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Abstract. Accurate alignment of intraoral scans (IOS) with cone-beam
computed tomography (CBCT) is essential for integrated dental diag-
nostics and surgical planning. A semi-supervised registration framework
was developed, combining PointNetLK for feature-based initialization
with iterative closest point (ICP) refinement. Pseudo-labels were incor-
porated to enhance supervision while mitigating the limited availability
of annotated datasets. Chamfer distance and clinical registration met-
rics were used to evaluate alignment quality. Across the test cohort, the
approach yielded a mean translation error of 41.67 mm and a mean ro-
tation error of 33.96°, highlighting the challenge of partial-arch fusion.
Despite substantial errors relative to clinical requirements, the framework
demonstrates feasibility of semi-supervised deep learning for IOS–CBCT
registration and establishes a foundation for future refinement toward
clinically viable integration.

Keywords: Point cloud registration · CBCT · IOS · PointNetLK · Den-
tal Imaging · Semi-supervision.

1 Introduction

1.1 Background and Challenge Overview

Rigid registration of 3D dental models obtained from CBCT scans and intraoral
optical scans (IOS—STL format) is foundational for precise diagnosis, treatment
planning, and surgical simulation in maxillofacial radiology. However, differences
in modality (volumetric vs. surface), anatomical asymmetry, and noise make
alignment challenging. The MICCAI STSR 2025 challenge highlights these dif-
ficulties, bringing together state-of-the-art medical imaging and machine learn-
ing techniques targeting accurate multi-modal dental registrations. CBCT beam
hardening and IOS occlusal shadowing degrade correspondence search. Recent
advances in oriented bounding-box normalization and curvature-aware features
partially mitigate such variability [1, 15]. Semi-supervised and self-supervised
strategies have shown promise in stabilizing geometric representations under
limited annotation [5, 7, 13, 14].
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1.2 Related Work
Prior research has explored classical methods like Iterative Closest Point (ICP)
and multi-point registration, which struggle with large initial misalignments
in CBCT-IOS scenarios. Deep learning approaches, particularly PointNet and
PointNet++, have demonstrated superior feature extraction for irregular point
clouds. The Lucas-Kanade algorithm, adapted for 3D point cloud registration
via PointNetLK, enables global feature-based transformations with robust per-
formance in noisy conditions. Semi-supervised approaches are emerging for bet-
ter clinical generalizability [12–14]. For segmentation conditioning in CBCT–
IOS registration, ArchSeg achieved Dice scores of 0.936± 0.008 (mandible) and
0.948 ± 0.007 (maxilla) using Point Transformer V2 with curvature cues and
graph-cut refinements [1]. Multi-phase semi-supervised training with entropy-
confidence-aware pseudo-label refinement has improved generalization [13, 14]. In
CBCT, uncertainty-regularized symmetric consistency learning (USCT) outper-
forms semi-supervised baselines [5], while hierarchical self-supervised contrastive
pretraining (STSNet) enhances IOS mesh processing [7]. Teacher–student SAM
adaptations leverage LoRA fine-tuning for improved performance [4].

1.3 Motivation and Contributions
This work presents a unified PointNetLK pipeline optimized for noisy dental
CBCT and IOS data. Our contributions include: (i) end-to-end alignment lever-
aging both unlabeled and labeled data for feature generalization; (ii) ICP post-
processing for enhanced registration refinement; and (iii) automated point cloud
normalization and anatomical variability management. Methodological Ratio-
nale. Segmentation reliability directly conditions rigid alignment stability under
metal artifacts, partial arches, and age-related morphology [1, 5, 13]. Point-
NetLK’s permutation-invariant global features enable robust initialization un-
der occlusion and partial overlap conditions typical of IOS–CBCT pairs, while
ICP refinement subsequently optimizes local geometric consistency. Our semi-
supervised pipeline comprises three components:

– Semi-supervised IOS–CBCT registration: A unified framework com-
bines PointNetLK-based initialization with ICP refinement, enabling align-
ment under limited annotated data conditions.

– Pseudo-label enhanced supervision: Pseudo-labels generated from a
teacher network are integrated to expand training signals and mitigate an-
notation scarcity.

– Clinically relevant evaluation and baseline: Registration accuracy is
quantified using Chamfer distance, translation and rotation errors to estab-
lish a reproducible benchmark; experimental results highlight partial-arch
fusion challenges and provide a foundation for future clinical integration.

2 Resources
2.1 Dataset
The dataset originates from the MICCAI STSR 2025 Challenge Task 2, providing
paired CBCT and intraoral scan (IOS) data for cross-modal dental registration,
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emphasizing alignment of IOS-derived crown structures with CBCT-derived root
anatomies. The dataset comprises three subsets:

– Training Set (Labeled): 30 CBCT–IOS pairs with ground truth rigid trans-
formations.

– Training Set (Unlabeled): 300 CBCT–IOS pairs without annotation for semi-
supervised strategies.

– Validation Set: 50 CBCT–IOS pairs with hidden ground truth for evaluation.

The limited availability of richly annotated 3D dental datasets mirrors broader
trends in dental imaging, where most publicly available resources—particularly
in pediatric populations—focus on 2D panoramic radiographs rather than vol-
umetric CBCT or cross-modal data [16]. This disparity further motivates semi-
supervised learning strategies for 3D dental applications.
2.2 Models
The proposed model, illustrated in Figure 1, implements a PointNetLK-based
registration pipeline tailored for CBCT–IOS point cloud alignment.
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Fig. 1. PointNetLK registration pipeline: PointNet extracts features, the feature differ-
ence feeds the Update Network to predict 6-DOF ∆T , applied iteratively to the source
to produce the final 4×4 transform.

The green blocks correspond to dual PointNet encoders, which independently
process the source (IOS crown) and target (CBCT root) point clouds. Each en-
coder is composed of three successive pointwise convolutional layers: the first
maps 3D coordinates to 64-dimensional features, the second expands to 128
dimensions, and the final layer produces a 1024-dimensional global descriptor.
Batch normalization and ReLU activations follow each convolution, while global
max pooling ensures permutation-invariant feature vectors, summarizing the
overall geometric structure of the point clouds. The magenta ball represents the
feature difference ft − fs between the target and the transformed source, which
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serves as the input to the Update Network (orange box). This multi-layer percep-
tron predicts incremental 6-DOF transformations, applied to the source in the
blue Apply Transform box. The red arrow looping back from Apply Transform to
the feature difference visually indicates the iterative Lucas–Kanade refinement,
repeated multiple times to improve alignment. Finally, the purple box outputs
the cumulative 4×4 transformation matrix, which maps the IOS crown onto the
CBCT root. This modular design allows for task-specific heads or post-hoc re-
finement steps while maintaining efficiency and stability across variable point
cloud sizes.
3 Methodology
The overall data flow, preprocessing strategy, training protocol, and evaluation
metrics are summarized in Fig. 2.

Fig. 2. Overview of the methodological setup, including dataset splits, preprocessing
of CBCT and IOS data, two-stage training protocol, and evaluation metrics.

Our approach adapts the established PointNetLK framework [2] for dental-
specific CBCT-IOS registration through three key contributions: (i) a two-stage
semi-supervised training protocol leveraging pseudo-labels, (ii) dental-specific
preprocessing tailored for multimodal point clouds, and (iii) hybrid neural-classical
refinement combining learned features with ICP optimization [3].
Two-Stage Semi-Supervised Training Protocol
Stage 1 employs supervised learning on labeled pairs to establish baseline regis-
tration capability. Stage 2 generates pseudo-labels on unlabeled data using the
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trained model, applies confidence-based filtering, and performs semi-supervised
fine-tuning on the combined dataset. This approach addresses the scarcity of
annotated CBCT-IOS pairs in clinical settings.
Dental-Specific Preprocessing
Point cloud preprocessing incorporates domain knowledge for dental registration.
CBCT volumes undergo threshold-based segmentation at 800 HU to isolate den-
tal structures, followed by coordinate normalization to [-1,1] range. STL meshes
are processed through vertex extraction and subsampling. Ground truth trans-
formations are consistently mapped to normalized coordinate space to ensure
training stability.
Hybrid Neural-Classical Refinement
The framework combines the global feature learning of PointNetLK [2] with
classical ICP refinement [3]. PointNet encoders [9] extract permutation-invariant
features, PointNetLK performs iterative pose estimation through differentiable
Lucas-Kanade optimization [8], and multi-stage ICP provides final geometric
consistency. This hybrid approach balances robustness to initialization with pre-
cise local alignment.

4 Experimental Setup

All experiments were conducted on the MICCAI STSR 2025 Challenge Task
2 dataset using the three-subset division for supervised training, pseudo-label
generation, and validation.

4.1 Data Preprocessing

CBCT volumes were thresholded at 800 HU to isolate dental structures and
converted to world coordinates using the NIfTI affine matrix. STL meshes were
processed by extracting vertices directly from triangle meshes. Point clouds were
subsampled to 50,000 points maximum for memory efficiency. During training,
1024 points were randomly sampled from both CBCT-derived point clouds and
STL meshes. Normalization was applied by computing global center and scale
from combined CBCT and STL point clouds, mapping coordinates to approxi-
mately [-1, 1] range. Ground truth transformation matrices were transformed to
normalized coordinate space to ensure consistency between predicted and target
transformations. Preprocessing was performed inline during training to maintain
coordinate system integrity.

Preprocessing Limitations. The fixed 800 HU threshold may not general-
ize across CBCT scanners with varying grayscale characteristics or patients with
metallic restorations. Future work should validate robustness across multi-vendor
datasets and explore adaptive thresholding or learned segmentation networks to
improve scanner independence.

4.2 Training Setup

Stage 1: Supervised Training- The PointNet-based feature extraction com-
bined with PointNetLK iterative alignment was trained using a combined loss
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function incorporating both Chamfer distance and direct transformation super-
vision:

Ltotal = Lchamfer + Ltransform

where Ltransform includes both translation and rotation errors between predicted
and ground truth transformation matrices in normalized coordinate space.
Pseudo-Label Generation- The trained Stage 1 model generated predictions
for unlabeled cases. ICP post-processing refined initial neural network predic-
tions. High-confidence pseudo-labels were selected by filtering predictions with
Chamfer distance below the median of Stage 1 validation performance and ex-
cluding cases with extreme transformation magnitudes indicative of failed align-
ment. This filtering retained approximately 60% of unlabeled cases for Stage 2
training.

Stage 2: Semi-Supervised TrainingThe model was fine-tuned using the
combined dataset of original labeled cases plus selected high-confidence pseudo-
labeled cases from the unlabeled set.
4.3 Training Protocols

Table 1. Training protocols.

Batch size 4-8
Total epochs 100 (Stage 1, early stopping), 50 (Stage 2 )
Optimizer Adam
Initial learning rate (lr) 5× 10−4

Lr decay schedule ReduceLROnPlateau (patience=10, factor=0.5)
Training time ∼4.2 hours (Stage 1), ∼ 12 hours
Loss function Combined Chamfer + Transformation Loss
Number of model parameters 0.81M
Number of flops 2.37G

4.4 Evaluation Metrics
Performance assessment employed multiple metrics to comprehensively evaluate
registration quality. Translation error measures the Euclidean distance between
predicted and ground truth translation vectors in millimeters, while rotation
error quantifies the angular difference between predicted and ground truth rota-
tion matrices in degrees. Chamfer distance evaluates symmetric point-to-point
distances between aligned point clouds, and Surface Dice Coefficient assesses
overlap for registration quality. Additional point cloud similarity metrics includ-
ing RMSE, NCC, and NMI provide supplementary performance indicators.
4.5 Post-Processing Pipeline
The post-processing pipeline consists of four sequential steps to refine neural net-
work predictions. Initially, the neural network generates a 4×4 transformation
matrix in normalized coordinate space. These predictions are then transformed
back to original coordinate space through coordinate denormalization. Multi-
stage ICP refinement follows, incorporating correspondence finding with statis-
tical outlier rejection (distance-based trimming to suppress artifact-induced false
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correspondences), SVD-based optimal rotation estimation, and iterative refine-
ment with convergence criteria. Finally, the refined transformation is applied to
original point clouds to achieve final alignment.

5 Results and discussion
5.1 Quantitative Results and Ablation Study
Table 2 presents registration performance and component contributions on the
MICCAI STSR 2025 validation set.

Table 2. Registration performance and ablation study on MICCAI STSR 2025 vali-
dation set.

Method Configuration Translation (mm) Rotation (°) Chamfer DSC
Stage 1 (Supervised only) 47.23 39.84 2.05 0.798
Stage 2 (Semi-supervised) 43.91 36.72 1.92 0.824
Full Pipeline (Stage 2 + ICP) 41.67 33.96 1.83 0.846

The ablation study quantifies each component’s contribution: semi-supervised
training improved translation accuracy by 3.32 mm (47.23→43.91 mm) and ro-
tation by 3.12° (39.84°→36.72°), while ICP refinement provided further gains of
2.24 mm and 2.76°, demonstrating the value of the hybrid approach.
5.2 Training Analysis
Figure 3 shows error curves for both stages. Stage 1 converged after 50 epochs,
while Stage 2 demonstrated further improvement through pseudo-label utiliza-
tion.

Fig. 3. Stage 1 training (red, solid) and validation (red, dotted) curves, and Stage 2
training (blue, solid) and validation (blue, dotted) curves.

5.3 Qualitative Results

Figure 4 shows a representative registration result demonstrating successful
alignment between IOS crown surfaces.The semi-supervised training effectively
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utilizes unlabeled data, addressing limited annotated CBCT-IOS pairs in clinical
practice.

Fig. 4. Registration result: (left) initial misalignment, (right) aligned output.

However, the reported translation (41.67 mm) and rotation (33.96°) errors
substantially exceed clinical tolerances for surgical planning. Analysis identifies
three primary failure modes: (i) partial-arch cases with limited overlapping ge-
ometry lack sufficient alignment constraints and exhibit disproportionately high
errors; (ii) CBCT metal artifacts introduce non-anatomical points that corrupt
PointNet features and bias ICP correspondence; and (iii) large initial misalign-
ments prevent convergence within the fixed iteration budget. Future refinement
will prioritize scale-consistent normalization, keypoint-based coarse alignment
for improved initialization, and artifact-aware feature weighting to suppress cor-
rupted descriptors.

6 Conclusion and Future Work

This study demonstrates a semi-supervised PointNetLK framework for CBCT-
IOS dental registration, combining pseudo-label-enhanced training with hybrid
neural-classical refinement. The two-stage protocol effectively leverages unla-
beled data, achieving mean translation errors of 41.67 mm and rotation errors of
33.96°. While these errors exceed clinical thresholds, the ablation study validates
each component’s contribution, establishing feasibility for semi-supervised deep
learning in cross-modal dental registration.

Translation and rotation errors remain above clinical requirements primarily
due to partial-arch coverage limitations and initialization sensitivity. The fixed
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800 HU threshold constrains scanner generalization. Future work will explore
uncertainty quantification for pseudo-label selection, transformer-based archi-
tectures for long-range context modeling [11], multi-scale feature fusion [10],
and integration with foundation models [6]. Validation on larger multi-center
datasets with diverse scanner protocols will be essential for clinical deployment.
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