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ABSTRACT

Graph neural networks (GNNs), as the de-facto model class for representation
learning on graphs, are built upon the multi-layer perceptrons (MLP) architecture
with additional message passing layers to allow features to flow across nodes.
While conventional wisdom commonly attributes the success of GNNs to their
advanced expressivity, we conjecture that this is not the main cause of GNNs’
superiority in node-level prediction tasks. This paper pinpoints the major source of
GNNs’ performance gain to their intrinsic generalization capability, by introducing
an intermediate model class dubbed as P(ropagational)MLP, which is identical to
standard MLP in training, but then adopts GNN’s architecture in testing. Intrigu-
ingly, we observe that PMLPs consistently perform on par with (or even exceed)
their GNN counterparts, while being much more efficient in training. Codes are
available at https://github.com/chr26195/PMLP.
This finding provides a new perspective for understanding the learning behavior
of GNNs, and can be used as an analytic tool for dissecting various GNN-related
research problems including expressivity, generalization, over-smoothing and het-
erophily. As an initial step to analyze PMLP, we show its essential difference to
MLP at infinite-width limit lies in the NTK feature map in the post-training stage.
Moreover, through extrapolation analysis (i.e., generalization under distribution
shifts), we find that though most GNNs and their PMLP counterparts cannot extrap-
olate non-linear functions for extreme out-of-distribution data, they have greater
potential to generalize to testing data near the training data support as natural
advantages of the GNN architecture used for inference.

1 INTRODUCTION

In the past decades, Neural Networks (NNs) have achieved great success in many areas. As a classic
NN architecture, Multi-Layer Perceptrons (MLPs) (Rumelhart et al., 1986) stack multiple Feed-
Forward (FF) layers with nonlinearity to universally approximate functions. Later, Graph Neural
Networks (GNNs) (Scarselli et al., 2008b; Bruna et al., 2014; Gilmer et al., 2017; Kipf & Welling,
2017; Veličković et al., 2017; Hamilton et al., 2017; Klicpera et al., 2019; Wu et al., 2019) build
themselves upon the MLP architecture, e.g., by inserting additional Message Passing (MP) operations
amid FF layers (Kipf & Welling, 2017) to accommodate the interdependence between instance pairs.

Two cornerstone concepts lying in the basis of deep learning research are model’s representation and
generalization power. While the former is concerned with what function class NNs can approximate
and to what extent they can minimize the empirical risk R̂(·), the latter instead focuses on the
inductive bias in the learning procedure, asking how well the learned function can generalize to
unseen in- and out-of-distribution samples, reflected by the generalization gap R(·)− R̂(·). There
exist a number of works trying to dissect GNNs’ representational power (e.g., Scarselli et al. (2008a);
Xu et al. (2018a); Maron et al. (2019); Oono & Suzuki (2019)), while their generalizability and
connections with MLP are far less well-understood.

∗Correspondence author is Junchi Yan who is also affiliated with Shanghai AI Laboratory. The work was
in part supported by National Key Research and Development Program of China (2020AAA0107600), NSFC
(62222607), and STCSM (22511105100).
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Figure 1: (a) Model illustration for MLP, GNN (in GCN-style) and PMLP. (b) Learning curves for
node classification on Cora that depicts a typical empirical phenomenon. (c) Intrinsic generalizability
of GNN reflected by close generalization performance of GNN and PMLP. (d) Extrapolation
illustration: both MLP and PMLP linearize outside the training data support (•: train sample, ◦: test
sample), while PMLP transits more smoothly and exhibits larger tolerance for OoD testing sample.

In this work, we bridge GNNs and MLPs by introducing an intermediate model class called Propaga-
tional MLPs (PMLPs). During training, PMLPs are exactly the same as a standard MLP (e.g., same
architecture, data for training, initialization, loss function, optimization algorithm). In the testing
phase, PMLPs additionally insert non-parametric MP layers amid FF layers, as shown in Fig. 1(a), to
align with various GNN architectures including (but not limited in) GCN (Kipf & Welling, 2017),
SGC (Wu et al., 2019) and APPNP (Klicpera et al., 2019).

(Empirical Results and Implications) According to experiments across sixteen node classification
benchmarks and additional discussions on different architectural choices (i.e., layer number, hidden
size), model instantiations (i.e., FF/MP layer implementation) and data characteristics (i.e., data split,
amount of structural information), we identify two-fold intriguing empirical phenomenons:
• Phenomenon 1: PMLP significantly outperforms MLP. Despite that PMLP shares the same
weights (i.e., trained model parameters) with a vanilla MLP, it tends to yield lower generalization
gap and thereby outperforms MLP by a large margin in testing, as illustrated in Fig. 1(c) and (b)
respectively. This observation suggests that the message passing / graph convolution modules in
GNNs can inherently improve model’s generalization capability for handling unseen samples.
The word “inherently” underlines that such particular generalization effects are implicit in the GNN
architectures (with message passing mechanism) used in inference, but isolated from factors in
the training process, such as: larger hypothesis space for representing a rich set of “graph-aware”
functions (Scarselli et al., 2008a; Xu et al., 2018a), more suitable inductive biases in model selection
that prioritize those functions capable of relational reasoning (Battaglia et al., 2018), etc.
• Phenomenon 2: PMLP performs on par with or even exceed GNNs. PMLP achieves close
testing performance to its GNN counterpart in inductive node classification tasks, and can even
outperform GNN by a large margin in some cases (i.e., removing self-loops and adding noisy edges).
Given that the only difference between GNN and PMLP is the model architecture used in training
and the representation power of PMLP is exactly the same with MLP before testing, this observation
suggests that the major (but not only) source of performance improvement of GNNs over MLP in
node classification stems from the aforementioned inherent generalization capability of GNNs.

(Practical Significance) We also highlight that PMLP, as a novel class of models (using MLP
architecture in training and GNN architecture in inference), can be used for broader analysis purpose
or applied as a simple, flexible and very efficient graph encoder model for scalable training.
⋄ PMLP as an analytic tool. PMLPs can be used for dissecting various GNN-related problems
such as over-smoothing and heterophily (see Sec. 3.3 for preliminary explorations), and in a broader
sense can potentially bridge theoretical research in two areas by enabling us to conveniently leverage
well-established theoretical frameworks for MLPs to enrich those for GNNs.
⋄ PMLP as efficient graph encoders. While being as effective as GNNs in many cases, PMLPs
are significantly more efficient in training (5 ∼ 17× faster on large datasets, and 65× faster for very
deep GNNs with more than 100 MP layers). In fact, PMLPs are equivalent to GNNs with all edges
dropped in training, which itself (Rong et al., 2020) is a widely recognized way (i.e., DropEdge) for
accelerating GNN training. Moreover, PMLPs are more robust against noisy edges, can be trivially
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combined with mini-batch training (and many other training tricks for general NNs), and help to
quickly evaluate GNN architectures to facilitate model development. Notably, PMLPs can further be
extended to transductive learning setting, and are compatible with many other GNN architectures
with residual connections (e.g., GCNII (Chen et al., 2020b)) or parametric message passing layers
(e.g., GAT (Veličković et al., 2017)) with slight modifications as will be specified.

(Theoretical Results and Contributions) As mentioned above, our empirical finding narrows down
many different factors between MLPs and GNNs to a key one that attributes to their performance
gap, i.e., improvement in generalizability due to the change in network architecture. Then, a natural
question arises: “Why this is the case and how does the GNN architecture (in testing) helps the model
to generalize?”. We take an initial step towards answering this question:
◦ Comparison of three classes of models in NTK regime. We compare MLP, PMLP, and GNN in
the Neural Tangent Kernel (NTK) regime (Jacot et al., 2018), where models are over-parameterized
and gradient descent finds the global optima. From this perspective, the distinction of PMLP and
MLP is rooted in the change of NTK feature map determined by model architecture while fixing
their minimum RKHS-norm solutions (Proposition 1). For deeper investigation, we first extend the
definition of Graph Neural Tangent Kernel (GNTK) (Du et al., 2019) to the node regression setting
(Lemma 2), and derive the explicit formula for computing the feature map for PMLP/GNN.
◦ OoD generalization / Extrapolation analysis for PMLPs and GNNs. We consider an important
(yet overlooked) aspect of generalization analysis, i.e., extrapolation for Out-of-Distribution (OoD)
testing samples (Xu et al., 2021) where testing node features become increasingly outside the training
data support. Particularly, we reveal that alike MLP, both PMLP and GNN eventually converge
to linear functions when testing samples are infinitely far away from the training data support
(Theorem 4). Nevertheless, their convergence rates are smaller than that of MLP by a factor related
to node degrees and features’ cosine similarity (Theorem 5), which indicates both PMLP and GNN
are more tolerant to OoD samples and thus have larger potential to generalize near the training data
support (which is often the real-world case). We provide an illustration in Fig. 1(d).

1.1 RELATED WORKS

Generalization, especially for feed-forward NNs (i.e., MLPs), has been extensively studied in the
general ML field (Arora et al., 2019a; Allen-Zhu et al., 2019; Cao & Gu, 2019). However for GNNs,
the large body of existing theoretical works focus on their representational power(e.g., Scarselli et al.
(2008a); Xu et al. (2018a); Maron et al. (2019); Oono & Suzuki (2019)), while their generalization
capability is less well-understood. For node-level prediction setting, those works in generalization
analysis (Scarselli et al., 2018; Verma & Zhang, 2019; Baranwal et al., 2021; Ma et al., 2021) mainly
aim to derive generalization bounds, but did not establish connections with MLPs since they assume
the same GNN architecture in training and testing. For theoretical analysis, the most relevant work
is (Xu et al., 2021) that studies the extrapolation behavior of MLP. Their results will later be used
in this work. The authors also shed lights on the extrapolation power of GNNs, but for graph-level
prediction with max/min propagation from the perspective of algorithmic alignment, which cannot
apply to GNNs with average/sum propagation in node-level prediction that are more commonly used.

Regarding the relation between MLPs and GNNs, there are some recent attempts to boost the
performance of MLP to approach that of GNN, by using label propagation (Huang et al., 2021),
contrastive learning (Hu et al., 2021), knowledge distillation (Zhang et al., 2022) or additional
regularization in training (Zhang et al., 2023). However, it is unclear whether these graph-enhanced
MLPs can explain the success of GNNs since it is still an open research question to understand these
training techniques themselves. There are also few works probing into similar model architectures
as PMLP, e.g. Klicpera et al. (2019), which can generally be seen as special cases of PMLP. A
concurrent work (Han et al., 2023) further finds that PMLP with an additional fine-tuning procedure
can be used to significantly accelerate GNN training. Moreover, a recent work (Baranwal et al.,
2023) also theoretically studies how message passing operations benefit multi-layer networks in node
classification tasks, which complements our results.

2 BACKGROUND AND MODEL FORMULATION

Assume a graph dataset G = (V, E) where the node set V contains n nodes instances {(xu, yu)}u∈V ,
where xu ∈ Rd denotes node features and yu is the label. Without loss of generality, yu can be a
categorical variable or a continuous one depending on specific prediction tasks (classification or
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regression). Instance relations are described by the edge set E and an associated adjacency matrix
A ∈ {0, 1}n×n. In general, the problem is to learn a predictor model with ŷ = f(x; θ,Gk

x) for
node-level prediction, where Gk

x denotes the k-hop ego-graph around x over G.

Graph Neural Networks and Multi-Layer Perceptrons. To probe into the connection between
mainstream GNNs and MLP from the architectural view, we re-write the GNN formulation in a
general form that explicitly disentangles each layer into two operations, namely a Message-Passing
(MP) operation and then a Feed-Forwarding (FF) operation:

(MP): h̃(l−1)
u =

∑
v∈Nu∪{u}

aG(u, v) · h(l−1)
u , (FF): h(l)

u = ψ(l)
(
h̃(l−1)
u

)
, (1)

where Nu is the set of neighbored nodes centered at u, aG(u, v) is the affinity function dependent on
graph structure G, ψ(l) denotes a feature transformation mapping at the l-th layer, and h

(0)
u = xu

is the initial node feature. For example, in Graph Convolution Network (GCN) (Kipf & Welling,
2017), aG(u, v) = Auv/

√
d̃ud̃v, where d̃u denotes the degree of node u (with self-loop), and

ψ(l) is a fully-connected layer with non-linearity. For an L-layer GNN, the prediction is given by
ŷu = ψ(L)(h

(L−1)
u ), where ψ(L) is often set as linear transformation for regression tasks or with

Softmax for classification tasks. Note that GNN models in forms of Eq. 1 degrade to an MLP with a
series of FF layers after removing all the MP operations:

ŷu = ψ(L)(· · · (ψ(1)(xu)) = ψ(xu). (2)

Typical Types of GNN Architectures. Besides GCN, many other mainstream GNN models can be
written as the architectural form defined by Eq. 1 whose layer-wise updating rule involves MP and FF
operations, e.g., GAT (Veličković et al., 2017) and GraphSAINT (Zeng et al., 2019). Some recently
proposed node-level Transformer models such as NodeFormer (Wu et al., 2022) and DIFFormer (Wu
et al., 2023) also fall into this category. Furthermore, there are also other types of GNN architecture
represented by SGC (Wu et al., 2019) and APPNP (Klicpera et al., 2019) where the former adopts
multiple MP operations on the initial node features, and the later stacks a series of MP operations at
the end of FF layers. These two classes of GNNs are also widely explored and studied. For example,
SIGN (Rossi et al., 2020), S2GC (Zhu & Koniusz, 2021) and GBP (Chen et al., 2020a) follow the
SGC-style, and DAGNN (Liu et al., 2020c), AP-GCN (Spinelli et al., 2020) and GPR-GNN (Chien
et al., 2020) follow the APPNP-style.

Bridging GNNs and MLPs: Propagational MLP. After decoupling the MP and FF operations
from GNNs’ layer-wise updating, we notice that the unique and critical difference of GNNs and MLP
lies in whether to adopt MP (somewhere between the input node features and output prediction).
To connect two families, we introduce a new model class, dubbed as Propagational MLP (PMLP),
which has exactly the same architecture as conventional MLP, namely, the same feed-forwarding
network. During the inference/testing stage, PMLPGCN incorporates a message passing layer into
each layer’s feed-forwarding, PMLPSGC adds multiple MP layers in the first layer, and PMLPAPP

adds them in the last layer. For clear head-to-head comparison, Table 6 in the appendix summarizes
the architecture of these models in training and testing stages.

Extensions of PMLP. The proposed PMLP is generic and compatible with many other GNN
architectures with some slight modifications. For example, we can extend the definition of PMLPs
to GNNs with residual connections such as JKNet (Xu et al., 2018b) and GCNII (Chen et al.,
2020b) by removing their message passing modules in training, and correspondingly, PMLPKJNet

and PMLPGCNII become MLPs with different residual connections in training, which will be
further discussed in the next section. For GNNs whose MP layers are parameterized such as
GAT (Veličković et al., 2017), one can additionally fine-tune the PMLP model using the corresponding
GNN architecture on top of pre-trained FF layers or training MP layers independently.

3 EMPIRICAL EVALUATION

We conduct experiments on a variety of node-level prediction benchmarks. Section 3.1 shows that
the proposed PMLPs can significantly outperform the original MLP though they share the same
weights, and approach or even exceed their GNN counterparts. Section 3.2 shows this phenomenon
holds across different experimental settings. Section 3.3 sheds new insights on some research
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Table 1: Mean and STD of testing accuracy on node-level prediction benchmark datasets.

Dataset Cora Citeseer Pubmed A-Photo A-Computer Coauthor-CS Coauthor-Physics
#Nodes 2,708 3,327 19,717 7,650 13,752 18,333 34,493

G
N

N
s GCN 74.82± 1.09 67.60± 0.96 76.56± 0.85 89.69± 0.87 78.79± 1.62 91.79± 0.35 91.22± 0.18

SGC 73.96± 0.59 67.34± 0.54 76.00± 0.59 83.42± 2.47 77.10± 2.54 91.24± 0.59 89.18± 0.46

APPNP 75.02± 2.17 66.58± 0.77 76.48± 0.49 89.51± 0.86 78.29± 0.55 91.64± 0.34 91.80± 0.77

M
L

Ps

MLP 55.30± 0.58 56.20± 1.27 70.76± 0.78 75.61± 0.63 63.07± 1.67 87.51± 0.51 85.09± 4.11

PMLPGCN 75.86± 0.93 68.00± 0.70 76.06± 0.55 89.10± 0.88 78.05± 1.21 91.76± 0.27 91.35± 0.82
∆GNN +1.39% +0.59% −0.65% −0.66% −0.94% −0.03% +0.14%
∆MLP +37.18% +21.00% +7.49% +17.84% +23.75% +4.86% +7.36%

PMLPSGC 75.04± 0.95 67.66± 0.64 76.02± 0.57 86.50± 1.40 74.72± 3.86 91.09± 0.50 89.34± 1.40
∆GNN +1.46% +0.48% +0.03% +3.69% −3.09% −0.16% +0.18%
∆MLP +35.70% +20.39% +7.43% +14.40% +18.47% +4.09% +4.99%

PMLPAPP 75.84± 1.36 67.52± 0.82 76.30± 1.44 88.47± 1.64 78.07± 2.10 91.64± 0.46 91.96± 0.51
∆GNN +1.09% +1.41% −0.24% −1.16% −0.28% +0.00% +0.17%
∆MLP +37.14% +20.14% +7.83% +17.01% +23.78% +4.72% +8.07%

Table 2: Mean and STD of testing accuracy on three large-scale datasets.

GCN SGC APPNP MLP PMLPGCN PMLPSGC PMLPAPP

OGBN-Arxiv
(∆GNN/∆MLP )

69.04± 0.18 68.56± 0.14 69.19± 0.12 53.86± 0.28 63.74± 2.28
(−7.68%/+18.34%)

62.65± 0.35
(−8.62%/+16.32%)

63.30± 0.17
(−8.51%/+17.53%)

Train loss 1.0480 1.1124 1.0396 1.5917 1.5917 1.5917 1.5917
Train time 63.48 ms 90.50 ms 87.24 ms 7.78 ms 7.78 ms 7.78 ms 7.78 ms

OGBN-Products
(∆GNN/∆MLP )

71.35± 0.19 71.17± 0.29 70.41± 0.07 56.24± 0.10 69.71± 0.13
(−2.30%/+23.95%)

70.09± 0.13
(−1.52%/+24.63%)

65.72± 0.09
(−6.66%/+16.86%)

Train loss 0.4013 0.4018 0.4311 1.0841 1.0841 1.0841 1.0841
Train time 288.61 ms 665.06 ms 527.26 ms 39.73 ms 39.73 ms 39.73 ms 39.73 ms

Flickr
(∆GNN/∆MLP )

49.66± 0.57 50.93± 0.16 45.31± 0.28 46.44± 0.14 49.55± 1.30
(−0.22%/+6.70%)

50.99± 0.39
(+0.12%/+9.80%)

44.31± 0.24
(−2.21%/−4.59%)

Train loss 1.1462 1.4030 0.7449 1.3344 1.3344 1.3344 1.3344
Train time 36.82 ms 50.42 ms 163.82 ms 7.44 ms 7.44 ms 7.44 ms 7.44 ms

problems around GNNs including over-smoothing, model depth and heterophily. We present the key
experimental results in the main text and defer extra results and discussions to Appendix F and G.

We consider sixteen node classification benchmarks involving different types of networks. For fair
comparison, we set the layer number and hidden size to the same values for GNN, PMLP and MLP in
the same dataset. We basically use GCN convolution for MP layer and ReLU activation for FF layer
for all models unless otherwise stated. PMLPs use the MLP architecture for validation. For SGC,
we use a MLP instead of one FF layer after linear message passing, and for APPNP, we remove the
residual connection (i.e., α = 0) such that the MP layer is aligned with other models. More details
about implementation, datasets and hyperparameters are deferred to Appendix F.

We adopt inductive learning setting as the evaluation protocol, which is a commonly used benchmark
setting by the community, and guarantee a fair comparison between PMLP and its GNN counterpart by
ensuring the information of validation/testing nodes is not used in training for all models. Specifically,
for node set V = Vtr ∪ Vte where Vtr (resp. Vte) denotes training (resp. testing) nodes, the training
process is only exposed to Gtr = {Vtr, Etr}, where Etr ⊂ Vtr ×Vtr only contains edges for nodes in
Vtr and the trained model is tested with the whole graph G for prediction on Vte.

3.1 MAIN RESULTS

How do PMLPs perform compared with GNNs and MLP on common benchmarks? The main
results for comparing the testing accuracy of MLP, PMLPs and GNNs on seven benchmark datasets
are shown in Table. 1. We found that, intriguingly, three variants of PMLPs consistently outperform
MLP by a large margin on all the datasets despite using the same model with the same set of trainable
parameters. Moreover, PMLPs are as effective as their GNN counterparts and can even exceed GNNs
in some cases. These results suggest two implications. First, the performance improvement brought
by GNNs (or more specifically, the MP operation) over MLP may not purely stem from the more
advanced representational power, but the generalization ability. Second, the message passing can
indeed contribute to better generalization ability of MLP, though it currently remains unclear how it
helps MLP to generalize on unseen testing data. We will later try to shed some light on this question
via theoretical analysis in Section 4.

How do PMLPs perform on larger datasets? We next apply PMLPs to larger graphs which can
be harder for extracting informative features from observed data. As shown in Table 2, PMLP still
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Figure 2: Performance variation with increasing layer number and size of hidden states. (See complete
results in Appendix G).
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Figure 3: Performance variation with different activation functions in FF layer and different transition
matrices in MP layer. (See complete results in Appendix G)
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Figure 4: Impact of graph structural information by changing data split, sparsifying the graph, adding
random structural noise on Cora. (See complete results in Appendix G)

considerably outperforms MLP. Yet differently, there is a certain gap between PMLP and GNN. We
conjecture that this is because in such large graphs the relations between inputs and target labels
can be more complex, which requires more expressive architectures for learning desired node-level
representations. This hypothesis is further validated by the results of training losses in Table 2, which
indeed shows that GNNs can yield lower fitting error on the training data.

3.2 FURTHER DISCUSSIONS

We next conduct more experiments and comparison for verifying the consistency of the observed
phenomenon across different settings regarding model implementation and graph property. We also
try to reveal how PMLPs work for representation learning through visualizations of the produced
embeddings, and the results are deferred to Appendix G.

Q1: What is the impact of model layers and hidden sizes? In Fig. 2(a) and (b), we plot the testing
accuracy of GCN, PMLPGCN and MLP w.r.t. different layer numbers and hidden sizes. The results
show that the observed phenomenon in Section 3.1 consistently holds with different settings of model
depth and width, which suggests that the generalization effect of the MP operation is insensitive to
model architectural hyperparameters. The increase of layer numbers cause performance degradation
for all three models, presumably because of over-fitting. We will further discuss the impact of model
depth (where layer number exceeds 100) and residual connections in the next subsection.

Q2: What is the impact of different activation functions in FF layers? As shown in Fig. 3(a), the
relative performance rankings among GCN, PMLP and MLP stay consistent across four different
activation functions (tanh, cos, ELU, ReLU) and in particular, in some cases the performance gain of
PMLP over GCN is further amplified (e.g., with cos activation).
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Q3: What is the impact of different propagation schemes in MP layers? We replace the original
transition matrix Psym = D̃− 1

2 ÃD̃− 1
2 used in the MP layer by other commonly used transition

matrices: 1) Pno-loop = D− 1
2AD− 1

2 , i.e., removing self-loop; 2) Prw = D̃−1Ã, i.e., random walk
matrix; 3) Pdiff =

∑∞
k=0

1
e·k! (D̃

−1Ã)k, i.e., heat kernel diffusion matrix. The results are presented
in Fig. 3(b) where we found that the relative performance rankings of three models keep nearly
unchanged after replacing the original MP layer. And, intriguingly, the performance of GNNs degrade
dramatically after removing the self-loop, while the accuracy of PMLPs stays at almost the same
level. The possible reason is that the self-loop connection plays an important role in GCN’s training
stage for preserving enough centered nodes’ information, but does not affect PMLP.

Q4: What is the impact of training proportion? We use random split to control the amount of
graph structure information used in training. As shown in Fig. 4(left), the labeled portion of nodes
and the amount of training edges have negligible impacts on the relative performance of three models.

Q5: What is the impact of graph sparsity? As suggested by Fig. 4(middle), when the graph goes
sparser, the absolute performance of GCN and PMLP degrades yet their performance gap remains
unchanged. This shows that the quality of input graphs indeed impacts the testing performance and
tends to control the performance upper bound of the models. Critically though, the generalization
effect brought by PMLP is insensitive to the graph completeness.

Q6: What is the impact of noisy structure? As shown in Fig. 4(right), the performances of both
PMLP and GCN tend to decrease as we gradually add random connections to the graph, whose
amount is controlled by the noise ratio (defined as # noisy edges/|E|), while PMLP shows better
robustness to such noise. This indicates noisy structures have negative effects on both training and
generalization of GNNs and one may use PMLP to mitigate this issue.

3.3 OVER-SMOOTHING, MODEL DEPTH, AND HETEROPHILY

We conduct additional experiments to shed lights on broader aspects of GNNs including over-
smoothing, model depth and graph heterophily. Detailed results and respective discussions are
deferred to Appendix E. In a nutshell, we find the phenomenon still holds for GNNs with residual
connections (i.e., JKNet and GCNII), very deep GNNs (with more than 100 layers) and heterophilic
graphs. This indicates that both over-smoothing and heterophily are problems closely related to
failure cases of GNN generalization, and can be mitigated by using MP layers that are more suitable
for the data or backbone MLP models with better generalization capability, aligning with some
previous studies (Battaglia et al., 2018; Cong et al., 2021).

3.4 EXTENSION TO TRANSDUCTIVE SETTINGS

Notably, the current training procedure of PMLP does not involve unlabeled nodes but can be extended
to such scenario by combining with existing semi-supervised learning approaches (Van Engelen &
Hoos, 2020) such as using label propagation (Zhu et al., 2003) to generate pseudo labels for unlabeled
nodes, or additionally using the GNN architecture for fine-tuning, which is still shown to be more
efficient than training GNNs from scratch (Han et al., 2023).

4 THEORETICAL INSIGHTS ON GNN GENERALIZATION

Towards theoretically answering why “GNNs are inherently good generalizers” and explaining the
superior generalization performance of PMLP and GNN, we next compare MLP, PMLP and GNN
from the Neural Tangent Kernel (NTK) perspective, derive the formula for computing Graph Neural
Tangent Kernel (GNTK) in node regression, and then use the results to examine their extrapolation
behaviors, i.e., generalization under distribution shifts. Note that our analysis focuses on the model
architecture used in inference, and thus the results presented in Sec. 4.2 are applicable for both GNN
and PMLP in both inductive and transductive settings.

4.1 NTK PERSPECTIVE ON MLP, PMLP AND GNN

Linearization of Neural Networks. For a neural network f(x;θ) : X → R with initial parameters
θ0 and a fixed input sample x, performing first-order Taylor expansion around θ0 yields the linearized
form of NNs (Lee et al., 2019) as follows:

f lin(x;θ) = f(x;θ0) +∇θf(x;θ0)
⊤ (θ − θ0) , (3)

7



Published as a conference paper at ICLR 2023

where the gradient ∇θf(x;θ0) could be thought of as a feature map ϕ(x) : X → R|θ|, depending
on the specific initialization. As such, when θ0 is initialized by Gaussian distribution with certain
scaling and the network width tends to infinity (i.e., m→ ∞, where m denotes the layer width), the
feature map becomes constant and is determined by the model architecture (e.g., MLP, GNN and
CNN), inducing a kernel called NTK (Jacot et al., 2018):

NTK(xi,xj) = ϕntk(xi)
⊤ϕntk(xj) = ⟨∇θf(xi;θ),∇θf(xj ;θ)⟩ (4)

Kernel Regression with NTK. Recent works (Liu et al., 2020b;a) show that the spectral norm of
Hessian matrix in the Taylor series tends to zero with increasing width by Θ(1/

√
m), and hence the

linearization becomes almost exact. Therefore, training an over-parameterized NN using gradient
descent with infinitesimal step size is equivalent to kernel regression with NTK (Arora et al., 2019b):

f(x;w) = w⊤ϕntk(x), L(w) =
1

2

n∑
i=1

(
yi −w⊤ϕntk(xi)

)2
. (5)

We next show the equivalence of MLP and PMLP in training at infinite width limit (NTK regime).
Proposition 1. MLP and its corresponding PMLP have the same minimum RKHS-norm NTK kernel
regression solution, but differ from that of GNNs, i.e., w∗

mlp = w∗
pmlp ̸= w∗

gnn.

Implications. From the NTK perspective, stacking additional message passing layers in the testing
phase implies transforming the fixed feature map from that of MLP ϕmlp(x) to that of GNN ϕgnn(x),
while fixing w. Given w∗

mlp = w∗
pmlp, the superior generalization performance of PMLP (i.e., the

key factor of performance surge from MLP to GNN) can be explained by such transformation of
feature map from ϕmlp(x) to ϕgnn(x) in testing:

fmlp(x) = w∗⊤

mlp ϕmlp(x), fpmlp(x) = w∗⊤

mlp ϕgnn(x), fgnn(x) = w∗⊤

gnn ϕgnn(x). (6)

This perspective simplifies the subsequent theoretical analysis by setting the focus on the difference
of feature map, which is determined by the network architecture used in inference, and empirically
suggested to be the key factor attributing to superior generalization performance of GNN and PMLP.
To step further, we next derive the formula for computing NTK feature map of PMLP and GNN (i.e.,
ϕgnn(x)) in node regression tasks.

GNTK in Node Regression. Following previous works that analyse shallow and wide NNs (Arora
et al., 2019a; Chizat & Bach, 2020; Xu et al., 2021), we focus on a two-layer GNN using average
aggregation with self-connection. By extending the original definition of GNTK (Du et al., 2019) from
graph-level regression to node-level regression as specified in Appendix. C, we have the following
explicit form of ϕgnn(x) for a two-layer GNN.
Lemma 2. The explicit form of GNTK feature map for a two-layer GNN ϕgnn(x) with average
aggregation and ReLU activation in node regression is

ϕgnn(xi) = c
∑

j∈Ni∪{i}

[
X⊤aj · I+

(
w(k)⊤X⊤aj

)
,w(k)⊤X⊤aj · I+

(
w(k)⊤X⊤aj

)
, . . .

]
, (7)

where c = O(d̃−1) is a constant proportional to the inverse of node degree, X ∈ Rn×d is node
features, ai ∈ Rn denotes adjacency vector of node i, w(k) ∼ N (0, Id) is a random Gaussian
vector in Rd, two components in the brackets repeat infinitely many times with k ranging from 1 to
∞, and I+ is an indicator function that outputs 1 if the input is positive otherwise 0.

4.2 MLP V.S. PMLP IN EXTRAPOLATION

As indicated by Proposition 1, the fundamental difference between MLP and PMLP at infinite width
limit stems from the difference of feature map in the testing phase. This reduces the problem of
explaining the success of GNN to the question that why this change is significant for generalizability.

Extrapolation Behavior of MLP. One important aspect of generalization analysis is regarding
model’s behavior when confronted with OoD testing samples (i.e., testing nodes that are considerably
outside the training support), a.k.a. extrapolation analysis. A previous study on this direction (Xu
et al., 2021) reveal that a standard MLP with ReLU activation quickly converges to a linear function
as the testing sample escapes the training support, which is formalized by the following theorem.
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Theorem 3. (Xu et al., 2021). Suppose fmlp(x) is an infinitely-wide two-layer MLP with ReLU
trained by square loss. For any direction v ∈ Rd and step size ∆t > 0, let x0 = tv, we have∣∣∣∣ (fmlp(x0 +∆tv)− fmlp(x0)) /∆t

cv
− 1

∣∣∣∣ = O(
1

t
). (8)

where cv is a constant linear coefficient. That is, as t→ ∞, fmlp(x0) converges to a linear function.

The intuition behind this phenomenon is the fact that ReLU MLPs learn piece-wise linear functions
with finitely many linear regions and thus eventually becomes linear outside training data support.
Now a naturally arising question is how does PMLP compare with MLP regarding extrapolation?

Extrapolation Behavior of PMLP. Based on the explicit formula for ϕgnn(x) in Lemma 2, we
extend the theoretical result of extrapolation analysis from MLP to PMLP. Our first finding is that, as
the testing node feature becomes increasingly outside the range of training data, alike MLP, PMLP
(as well as GNN) with average aggregation also converges to a linear function, yet the corresponding
linear coefficient reflects its ego-graph property rather than being a fixed constant.
Theorem 4. Suppose fpmlp(x) is an infinitely-wide two-layer MLP with ReLU activation trained
using squared loss, and adds average message passing layer before each feed-forward layer in the
testing phase. For any direction v ∈ Rd and step size ∆t > 0, let x0 = tv, and as t→ ∞, we have

(fpmlp(x0 +∆tv)− fpmlp(x0)) /∆t → cv
∑

i∈N0∪{0}

(d̃ · d̃i)−1. (9)

where cv is the same constant as in Theorem 3, d̃0 = d̃ is the node degree (with self-connection) of
x0, and d̃i is the node degree of its neighbors.

Remark. This result also applies to infinitely-wide two-layer GNN with ReLU activation and average
aggregation in node regression settings, except the constant cv is different from that of MLP.

Convergence Comparison. Though both MLP and PMLP tend to linearize for outlier testing
samples, indicating that they have common difficulty to extrapolate non-linear functions, we find
that PMLP in general has more freedom to deviate from the convergent linear coefficient, implying
smoother transition from in-distribution (non-linear) to out-of-distribution (linear) regime and thus
could potentially generalize to out-of-distribution samples near the range of training data.
Theorem 5. Suppose all node features are normalized, and the cosine similarity of node xi and the
average of its neighbors is deonoted as αi ∈ [0, 1]. Then, the convergence rate for fpmlp(x) is∣∣∣∣∣ (fpmlp(x0 +∆tv)− fpmlp(x0)) /∆t

cv
∑

i∈N0∪{0}(d̃ · d̃i)−1
− 1

∣∣∣∣∣ = O

(
1 + (d̃max − 1)

√
1− α2

min

t

)
. (10)

where αmin = min{αi}i∈N0∪{0} ∈ [0, 1], and d̃max ≥ 1 denotes the maximum node degree in the
testing node x0’s neighbors (including itself).

This result indicates larger node degree and feature dissimilarity imply smoother transition and better
compatibility with OoD samples. Specifically, when the testing node’s degree is 1 (connection to
itself), PMLP becomes equivalent to MLP. As reflection in Eq. 10, d̃max = 1, and the bound degrades
to that of MLP in Eq. 8. Moreover, when all node features are equal, message passing will become
meaningless. Correspondingly, α̃min = 1, and the bound also degrades to that of MLP.

5 MORE DISCUSSIONS AND CONCLUSION

We defer more discussions on other sources of performance gap between MLP and GNN, our current
limitations and outlooks to Appendix A.

Conclusion. In this work, we bridge MLP and GNN by introducing an intermediate model class
called PMLP, which is equivalent to MLP in training, but shows significantly better generalization
performance after adding unlearned message passing layers in testing and can rival with its GNN
counterpart in most cases. This phenomenon is consistent across different datasets and experimental
settings. To shed some lights on this phenomenon, we show despite that both MLP and PMLP cannot
extrapolate non-linear functions, PMLP converges slower, indicating smoother transition and better
tolerance for out-of-distribution samples.
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A MORE DISCUSSIONS

Other sources of performance gap between MLP and GNN / When PMLP fails? Besides the
intrinsic generalizability of GNNs that is revealed by the performance gain from MLP to PMLP in
this work, we note that there are some other less significant but non-negligible sources that attributes
to the performance gap between GNN and MLP in node prediction tasks:

• Expressiveness: While our experiments find that GNNs and PMLPs can perform similarly in most
cases, showing great advantage over MLPs in generalization, in practice, there still exists a certain
gap between their expressiveness, which can be amplified in large datasets and causes certain degrees
of performance difference. This is reflected by our experiments on three large-scale datasets. Despite
that, we can see from Table 2 that the intrinsic generalizability of GNN (corresponding to ∆mlp) is
still the major source of performance gain from MLP.

• Semi-Supervised / Transductive Learning: As our default experimental setting, inductive
learning ensures that testing samples are unobserved during training and keeps the comparison among
models fair. However in practice, the ability to leverage the information of unlabeled nodes in training
is a well-known advantage of GNN (but not the advantage of PMLP). Still, PMLP can be used in
transductive setting with training techniques as described in Sec. 3.4.

Current Limitations and Outlooks. The result in Theorem 5 provides a bound to show PMLP’s
better potential in OoD generalization, rather than guaranteeing its superior generalization capability.
Explaining when and why PMLPs perform closely to their GNN counterparts also need further
investigations. Moreover, following most theoretical works on NTK, we consider the regression task
with squared loss for analysis instead of classification. However, as evidences (Janocha & Czarnecki,
2017; Hui & Belkin, 2020) show squared loss can be as competitive as softmax cross-entropy loss,
the insights obtained from regression tasks could also adapt to classification tasks.

B PROOF FOR PROPOSITION 1

To analyse the extrapolation behavior of PMLP and compare it with MLP, As mentioned in the main
text, training an infinitely wide neural network using gradient descent with infinitesimal step size is
equivalent to solving kernel regression with the so-called NTK by minimizing the following squared
loss function:

f(x;w) = w⊤ϕntk(x), L(w) =
1

2

n∑
i=1

(
yi −w⊤ϕntk(xi)

)2
. (11)

Let us now consider an arbitrary minimizer w∗ ∈ H in NTK’s reproducing kernel Hilbert space. The
minimizer could be further decomposed as w∗ = ŵ∗ + w⊥, where ŵ∗ lies in the linear span of
feature mappings for training data and w⊥ is orthogonal to ŵ∗, i.e.,

ŵ∗ =
n∑

i=1

λi · ϕntk(xi), ⟨ŵ∗,w⊥⟩H = 0. (12)

One observation is that the loss function is unchanged after removing the orthogonal component w⊥:

L(w∗) =
1

2

n∑
i=1

(
yi − ⟨

n∑
i=1

λi · ϕntk(xi) +w⊥, ϕntk(xi)⟩H

)2

=
1

2

n∑
i=1

(
yi − ⟨

n∑
i=1

λi · ϕntk(xi), ϕntk(xi)⟩H

)2

= L(ŵ∗).

(13)

This indicates that ŵ∗ is also a minimizer whose H-norm is smaller than that of w∗, i.e., ∥ŵ∗∥H ≤
∥w∗∥H. It follows that the minimum H-norm solution for Eq. 11 can be expressed as a linear
combination of feature mappings for training data. Therefore, solving Eq. 11 boils down to solving a
linear system with coefficients λ = [λi]

n
i=1. Resultingly, the minimum H-norm solution is

w∗ =

n∑
i=1

[
yiK

−1
]
i
ϕntk(xi), (14)
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where K ∈ Rn×n is the kernel matrix for training data. We see that the final solution is only dependent
on training data {xi, yi}ni=1 and the model architecture used in training (since it determines the form
of ϕntk(xi)). It follows immediately that the min-norm NTK kernel regression solution is equivalent
for MLP and PMLP (i.e., w∗

mlp = w∗
pmlp) given that they are the same model trained on the same set

of data. In contrast, the architecture of GNN is different from that of MLP, implying different form
of feature map, and hence they have different solutions in their respective NTK kernel regression
problems (i.e., w∗

mlp ̸= w∗
gnn).

C PROOF FOR LEMMA 3

C.1 GNTK FOR GRAPH-LEVEL REGRESSION

Graph Neural Tangent Kernel (GNTK) (Du et al., 2019) is a natural extension of NTK to graph neural
networks. Originally, the squared loss function is defined for graph-level regression and the kernel
function is defined over a pair of graphs:

GNTK(Gi,Gj) = ϕgnn(Gi)
⊤ϕgnn(Gj) = ⟨∇θf(Gi;θ),∇θf(Gj ;θ)⟩ , (15)

L(θ) = 1

2

n∑
i=1

(yi − f(Gi;θ))
2
, (16)

where f(Gi;θ) yields prediction for a graph such as the property of a molecule. The formula for
calculating GNTK is given by the following (where we modify the original notation for clarity and
alignment with our definition of GNTK in node-level regression setting):[

GNTK(0)(Gi,Gj)
]
uu′

=
[
Σ(0) (Gi,Gj)

]
uu′

= x⊤
u xu′ ,

where xu ∈ Vi,xu′ ∈ Vj .
(17)

The message passing operation in each layer corresponds to:[
Σ(ℓ)

mp (Gi,Gj)
]
uu′

= cucu′

∑
v∈Nu∪{u}

∑
v′∈Nu′∪{u′}

[
Σ(ℓ) (Gi,Gj)

]
vv′[

GNTK(ℓ)
mp (Gi,Gj)

]
uu′

= cucu′

∑
v∈Nu∪{u}

∑
v′∈Nu′∪{u′}

[
GNTK(ℓ) (Gi,Gj)

]
vv′

,
(18)

where cu denotes a scaling factor. The calculation formula of feed-forward operation (from
GNTK(ℓ−1)

mp (Gi,Gj) to GNTK(ℓ) (Gi,Gj)) is similar to that for NTKs of MLP (Jacot et al., 2018).
The final output of GNTK (without jumping knowledge) is calculated by

GNTK(Gi,Gj) =
∑

u∈Vi,u′∈Vj

[
GNTK(L−1) (Gi,Gj)

]
uu′

. (19)

C.2 GNTK FOR NODE-LEVEL REGRESSION

We next extend the above definition of GNTK to the node-level regression setting, where the model
f(x;θ,G) outputs prediction of a node, and the kernel function is defined over a pair of nodes in a
single graph:

GNTK(xi,xj) = ϕgnn(xi)
⊤ϕgnn(xj) = ⟨∇θf(xi;θ,G),∇θf(xj ;θ,G)⟩ , (20)

L(θ) = 1

2

n∑
i=1

(yi − f(xi;θ,G))2 . (21)

Then, the explicit formula for GNTK in node-level regression is as follows.

GNTK(0)(xi,xj) = Σ(0) (xi,xj) = x⊤
i xj , (22)
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Without loss of generality, we consider using random walk matrix as implementation of message
passing. Then, the message passing operation in each layer corresponds to:

Σ(ℓ)
mp (xi,xj) =

1

(|Ni|+ 1)(|Nj |+ 1)

∑
i′∈Ni∪{i}

∑
j′∈Nj∪{j}

Σ(ℓ) (xi′ ,xj′)

GNTK(ℓ)
mp (xi,xj) =

1

(|Ni|+ 1)(|Nj |+ 1)

∑
i′∈Ni∪{i}

∑
j′∈Nj∪{j}

GNTK(ℓ) (xi′ ,xj′) ,

(23)

Moreover, the feed-forward operation in each layer corresponds to:

Σ(ℓ) (xi,xj) = c · E
u,v∼N(0,Λ(ℓ))

[σ(u)σ(v)],

Σ̇(ℓ) (xi,xj) = c · E
u,v∼N(0,Λ(ℓ))

[σ̇(u)σ̇(v)],

GNTK(ℓ)(xi,xj) = GNTK(ℓ−1)
mp (xi,xj) · Σ̇(ℓ) (xi,xj) +Σ(ℓ) (xi,xj) ,

where Λ(ℓ) =

[
Σ

(ℓ−1)
mp (xi,xi) Σ

(ℓ−1)
mp (xi,xj)

Σ
(ℓ−1)
mp (xj ,xi) Σ

(ℓ−1)
mp (xj ,xj)

] (24)

Suppose the GNN has L layers and the last layer uses linear transformation that is akin to MLP, the
final GNTK in node-level regression is defined as

GNTK(xi,xj) = GNTK(L−1)
mp (xi,xj) (25)

C.3 GNTK AND FEATURE MAP FOR A TWO-LAYER GNN

We next derive the explicit NTK formula for a two-layer graph neural network in node-level regression
setting. For notational convenience, we use ai ∈ Rn to denote adjacency, i.e.,

(ai)j =

{
1/(|Ni|+ 1) if (i, j) ∈ E
0 if (i, j) /∈ E , (26)

and G = XX⊤ ∈ Rn×n to denote the Gram matrix of all nodes. Then we have

(First message passing layer)

GNTK(0)(xi,xj) = Σ(0) (xi,xj) = x⊤
i xj ,

GNTK(0)
mp(xi,xj) = Σ(0)

mp (xi,xj) = a⊤
i Gaj ,

(27)

(First feed-forward layer)

Σ(1) (xi,xj) = c · E
u,v∼N(0,Λ(1))

[σ(u)σ(v)],

Σ̇(1) (xi,xj) = c · E
u,v∼N(0,Λ(1))

[σ̇(u)σ̇(v)],

Λ(1) =

[
a⊤
i Gai a⊤

i Gaj

a⊤
j Gai a⊤

j Gaj

]
=

[
X⊤ai

X⊤aj

]
·
[
X⊤ai X⊤aj

] (28)

By noting that a⊤
i Gaj = (X⊤ai)

⊤X⊤aj and substituting σ(k) = k · I+(k), σ̇(k) = I+(k), where
I+(k) is an indicator function that outputs 1 if k is positive otherwise 0, we have the following
equivalent form for the covariance

Σ(1) (xi,xj) = c · E
w∼N (0,Id)

[
w⊤X⊤ai · I+(w⊤X⊤ai) ·w⊤X⊤aj · I+(w⊤X⊤aj)

]
,

Σ̇(1) (xi,xj) = c · E
w∼N (0,Id)

[
I+(w⊤X⊤ai) · I+(w⊤X⊤aj)

]
.

(29)

Hence, we have

GNTK(1)(xi,xj) = GNTK(0)
mp(xi,xj) · Σ̇(1) (xi,xj) +Σ(1) (xi,xj)

= c · E
w∼N (0,Id)

[
a⊤
i Gaj · I+(w⊤X⊤ai) · I+(w⊤X⊤aj)

]
+ c · E

w∼N (0,Id)

[
w⊤X⊤ai · I+(w⊤X⊤ai) ·w⊤X⊤aj · I+(w⊤X⊤aj)

] (30)
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(Second message passing layer / The last layer)

Since the GNN uses a linear transformation on top of the (second) message passing layer for output,
the neural tangent kernel for a two-layer GNN is given by

GNTK(xi,xj) = GNTK(1)
mp(xi,xj)

=
1

(|Ni|+ 1)(|Nj |+ 1)

∑
i′∈Ni∪{i}

∑
j′∈Nj∪{j}

GNTK(1) (xi′ ,xj′)

=

〈[
ϕ(1)(x1), · · · , ϕ(1)(xn)

]⊤
ai,
[
ϕ(1)(x1), · · · , ϕ(1)(xn)

]⊤
aj

〉
H

(31)

where K(1) ∈ Rn×n and ϕ(1) : Rd → H is the kernel matrix and feature map induced by GNTK(1).
By Eq. 31, the final feature map ϕgnn(x) is

ϕgnn(xi) =
[
ϕ(1)(x1), · · · , ϕ(1)(xn)

]⊤
ai. (32)

Also, notice that in Eq. 30,

a⊤
i Gaj · I+(w⊤X⊤ai) · I+(w⊤X⊤aj) = ϕ⊤i ϕj ,

w⊤X⊤ai · I+(w⊤X⊤ai) ·w⊤X⊤aj · I+(w⊤X⊤aj) = (w⊤ϕi)
⊤w⊤ϕj ,

where ϕi = X⊤ai · I+(w⊤X⊤ai).

(33)

Then, the feature map ϕ(1) can be written as

ϕ(1)(xi) = c′ ·
[
X⊤ai · I+

(
w(1)⊤X⊤ai

)
,w(1)⊤X⊤ai · I+

(
w(1)⊤X⊤ai

)
,

X⊤ai · I+
(
w(2)⊤X⊤ai

)
,w(2)⊤X⊤ai · I+

(
w(2)⊤X⊤ai

)
,

· · ·

X⊤ai · I+
(
w(∞)⊤X⊤ai

)
,w(∞)⊤X⊤ai · I+

(
w(∞)⊤X⊤ai

) ] (34)

where w(k) ∼ N (0, Id) is random Gaussian vector in Rd, with the superscript (k) denoting that it is
the k-th sample among infinitely many i.i.d. sampled ones, c′ is a constant. We write Eq. 34 in short
as

ϕ(1)(xi) = c′ ·
[
X⊤ai · I+

(
w(k)⊤X⊤ai

)
,w(k)⊤X⊤ai · I+

(
w(k)⊤X⊤ai

)
, · · ·

]
. (35)

Finally, substituting Eq. 35 into Eq. 32 completes the proof.

D PROOF FOR THEOREM 4 AND THEOREM 5

To analyse the extrapolation behavior of PMLP along a certain direction v in the testing phase
and compare it to MLP, we consider a newly arrived testing node x0 = tv, whose degree (with
self-connection) is d̃ and its corresponding adjacency vector is a ∈ Rn+1, where (a)i = 1/d̃ if
(i, 0) ∈ E otherwise 0. Following (Xu et al., 2021; Bietti & Mairal, 2019), we consider a constant
bias term and denote the data x plus this term as x̂ = [x|1]. Then, the asymptotic behavior of f(·) at
large distances from the training data range can be characterized by the change of network output
with a fixed-length step ∆t · v along the direction v, which is given by the following in the NTK
regime

1

∆t
(fmlp (x̂)− fmlp (x̂0)) =

1

∆t
w∗⊤

mlp(ϕmlp(x̂)− ϕmlp(x̂0)) (36)

1

∆t
(fpmlp (x̂)− fpmlp (x̂0)) =

1

∆t
w∗⊤

mlp(ϕgnn(x̂)− ϕgnn(x̂0)) (37)

where x = x0 +∆t · v = (t+∆t)v, x̂ = [x̂|1] and x̂0 = [x̂0|1]. As our interest is in how PMLP
extrapolation, we use f(·) to refer to fpmlp(·) in the rest of the proof. By Lemma. 2, the explicit
formula for computing this node’s feature map is given by

ϕgnn(x̂0) =
[
ϕ(1)(x̂0), ϕ

(1)(x1; x̂0), · · · , ϕ(1)(xn; x̂0)
]⊤

a, (38)
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where

ϕ(1)(x̂0) = c′ ·
[
[x̂0,X]⊤a · I+

(
w(k)⊤ [x̂0,X]⊤a

)
,

w(k)⊤ [x̂0,X]⊤a · I+
(
w(k)⊤ [x̂0,X]⊤a

)
, . . .

]
,

(39)

and similarly

ϕ(1)(xi; x̂0) = c′ ·
[
[x̂0,X]⊤ai · I+

(
w(k)⊤ [x̂0,X]⊤ai

)
,

w(k)⊤ [x̂0,X]⊤ai · I+
(
w(k)⊤ [x̂0,X]⊤ai

)
, . . .

]
,

(40)

w(k) ∼ N (0, Id), with k going to infinity, c′ is a constant, I+(k) is an indicator function that outputs
1 if k is positive otherwise 0, and (ai)1 = 1/(|Ni|+ 1) if i is connected to the new testing node. It
follows from Eq. 37 that

1

∆t
(f (x̂)− f (x̂0))

=
1

∆t
w∗⊤

mlp

[
ϕ(1)(x̂)− ϕ(1)(x̂0), · · · , ϕ(1)(xn; x̂)− ϕ(1)(xn; x̂0)

]⊤
a

=
1

d̃∆t
w∗⊤

mlp

(
ϕ(1)(x̂)− ϕ(1)(x̂0)

)
+

1

d̃∆t

∑
i∈N0

w∗⊤

mlp

(
ϕ(1)(xi; x̂)− ϕ(1)(xi; x̂0)

) (41)

Now, let us consider w∗⊤

mlp

(
ϕ(1)(x̂)− ϕ(1)(x̂0)

)
. Recall that w∗⊤

mlp is from infinite dimensional
Hilbert space, and w(k) is drawn from Gaussian with k going to infinity in Eq. 39 and Eq. 40, where
each w(k) corresponds to some certain dimensions of w∗

mlp. Let us denote the part that corresponds
to the first line in Eq. 39 as βw(k) and the second line in Eq. 39 as γw(k) . Consider the following way
of rearrangement for (the first element in) ϕ(1)(x̂)− ϕ(1)(x̂0)

[x̂,X]⊤a · I+
(
w(k)⊤ [x̂,X]⊤a

)
− [x̂0,X]⊤a · I+

(
w(k)⊤ [x̂0,X]⊤a

)
=[x̂,X]⊤a

(
I+
(
w(k)⊤ [x̂,X]⊤a

)
− I+

(
w(k)⊤ [x̂0,X]⊤a

))
+

1

d̃
[∆tv | 0] · I+

(
w(k)⊤ [x̂0,X]⊤a

)
,

(42)

where 1
d̃
[∆tv | 0] is obtained by subtracting [x̂0,X]⊤a from [x̂,X]⊤a. Then, we can re-write

w∗⊤

mlp

(
ϕ(1)(x̂)− ϕ(1)(x̂0)

)
into a more convenient form:

1

∆t
w∗⊤

mlp

(
ϕ(1)(x̂)− ϕ(1)(x̂0)

)
(43)

=

∫
1

d̃
β⊤
w[v | 0] · I+

(
w⊤[x̂0,X]⊤a

)
dP(w) (44)

+

∫
β⊤
w[x̂/∆t,X/∆t]⊤a

(
I+
(
w⊤[x̂,X]⊤a

)
− I+

(
w⊤[x̂0,X]⊤a

))
dP(w) (45)

+

∫
1

d̃
γww⊤[v | 0] · I+

(
w⊤[x̂0,X]⊤a

)
dP(w) (46)

+

∫
γww⊤[x̂/∆t,X/∆t]⊤a

(
I+
(
w⊤[x̂,X]⊤a

)
− I+

(
w⊤[x̂0,X]⊤a

))
dP(w) (47)

Remark. For other components in Eq. 41, i.e., 1
∆tw

∗⊤

mlp

(
ϕ(1)(xi; x̂)− ϕ(1)(xi; x̂0)

)
where i ∈ N0,

the corresponding result of the expansion in Eq. 43 is similar, which only differs by a scaling factor
(since the first element in both a and ai indicating whether the current node is connected to the new
testing node is non-zero) and replacing a with ai. Therefore, in the following proof we focus on
Eq. 43 and then generalize the result to other components in Eq. 41.
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D.1 PROOF FOR THEOREM 4 (CONVERGENCE TO A LINEAR FUNCTION)

We first analyse the convergence of Eq. 43. Specifically, for Eq. 44:∫
1

d̃
β⊤
w[v | 0] · I+

(
w⊤[x̂0,X]⊤a

)
dP(w)

=

∫
1

d̃
β⊤
w[v | 0] · I+

(
w⊤[x̂0/t,X/t]

⊤a
)
dP(w)

→
∫

1

d̃
β⊤
w[v | 0] · I+

(
w⊤[v | 0]

)
dP(w) =

c′v

d̃
, as t→ ∞

(48)

where the final result is a constant that depends on training data, direction v and node degree d̃.
Moreover, the convergence of Eq. 45 is given by∫

β⊤
w[x̂/∆t,X/∆t]⊤a

(
I+
(
w⊤[x̂,X]⊤a

)
− I+

(
w⊤[x̂0,X]⊤a

))
dP(w)

=

∫
β⊤
w[x̂/∆t,X/∆t]⊤a

(
I+
(
w⊤[[v | 1

t+∆t
],

X

t+∆t
]⊤a

)
− I+

(
w⊤[[v | 1

t
],
X

t
]⊤a

))
dP(w)

→
∫

β⊤
w[x̂/∆t,X/∆t]⊤a

(
I+
(
w⊤[v | 0]

)
− I+

(
w⊤[v | 0]

))
dP(w) = 0, as t→ ∞

(49)

The similar results in Eq. 48 and Eq. 49 also apply to analysis of Eq. 46 and Eq. 47, respectively. By
combining these results, we conclude that

1

∆t
w∗⊤

mlp

(
ϕ(1)(x̂)− ϕ(1)(x̂0)

)
→ cv

d̃
, as t→ ∞ (50)

It follows that
1

∆t
(f (x̂)− f (x̂0)) → cvd̃

−1
∑

i∈N0∪{0}

d̃−1
i , as t→ ∞. (51)

In conclusion, both MLP and PMLP with ReLU activation will eventually converge to a linear
function along directions away from the training data. In fact, this result also holds true for two-layer
GNNs with weighted-sum style message passing layers by simply replacing w∗

mlp by w∗
gnn in the

proof.

However, a remarkable difference between MLP and PMLP is that the linear coefficient for MLP
is a constant cv that is fixed upon a specific direction v and not affected by the inter-connection
between testing node x and training data {(xi, yi)}ni=1. In contrast, the linear coefficient for PMLP
(and GNN) is also dependent on testing node’s degree and the degrees of adjacent nodes.

Moreover, by Proposition. 1, MLP and PMLP share the same w∗
mlp (including βw and γw), and thus

the constant cv in Eq. 51 is exactly the linear coefficient of MLP. This can also be verified by setting
x to be an isolated node, in which case d̃−1

∑
i∈N0∪{0} d̃

−1
i = 1 and PMLP is equivalent to MLP.

Therefore, we can directly compare the linear coefficients for MLP and PMLP. As an immediate
consequence, if all node degrees of adjacent nodes are larger than the node degree of the testing node,
the linear coefficient will become smaller, vice versa.

D.2 PROOF FOR THEOREM 5

We next analyse the convergence rate for Eq. 48 and Eq. 49 to see to what extent can PMLP deviate
from the converged linear coefficient as an indication of its tolerance to out-of-distribution sample.
For Eq. 48, we have∣∣∣∣∫ 1

d̃
β⊤
w[v | 0] ·

(
I+
(
w⊤[x̂0,X]⊤a

)
− I+

(
w⊤[v | 0]

))
dP(w)

∣∣∣∣
≤ c′1

d̃
·
∫ ∣∣I+ (w⊤[x̂0,X]⊤a

)
− I+

(
w⊤[v | 0]

)∣∣dP(w)

=
c′1

d̃
·
∫ ∣∣I+ (w⊤[[x0 | 1],X]⊤a

)
− I+

(
w⊤[x0 | 0]

)∣∣dP(w)

(52)
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Based on the observation that the integral of |I+(w⊤v1) − I+(w⊤v2)| represents the volume of
non-overlapping part of two half-balls that are orthogonal to v1 and v2, which grows linearly with
the angle between v1 and v2, denoted by ∡ (v1,v2). Therefore, we have

c′1

d̃
·
∫ ∣∣I+ (w⊤[[x0 | 1],X]⊤a

)
− I+

(
w⊤[x0 | 0]

)∣∣dP(w)

=
c1

d̃
· ∡
(
[[x0 | 1],X]⊤a , [x0 | 0]

)
,

(53)

Note that the first term in the angle can be decomposed as

d̃ · [[x0 | 1],X]⊤a = [x0 | 0] + [0 | 1] +
∑

i∈N (0)

xi. (54)

Suppose all node features are normalized, then we have

∡
(
[[x0, 1],X]⊤a , [x0, 0]

)
≤ ∡ ([x0, 0] , [x0, 1]) + ∡(x̂0 , x̂0 +

∑
i∈N (0)

xi)

= arctan(
1

t
) + arctan(

(d̃− 1)
√
1− α2

(d̃− 1)α+
√
t2 + 1

)

= O(
1 + (d̃− 1)

√
1− α2

t
)

(55)

where α denotes the cosine similarity of the testing node and the sum of its neighbors. The last step
is obtained by noting arctan(x) < x. Using the same reasoning, for Eq. 49, we have∣∣∣∣∫ β⊤

w[x̂/∆t,X/∆t]⊤a
(
I+
(
w⊤[x̂0,X]⊤a

)
− I+

(
w⊤[x̂,X]⊤a

))
dP(w)

∣∣∣∣
≤

∣∣β⊤
w[x̂/∆t,X/∆t]⊤a

∣∣ · ∫ ∣∣I+ (w⊤[x̂0,X]⊤a
)
− I+

(
w⊤[x̂,X]⊤a

)∣∣ dP(w)

=
∣∣β⊤

w[x̂/∆t,X/∆t]⊤a
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t
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X
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a
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]⊤
a ,

[
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t

t+∆t
X
]⊤

a

)
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(56)
Note that the second term in the angle can be re-written as[

[x0 | t

t+∆t
],

t

t+∆t
X
]⊤

a =
t

t+∆t
·
[
[x0 | 1],X

]⊤
a+

∆t

t+∆t
·
[
[x0 | 0],0

]⊤
a, (57)

and hence the angle is at most ∆t/(t+∆t) times of that in Eq. 53. It follows that∣∣∣∣∫ β⊤
w[x̂/∆t,X/∆t]⊤a

(
I+
(
w⊤[x̂0,X]⊤a

)
− I+

(
w⊤[x̂,X]⊤a

))
dP(w)

∣∣∣∣
= O(

t+∆t

d̃
) ·O(

1 + (d̃− 1)
√
1− α2

t
) ·O(

∆t

t+∆t
)

= O(
1 + (d̃− 1)

√
1− α2

d̃t
)

(58)

For Eq. 46 and Eq. 47, similar results can be derived by bounding w with standard concentration
techniques. By substituting the above convergence rates to Eq. 43, and dividing it by the linear
coefficient in Eq. 50, the convergence rate for Eq. 43 is∣∣∣∣∣ 1

∆tw
∗⊤

mlp

(
ϕ(1)(x̂)− ϕ(1)(x̂0)

)
− cv/d̃

cv/d̃

∣∣∣∣∣ = O(
1 + (d̃− 1)

√
1− α2

t
) (59)

It follows that the convergence rate for Eq. 37 is O(
1+(d̃max−1)

√
1−α2

min

t ), where d̃max denotes the
maximum node degree in the testing node’ neighbors (including itself) and

αmin = min{αi}i∈N0∪{0} (60)
denotes the minimum cosine similarity for the testing node’ neighbors (including itself). This
completes the proof.
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E OVER-SMOOTHING, DEEP GNNS, AND HETEROPHILY

Over-Smoothing and Deep GNNs. To gain more insights into the over-smoothing problem and the
impact of model depth, we further investigate GNN architectures with residual connections (including
GCN-style ones where residual connections are employed across FF layers, e.g., JKNet (Xu et al.,
2018b) and GCNII (Chen et al., 2020b), and SGC/APPNP-style ones where the implementation
of MP layers involve residual connections, e.g., APPNP with non-zero α). Table. 3 and Table. 4
respectively report the results for SGC/APPNP-style and GCN-style GNNs on Cora dataset. Similar
trends are also observed on other datasets, some of which are plotted in Fig. 5.

As we can see, the performances of PMLPs without residual connections (i.e., PMLPGCN , PMLPSGC

and PMLPAPP ) exhibit very similar downward trends with their GNN counterparts w.r.t. increasing
layer number (from 2 to 128). Such phenomenon in GNNs is commonly thought to be caused by the
oversmoothing issue wherein node features become hard to distinguish after multiple steps of message
passing, and since PMLP is immune from such problem in the training stage but still perform poorly
in testing, we may conclude that oversmoothing is more of a problem related to failure modes of
GNNs’ generalization ability, rather than impairing their representational power, which is somewhat
in alignment with (Cong et al., 2021) where the authors theoretically show very deep GNNs that
are vulnerable to oversmoothing can still achieve high training accuracy but will perform poorly in
terms of generalization. We experimental results further suggest the reason why additional residual
connections (either in MP layers, e.g., ResAPPNP/SGC, or across FF layers, e.g., GCNII and JKNet)
are empirical effective for solving oversmoothing is that they can improve GNN’s generalization
ability according to results of PMLPGCNII , PMLPJKNet, PMLPResSGC and PMLPResAPP where
model depth seems to have less impact on their generalization performance.

Graph Heterophily. We further conduct experiments on six datasets (i.e., Chameleon, Squirrel,
Film, Cornell, Texas, Wisconsin (Pei et al., 2020)) with high heterophily levels, and the results are
shown in Table. 5. As we can see, PMLP achieves better performance than MLP when its GNN
counterpart can outperform MLP, but is otherwise inferior than MLP. This indicates that the inherent
generalization ability of a certain GNN architecture is also related to whether the message passing
scheme is suitable for the characteristics of data, which also partially explains why training more
dedicated GNN architectures such as H2GCN (Zhu et al., 2020) is helpful for improving model’s
generalization performance on heterophilic graphs.

21



Published as a conference paper at ICLR 2023

Table 3: For SGC and APPNP styles, layer number denotes the number of MP layers. The number of
FF layers and hidden size are fixed as 2 and 64. ‘Res’ denotes using residual connection in the form
of X(k) = (1− α)MP(X(k−1)) + αX(0).

# Layers 2 4 8 16 32 64 128

MLP 52.56± 0.41 52.56± 0.41 52.56± 0.41 52.56± 0.41 52.56± 0.41 52.56± 0.41 52.56± 0.41

α
=

0 SGC 73.12± 1.20 75.36± 1.40 76.78± 1.63 75.22± 2.08 73.08± 2.75 64.70± 4.14 47.64± 3.09

PMLPSGC 73.48± 1.30 75.38± 1.73 76.20± 2.12 75.66± 2.18 73.60± 3.07 67.76± 4.38 53.64± 6.35

α
=

0.
1 SGC+Res 71.56± 1.11 73.98± 1.16 75.02± 1.28 75.50± 1.05 75.40± 1.05 75.38± 1.05

(Converged)
75.38± 1.05
(Converged)

PMLPSGC+Res 72.80± 0.67 75.08± 1.14 76.06± 1.13 76.22± 1.18 76.20± 1.23 76.14± 1.14 76.14± 1.14
(Converged)

MLP 52.56± 0.41 52.56± 0.41 52.56± 0.41 52.56± 0.41 52.56± 0.41 52.56± 0.41 52.56± 0.41

α
=

0 APPNP 73.30± 1.39 76.14± 1.07 77.32± 0.55 76.42± 0.65 75.46± 0.92 70.38± 1.03 52.24± 2.46

PMLPAPP 74.58± 0.58 77.08± 0.77 77.56± 0.60 76.68± 0.77 75.18± 0.83 71.00± 0.85 51.00± 6.58

α
=

0.
1 APPNP+Res 72.28± 1.56 74.82± 1.31 75.78± 1.18 76.18± 1.11 75.98± 1.01 76.04± 0.92

(Converged)
76.04± 0.92
(Converged)

PMLPAPP+Res 72.96± 0.75 75.66± 1.05 76.68± 0.82 76.82± 0.81 76.86± 0.87 76.86± 0.87 76.86± 0.87
(Converged)

Table 4: Layer number denotes the number of MP+FF layers, and the number of FF layers is fixed as 2.
The hidden size is fixed as 64. For GCNII, H(ℓ+1) = σ(((1−αℓ)MP(H(ℓ))+αℓH

(0))((1−βℓ)In+
βℓW

(ℓ))), we set αℓ = 0.1, βℓ = 0.5/ℓ. ResNet here denotes MLP with residual connections (or
equivalently, GCNII without MP operations). For JKNet, we use concatenation for layer aggregation.
MLP+JK denotes MLP with jumping knowledge (or equivalently, JKNet without MP operations)

.
# Layers 2 4 8 16 32 64 128

w
/o

re
s. MLP 52.56± 0.41 48.18± 4.17 32.26± 5.66 30.64± 6.75 27.60± 6.76 19.86± 3.25 20.14± 2.01

GCN 73.84± 1.49 74.86± 3.03 45.52± 6.10 33.50± 5.23 24.08± 6.90 27.82± 2.76 19.60± 9.52

PMLPGCN 73.96± 0.78 74.56± 2.94 44.98± 6.51 29.58± 10.74 26.66± 5.31 27.10± 8.63 27.76± 7.14

w
ith

re
s. ResNet 53.08± 1.15 53.68± 0.52 53.12± 1.57 52.70± 2.16 49.36± 1.70 45.74± 1.54 40.74± 2.39

GCNII 67.36± 1.57 74.54± 1.02 76.00± 0.62 76.28± 0.68 75.42± 1.65 75.18± 0.87 68.24± 1.89

PMLPGCNII 69.08± 0.80 74.98± 0.51 75.26± 1.29 75.62± 1.48 75.12± 1.38 72.64± 2.24 68.52± 1.47

w
ith

re
s. MLP+JK 52.76± 1.38 53.46± 1.29 54.48± 1.19 56.10± 0.73 53.10± 1.30 49.38± 1.96 30.40± 1.63

JKNet 65.50± 0.78 72.02± 1.15 72.22± 1.08 71.50± 0.83 71.38± 1.61 60.66± 2.63 51.52± 4.00

PMLPJKNet 67.82± 0.78 72.76± 1.59 74.02± 0.53 73.92± 1.04 72.76± 1.28 67.70± 0.83 44.70± 6.47

Table 5: Mean and STD of testing accuracy on datasets with high heterophily level.

Dataset Chameleon Squirrel Film Cornell Texas Wisconsin

G
N

N
s GCN 56.27± 1.60 41.21± 0.48 29.88± 0.56 67.03± 4.44 63.24± 8.02 63.92± 4.51

SGC 58.73± 2.09 43.73± 1.95 30.92± 0.68 58.92± 10.54 62.70± 7.00 66.67± 4.60

APPNP 57.98± 3.70 41.59± 1.50 32.20± 1.37 65.95± 3.08 65.95± 2.42 66.27± 2.56

M
L

Ps

MLP 49.61± 1.36 29.20± 2.32 36.43± 2.21 78.92± 6.73 76.76± 3.08 83.53± 3.28

PMLPGCN 57.02± 3.74 36.39± 3.28 29.75± 1.16 65.41± 8.20 62.70± 11.04 66.67± 2.77
∆GNN +1.33% −11.70% −0.44% −2.42% −0.85% +4.30%
∆MLP +14.94% +24.62% −18.34% −17.12% −18.32% −20.18%

PMLPSGC 55.83± 2.51 39.44± 1.93 28.66± 0.61 55.14± 9.09 62.70± 4.44 62.35± 5.26
∆GNN −4.94% −9.81% −7.31% −6.42% 0.00% −6.48%
∆MLP +12.54% +35.07% −21.33% −30.13% −18.32% −25.36%

PMLPAPP 57.28± 2.25 39.73± 1.85 31.54± 0.74 68.11± 6.16 65.95± 8.24 67.45± 4.51
∆GNN −1.21% −4.47% −2.05% +3.28% 0.00% +1.78%
∆MLP +15.46% +36.06% −13.42% −13.70% −14.08% −19.25%
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Figure 5: Performance variation of different GNN architectures with (GCNII, JKNet, Re-
sAPPNP/SGC) or without (GCN, APPNP/SGC) residual links w.r.t. increasing layer number (from 2
to 128). 23
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Table 6: Head-to-head comparison of three proposed PMLP models (PMLPGCN , PMLPSGC and
PMLPAPP ) and the standard MLP.

Model Train and Valid Inference GNN Counterpart

MLP

ŷu = ψ(xu)

ŷu = ψ(xu) N/A

PMLPGCN h
(l)
u = ψ(l)(MP({h(l−1)

v }v∈Nu∪{u})) GCN (Kipf & Welling, 2017)

PMLPSGC ŷu = ψ(Multi-MP({xv}v∈V)) SGC (Wu et al., 2019)

PMLPAPP ŷu = Multi-MP(ψ({xv}v∈V)) APPNP (Klicpera et al., 2019)

Table 7: Statistics of datasets.

Dataset # Classes # Nodes # Edges # Node features

Cora (McCallum et al., 2000) 7 2,708 5,278 1,433
Citeseer (Sen et al., 2008) 6 3,327 4,552 3,703
Pubmed (Namata et al., 2012) 3 19,717 44,324 500
A-Photo (McAuley et al., 2015) 8 7,650 119,081 745
A-Computer 10 13,752 245,861 767
Coauthor-CS (Sinha et al., 2015) 15 18,333 81,894 6,805
Coauthor-Physics 5 34,493 247,962 8,415
OGBN-Arxiv (Hu et al., 2020) 40 169,343 1,157,799 128
OGBN-Products 47 2,449,029 61,859,076 100
Flickr (Zeng et al., 2019) 7 89,250 449,878 500

F IMPLEMENTATION DETAILS

We present implementation details for our experiments for reproducibility. We implement our model
as well as the baselines with Python 3.7, Pytorch 1.9.0 and Pytorch Geometric 1.7.2. All parameters
are initialized with Xavier initialization procedure. We train the model by Adam optimizer. Most of
the experiments are running with a NVIDIA 2080Ti with 11GB memory, except that for large-scale
datasets we use a NVIDIA 3090 with 24GB memory. Table 6 summarizes the architecture of PMLPs
adopted in training and testing stages for clear head-to-head comparison.

F.1 DATASET DESCRIPTION

We use sixteen widely adopted node classification benchmarks involving different types of networks:
three citations networks (Cora, Citeseer and Pubmed), two product co-occurrency networks (Amazon-
Computer and Amazon-Photo), two coauthor-ship networks (Coauthor-CS, Coauthor-Computer),
and three large-scale networks (OGBN-Arxiv, OGBN-Products and Flickr). For Cora, Citeseer and
Pubmed, we use the provided split in (Kipf & Welling, 2017). For Amazon-Computer, Amazon-Photo,
Coauthor-CS and Coauthor-Computer, we randomly sample 20 nodes from each class as labeled
nodes, 30 nodes for validation and all other nodes for test following (Shchur et al., 2018). For two
large-scale datasets, we follow the original splitting Hu et al. (2020) for evaluation. For Flickr, we use
random split where the training and validation proportions are 10%. The statistics of these datasets
are summarized in Table. 7.

F.2 HYPERPARAMETER SEARCH

We use the same MLP architecture (i.e., number of FF layers and size of hidden states) as backbone
for models in the same dataset, same GNN architecture (i.e., number of MP layers) for PMLP and
its GNN counterpart, and finetune hyperparameters for each model including dropout rate (from
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}), weight decay factor (from {0, 0.0001, 0.001, 0.01, 0.1}),
and learning rate (from {0.0001, 0.001, 0.01, 0.1}) using grid search.

For model architecture hyperparameters (i.e., layer number, size of hidden states), we fix them as
reported in Table. 8, instead of fine-tuning them in favor of GNN or PMLP for each dataset which
might introduce bias into their comparison. By default, we set (FF and MP) layer number as 2, and
hidden size as 64, but manually adjust in case the performance of GNN is far from the optimal.
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Table 8: Summary of model architectures.

Cora Citeseer Pubmed Photo Computer CS Physics Arxiv Products Flickr
G

C
N Hidden Size 64 64 64 32 256 128 128 64 64 64

# MP Layer 2 2 2 2 2 2 2 2 2 2

# FF Layer 2 2 2 2 2 2 2 2 2 2

PM
L

P g
c
n Hidden Size 64 64 64 32 256 128 128 64 64 64

# MP Layer 2 2 2 2 2 2 2 2 2 2

# FF Layer 2 2 2 2 2 2 2 2 2 2

SG
C Hidden Size 64 64 64 32 256 128 128 64 64 64

# MP Layer 2 2 2 2 2 2 2 2 2 2

# FF Layer 2 2 2 2 2 2 2 2 2 2

PM
L

P s
g
c Hidden Size 64 64 64 32 256 128 128 64 64 64

# MP Layer 2 2 2 2 2 2 2 2 2 2

# FF Layer 2 2 2 2 2 2 2 2 2 2

A
PP

N
P Hidden Size 64 64 64 32 256 128 128 64 64 64

# MP Layer 2 2 2 2 2 2 2 2 2 1

# FF Layer 2 2 2 2 2 2 2 2 2 2

PM
L

P a
p
p Hidden Size 64 64 64 32 256 128 128 64 64 64

# MP Layer 2 2 2 2 2 2 2 2 2 1

# FF Layer 2 2 2 2 2 2 2 2 2 2

M
L

P Hidden Size 64 64 64 32 256 128 128 64 64 64

# MP Layer / / / / / / / / / /

# FF Layer 2 2 2 2 2 2 2 2 2 2

Furthermore, we have discussed different settings for these architecture hyperparameters and find the
performance of PMLP is consistently close to its GNN counterpart.

For other hyperparameters (i.e., learning rate, dropout rate, weight decay factor), we finetune them
separately for each model on each dataset based on the performance on validation set. For PMLP,
we use the MLP architecture for validation rather than using GNN since we find there is only slight
difference in performance. In that sense, all PMLPs share the same training and validation process as
the vanilla MLP, making them exactly the same model before inference.
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G ADDITIONAL EXPERIMENTAL RESULTS

We supplement more experimental results in this section including extensions of the results in the
main text and visualizations of the internal representations of nodes learned by 2-layer MLP, GNN,
and PMLP on Cora and Citeseer datasets.

As we can see from Fig. 11-14, both PMLPs and GNNs show better capability for separating nodes
of different classes than MLP in the internal layer, despite the fact that PMLPs share the same set of
weights with MLP. Such results might indicate that the superior classification performance of GNNs
mainly stem from the effects of message passing in inference, rather than GNNs’ ability of learning
better node representations.
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Figure 6: Impact of graph structural information by changing data split, sparsifying the graph, adding
random structural noise on Cora.
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Figure 7: Performance variation with increasing layer number (from 2 to 8). Layer number here
denotes number of FF and MP layers for GCN, and number of MP layers for SGC and APPNP.
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Figure 8: Performance variation with increasing size of hidden states.
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Figure 9: Performance variation with different activation functions in FF layer.
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Figure 10: Performance variation with different transition matrices in MP layer.
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(a) GCN (b) PMLPGCN (c) MLP

Figure 11: Visualization of node embeddings (2-D projection by t-SNE) in the internal layer for
two-layer MLP, GCN and PMLP on Cora.

(a) SGC (b) PMLPSGC (c) MLP

Figure 12: Visualization of node embeddings (2-D projection by t-SNE) in the internal layer for
two-layer MLP, SGC and PMLP on Cora.

(a) GCN (b) PMLPGCN (c) MLP

Figure 13: Visualization of node embeddings (2-D projection by t-SNE) in the internal layer for
two-layer MLP, GCN and PMLP on Citeseer.

(a) SGC (b) PMLPSGC (c) MLP

Figure 14: Visualization of node embeddings (2-D projection by t-SNE) in the internal layer for
two-layer MLP, SGC and PMLP on Citeseer.
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