
Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

PDEXPLAIN - CONTEXTUAL MODELING OF PDES IN
THE WILD

Ori Linial
Technion, Israel Institute of Technology
Haifa, Israel
linial04@gmail.com

Orly Avner & Dotan Di Castro
Bosch Center for Artificial Intelligence,
Haifa, Israel

ABSTRACT

We propose an explainable method for solving Partial Differential Equations by
using a contextual scheme called PDExplain. During the training phase, our
method is fed with data collected from an operator-defined family of PDEs ac-
companied by the general form of this family. In the inference phase, a minimal
sample collected from a phenomenon is provided, where the sample is related to
the PDE family but not necessarily to the set of specific PDEs seen in the train-
ing phase. We show how our algorithm can predict the PDE solution for future
timesteps. Moreover, our method provides an explainable form of the PDE, a trait
that can assist in modelling phenomena based on data in physical sciences. To
verify our method, we conduct extensive experimentation, examining its quality
both in terms of prediction error and explainability.

1 INTRODUCTION

Many scientific fields use the language of Partial Differential Equations (PDEs; Evans, 2010) to
describe the physical laws governing observed natural phenomena with spatio-temporal dynamics.
Typically, a PDE system is derived from first principles and a mechanistic understanding of the
problem after experimentation and data collection by domain experts of the field. Solving a PDE
model could provide users with crucial information on how a signal evolves over time and space,
and could be used for both prediction and control tasks.

While solving PDEs holds great value, it might still be a difficult task in many cases. For many
complex real-world phenomena, we might only know some of the dynamics of the system. For
example, an expert might tell us that a heat equation PDE has a specific functional form but we do
not know the values of the diffusion and drift coefficient functions. In this paper we focus mainly
on this case.

Figure 1: Mechanistic and data driven approaches
to PDE modeling.

There are different ways of solving PDEs when
data is available. In Figure 1 we illustrate the
spectrum of approaches to the problem of PDEs
modeling and their solutions. The horizon-
tal axis represents the amount of mechanistic
knowledge required by each approach, i.e., how
much prior knowledge we have on the source of
the data in terms of the PDE structure. The ap-
proaches hovering above the axis are those that
employ available data, while those below the
axis only use mechanistic knowledge. We de-
scribe the different approaches in detail in Sec-
tion 3.

In recent years, with the rise of Deep Learn-
ing (DL; LeCun et al., 2015), novel methods
for solving numerically-challenging PDEs were devised. In general, DL based approaches consume
the observed data and learn a black-box model of the given problem that can then be used to provide
predictions for the dynamics. While this set of solutions has been shown to perform successfully on

1



Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

many tasks, it still suffers from two crucial drawbacks: (1) It offers no explainability as to why the
predictions were made, and (2) it usually performs very poorly when extrapolating to unseen data.

In this paper, we offer a new hybrid modelling Kurz et al. (2022) approach that can benefit from
both worlds: it can use the vast amount of data collected on one hand, and utilize the partially
known PDEs describing the natural phenomena observed on the other hand. In addition, it can
learn several contexts, therefore, employing the generalization capabilities of DL models, enabling
a zero-shot learning Palatucci et al. (2009). Specifically, our model is given a general functional
form of the PDE (i.e., which derivatives are used and what the form of the coefficient functions is),
consumes the observed data, and outputs the unknown coefficient functions. Then, we can then use
off-the-shelf PDE solvers (e.g., PyPDE1) to solve and create predictions of the given task forward in
time for any horizon.

Another key feature of our approach is that it consumes the spatio-temporal input signals required
for training in an unsupervised manner, namely the coefficient functions that created the signals
in the train set are unknown. This is achieved by combining an autoencoder (AE; Kramer, 1991)
architecture with a loss defined using the functional form of the PDE. As a result of this feature,
large amounts of training data for our algorithm can be easily acquired. Moreover, our ability to
generalize to data corresponding to a PDE whose coefficients did not appear in the train set, enables
the use of synthetic data for training.

We summarize our contribution as follows:

1. Harnessing the information contained in large datasets belonging to a phenomenon which
is related to a PDE functional family in an unsupervised manner.

2. Proposing a DL encoding scheme for the context conveyed in such datasets, enabling gen-
eralization for prediction of unseen samples based on minimal input.

3. Extensive experimentation with the proposed scheme.

2 METHOD

We handle a dataset of spatio-temporal signals, generated by an underlying PDE. The coefficient
functions determining the exact PDE are unknown and may be different for each collection of data.
Our goal is to estimate these coefficient functions and provide reliable predictions of the future time
steps of the observed phenomenon. The proposed method comprises three subsequent parts: (1)
Creating a compact representation of the given signal, (2) estimating the PDE coefficients, and (3)
solving the PDE using the acquired knowledge. Key features of the proposed method are lack of
supervision, since the coefficient values of the PDEs represented in the train set are unknown even
at training time, and explainability, thanks to the explicit prediction of the coefficient functions.

2.1 PROBLEM FORMULATION

Let u(x, t) denote a signal with support x ∈ [0, L] and t ∈ [0, T ]. We refer to this as the complete
signal. We define uc(x, t) to be a partial input signal, a patch, with support x ∈ [0, L], t ∈ [0, t0],
0 < t0 < T . The superscript c stands for context.

We assume the signal u(x, t) is the solution of a k-order PDE of the general form

∂u

∂t
=

k∑
l=1

pl(x, t, u)
∂ul

∂xl
+ p0(x, t, u), (1)

where p = (p0, . . . , pk) is the vector of coefficient functions. We refer to a family of PDEs charac-
terized by a vector p as an operator F (p, u), where solving F (p, u) = 0 yields solutions of the PDE
Wang & Yu (2021).

Our solution is a concatenation of two neural networks, which we call PDExplain. Its input is a
patch uc(x, t) that solves a PDE of a known operator F with an unknown coefficient vector p, and
its output is an estimated coefficient vector vector p̂. We feed this vector into an off-the-shelf PDE
solver together with the operator F (p, u) to obtain the predicted signal û(x, t), 0 ≤ t ≤ T .

1https://pypde.readthedocs.io/en/latest/

2

https://pypde.readthedocs.io/en/latest/


Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

2.2 PDEXPLAIN INFERENCE AND TRAINING

Our inference process is presented in Fig. 2b. Its input is a patch uc(x, t) and an operator F . The
patch is fed into PDExplain, generating the estimated coefficients p̂.The PDE solver then uses this
estimate to predict the complete signal, û(x, t).

The patch uc(x, t) serves as an initial condition for the prediction and represents the dynamics of
the signal for estimating the PDE coefficients. We refer to it as “context”. The ratio of the context is
denoted by ρ, such that t0 = ρT , and is a hyper-parameter of our algorithm, discussed in Section C.2.

The training process is presented in Fig. 2a. Its input is a dataset U that consists of N complete
signals {ui(x, t)}Ni=1 which are solutions of N PDEs that share an operator F but have unique
coefficient vectors {pi}Ni=1. The support of the signals is x ∈ [0, L] and t ∈ [0, T ].

The PDExplain scheme is composed of two components: (1) an encoder and (2) a coefficient es-
timator. The encoder’s goal is to capture the dynamics driving the signal ui, creating a compact
representation for the coefficient estimator. The encoder loss is the standard autoencoder reconstruc-
tion loss Hinton & Salakhutdinov (2006), namely the objective is min

θ,ϕ
LAE = min

θ,ϕ

∑N
i=1 loss(uc

i −

fθ(gϕ(u
c
i ))), where fθ is the decoder, gϕ is the encoder and loss(·, ·) is a standard loss function.

The second component is the coefficient estimator. Together with the operator F , its output forms
the functional objective: min

ω
Lcoef = min

ω

∑N
i=1 ∥F (p̂ω, u

c
i )∥

2, where ω represents the parameters
of the coefficient estimator network, and p̂ is the estimator of p, acquired by applying the network
hω to the output of the encoder.

The two components are trained simultaneously, and the total loss is a weighted sum of the autoen-
coder and coefficients losses: L = α · LAE + (1− α) · Lcoef, where α ∈ (0, 1) is a hyper-parameter.
The complete algorithm is presented in Algorithm 2, in the appendix.

(a) Training process. (b) Inference process. Dashed line is initial
condition, taken from uc(x, t).

3 EXPERIMENTS

In this section we demonstrate the capabilities of PDExplain and compare it to several baselines on
the Burgers’ general equation of the form:

∂u

∂t
= a

∂2u

∂x2
+ b(u)

∂u

∂x
. (2)

This PDE describes a quasi-linear Burgers’ equation with b(x, t, u) = −u, as in Bateman (1915).
The dataset we use includes 10, 000 samples of size 100×40[tpoints×xpoints], where each sample
is a signal generated from a PDE with different coefficients unknown to the algorithms a priori. We
stress the fact that the test set contains signals generated by PDEs with coefficient vectors that do
not appear in the training data, resulting in a zero-shot prediction problem.

3



Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

0 20
x

u/
x 

co
ef

fic
ie

nt

t = 30

0 20
x

t = 60

0 20
x

t = 90
GT
PDExplain

(a) Estimation of the coefficient function
b(x, t, u). PDExplain manages to accurately
estimate the spatio-temporal dynamics of
the coefficient, based on a context ratio of
ρ = 0.2.

20 40 60 80
t

10 5

10 3

10 1

M
SE

PDExplain
No-PDE
PDE-RHS

(b) Prediction error vs. prediction horizon.
No-PDE (blue) applies a purely data-driven
prediction. PDE-RHS (magenta) predicts
the right-hand-side of an equation which is
then solved. Dashed vertical line is context
ratio.

Figure 4: Burgers’ PDE experiment as presented in Eq. 2 with ρ = 0.20

x
0

50

100
t

GT

x

PDExplain 
(MSE=0.0004)

x

No-PDE 
(MSE=0.2935)

x

PDE-RHS 
(MSE=0.0047)

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Figure 3: A solution of the Burgers’ equation (pre-
diction MSE appears in the title). The left panel
displays the ground truth (GT), next to it the error-
minimizing PDExplain prediction. No-PDE suf-
fers from the largest error, which can be explained
by its total lack of mechanistic knowledge. PDE-
RHS achieves a relatively low MSE, but the qual-
ity of its prediction decreases over time.

In our experiments we implement three algo-
rithms, in addition to our proposed PDExplain,
corresponding to the different approaches pre-
sented in Figure 1. For the sake of fair com-
parison, all of the data utilizing approaches in-
clude a trainable encoder, similar to the one in-
troduced in Section 2.2. Additional information
about the algorithms, their implementation and
dataset creation in the appendix.

Figure 4b demonstrates the clear advantage
of our approach, which becomes increasingly
larger as the prediction horizon increases (note
the logarithmic scale of the vertical axis, repre-
senting the MSE of prediction). Since PDEx-
plain harnesses both mechanistic knowledge
and training data, it is able to predict the signal
û(x, t) several timesteps ahead, while keeping
the error to a minimum. We demonstrate a sig-
nal u(x, t) from the test set and its prediction û(x, t) in Figure 3. As can be seen both visually and
from the value of the MSE (in each panel’s title), our approach yields a prediction that stays closest
to the ground truth (GT), even as time advances and the prediction horizon increases. In Figure 4a
we focus on the ability to accurately predict coefficient functions with spatio-temporal dynamics,
specifically in this case - the coefficient b(x, t, u) of Eq. 2. The different panels corresponds to
different points in time, showing that the coefficient estimator tracks the temporal evolution suc-
cessfully. In the appendix, we provide an additional experiment on a different family of PDEs that
demonstrated similar results. We also provide additional analysis regarding how train set size and
context ratio affect the results of the PDExplain algorithm.

4 CONCLUSION

In this work we introduce a new hybrid modelling approach, combining mechanistic knowledge with
data. The knowledge we assume is in the form of a PDE family, without specific parameter values.
The dataset we rely on is a collection of spatio-temporal signals belonging to the same PDE family,
with different parameters. Unlike other schemes, we do not require knowledge of the parameters
of the PDE generating our train data. We conduct extensive experiments, comparing our scheme
to other solutions and testing its performance in different regimes. It achieves good results in the
zero-shot learning problem, and is robust to different values of hyper-parameters.

4



Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

REFERENCES

Christian Aarset, Martin Holler, and Tram Thi Ngoc Nguyen. Learning-informed parameter identi-
fication in nonlinear time-dependent pdes. arXiv preprint arXiv:2202.10915, 2022.

Harry Bateman. Some recent researches on the motion of fluids. Monthly Weather Review, 43(4):
163–170, 1915.

Johannes Brandstetter, Daniel Worrall, and Max Welling. Message passing neural pde solvers. arXiv
preprint arXiv:2202.03376, 2022.

Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations from data
by sparse identification of nonlinear dynamical systems. Proceedings of the national academy of
sciences, 113(15):3932–3937, 2016.

Kathleen Champion, Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Data-driven discovery
of coordinates and governing equations. Proceedings of the National Academy of Sciences, 116
(45):22445–22451, 2019.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Guozhi Dong, Michael Hintermüller, and Kostas Papafitsoros. Optimization with learning-informed
differential equation constraints and its applications. ESAIM: Control, Optimisation and Calculus
of Variations, 28:3, 2022.

Mengge Du, Yuntian Chen, and Dongxiao Zhang. Discover: Deep identification of symbolic open-
form pdes via enhanced reinforcement-learning. arXiv preprint arXiv:2210.02181, 2022.

Lawrence C Evans. Partial differential equations, volume 19. American Mathematical Soc., 2010.

Hennes Hajduk, Dmitri Kuzmin, and Vadym Aizinger. Bathymetry Reconstruction Using Inverse
ShallowWater Models: Finite Element Discretization and Regularization. Springer, 2020.

Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential equations
using deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–8510,
2018.

Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural
networks. science, 313(5786):504–507, 2006.

Matthieu Kirchmeyer, Yuan Yin, Jérémie Donà, Nicolas Baskiotis, Alain Rakotomamonjy, and
Patrick Gallinari. Generalizing to new physical systems via context-informed dynamics model.
arXiv preprint arXiv:2202.01889, 2022.

Mark A Kramer. Nonlinear principal component analysis using autoassociative neural networks.
AIChE journal, 37(2):233–243, 1991.

Stefan Kurz, Herbert De Gersem, Armin Galetzka, Andreas Klaedtke, Melvin Liebsch, Dimitrios
Loukrezis, Stephan Russenschuck, and Manuel Schmidt. Hybrid modeling: towards the next level
of scientific computing in engineering. Journal of Mathematics in Industry, 12(1):1–12, 2022.

Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural networks for solving
ordinary and partial differential equations. IEEE transactions on neural networks, 9(5):987–1000,
1998.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 2015.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020.

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
differential equations. arXiv preprint arXiv:2111.03794, 2021.

5



Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

Ori Linial, Neta Ravid, Danny Eytan, and Uri Shalit. Generative ode modeling with known un-
knowns. In Proceedings of the Conference on Health, Inference, and Learning, pp. 79–94, 2021.

Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. Pde-net: Learning pdes from data. In
International Conference on Machine Learning, pp. 3208–3216. PMLR, 2018.

Zichao Long, Yiping Lu, and Bin Dong. Pde-net 2.0: Learning pdes from data with a numeric-
symbolic hybrid deep network. Journal of Computational Physics, 399:108925, 2019.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for iden-
tifying differential equations based on the universal approximation theorem of operators. arXiv
preprint arXiv:1910.03193, 2019.

Aurel Neic, Fernando O Campos, Anton J Prassl, Steven A Niederer, Martin J Bishop, Edward J
Vigmond, and Gernot Plank. Efficient computation of electrograms and ecgs in human whole
heart simulations using a reaction-eikonal model. Journal of computational physics, 346:191–
211, 2017.

Mark Palatucci, Dean Pomerleau, Geoffrey E Hinton, and Tom M Mitchell. Zero-shot learning with
semantic output codes. Advances in neural information processing systems, 22, 2009.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Samuel H Rudy, Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Data-driven discovery of
partial differential equations. Science advances, 3(4):e1602614, 2017.

Hayden Schaeffer. Learning partial differential equations via data discovery and sparse optimiza-
tion. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473
(2197):20160446, 2017.

John C Strikwerda. Finite difference schemes and partial differential equations. SIAM, 2004.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Dan MacKinlay, Francesco Alesiani, Dirk
Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine learning.
arXiv preprint arXiv:2210.07182, 2022.

Rui Wang and Rose Yu. Physics-guided deep learning for dynamical systems: A survey. arXiv
preprint arXiv:2107.01272, 2021.

Tsung-Yen Yang, Justinian P Rosca, Karthik R Narasimhan, and Peter Ramadge. Learning physics
constrained dynamics using autoencoders. In Advances in Neural Information Processing Sys-
tems, 2022.

Kirill Zubov, Zoe McCarthy, Yingbo Ma, Francesco Calisto, Valerio Pagliarino, Simone Azeglio,
Luca Bottero, Emmanuel Luján, Valentin Sulzer, Ashutosh Bharambe, et al. Neuralpde: Au-
tomating physics-informed neural networks (pinns) with error approximations. arXiv preprint
arXiv:2107.09443, 2021.

6



Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

A RELATED WORK

Creating a neural-network based model for approximating the solution of a PDE has been studied
in many related works over the years, and dates back more than a decade Lagaris et al. (1998). We
divide deep learning based existing work by their ability to incorporate mechanistic knowledge in
their models, and by the type of information that can be extracted from using them. An additional
distinction between different approaches is their ability to handle datasets originating from different
contexts. From a PDE perspective, a different context could refer to having data signals generated
with different coefficients functions (pl in Eq. equation 1). In many real-world applications, obtain-
ing observed datasets originating from a single context is highly infeasible. For example, in cardiac
electrophysiology Neic et al. (2017), patients differ in cardiac parameters like resistance and capac-
itance, thus representing different contexts. In fluid dynamics, the topography of the underwater
terrain (bathymetry) differs from one sample to another Hajduk et al. (2020). A benchmark and
dataset work (PDEBench) that provides a large amount of datasets governed by known PDEs has
been released recently Takamoto et al. (2022), but each of the datasets provided by it is generated
from a single constant function (i.e., all data samples have the same context).

The first line of work is purely data-driven based methods. These models come in handy especially
when we observe a spatio-temporal phenomenon, but either don’t have enough knowledge of the
underlying PDE dynamics that generated the observed signal, or the known equations are too com-
plicated to solve numerically (as explained thoroughly by Wang & Yu, 2021). Recent advances
demonstrate successful prediction results that are both fast to compute (compared to numerically
solving a PDE), and also shown to provide decent predictions even for PDEs with very high dimen-
sions Brandstetter et al. (2022); Li et al. (2020); Han et al. (2018); Lu et al. (2019). However, the
downside of this approach is not being able to infer the PDE coefficients, which may hold valuable
information and explanations as to why the model formed its predictions.

The second type of data-driven methods are approaches that can utilize PDE forms known before-
hand to some extent. Works that adopt this approach can usually utilize the given mechanistic
knowledge and provide reliable predictions, ability to generalize to unseen data, and even, in some
cases, reveal part of the underlying PDE coefficient functions. However, their main limitation is
that they assume the entire training dataset is generated by a single coefficient function and only
differ in the initial conditions (or possibly boundary conditions). PDE-NET Long et al. (2018), its
followup PDE-NET2 Long et al. (2019), DISCOVER Du et al. (2022), PINO Li et al. (2021) and
sparse-optimization methods Schaeffer (2017); Rudy et al. (2017) (expanding the idea originally
presented on ODEs in Brunton et al. (2016); Champion et al. (2019)), are not given the PDE sys-
tem, but instead aim to learn some representation of the underlying PDE as a linear combination of
base functions and derivatives of the PDE state. PINN Raissi et al. (2019) and NeuralPDE Zubov
et al. (2021) assume full knowledge of the underlying PDE including the its coefficients, and aim
to replace the numerical PDE solver by a fast and reliable model. They also provide a scheme for
finding the PDE parameters as scalars, but assume the entire dataset is generated by a single coef-
ficient value, while we assume each sample is generated with different coefficient values and could
be functions of time, space and state (as described in Eq. equation 1). Similarly, Learning-informed
PDEs Dong et al. (2022); Aarset et al. (2022) suggest a method that assumes full knowledge of
the PDE derivatives and their coefficient functions, and infers the free coefficient function (namely
p0(x, t, u) in Eq. equation 1).

The last line of work, and closer in spirit to ours, includes context-aware methods that assume some
mechanistic knowledge, with each sample in the train set generated by different PDE coefficients
(we also refer to this concept as having different context) and initial conditions. CoDA Kirchmeyer
et al. (2022) provides an ability to form predictions of signals with unseen contexts, but does not
directly identify the PDE parameters. GOKU Linial et al. (2021) and ALPS Yang et al. (2022)
provide context-aware inference of signals with ODE dynamics, when the observed signals are not
the ODE variables directly.

B IMPLEMENTATION

We provide further information regarding the experiments described in Section 3. We ran all of
the experiments on a single standard GPU, and all training algorithms took < 10 minutes to train.

7



Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

Table 1: Characteristics of the implemented algorithms.

Approach Mechanistic Training Explainability
knowledge data

No PDE - + -
PDE RHS - + -
DI + - +
PDExplain + + +

Algorithm 1 PDExplain inference scheme

Input: patch uc(x, t), operator F , trained networks: decoder gϕ, coefficient estimator hω

p̂← hω(gϕ(u
c))

û← PDE solve(F, p̂, uc(x, t = t0))
return û, p̂

Full code implementation for creating the datasets and implementing PDExplain and its baselines is
available on github.com/orilinial/PDExplain.

B.1 DATASET CREATION

To create the dataset, we generated signals using the PyPDE package. Each signal was generated
with different initial conditions sampled from a Gaussian process posterior, and a-priori known
Dirichlet boundary conditions u(x = 0) = u(x = L) = 0. As discussed in Section A, we made an
important change compared to other known methods: the PDE coefficients are uniformly sampled
for each signal, instead of being constant, making the task much harder. In the constant coefficients
experiment we generated the parameters from a ∼ U [0, 2], b, c ∼ U [−1, 1]. For the Burgers’
equation dataset we used a ∼ U [1, 2], and set b(u) = −u, both unknown to the algorithm a priori.

B.2 ALGORITHMIC DETAILS

We present the inference scheme for PDExplain in Algorithm 1, and the full training algorithm in
Algorithm 2.

In addition, we summarize the different baseline approaches in Table 1, adding the feature of ex-
plainability, available in schemes that explicitly estimate PDE coefficients. The algorithms are:

• “No PDE”: Direct prediction of the signal û(x, t), given the partial signal (patch) uc(x, t)
and an encoding of it, learned from training data. No use of mechanistic knowledge.

• “DI”: Direct identification of the PDE coefficients from the partial signal uc(x, t) using a
maximum likelihood approach, followed by solving the resulting PDE to predict the signal.
Assumes PDE family is known, parameters unknown. No use of training data.

• “PDE-RHS”: Prediction of the underlying PDE’s right-hand-side based on the partial signal
(patch) uc(x, t) and an encoding of it, followed by solving the resulting PDE to predict the
signal. This approach that combines training data with minimal mechanistic knowledge,
similar to that suggested by Chen et al. (2018).

B.3 IMPLEMENTATION DETAILS

All algorithms described in this paper except for DI (i.e., PDExplain, No-PDE and PDE-RHS) share
the same context-extraction architecture. The architecture consists of an encoder-decoder network,
both implemented as MLPs with 6 layers and 256 neurons in each layer. We experimented with
removing the decoder and training the networks without the auto-encoder loss, but results proved
to be poor. We found that concatenating the latent vector in the output of the encoder to the initial
conditions of the signal u(t = 0) greatly improved results and convergence time, since it encourages
the encoder to focus on the dynamics of the observed signal, rather than the initial conditions of it.

8

github.com/orilinial/PDExplain


Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

Algorithm 2 Algorithm for training PDExplain

Input: dataset U , operator F , context ratio ρ, loss weight α, number of epochs Ne

Init: random weights in encoder gϕ, decoder fθ, coefficient estimator hω

for epoch in Ne do
L ← 0
U c
N ← N random patches, one from each ui ∈ U

for uc
i in U c

N do
p̂i ← hω(gϕ(u

c
i ))

L ← L+ α · (uc
i − fθ(gϕ(u

c
i )))

2 + (1− α) · ∥F (p̂i, u
c
i )∥

2

end for
ϕ, θ, ω ← argminL

end for

The second part of each algorithm uses the latent vector as an input to a Context-To-Dynamics
network.

In PDExplain we implemented this network as an MLP with 5 hidden layers, each with 1024 neu-
rons. The output of the network is then the task-specific parameters with the correct shape. For the
Burgers’ equation for example, the output of the network is the parameter a, and a function b(u)
with the same shape as u.

In the No-PDE algorithm, the Context-To-Dynamics network consumes the current PDE state and
the latent vector, and outputs the PDE state in the next time step. The optimization function for this
algorithm therefore tries to minimize the prediction error of ut+1 in addition to the autoencoder loss.

The PDE-RHS algorithm is similar to the PDExplain algorithm as it tries to learn a derivative and
not the predicted state. The Context-To-Dynamics network in this case consumes the latent vector
and the current state, and outputs the right-hand-side of the PDE equation.

Both PDE-RHS and No-PDE baselines have the same architecture of the Context-To-Dynamics net
as PDExplain, and only differ in the shape of the output. Sharing the same architecture allow us
to carefully compare these methods and answer the question of how mechanistic knowledge can be
used.

B.4 NUMERICAL SCHEME

The partial derivatives in our algorithms are estimated using standard numerical schemes for each
point in the patch. We choose discretization parameters ∆x for the spatial axis and ∆t for the
temporal axis where we solve the PDE numerically on the grid points {(i∆x, j∆t)}Nx,Nt

i=0,j=0 with
L = Nx∆x and T = Nt∆t. Let us denote the numerical solution with ûi,j . We use the forward-
time central-space scheme, so a second order scheme from equation 1 would be

ûi,j+1 − ûi,j

∆t
=p2(i, j, u(i, j))

ûi+1,j − 2ûi,j + ûi−1,j

∆x2

+ p1(i, j, u(i, j))
ûi+1,j − ûi−1,j

2∆x
+ p0(i, j, u(i, j))

(3)

For ease of exposition we omit some details and refer the reader to Strikwerda (2004) for a complete
explanation.

C EXPERIMENTS

In this section we provide additional experiments demonstrating PDExplain capabilities on another
family of PDEs:

∂u

∂t
= a

∂2u

∂x2
+ b

∂u

∂x
+ c, (4)

9



Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

which is a second Order PDE with constant coefficients (i.e., p = (a, b, c) are constants).

We start by analyzing the two parameters that characterize the PDExplain algorithm: train set size
and context ratio, and continue by demonstrating the capabilities of PDExplain on another family of
PDEs described in Eq. 4. Table 2 summarize the signal prediction and parameter estimation results
for both Burgers’ PDE, and the constant coefficients PDE.

C.1 TRAIN SET SIZE

The train set size corresponds to N , the number of samples in dataset U of Algorithm 1. Figure 5a
presents the decrease in the prediction and parameters error as we increase the train set size. This
attests to the generalization achieved by the PDExplain architecture: as the train set grows and
includes more samples with different values of coefficients, the ability to accurately estimate a new
sample’s parameters and predict its rollout improves. In this set of experiments, 3, 000 samples are
generally enough to achieve a minimal error rate.

C.2 CONTEXT RATIO

Another hyper-parameter of our system is the context ratio. Figure 5b presents the results of an
experiment in which we vary its value as defined in Section 2.2. Simply put, as the context size
increases, PDExplain encodes more information regarding the input signal’s dynamics, thus the
improvement in signal and parameter value prediction. The error decreases rather quickly, and a
context ratio of 0.15− 0.2 suffices for reaching a very low error, as is evident from the plots.

1000 3000 5000 7000
Train set size

0.000

0.003

0.006

0.009

M
SE

(i)

1000 3000 5000 7000 9000
Train set size

0.00

0.05

0.10

0.15

0.20

M
SE

(ii)
(a) Constant coefficients PDE: (i) Prediction error
of signal vs. train set size and (ii) estimation error
of parameter values vs. train set size. The error is
calculated on a test set of 1000 samples.

0.1 0.2 0.3 0.4 0.5
Ratio of context 

0.00

0.01

0.02

0.03

M
SE

(i)

0.1 0.2 0.3 0.4 0.5
Ratio of context 

0.0

0.1

0.2

0.3

M
SE

(ii)
(b) Constant coefficients PDE: (i) Prediction error
vs. ρ and (ii) estimation error of parameter values
error vs. ρ. The error is calculated on a test set of
1000 samples.

10



Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

C.3 SIGNAL PREDICTION AND PARAMETER ESTIMATION

Figure 6b displays a comparison between the different approaches to our problem. As before, the
vertical axis of the plot is logarithmic, and the advantage of PDExplain over other approaches in-
creases with the prediction horizon. In Figure 6a, we plot the estimated value of parameter a of
Eq. 4, against its true value. The plot and the high value of R2 demonstrate the low variance of our
prediction, with a strong concentration of values along the y = x line.

0.0 0.5 1.0 1.5 2.0
Ground truth

0.0

0.5

1.0

1.5

2.0

Es
tim

at
io

n

(a) Constant coefficients PDE: estimated value of
the ∂2u/∂2x coefficient vs. ground truth, for en-
tire test set (R2 = 0.93).

20 40 60 80
t

10 5

10 3

10 1

101

103

M
SE

PDE
No PDE
DI
PDE-RHS

(b) Prediction error vs. prediction horizon, differ-
ent approaches. PDExplain (red) is our approach.
No PDE (blue) learns an encoding for training
data and applies a purely data-driven prediction.
DI (green) is direct identification of PDE coef-
ficients from datapoint, followed by solving the
PDE (no training). PDE-RHS (magenta) learns
an encoding for the training data and predicts
the right-hand-side of an equation which is then
solved. Dashed vertical line is the context ratio.

Figure 6: PDE with constant coefficients. ρ = 0.21.

Table 2: Results summary for both the coefficient identification and signals prediction task, on two
experiments: constant coefficients equation and Burgers’ equation. In both experiments we used
ρ = 0.2, and report the MSE error. DI baseline in the constant coefficient experiment completely
failed in predicting one of the test signals, so that measurement was omitted from the calculation to
have a fair comparison.

METHOD
PARAMETERS

MSE
PREDICTION

MSE

CONSTANT PDE COEFFICIENTS

PDEXPLAIN 0.0116± 0.014 0.0014± 0.003
DI 0.0097± 0.022 0.0067∗ ± 0.161
NO-PDE N/A 0.0720± 0.051
PDE-RHS N/A 0.0174± 0.326

BURGERS’ PDE

PDEXPLAIN 0.0147± 0.0188 0.0001± 0.0004
DI N/A N/A
NO-PDE N/A 0.1303± 0.0839
PDE-RHS N/A 0.0004± 0.0010

11


	Introduction
	Method
	Problem Formulation
	PDExplain Inference and Training

	Experiments
	Conclusion
	Related Work
	Implementation
	Dataset creation
	Algorithmic details
	Implementation details
	Numerical scheme

	Experiments
	Train set size
	Context Ratio
	Signal prediction and parameter estimation


