 1.082*** 0.998 1.061***

1.066*** 1.012 1.036 1.043*** 1.086*** 1.244*** 1.130***

blocks.9.mlp.fc2

WD=0.05 WD=0.1 WD=0.2 WD=0.27 WD=0.3 WD=0.35 WD=0.6

top_10%

10-25%

25-50%

bottom_50%

0.999*** 1.002*** 1.000* 1.000* 0.980*** 0.957*** 0.930***

1.074*** 1.018 1.092*** 1.076*** 1.067*** 0.879*** 2.487***

0.999*** 1.002*** 1.000* 1.000* 0.980*** 0.915*** 0.930***

0.999*** 1.002*** 1.088*** 1.046*** 1.043*** 0.915*** 1.007

blocks.10.mlp.fc1

WD=0.05 WD=0.1 WD=0.2 WD=0.27 WD=0.3 WD=0.35 WD=0.6

top_10%

10-25%

25-50%

bottom_50%

0.995*** 0.999*** 1.000* 1.000 1.036*** 1.089*** 1.013***

1.055** 1.001 1.073*** 1.057** 1.077*** 1.130*** 1.010

1.180*** 1.026 1.045 1.046* 0.987 0.989 0.997

1.062*** 1.037** 1.043*** 1.043** 1.089*** 1.171*** 1.028*

blocks.10.mlp.fc2

WD=0.05 WD=0.1 WD=0.2 WD=0.27 WD=0.3 WD=0.35 WD=0.6

top_10%

10-25%

25-50%

bottom_50%

1.006*** 1.005*** 1.007*** 0.998*** 0.998*** 0.971*** 0.927***

1.079*** 1.010 1.063*** 1.041** 0.978 0.915*** 1.096***

1.006*** 1.005*** 1.007*** 0.998*** 0.998*** 0.971*** 0.927***

1.006*** 1.005*** 1.007*** 0.998*** 0.998*** 0.971*** 0.927***

blocks.11.mlp.fc1

WD=0.05 WD=0.1 WD=0.2 WD=0.27 WD=0.3 WD=0.35 WD=0.6

top_10%

10-25%

25-50%

bottom_50%

0.990*** 0.998* 1.003*** 0.996*** 0.888*** 0.760*** 0.399***

1.040 1.056** 1.127*** 1.055** 0.911*** 0.873*** 0.828***

1.120*** 2.086*** 0.879*** 1.149*** 3.254*** 3.228*** 2.773***

1.038 1.007 0.881*** 0.941** 0.761*** 0.844*** 0.878***

blocks.11.mlp.fc2
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(Red: noisy>clean, Blue: noisy<clean, *** p<0.001)

Figure 5: All MLP layers in ViT-Base trained with 10% label noise.
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Table 3: Example generations from OLMo-2 1B from memorized prefixes. We only include the last
50 characters of the prefix for space reasons. Newlines are added for space reasons as well.

C BalancedSubnetwork Hyperparameters459

D Example LM Generations460

E OLMo-2-1B Pruning Results461
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Table 4: OLMo 2 1B generations highlighting random text and common but not necessarily mem-
orized prompts. We include the prompt and then the next 50 characters generated by each odel.
Newlines are added to generations to save space.
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Figure 6: Editing results for BalancedSubnet, and truncating weight matrices according to SVD or
K-FAC directions in OLMo2 1B.

Memorized Data Variation
Average Levenshtein Distance

Non-memorized Data Preservation
nDCG@10

Dolma Quotes
Pre-edit 0.01 0.01 1.00
BSN 0.90 0.25 0.91
SVD 0.78 0.40 0.91
K-FAC 0.76 0.47 0.90

Table 5: Additional statistics for OLMo 2 1B. Editing metrics showing variation from memorized
suffixes (measured by Levenshtein distance) and non-memorized data’s preservation of the unedited
model’s top 10 next token predictions. All metrics retain faithfulness to non-memorized data. BSN
transfers the least to the quotes dataset, and K-FAC is the most balanced. For all metrics, higher is
better.
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