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Abstract
Learning a high-quality transition model is of
great importance for sequential decision-making
tasks, especially in offline settings. Nevertheless,
the complex behaviors of transition dynamics in
real-world environments pose challenges for the
standard forward models because of their induc-
tive bias towards smooth regressors, conflicting
with the inherent nature of transitions such as dis-
continuity or large curvature. In this work, we
propose to model the transition probability im-
plicitly through a scalar-value energy function,
which enables not only flexible distribution pre-
diction but also capturing complex transition be-
haviors. The Energy-based Transition Models
(ETM) are shown to accurately fit the discontinu-
ous transition functions and better generalize to
out-of-distribution transition data. Furthermore,
we demonstrate that energy-based transition mod-
els improve the evaluation accuracy and signif-
icantly outperform other off-policy evaluation
methods in DOPE benchmark. Finally, we show
that energy-based transition models also benefit
reinforcement learning and outperform prior of-
fline RL algorithms in D4RL Gym-Mujoco tasks.

1. Introduction
Learning a transition model provides a promising approach
for enhancing efficient decision-making (Sutton & Barto,
2018), known as model-based methods (Janner et al., 2019;
Luo et al., 2024b; Moerland et al., 2023). Model-based
methods involve encapsulating the transition dynamics of
the real environment to predict the subsequent state given a
specific state-action pair. By leveraging collected transition
data to model these dynamics, the learned model extends
beyond the initial dataset, effectively facilitating subsequent
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decision-making and evaluation. This is particularly advan-
tageous in offline settings (Levine et al., 2020) where addi-
tional samples cannot be obtained by online interaction. In
such scenarios, policies can be executed within the learned
model instead of directly interacting with the real environ-
ment, leading to improved and more robust offline policy
evaluation (Thomas & Brunskill, 2016; Fu et al., 2021) and
optimization (Yu et al., 2020; 2021; Chen et al., 2021; Rigter
et al., 2022; Sun et al., 2023). Therefore, model-based meth-
ods have the potential to significantly enhance real-world
decision-making applications.

As the core of model-based methods, learning the tran-
sition function requires the ability to accurately capture
the characteristics of the environment. In sequential tasks,
as the trajectory length increases and the policy distribu-
tion shifts, model errors have a greater impact on decision-
making (Asadi et al., 2019; Xu et al., 2020). Previous works
primarily address the detrimental impact of model errors in
two ways. One approach is to avoid exploring areas with
high prediction uncertainty (Yu et al., 2020; Sun et al., 2023).
The second approach aims to introduce new architectures for
transition modeling. For example, Zhang et al. suggests us-
ing autoregressive dynamics models for continuous control.
Additionally, Trajectory Transformer (TT) (Janner et al.,
2021) adopts a transformer architecture to model the trajec-
tory distribution. However, these works simply adopt new
model architectures and larger capacities, without changing
models’ optimization process and then, the generalization
ability, fundamentally.

The current transition models typically explicitly predict
the next state, which we refer to as a Forward Transition
Model (FTM). It inputs the current state-action pair and out-
puts the next-state prediction with variance estimate. The-
oretically, FTM, given a sufficient model capacity, should
have the ability to fit various scenarios. However, we have
found that in some complex situations, especially for envi-
ronmental transitions with discontinuities or sharp changes
that are ubiquitous in real-world tasks with frictional contact
(Todorov, 2014; Coumans, 2015; Pfrommer et al., 2021),
FTMs are difficult to perform well, which must explicitly
match the large gradient of the steep function that may cause
generalization issues especially for the areas with low data
density, and requires sufficiently dense data and thorough
optimization to compensate this effect. We demonstrate that
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even a simple case could lead to a poor generalization.

In this paper, we turn to energy-based transition model-
ing (ETM) as an alternative to FTM, which can be more
consistent with the complex nature of real-world transition
dynamics. Energy-based models (Song & Kingma, 2021) in-
troduce an energy function to implicitly represent the target
distribution and have demonstrated enhanced generalization
capabilities compared to forward models when confronted
with non-smoothness, extrapolations, and multi-modality
(Florence et al., 2021). They can approximate steep or dis-
continuous functions without large gradients in the function
approximator, distinctly superior to forward models. Cor-
responding to a robust variant of the maximum likelihood
method, training the energy models contrastively by mini-
mizing InfoNCE loss also optimizes the energy prediction
at the contrastive points, balancing and shaping the energy
surface. These desirable properties enable our energy-based
transition models (ETM) to effectively capture irregular tran-
sition behaviors and perform better in complex scenarios.

We showcase the efficacy of our ETM for irregular transition
modeling in a didactic environment with discontinuous tran-
sition dynamics. We also find the energy-based transition
models trained on offline data with limited coverage have
a smaller absolute error when tested on out-of-distribution
transitions. This property is beneficial to offline policy eval-
uation tasks, where we can simulate trajectories for the poli-
cies and directly estimate their expected values. Besides, we
also conduct experiments on D4RL benchmarks (Fu et al.,
2020) , where the improvement of model accuracy boosts
the performance of policy optimization. Concretely, the key
contributions of this work are summarized as follows:

1. This work is the first to introduce energy-based models
to learn the transition dynamics.

2. We reveal the relationship between a contrastive learn-
ing objective InfoNCE and the maximum likelihood
principle for energy-based models.

3. Our ETMs significantly outperform existing OPE meth-
ods on a set of DOPE tasks (Fu et al., 2021).

4. Our ETMs also boost the offline policy optimization
over D4RL MuJoCo tasks (Fu et al., 2020), surpassing
or matching the previous state-of-the-art performance.

2. Preliminaries
2.1. Reinforcement Learning

The objective of reinforcement learning is to learn a policy
that maximizes the expected return in a Markov Decision
Process (MDP) (Sutton & Barto, 2018). An MDP can be
described by a tuple (S,A, P, r, γ, ρ0), where S is the state

space, A is the action space, P (s′|s, a) is the transition
probability, r(s, a) is the reward function, γ ∈ (0, 1) is the
discount factor and ρ0 is the initial state distribution.

For a given policy π, the value function V π(s) =
Eπ

[∑∞
t=0 γ

tr(st, at)|s0 = s
]

is the expected discounted
cumulative rewards for the trajectories starting from
s0 and following policy π. The action-value func-
tion (or Q function) is similarly defined as Qπ(s, a) =
Eπ

[∑∞
t=0 γ

tr(st, at)|s0 = s, a0 = a
]
. The expected

value vπ = Eπ

[∑∞
t=0 γ

tr(st, at)
]
= Es∼ρ0 [V

π(s)], then
the evaluation of policy π is to estimate vπ and reinforce-
ment learning is to find a policy π∗ whose expected value
vπ

∗ ≥ vπ
′

for any other policy π′.

2.2. Offline RL and Off-Policy Evaluation

In the online setting, the agent can interact with the environ-
ment to collect experiences to estimate the policy value and
improve the policy performance. However, in the offline
setting (Levine et al., 2020), the agent is provided a static
dataset, and further interaction with the environment is not
allowed. Here the offline datasetD = {(s, a, r, s′)} consists
of transitions from trajectories collected by some behavior
policies, which normally differ from the current policy to be
evaluated or optimized. This distribution discrepancy leads
to a primary obstacle faced in offline reinforcement learning,
extrapolation errors, which result in severe value overesti-
mation due to the bootstrapped Bellman value update. To
mitigate these errors, offline RL algorithms adopt conser-
vatism in different ways (Fujimoto et al., 2019; Yu et al.,
2020; Kumar et al., 2020; Fujimoto & Gu, 2021; Kostrikov
et al., 2021; Sun et al., 2023), where the agent is discouraged
from exploiting extrapolation.

Off-policy evaluation (OPE) aims to evaluate the perfor-
mance of target policies based on static off-policy experi-
ences (Fu et al., 2021). The Monte Carlo estimate of true
policy values requires on-policy experiences, normally ob-
tained by online interaction with the environment, and the
static offline setting presents a substantial challenge to accu-
rate evaluation, usually leading to significant value gaps.

2.3. Model-based Reinforcement Learning

Model-based methods attempt to learn a parametric model
Pθ to recover the underlying transition dynamics P of the
environment from the available experiences, allowing the
agent to synthesize imagined experiences to facilitate policy
evaluation and optimization. This paradigm is believed to
have the better potential to fully leverage the limited expe-
riences, which reduces the demand for the interaction data
and improves the sample efficiency for the online RL tasks
(Janner et al., 2019). In the offline scenarios, the learned
transition model plays a more important role because it
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serves as a surrogate for the environment dynamics to inter-
act with the agent, potentially enhancing adaptability to out-
of-distribution states and actions (Yu et al., 2020; Kidambi
et al., 2020). However, the learned transition models in-
evitably suffer from errors for the limited dataset, which will
be further amplified during long-horizon rollout. The model
errors not only result in poor value estimation but also tend
to be erroneously exploited by the reinforcement learning
algorithms, leading to significant performance degradation.
To mitigate the impact of model errors, recent approaches
incorporate uncertainty estimation to penalize the rewards
at the unpredictable region (Yu et al., 2020; 2021; Sun et al.,
2023), which can be regarded as a model-based version of
conservatism.

The standard transition model learning is to use a forward
model that takes the current state and action as input and
predict the distribution of the next state as a multivariate
Gaussian with a diagonal covariance, which is trained to fit
the true transition P via log-likelihood maximization:

max
θ

L(θ) = E(s,a,s′)∼D log[(Pθ(s
′|s, a))]. (1)

2.4. Inductive bias of NN-based forward models

Forward models based on neural networks trained via SGD
are known to be biased towards smooth regressors of the
data (Belkin et al., 2019). Although this effect is often seen
as a form of regularization and beneficial in many problems
with smoothness nature, it will cause negative generaliza-
tions in some complex scenarios where the groundtruth
mapping has discontinuity or extreme curvature (Pfrommer
et al., 2021; Florence et al., 2021). Conflicting with the
problems’ irregularity property, training NN-based forward
models requires significant effort (sufficient data density and
thorough optimization) to overcome the inductive bias and
perform well therein. This negative generalization effect
caused jointly by problem irregularities and the conflicting
inductive bias of smooth function approximator is explained
by the concept of interference (Bengio et al., 2020), which
can be characterized in the first order by the inner product
of the objectives’ gradients:

ρ1,2 = ∇θL
⊤(x1)∇θL(x2), (2)

where x1, x2 correspond to two different data points and
L is a point-wise loss function. If ρ1,2 > 0, minimizing
the loss at one point x1 by a gradient step also decreases
the loss at the other point x2, resulting in a constructive
generalization. However, if ρ1,2 < 0, gradient descent at
x1 will increase the loss L(x2), which is the destructive
interference. In Appendix A we show that a simplistic case
with sharp value changes in groundtruth function can lead to
such negative interference. In more complex cases, similar
effects often occur to a greater extent.

Energy-based implicit models (Florence et al., 2021) turn
to predict an energy function to score various possible
target predictions instead of predicting the target directly.
Therefore, the interference between different sample points
brought by the function approximator does not directly af-
fect the predictions but affects the energy estimate. Training
energy function in a contrastive manner also balances the in-
fluence of different sample points and thereby weakens the
negative interference. These features enable energy-based
models to approximate steep or discontinuous functions
without large gradients in the function approximator that
may cause generalization issues.

3. Method
Inspired by the characteristics difference between forward
models and energy-based models in Section 2.4, we choose
the energy formulation to learn the environment transitions.

3.1. Energy-based Transition Models

The transition model can be defined implicitly by a pa-
rameterized scalar function Eθ(s, a, s

′), and the reduced
transition probability distribution is

pθ(s
′|s, a) = exp (−Eθ(s, a, s

′))

Zθ(s, a)
, (3)

where Zθ(s, a) =
∫
exp (−Eθ(s, a, s

′))ds′ is the normaliz-
ing constant. This formulation is known as energy-based
models (EBM) (Song & Kingma, 2021) and the scalar func-
tion Eθ(s, a, s

′) is named energy function. Notice that only
the energy function is directly parameterized (usually by
a neural network), while Zθ(s, a) is intractable due to the
integration and hence distribution pθ(s

′|s, a) is implicitly
defined and direct sampling from it is also intractable. We
name it Energy-based Transition Model (ETM).

The salient feature that using a scalar function to specify a
probability distribution first results in a flexible distribution
representation that is able to model complex dependency of
the state dimensions in contrast to the diagonal multivariate
Gaussian predicted by standard forward models. The cost
of this flexibility is the difficulty of the exact likelihood
computation and exact sampling. The common method to
approximate samples is to use efficient MCMC sampling
method (Liu & Liu, 2001; Neal et al., 2011), e.g., Langevin
MCMC (Welling & Teh, 2011), which iteratively refines
samples with step size ϵ > 0 to simulate the real sampling:

ŝ′k+1 ← ŝ′k −
ϵ2

2
∇s′Eθ(s, a, ŝ

′
k) + ϵzk, (4)

where zk are i.i.d standard Gaussian noises. In prac-
tice, the noise scale can be modulated to control sample
stochasticity. If the noise scale reduces to zero, the itera-
tive sampling reduces to finding the lowest energy point:
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ŝ′ = argmins′ Eθ(s, a, s
′), corresponding to the maximum

probability point of distribution (3), where the composition
of the argmin operator and the continuous energy function
enables the ability to capture complex functional behaviours,
especially for the discontinuity (Florence et al., 2021).

We train the energy function Eθ by optimizing the infoNCE
loss function (Oord et al., 2018) in a contrastive fashion:

l(s, a, s′, {s′j}Kj=1; θ) = − log
exp (−Eθ(s, a, s

′))∑K
j=1 exp (−Eθ(s, a, s′j))

,

(5)

where (s, a, s′) is a real transition experience and {s′j}Kj=1

are generated negative samples for the next state. In practice,
one of the K negative samples is chosen to be the positive
sample s′ so that the optimization can be seen as a classifi-
cation problem to tell the positive sample s′ from all the K
samples {s′j}Kj=1. Other K − 1 negative samples are gener-
ated independently from a Langevin MCMC process (4) as
an approximation to the real samples from the intractable
exact distribution p(s′|s, a; θ) ∝ exp (−Eθ(s, a, s

′)).

We also use a gradient penalty (Jolicoeur-Martineau &
Mitliagkas, 2019) to regularize the energy function dur-
ing training as in (Florence et al., 2021), because if the
energy function overfits the training data points, the land-
scape will raise a challenge to the gradient-based Langevin
sampling, leading to low-quality negative sample generation
and therefore degenerated contrastive training. This effect
resembles the generative adversarial network (GAN) (Good-
fellow et al., 2014; Arjovsky et al., 2017) training, where
an overly aggressive discriminator might hinder generator
training. The gradient penalty pushes down the Lipschitz
constant of energy function Eθ(s, a, s

′) w.r.t. s′, in favor of
the gradient-based Langevin MCMC, and stabilizes training.

3.2. Connections between InfoNCE loss and Maximum
Likelihood Principle

Learning the energy function by minimizing InfoNCE loss
(5) seems intuitively reasonable; however, it still requires
some theoretical justification for its rationale. In contrastive
representation learning, InfoNCE is a widely used loss func-
tion due to the mutual information argument (Oord et al.,
2018), while probabilistic models are normally trained by
maximum likelihood principle, and there is no clear rela-
tionship between the two methods previously.

In fact, we find that the InfoNCE loss can be interpreted as
a robust variant of the maximal likelihood training for the
energy-based model. For ease of elaboration, we use x to
denote features and y to denote labels.

To minimize the NLL (negative log likelihood) of p(y|x; θ),
we have a expression of its gradient:

∇θ−log p(yi|xi; θ) = ∇θEθ(xi, yi)−Ep(y|xi;θ)∇θEθ(xi, y),

which means gradient descent according to the likelihood is
equivalent to minimizing the following objective

l(xi, yi; θ) = Eθ(xi, yi)− Esg(p(y|xi;θ))Eθ(xi, y), (6)

where sg denotes stop gradient operator. However, it is
impractical to directly sample from the energy-induced dis-
tribution p(y|xi, θ), and many previous works use Markov
Chain Monte Carlo (MCMC) method to approximate the
real samples, which amounts to minimizing the surrogate
objective known as Contrastive Divergence (Hinton, 2002):

lCD(xi, yi; θ) = Eθ(xi, yi)− Ep̂(y|xi)Eθ(xi, y),

where p̂ is the data distribution of the samples obtained via
MCMC. However, this will introduce approximation errors
unless using long enough Markov chains, which hurts the
model training as noticed in previous literature on energy-
based models. If we take into account this sampling error
and tolerate an ϵ KL divergence DKL(p(·|xi; θ), p̂(·|xi)) ≤
ϵ between the sampling distribution p̂(y|xi) and the real
distribution p(y|xi; θ), we can instead minimize an upper
bound

max
p̄:DKL(p̄,p̂)≤ϵ

Eθ(xi, yi)− Êp̄(y|xi)Eθ(xi, y), (7)

so that the original objective (6) is no larger than this surro-
gate. This constrained optimization is equivalent to minimiz-
ing the Lagrange dual function for some λ > 0 according
to KKT conditions:

max
p̄

Eθ(xi, yi)− Êp̄(y|xi)Eθ(xi, y)− λDKL(p̄, p̂). (8)

Solving the maximization w.r.t. p̄ obtains the final objective:

Eθ(xi, yi) + λ logEp̂(y|xi;θ) exp
(
− 1

λ
Eθ(xi, y)

)
=− λ log

exp
(
− 1

λEθ(xi, yi)
)

Ep̂ exp
(
− 1

λEθ(xi, y)
) . (9)

Now we can see the InfoNCE loss (5) is an approximately
unbiased estimate of Equation (9) if the negative sample
number K is large enough and constants are ignored. There-
fore we conclude that InfoNCE loss is a robust variant of
the maximum likelihood energy learning objective that is
more tolerant to the error of negative sample distribution.

3.3. Overall Model Learning Framework

The learning process of energy-based transition models is
summarized in Algorithm 1. We use fully-connected net-
works with the same hidden layers and widths as in forward
transition models to represent the energy function in later ex-
periments for fair comparisons. The reward function r(s, a)
can either be jointly learned by adding an extra dimension
to s′, or separately incorporates a standard reward model.
The detailed hyperparameter setting is listed in Appendix C.
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Algorithm 1 Energy-based Transition Model Learning
Require: Offline transitions D = {(s, a, s′)}, initialized
energy network Eθ, batch size B, number of negative
samples K, iteration number N .
for i = 1 to N do

Sample transition batch {(s, a, s′)}B ∼ D
Generate negative samples {s′j}Kj=1 via Langevin (4)
Compute energy values for both positive transitions
Eθ(s, a, s

′) and negative transitions {Eθ(s, a, s
′
j)}Kj=1

Optimize the energy function parameter θ according to
lInfoNCE + lGradPen shown in (5) and (22).

end for
return Energy network Eθ

4. Experiments
In this section, we conduct a series of experiments to answer
the following questions: (1). Does ETM better recover
the discontinuous transition behaviors than standard FTMs?
(2). Does ETM have a smaller transition error on out-of-
distribution transitions? (3). Can ETM facilitate sequential
decision-making tasks like off-policy evaluation and offline
RL? 1.

4.1. Model Analysis

We answer the first question by a didactic example in Sec-
tion 4.1.1 and the second question in Section 4.1.2.

4.1.1. DIDACTIC EXAMPLE OF DISCONTINUOUS
TRANSITION

To investigate the capabilities of forward and energy-based
transition models to deal with discontinuous transition be-
haviors, we craft a didactic example featuring sharp transi-
tion changes. We construct a jumping transition prediction
task, where the observation contains two elements: posi-
tion and height, and agent utilize an one-dimension action
as force to jump. Different actions and current positions
can lead to distinct or even discontinuous next height. Fig-
ure 1(a) depicts the actual jump height within a certain ac-
tion range from a height of 0, revealing a highly non-smooth
transition. See more details of the task in Appendix C.4.

After training the forward transition model and the energy-
based model using a dataset where the action is randomly
sampled from 0.7 to 0.9 for jumping from any position on
the track with an equal number of samples, we proceeded
to evaluate both models across the data where the action
ranges from 0.65 to 0.95 at all positions on the track. The
relative model errors of in-distribution actions (from 0.65
to 0.7 and from 0.9 to 0.95) and that of out-of-distribution

1code: https://github.com/Ruifeng-Chen/
Energy-Transition-Models.git

actions (from 0.7 to 0.9) are shown in Figure 4.1.1. The
predicted height is depicted in Figure 1(b,c), and we also
present the results for specific actions, including action
values of 0.74 in Figure 2(b) and 0.68 (representing out-of-
distribution and extrapolation actions) in Figure 2(c). When
viewed from a three-dimensional mesh in Figure 1 (b) and
(c), our method demonstrates superior generalization. How-
ever, forward models struggle to predict such non-smooth
scenarios, and we have achieved better results on extrapo-
lated data points. Notably, the forward model even gener-
ated negative predictions while all the predicted targets are
positive. Our findings highlight that our method excels at
generalizing on non-smooth and extrapolation-reliant data,
indicating that our approach adeptly captures the data pat-
terns while circumventing the negative interference caused
by the smooth approximator.

4.1.2. ERRORS ON OUT-OF-DISTRIBUTION TRANSITIONS

We report the absolute error of FTMs and ETMs on the
holdout samples from their training dataset in mujoco tasks
in Table 8, where FTMs have smaller model errors in 16/20
tasks, demonstrating the flexible distribution modeling and
in-distribution generalization. However, transition models
are often faced with out-of-distribution data, requiring OOD
generalization. We train the ETMs and standard FTMs re-
spectively on the random and medium level dataset for the
hopper and walker2d tasks in D4RL, then test their accuracy
on datasets of all five levels. The random datasets are col-
lected by random policies, and therefore significantly differ
from the other four level datasets, which are collected by
the policies trained via Soft Actor Critic (SAC) algorithms
ranging from medium to expert performance. Therefore
such out-of-distribution generalization is of great challenge.
The results in Figure 3 show that though achieving similarly
small errors on the training datasets, the standard FTM has a
significantly larger transition error on the other four unseen
datasets than our ETM. This result showcases the energy-
based transition model’s advantage of out-of-distribution
generalization over forward transition models.

A typical situation to utilize the transition models is to roll
out the policies within the model to simulate trajectories,
in which case the transition models are faced with out-of-
distribution transitions due to the autoregressive prediction.
We visualize the simulated trajectories by energy-based
and forward transition models in Appendix H, comparing
them with the real trajectories. The off-policy evaluation
experiment in the next subsection also demonstrates the
OOD generalization ability of our ETMs.

4.2. Off-policy Evaluation

Off-policy evaluation task provides a good test scenario for
the dynamics learning, where an accurate transition model
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Figure 1. The visualization of the height of the next observation calculated from the current position and action in real transition (left),
ETM (middle), and FTM (right).
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Figure 2. The model error comparison between ETM and FTM in different action distributions (a) and the predicted height of real, FTM,
and ETM transitions at in-distribution action 0.74 (b) and out-of-distribution action 0.68 (c).

allows an accurate value estimation by rolling out the tar-
get policies therein. We follow the DOPE benchmark (Fu
et al., 2021) to evaluate policies over various D4RL envi-
ronments. The benchmark contains challenging OPE tasks
where the training dataset include varying levels of coverage
of the state-action space, and target policies are designed
toward resulting in state-action distributions different from
the ones induced by behavioral policies, which poses a great
challenge to the model’s generalization ability.

Enviroments and Tasks. We use 4 Gym-Mujoco environ-
ments (hopper, walker2d, halfcheetah, ant) with training
datasets of 5 levels and 4 Adroit environments with training
dataset of 3 levels, resulting in a total of 32 sets of tasks.
DOPE provides 11 target policies for each environment to
be evaluated by the OPE methods.

Baselines and Evaluation Metrics. We compare the direct
method using ETMs (Algo.2) with five model-free OPE
baselines reported by DOPE, i.e. Fitted Q-Evaluation
(FQE) (Le et al., 2019), that estimates the policy value
via iteratively performing Bellman update, Doubly Robust
(DR) (Jiang & Li, 2016), that combines the importance
sampling technique with a value estimator for variance re-

duction, Importance Sampling (IS) (Kostrikov & Nachum,
2020), that performs importance sampling with a learned
behavior policy, DICE (Yang et al., 2020), that uses a saddle-
point objective to estimate marginalized importance weights,
Variational Power Method (VPM) (Wen et al., 2020), that
runs a variational power iteration algorithm to estimate the
importance weights without the knowledge of the behav-
ior policy, as well as the model-based method using FTMs.
Following the DOPE benchmark, our evaluation metrics
include mean absolute error (MAE), rank correlation, and
regret@1, as detailed in Appendix D.1. The overall results
are reported in Figure 4, where all results are averaged over
three seeds to keep aligned with the DOPE benchmark.

Results. Figure 4 shows the mean overall performance of
our ETM and baselines over 32 Gym-Mujoco and Adroit
tasks. We find that ETM outperforms FTM and other base-
lines significantly. In general ETM attains the lowest ab-
solute error, which demonstrates the better model accuracy
and therefore the reduced value gaps. Besides, the higher
rank correlation and smaller regrets show that ETM can
also help select good policies, which is a desirable property
in realistic applications. The tabular results (including the
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Figure 3. The mean absolute errors of standard forward models and energy-based transition models trained on random or medium level
datasets of hopper and walker2d tasks in D4RL, tested under all five level datasets. The results are averaged over 3 seeds.
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Figure 4. The overall Off-Policy Evaluation results across 32 tasks, averaged over 3 seeds.

raw absolute error) for each environment and dataset are
reported in Appendix D.2.

4.3. Offline RL

Model-based methods for offline RL are believed to benefit
from the better generalization ability of transition models
compared to that of value functions for the model-free meth-
ods. We apply our ETM to offline RL algorithm and evaluate
the effectiveness on 12 D4RL Gym-Mujoco tasks.

Implementation. Similar to previous model-based RL algo-
rithms (Chua et al., 2018; Janner et al., 2019; Yu et al., 2020;
2021), we adopt an ensemble of five energy-based transition
models for policy optimization. For the policy optimization
part, we use Soft Actor Critic (Haarnoja et al., 2018) as the
base algorithm with the reward penalized by the std norm
of the next-state predictions of the model ensembles:

U(s, a; {Pθi}i=1∼5) = ∥std({ŝ′ ∼ Pθi(·|s, a)})∥. (10)

This penalty form resembles the ensemble-std version (Lu
et al., 2022) of MOPO (Yu et al., 2020), where the difference
is that ETMs do not provide a direct variance estimate and
we simply use the empirical std of samples. We name the
method Energy-Model-based offline Policy Optimization
(EMPO). It is possible to design a more advanced penalty to
further improve the performance, which is beyond the scope
of this work. Our implementation is based on OfflineRL-
Kit (Sun, 2023).

Baselines and Tasks. We compare our method with several

offline RL algorithms, including model-free methods: CQL
(Kumar et al., 2020), TD3+BC (Fujimoto & Gu, 2021),
EDAC (An et al., 2021); and model-based methods: MOPO
(Yu et al., 2020) , COMBO (Yu et al., 2021), Trajectory
Transformer (TT) (Janner et al., 2021), RAMBO (Rigter
et al., 2022), and MOBILE (Sun et al., 2023). These ap-
proaches are evaluated on a total of twelve datasets involving
three environments (hopper, walker2d, halfcheetah) and four
dataset types (random, medium, medium-replay, medium-
expert) per environment. The baseline results are obtained
from (Sun et al., 2023).

Results. Table 1 reports the normalized score for each
dataset with standard derivation among five seeds, the aver-
age performance over all datasets, and the number of solved
tasks whose score ≥ 95.0. We find that our method EMPO
outperforms or on par with previous best methods on 11 out
of 12 tasks and achieves the highest average score among
all methods. Besides, our method solves 7 out of 12 tasks to
achieve scores greater than 95.0, while previous methods at
most solve 5 (EDAC and MOBILE). These improvements
demonstrate the efficacy of ETM for policy optimization.

4.4. Ablation Study

In previous main experiments, we use 16 negative samples
in the ETM training for all tasks. To evaluate the impact of
the number of negative samples, we also train ETMs using
8 or 24 negative samples for model learning and report the
OPE results (absolute error, rank correlation, and regret) for
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Table 1. Normalized average returns in 12 D4RL tasks, averaged over 5 seeds. Solved tasks denotes the number of the tasks whose scores
≥ 95.0. The best results are bolded and the previously best results are underlined. The letters m, r and e in some task names represent
medium, replay and expert respectively to save space.

Task Name CQL TD3+BC EDAC MOPO COMBO TT RAMBO MOBILE EMPO (Ours)

halfcheetah-r 31.3 11.0 28.4 38.5 38.8 6.1 39.5 39.3 42.6 ± 2.1
hopper-random 5.3 8.5 25.3 31.7 17.9 6.9 25.4 31.9 32.2 ± 0.3
walker-random 5.4 1.6 16.6 7.4 7.0 5.9 0.0 17.9 20.6 ± 2.9

halfcheetah-m 46.9 48.3 65.9 73.0 54.2 46.9 77.9 74.6 77.4 ± 0.6
hopper-medium 61.9 59.3 101.6 62.8 97.2 67.4 87.0 106.6 106.2 ± 1.2
walker-medium 79.5 83.7 92.5 84.1 81.9 81.3 84.9 87.7 97.2 ± 1.3

halfcheetah-m-r 45.3 44.6 61.3 72.1 55.1 44.1 68.7 71.7 73.8 ± 1.5
hopper-m-replay 86.3 60.9 101.0 103.5 89.5 99.4 99.5 103.9 105.1 ± 0.7
walker-m-replay 76.8 81.8 87.1 85.6 56.0 82.6 89.2 89.9 95.2 ± 0.3

halfcheetah-m-e 95.0 90.7 106.3 90.8 90.0 95.0 95.4 108.2 103.8 ± 2.3
hopper-m-expert 96.9 98.0 110.7 81.6 111.1 110.0 88.2 112.6 113.7 ± 0.6
walker-m-expert 109.1 110.1 114.7 112.9 103.3 101.9 56.7 115.2 115.4 ± 0.8

Average 61.6 58.2 76.0 70.3 66.8 62.3 67.7 80.0 82.0
Solved tasks 3/12 2/12 5/12 2/12 3/12 4/12 2/12 5/12 7/12

four tasks in Table 9, 10 and 11 in Appendix. It shows that
the results are relatively robust to the number of negative
samples within a reasonable range.

5. Related Works
Transition Modeling. The standard approach to represent
transition models is to use probabilistic feedforward mod-
els to output the state prediction mean and variance (Chua
et al., 2018), modeled as a diagonal Gaussian distribution.
Later Zhang et al. proposed to use autoregressive models to
represent transition models. Janner et al. use a transformer
architecture to model the trajectory distribution, where the
transition information is encapsulated coupled with policy.
For the learning principle, most methods directly train the
model by likelihood maximization. Besides, Xu et al. shows
that adversarial model learning address the compounding
error issue. Luo et al. proposes to learn a generalizable dy-
namics reward by inverse reinforcement learning method.
Chen et al. proposes to train the transition models condi-
tioned on policies.

Replay buffers are also regarded as non-parametric transi-
tion models (Fedus et al., 2020), which remember all the
transition experiences available to the agents. Recent re-
searches mainly focus on how to replay the experiences
(Schaul et al., 2016; Sinha et al., 2022; Liu et al., 2021b;
Chen et al., 2024b) to boost the policy learning.

Offline Model-based RL. Offline model-based reinforce-
ment learning algorithms (Luo et al., 2024b; Moerland et al.,
2023) leverage transition dynamics models learned from of-
fline experiences to generate rollout data, facilitating policy
optimization. In order to mitigate the impact of model errors,

many recent works (Yu et al., 2020; 2021; Sun et al., 2023;
Rigter et al., 2022) incorporate conservatism into learning
algorithms. Some algorithms (Yu et al., 2020; Sun et al.,
2023) utilize uncertainty estimation to trust states with low
uncertainty, while some methods (Yu et al., 2021) try to
limit the policy to acting surrounding the dataset. (Chen
et al., 2021) introduced contextual meta-policy learning in
models to enable generalization to unseen situations.

Off-policy Evaluation. The previous works on OPE in-
clude methods based on fitted q-evaluation (Le et al., 2019),
importance sampling (Kostrikov & Nachum, 2020; Yang
et al., 2020), doubly robust method (Jiang & Li, 2016), and
model-based rollout (direct method) (Fu et al., 2021; Zhang
et al., 2021). Some other model-based methods consider
combining the model-based rollout and fitted value estimate
(Thomas & Brunskill, 2016; Hanna et al., 2017; Jin et al.,
2022), which may be combined with our ETMs.

Energy-based Models. Energy learning for distribution
modeling (LeCun et al., 2006; Song & Kingma, 2021) has a
rich history in machine learning. Langevin MCMC (Welling
& Teh, 2011; Neal et al., 2011) sampling is often used
for training and implicit inference (Du & Mordatch, 2019).
Energy-based models have drawn much attention in com-
puter vision, especially for generative image modeling (Xie
et al., 2016; Gao et al., 2018; Du & Mordatch, 2019; Grath-
wohl et al., 2019). Some works also explore conditional
energy-based models as a formulation for probabilistic re-
gression (Gustafsson et al., 2020b), demonstrating partic-
ularly impressive performance on vision tasks (Bhat et al.,
2019; Gustafsson et al., 2020a). Recently, energy-based
modeling has also been applied to imitation learning (Liu
et al., 2021a; Florence et al., 2021; Qin et al., 2023) and
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planning (Du et al., 2020; Xu et al., 2022). Our work is an
attempt to apply the energy modeling method to transition
dynamics learning, showcasing flexible transition modeling
ability and better generalization.

6. Conclusion and Limitation
This paper shows the promise of energy-based transition
models (ETM) in learning transition dynamics for offline
control tasks, particularly their ability to capture the preva-
lent discontinuous transition behaviors found in real-world
environments. Empirical results demonstrate that ETMs
can better generalize to out-of-distribution data and achieve
great improvement in off-policy evaluation tasks. We also
showcase the efficacy of ETM to improve model-based pol-
icy optimization in offline reinforcement learning tasks.

One limitation of our method is the requirement for iterative
gradient-based sampling or search during inference, which
leads to more time cost than standard feedforward models.
For instance, ETMs require approximately five times more
inference time than standard FTMs, and employing ETMs
in EMPO results in an approximately 40% increase in the
overall learning time compared to MOPO. This limitation
can be relieved by advanced sampling techniques or by
using parameterized models to avoid the iterative search.
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A. A simplistic case of Interference
Interference (Bengio et al., 2020) can be characterized in the first order by the inner product of the objectives’ gradients:

ρ1,2 = ∇θL
⊤(x1)∇θL(x2), (11)

where x1, x2 correspond to two different data points and L is a point-wise loss function. If ρ1,2 > 0, minimizing the loss
at one point x1 by a gradient step also decreases the loss at the other point x2, resulting in a constructive generalization.
However, if ρ1,2 < 0, gradient descent at x1 will increase the loss L(x2), which is the destructive interference.

x1

x2

Prediction before Update
Prediction after Update
Ground Truth

Ground Truth Gradient
Estimated Gradient

Data Point

An update to the model by 
the gradient of x1

Figure 5. The interference in a simple value jump case.

A simplistic case is the sharp value jump in the groundtruth function, where x1 and x2 are located on opposite sides of this
jump as illustrated in Figure 5. Let fθ be the forward model and yi be the true target of xi. Using mean squared error loss,
we have

ρ1,2 = (fθ(x1)− y1)(fθ(x2)− y2)∇θfθ(x1)
⊤∇θfθ(x2). (12)

It is often the case that the model prediction lies between the two jump values, exhibiting an averaging effect during
training, and therefore the product (fθ(x1)− y1)(fθ(x2)− y2) < 0. Considering forward models fθ biased towards smooth
regressors, we assume that fθ has Lipschitz gradients for some Lipschitz constant L > 0, yielding that

2∇θfθ(x1)
⊤∇θfθ(x2) ≥ ∥∇θfθ(x1)∥2 + ∥∇θfθ(x2)∥2 − L2∥x1 − x2∥2. (13)

For x1, x2 very close, the negative term tends to be small relative to the gradient norm, and therefore the inner product of
the model output gradients at x1 and x2 is greater than a positive. Thereby ρ1,2 < 0 in this case and results in the negative
interference. Similar effects also occur in more complex cases, often to a greater extent.

B. Derivation details of the connection between InfoNCE and Maximum Likelihood.
For the energy function Eθ(x, y), its induced implicit probability distribution

p(y|x; θ) = exp(−Eθ(x, y))

Zθ(x)
, (14)
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where the normalizing factor Zθ(x) =
∫
exp(−Eθ(x, y))dy is intractable and thereby the probability likelihood cannot be

directly obtained. Fortunately, we can instead compute the gradient of the negative log-likelihood:

∇θ − log p(y|x; θ) = ∇θEθ(x, y) +∇θ logZθ(x) (15)

= ∇θEθ(x, y)−
1

Zθ(x)

∫
exp(−Eθ(x, y))∇θEθ(x, y)dy (16)

= ∇θEθ(x, y)− Ep(y|x;θ)∇θEθ(x, y), (17)

where the intractable Zθ(x) is hidden in the expectation w.r.t. p(y|x; θ), which requires sampling techniques to estimate the
gradient. Therefore, gradient descent according to the negative log-likelihood is equivalent to minimizing the objective:

l(xi, yi; θ) = Eθ(xi, yi)− Esg[p(y|xi;θ)]Eθ(xi, y), (18)

where sg denotes the stop gradient operator, meaning that we use p(y|x, ; θ) to compute the expectation but do not consider
its dependence on θ. Efficient MCMC methods can be utilized for approximate sampling, and direct substitution gives
Contrastive Divergence objective (Hinton, 2002). However, there are usually approximation errors between the MCMC
sampling distribution p̂(y|x; θ) and the real p(y|x; θ) for finite simulation steps. Here we explicitly take into account this
approximation error. If DKL(p̂(·|x; θ), p(·|x; θ)) ≤ ϵ, then the objective 18 can be upper bounded by

max
p̄:DKL(p̄,p̂)≤ϵ

Eθ(xi, yi)− Êp̄(y|xi)Eθ(xi, y), (19)

which therefore serves as a surrogate objective to be minimized. According to KKT conditions in convex optimization,
this constraint optimization with respect to distribution p̄ is equivalent to minimizing the Lagrange dual function for some
Lagrange multiplier λ > 0:

max
p̄

Eθ(xi, yi)− Êp̄(y|xi)Eθ(xi, y)− λDKL(p̄, p̂), (20)

which can be solved in a closed form:
p̄(y|x) ∝ p̂(y|x) exp(− 1

λ
Eθ(x, y)). (21)

Substitute this solution back into 20, we obtain

Eθ(xi, yi) + λ logEp̂(y|xi;θ) exp
(
− 1

λ
Eθ(xi, y)

)
= −λ log

exp
(
− 1

λEθ(xi, yi)
)

Ep̂ exp
(
− 1

λEθ(xi, y)
) .

C. Implementation Details
C.1. Implementation Details of Energy-based Transition Model Learning

We use 4-layer MLP for both the energy function of ETMs and the forward transition models. The loss function is composed
of the InfoNCE loss and gradient penalty term:

lInfoNCE + lGradPen = − log
exp (−Eθ(s, a, s

′))∑K
j=1 exp (−Eθ(s, a, s′j))

+

K∑
j=1

max
(
0, (∥∇s′Eθ(s, a, s

′
j)∥ −M)

)2
, (22)

where M controls the scale of the gradient, and we use M = 5 across all experiments. One of the negative samples {s′j}Kj=1

is chosen to be s′, and other K − 1 are generated by Langevin sampling:

ŝ′k+1 ← ŝ′k −
ϵ2

2
∇s′Eθ(s, a, ŝ

′
k) + ϵzk. (23)

where the ϵ is Langevin stepsize and zk is Gaussian noises whose scale can be controlled in practice. We use 1e-3 stepsize and
0.5 Gaussian variance during training. An abused notation is that we in fact predict the state change δs in our implementation
for continuous control instead of the next state s′, so the true next state prediction is s′ = s+ δs. The hyperparameters are
listed in Table 2. The model errors tested on holdout data are reported in Table 8 for D4RL mujoco environments.
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Hyperparamter Value

Training iterations 300
Batch size 1024

Learning rate 1e-3
Energy network hidden [200, 200, 200, 200]

Energy network activation ReLU
Optimizer Adam

Negative sample number 16
Langevin steps 50
Langevin noise 0.5

Langevin stepsize 1e-3
Langevin delta clip 0.5

Gradient penalty margin 5

Table 2. Hyperparameters for energy-based transition model learning.

C.2. Implementation Details of Off-policy Evaluation with Direct Model Rollout

Model-based off-policy evaluation methods contain direct methods, that simply simulate the policy trajectories within the
dynamics model (Fu et al., 2021; Zhang et al., 2021), and hybrid methods, that combine fitted value function and simulation
experience(Thomas & Brunskill, 2016; Hanna et al., 2017; Jin et al., 2022). In this work, we mainly focus on the transition
model learning and evaluate the learned models in OPE tasks. Therefore we simply use the direct method to roll out the
target policies to estimate the policy values, as summarized in algorithm 2. It is possible to combine the hybrid methods
with our energy-based transition model to obtain even better performance.

In practical evaluation, we use γ = 0.995 and N = 10. Max horizon length H is 1000 for Gym-Mujoco and 200 for
Adroit. During energy model inference, we use 100 Langevin steps and 0.1 Langevin noise for accurate prediction. For
Mujoco tasks, the reward function is learned along with the state transition by adding an extra dimension in the ETM. For
Adroit tasks, we find incorporating a separately learned reward model is more beneficial, and clipping the model prediction
according to the numerical range of the offline training dataset also helps for both FTMs and ETMs.

Algorithm 2 Off-policy Evaluation with Direct Model Rollout
Require: Transition model Pθ learned on offline dataset D (maybe standard FTMs or ETMs), policy π to be evaluated,
number of trajectories N , initial state distribution S0, discount factor γ, horizon length H .
for i = 1 to N do
Ri = 0
Sample initial state s0 ∼ S0
for t = 0 to H − 1 do do
at ∼ π(·|st)
st+1, rt ∼ Pθ(·|st, at)
Ri = Ri + γtrt

end for
end for
return 1

N

∑N
i=1 Ri

C.3. Implementation Details of Offline RL with Energy-based Transition Model

We use an ensemble of five ETMs for policy optimization, and each step we randomly pick one of the five models
to generate transitions. The proposed EMPO uses Soft-Actor-Critic (SAC) (Haarnoja et al., 2018) as the base policy
optimization algorithm and adopts an uncertainty estimate of the model predicted next-state as the reward penalty to
introduce conservatism:

U(s, a; {Pθi}i=1∼5) = std({ŝ′ ∼ Pθi(·|s, a)}). (24)
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This form of penalty can be seen as the ensemble-std version (Lu et al., 2022) of MOPO (Yu et al., 2020), adapting to the
energy-based models where the variance is not directly available but estimated by samples.

Most hyperparameters of SAC follow its standard implementations. For each update, we sample a batch size of 256
transitions where 5% of them is from the real dataset D and another 95% is from the synthetic dataset Dmodel. We use the
base hyperparameter settings in Table 3 for all the Gym-Mujoco tasks. Two hyperparameters, penalty coefficient β and
rollout length h, are tuned for each task and we list them in Table 4.

We use the results of all other baselines reported in (Sun et al., 2023).

C.4. Details of the transition in didactic example

Figure 6. A schematic diagram of the didactic environment.

Our setup involves creating a track with a normalized length ranging from 0 to 1, which is shown in Figure 6. Positioned
between 0.65 and 0.75 along the track, there exists a springboard. The action space extends from 0 to 1, representing the
force applied for jumping. Beyond the springboard area, a force greater than 0.8 can achieve a specific height, while within
the springboard area, a force of 0.2 or greater is sufficient for jumping. When the force is within the threshold of 0.2, the
jump height remains constant. However, beyond this threshold, it follows a quadratic function. We conclude the relationship
between the current position x, action a and the next height h:

h =

{
max(10(a− 0.2)2, 0.4)× I(a ≥ 0.2), 0.65 ≤ x ≤ 0.75

max(10(a− 0.8)2, 0.4)× I(a ≥ 0.8), others

D. Details of OPE
D.1. Metrics

The metrics we use in OPE experiments follow DOPE benchmark (Fu et al., 2021):

Absolute Error The absolute error is defined as the difference between the value and estimated value of a policy:

AbsErr = |V π − V̂ π|, (25)

where V π is the true value of the policy and V̂ π is the estimated value of the policy.

Rank correlation Rank correlation measures the correlation between the ordinal rankings of the value estimates and the
true values, which can be written as:

RankCorr =
Cov(V π

1:N , V̂ π
1:N )

σ(V π
1:N )σ(V̂ π

1:N )
, (26)

where 1 : N denotes the indices of the evaluated policies.
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Hyperparamter Value

Total gradient steps 3M
Model ensemble number 5

Critic number 2
Q network hidden [256, 256]

policy network hidden [256, 256]
Target Q smoothing coefficient 5e-3

Discount factor 0.99
Batch size 256

Q learning rate 3e-4
Actor learning rate 1e-4

Optimizer Adam
Ratio of real experiences 0.05
Langevin inference step 30

Langevin inference noise 0.5

Table 3. Hyperparameters for policy optimization.

Task Penalty coefficient Rollout length

hopper-random 15 5
hopper-medium 10 5

hopper-medium-replay 10 5
hopper-medium-expert 15 5

walker-random 2.5 5
walker-medium 2.5 5

walker-medium-replay 1.0 5
walker-medium-expert 5.0 1

halfcheetah-random 0.5 5
halfcheetah-medium 2.5 5

halfcheetah-medium-replay 1.5 10
halfcheetah-medium-expert 2.5 5

Table 4. Tuned Hyperparameters for EMPO.
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Regret@k Regret@k is the difference between the value of the best policy in the entire set, and the value of the best policy
in the top-k set (where the top-k set is chosen by estimated values). It can be defined as:

Regret @k = max
i∈1:N

V π
i − max

j∈topk(1:N)
V π
j , (27)

where topk(1 : N ) denotes the indices of the top K policies as measured by estimated values V̂ π . We use regret@1 in both
Gym-Mujoco and Adroit environments.

D.2. Detailed Results

We report the raw absolute error, rank correlation and regret@1 for each OPE method and each OPE task in Table 5, Table 6
and Table 7, respectively. The results of FQE (Le et al., 2019), DR (Jiang & Li, 2016), IS (Kostrikov & Nachum, 2020),
DICE (Yang et al., 2020), and VPM (Wen et al., 2020) come from DOPE benchmark (Fu et al., 2021).

Table 5. Raw absolute error for each OPE method, averaged over 3 seeds.

Env. Level FQE DR IS DICE VPM FTM ETM

ant

expert 583 ± 122 584 ± 114 605 ± 104 558 ± 108 607 ± 108 626 ± 12 533 ± 23
m-expert 319 ± 67 326 ± 66 604 ± 102 471 ± 100 604 ± 106 522 ± 14 379 ± 28
medium 345 ± 64 345 ± 66 594 ± 104 495 ± 90 570 ± 109 538 ± 38 421 ± 18
m-replay 410 ± 79 421 ± 72 603 ± 101 583 ± 110 612 ± 105 423 ± 51 175 ± 37
random 398 ± 111 404 ± 106 606 ± 103 530 ± 92 570 ± 99 445 ± 21 318 ± 53

hopper

expert 282 ± 76 426 ± 99 106 ± 29 259 ± 54 442 ± 43 295 ± 128 71 ± 16
m-expert 252 ± 28 234 ± 77 360 ± 47 266 ± 40 - 313 ± 130 32 ± 4
medium 283 ± 73 307 ± 85 405 ± 48 215 ± 41 433 ± 44 303 ± 22 47 ± 21
m-replay 295 ± 7 298 ± 14 438 ± 11 398 ± 2 - 76 ± 22 29 ± 8
random 261 ± 42 289 ± 50 412 ± 45 122 ± 16 438 ± 44 324 ± 19 236 ± 15

walker2d

expert 453 ± 142 519 ± 79 405 ± 62 437 ± 60 367 ± 68 458 ± 43 364 ± 7
m-expert 233 ± 42 217 ± 46 436 ± 62 322 ± 60 425 ± 61 446 ± 59 152 ± 9
medium 350 ± 79 368 ± 74 428 ± 60 273 ± 31 426 ± 60 393 ± 108 159 ± 13
m-replay 313 ± 73 296 ± 54 427 ± 60 374 ± 51 424 ± 64 358 ± 85 132 ± 31
random 354 ± 73 347 ± 74 430 ± 61 419 ± 57 440 ± 58 466 ± 27 339 ± 10

halfcheetah

expert 1031 ± 95 1025 ± 95 1404 ± 152 944 ± 161 945 ± 161 1087 ± 197 758 ± 116
m-expert 1014 ± 101 1015 ± 103 1400 ± 146 1078 ± 132 1427 ± 111 1184 ± 421 689 ± 203
medium 1211 ± 130 1222 ± 134 1217 ± 123 1382 ± 130 1374 ± 153 969 ± 66 655 ± 114
m-replay 1003 ± 132 1001 ± 129 1409 ± 154 1440 ± 158 1384 ± 148 1009 ± 76 727 ± 119
random 938 ± 125 949 ± 126 1405 ± 155 1446 ± 156 1411 ± 154 1001 ± 105 842 ± 42

door
human 389 ± 60 379 ± 65 870 ± 173 1108 ± 199 862 ± 163 628 ± 106 325 ± 79
cloned 438 ± 81 424 ± 73 891 ± 188 697 ± 79 1040 ± 188 951 ± 26 575 ± 77
expert 1343 ± 84 1353 ± 218 648 ± 122 856 ± 134 879 ± 182 949 ± 22 297 ± 101

pen
human 2872 ± 170 2846 ± 200 3926 ± 128 4193 ± 244 1569 ± 215 2482 ± 173 695 ± 31
cloned 1232 ± 105 1323 ± 98 1707 ± 128 1454 ± 219 2324 ± 129 1493 ± 382 1113 ± 241
expert 1057 ± 281 2013 ± 564 4547 ± 222 2963 ± 279 2325 ± 136 2535 ± 174 1007 ± 169

hammer
human 6000 ± 612 5768 ± 751 7352 ± 1118 5677 ± 936 7105 ± 1107 7599 ± 117 5905 ± 40
cloned 5415 ± 558 6101 ± 679 7403 ± 1126 4169 ± 839 7459 ± 1114 7545 ± 131 6405 ± 698
expert 2950 ± 728 3485 ± 590 3052 ± 608 3963 ± 758 7312 ± 1117 7570 ± 126 4763 ± 80

relocate
human 593 ± 113 606 ± 116 638 ± 217 4526 ± 474 806 ± 166 681 ± 48 529 ± 29
cloned 439 ± 125 412 ± 124 632 ± 215 1347 ± 485 586 ± 135 648 ± 42 552 ± 20
expert 1351 ± 393 1193 ± 350 2731 ± 147 1095 ± 221 620 ± 214 639 ± 63 594 ± 28
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Table 6. Rank correlation for each OPE method, averaged over 3 seeds.

Env. Level FQE DR IS DICE VPM FTM ETM

ant

expert -0.13±0.32 -0.28±0.32 0.14±0.41 -0.13±0.37 -0.42±0.38 0.14±0.27 0.43±0.13
m-expert 0.37±0.35 0.35±0.35 -0.21±0.35 -0.33±0.4 -0.28±0.28 -0.10±0.21 0.80±0.07
medium 0.65±0.25 0.66±0.26 -0.17±0.32 -0.36±0.28 -0.2±0.31 0.29±0.09 0.75±0.04
m-replay 0.57±0.28 0.45±0.32 0.07±0.39 -0.24±0.39 -0.26±0.29 0.74±0.06 0.94±0.03
random 0.04±0.33 0.01±0.33 0.26±0.34 -0.21±0.35 0.24±0.31 0.52±0.23 0.76±0.03

hopper

expert -0.33±0.30 -0.41±0.27 0.37±0.27 -0.08±0.32 0.21±0.32 0.46±0.11 0.85±0.05
m-expert 0.01±0.08 -0.08±0.30 0.35±0.26 0.08±0.14 - 0.54±0.3 0.95±0.01
medium -0.29±0.33 -0.31±0.34 -0.55±0.26 0.19±0.33 0.13±0.37 0.58±0.21 0.94±0.04
m-replay 0.45±0.13 0.05±0.17 -0.16±0.03 0.27±0.28 -0.16±0.03 0.91±0.03 0.97±0.02
random -0.11±0.36 -0.19±0.36 0.23±0.34 -0.13±0.39 -0.46±0.20 0.35±0.06 0.61±0.15

walker2d

expert 0.35±0.33 0.26±0.34 0.22±0.37 -0.37±0.27 0.17±0.32 -0.05±0.51 0.54±0.11
m-expert 0.25±0.32 0.19±0.33 0.24±0.33 -0.34±0.34 0.49±0.37 0.21±0.13 0.67±0.14
medium -0.09±0.36 0.02±0.37 -0.25±0.35 0.12±0.38 0.44±0.21 0.37±0.30 0.78±0.12
m-replay -0.19±0.36 -0.37±0.39 0.65±0.24 0.55±0.23 -0.52±0.25 0.14±0.42 0.77±0.10
random 0.21±0.31 0.16±0.29 -0.05±0.38 -0.19±0.36 -0.42±0.34 -0.04±0.35 -0.12±0.32

halfcheetah

expert 0.78±0.15 0.77±0.17 0.01±0.35 -0.44±0.30 0.18±0.35 0.51±0.55 0.81±0.10
m-expert 0.62±0.27 0.62±0.27 -0.06±0.37 -0.08±0.35 -0.47±0.29 0.21±0.13 0.91±0.03
medium 0.34±0.17 0.32±0.32 0.80±0.11 -0.26±0.07 - 0.37±0.30 0.78±0.12
m-replay 0.26±0.37 0.32±0.37 0.59±0.26 -0.15±0.41 -0.07±0.36 0.71±0.13 0.77±0.10
random -0.11±0.41 -0.02±0.38 -0.24±0.36 -0.70±0.22 0.27±0.36 0.75±0.10 0.76±0.10

door
human 0.07±0.09 0.01±0.18 -0.12±0.35 -0.02±0.20 - 0.90±0.03 0.89±0.02
cloned 0.55±0.27 0.60±0.28 0.66±0.22 0.18±0.31 -0.29±0.36 0.67±0.21 0.90±0.01
expert 0.89±0.09 0.76±0.13 0.76±0.17 -0.06±0.32 0.65±0.23 0.06±0.59 0.91±0.03

pen
human -0.31±0.21 -0.36±0.29 0.28±0.28 0.17±0.33 - 0.35±0.14 0.59±0.19
cloned 0.06±0.42 0.39±0.25 0.71±0.08 -0.07±0.26 - 0.27±0.16 0.49±0.17
expert -0.01±0.33 0.52±0.28 -0.45±0.31 -0.53±0.30 0.08±0.33 -0.04±0.12 0.48±0.29

hammer
human 0.14±0.10 -0.04±0.25 0.39±0.07 0.11±0.18 - -0.20±0.68 0.50±0.21
cloned -0.15±0.33 -0.70±0.20 0.58±0.27 0.35±0.38 -0.77±0.22 0.31±0.36 0.45±0.09
expert 0.29±0.34 0.49±0.31 0.64±0.24 -0.42±0.31 0.39±0.31 0.41±0.14 0.58±0.12

relocate
human 0.62±0.11 0.65±0.19 -0.23±0.07 -0.23±0.16 - -0.67±0.11 0.58±0.13
cloned 0.15±0.17 0.10±0.16 -0.22±0.18 0.22±0.16 - 0.33±0.26 0.64±0.23
expert -0.57±0.28 -0.40±0.24 0.52±0.23 -0.27±0.34 0.39±0.31 0.16±0.31 0.47±0.28

E. Ablation Experiments
In the results of our main experiments, we use 16 negative samples in the ETM training for tasks. To ablate the influence of
the number of negative samples, we also report the OPE results of the learned ETM using 8 or 24 negative samples during
training for four tasks in Table 9, 10 and 11, where we see that the results are relatively robust to the number of negative
samples within a reasonable range.

F. Additional Experiment Results on NeoRL benchmark
We also conduct the EMPO on several tasks in NeoRL benchmark (Qin et al., 2022) and report the results in Table 13. The
datasets in NeoRL tasks are all collected by conservative behavior policies and therefore have relatively narrow coverage.
This fact would be especially unfavorable for model-based methods because the out-of-distribution ability of the learned
transition models is limited by the narrow data coverage, detrimental to policy optimization. Consequently, we see that
MOPO achieves significantly inferior performance compared to model-free methods, including naive behavior cloning. Our
EMPO learns decent policies comparable to those model-free SOTA methods.
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Table 7. Regret@1 for each OPE method, averaged over 3 seeds.

Env. Level FQE DR IS DICE VPM FTM ETM

ant

expert 0.43 ± 0.22 0.43 ± 0.22 0.47 ± 0.32 0.62 ± 0.15 0.88 ± 0.22 0.34 ± 0.32 0.14 ± 0.12
m-expert 0.36 ± 0.14 0.37 ± 0.13 0.46 ± 0.18 0.60 ± 0.16 0.32 ± 0.24 0.59 ± 0.23 0.17 ± 0.10
medium 0.12 ± 0.18 0.12 ± 0.18 0.61 ± 0.18 0.43 ± 0.1 0.4 ± 0.21 0.37 ± 0.12 0.08 ± 0.03
m-replay 0.05 ± 0.09 0.05 ± 0.09 0.16 ± 0.23 0.64 ± 0.13 0.72 ± 0.43 0.21 ± 0.10 0.05 ± 0.05
random 0.28 ± 0.15 0.28 ± 0.15 0.56 ± 0.22 0.50 ± 0.29 0.15 ± 0.24 0.39 ± 0.21 0.18 ± 0.12

hopper

expert 0.41 ± 0.20 0.34 ± 0.35 0.06 ± 0.03 0.20 ± 0.08 0.13 ± 0.10 0.07 ± 0.11 0.08 ± 0.02
m-expert 0.42 ± 0.08 0.34 ± 0.39 0.10 ± 0.12 0.16 ± 0.08 - 0.14 ± 0.14 0.08 ± 0.07
medium 0.32 ± 0.32 0.32 ± 0.32 0.38 ± 0.28 0.18 ± 0.19 0.10 ± 0.14 0.42 ± 0.15 0.05 ± 0.04
m-replay 0.18 ± 0.23 0.34 ± 0.24 0.88 ± 0. 0.16 ± 0.13 - 0.16 ± 0.12 0.0 ± 0.0
random 0.36 ± 0.22 0.41 ± 0.17 0.05 ± 0.05 0.30 ± 0.15 0.26 ± 0.10 0.40 ± 0.20 0.20 ± 0.10

walker2d

expert 0.06 ± 0.07 0.06 ± 0.07 0.43 ± 0.26 0.35 ± 0.36 0.09 ± 0.19 0.42 ± 0.35 0.05 ± 0.05
m-expert 0.22 ± 0.14 0.30 ± 0.12 0.13 ± 0.07 0.78 ± 0.27 0.24 ± 0.42 0.43 ± 0.46 0.03 ± 0.02
medium 0.31 ± 0.10 0.25 ± 0.09 0.70 ± 0.39 0.27 ± 0.43 0.08 ± 0.06 0.35 ± 0.41 0.0 ± 0.0
m-replay 0.24 ± 0.20 0.68 ± 0.23 0.02 ± 0.05 0.18 ± 0.12 0.46 ± 0.31 0.21 ± 0.22 0.02 ± 0.01
random 0.15 ± 0.21 0.15 ± 0.20 0.74 ± 0.33 0.39 ± 0.33 0.88 ± 0.20 0.57 ± 0.40 0.16 ± 0.09

halfcheetah

expert 0.12 ± 0.07 0.11 ± 0.08 0.15 ± 0.08 0.32 ± 0.40 0.14 ± 0.09 0.30 ± 0.36 0.12 ± 0.07
m-expert 0.14 ± 0.07 0.14 ± 0.07 0.73 ± 0.42 0.38 ± 0.37 0.80 ± 0.34 0.36 ± 0.45 0.11 ± 0.10
medium 0.38 ± 0.13 0.37 ± 0.15 0.05 ± 0.05 0.82 ± 0.29 0.33 ± 0.19 0.17 ± 0.10 0.11 ± 0.08
m-replay 0.36 ± 0.16 0.33 ± 0.18 0.13 ± 0.10 0.30 ± 0.07 0.25 ± 0.09 0.23 ± 0.12 0.16 ± 0.12
random 0.37 ± 0.08 0.31 ± 0.10 0.31 ± 0.11 0.81 ± 0.30 0.12 ± 0.07 0.41 ± 0.08 0.21 ± 0.12

door
human 0.05 ± 0.08 0.05 ± 0.09 0.45 ± 0.40 0.10 ± 0.27 0.69 ± 0.24 0.10 ± 0.10 0.03 ± 0.01
cloned 0.11 ± 0.06 0.11 ± 0.08 0.02 ± 0.07 0.65 ± 0.45 0.81 ± 0.33 0.02 ± 0.03 0.02 ± 0.01
expert 0.03 ± 0.03 0.05 ± 0.07 0.01 ± 0.04 0.37 ± 0.27 0.03 ± 0.03 0.33 ± 0.47 0.07 ± 0.03

pen
human 0.07 ± 0.05 0.09 ± 0.08 0.17 ± 0.15 0.04 ± 0.09 0.28 ± 0.12 0.30 ± 0.34 0.16 ± 0.11
cloned 0.12 ± 0.07 0.13 ± 0.06 0.14 ± 0.09 0.12 ± 0.08 0.36 ± 0.18 0.19 ± 0.15 0.14 ± 0.09
expert 0.11 ± 0.14 0.05 ± 0.07 0.31 ± 0.10 0.33 ± 0.20 0.25 ± 0.13 0.24 ± 0.27 0.13 ± 0.06

hammer
human 0.46 ± 0.23 0.46 ± 0.23 0.19 ± 0.30 0.04 ± 0.08 0.18 ± 0.29 0.38 ± 0.43 0.09 ± 0.03
cloned 0.36 ± 0.39 0.78 ± 0.38 0.03 ± 0.15 0.67 ± 0.48 0.72 ± 0.39 0.39 ± 0.44 0.34 ± 0.23
expert 0.05 ± 0.04 0.09 ± 0.09 0.01 ± 0.04 0.24 ± 0.34 0.04 ± 0.07 0.19 ± 0.23 0.04 ± 0.01

relocate
human 0.17 ± 0.14 0.17 ± 0.15 0.63 ± 0.41 0.97 ± 0.11 0.77 ± 0.18 0.71 ± 0.21 0.08 ± 0.06
cloned 0.29 ± 0.42 0.18 ± 0.27 0.63 ± 0.41 0.96 ± 0.18 0.11 ± 0.29 0.71 ± 0.35 0.13 ± 0.06
expert 1.00 ± 0.06 0.98 ± 0.08 0.18 ± 0.14 0.97 ± 0.07 0.76 ± 0.23 0.33 ± 0.47 0.12 ± 0.05

G. Performance Comparison to Diffusion-based Methods
Following the reviewer’s suggestion, we compare our EMPO with Diffuser (Janner et al., 2022) and Decision Diffuser (DD,
Ajay et al. (2023)) in Table 12.

H. Simulated Trajectory Visualization
We visualize the simulated trajectories within the learned energy-based transition models (ETM) and forward transition
models (FTM), and compare them with the real trajectories in the environment, shown in Figure 7. In each subplot, the
three trajectories are generated by rolling out the same policy in different dynamics, i.e. ETM (top), real (middle), and
FTM (bottom). We can see that in most cases the trajectories simulated by ETMs can remain visually aligned with the real
trajectories for a relatively long horizon, while FTMs often lead to erroneous rollout in a few steps.
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Table 8. Mean Absolute Error of the transition predictions of FTM and ETM for each task on the holdout dataset, averaged over 5 seeds.

Task FTM ETM

ant-expert 0.04851 ± 0.00152 0.03538 ± 0.00286
ant-medium-expert 0.05751 ± 0.00486 0.03478 ± 0.00175
ant-medium 0.07077 ± 0.00256 0.03547 ± 0.00075
ant-medium-replay 0.04845 ± 0.00058 0.05366 ± 0.00189
ant-random 0.08610 ± 0.00189 0.12960 ± 0.00265
hopper-expert 0.00505 ± 0.00057 0.00041 ± 0.00006
hopper-medium-expert 0.00597 ± 0.00035 0.00341 ± 0.00021
hopper-medium 0.00612 ± 0.00023 0.00380 ± 0.00019
hopper-medium-replay 0.00955 ± 0.00062 0.00709 ± 0.00039
hopper-random 0.00378 ± 0.00015 0.00161 ± 0.00007
walker2d-expert 0.03704 ± 0.00102 0.03416 ± 0.00323
walker2d-medium-expert 0.06744 ± 0.00422 0.04528 ± 0.00187
walker2d-medium 0.09093 ± 0.00587 0.05315 ± 0.00124
walker2d-medium-replay 0.14247 ± 0.00374 0.11626 ± 0.00899
walker2d-random 0.15076 ± 0.00201 0.16107 ± 0.00277
halfcheetah-expert 0.08520 ± 0.00404 0.05936 ± 0.00773
halfcheetah-medium-expert 0.08739 ± 0.00170 0.08248 ± 0.00329
halfcheetah-medium 0.09841 ± 0.00201 0.08634 ± 0.00472
halfcheetah-medium-replay 0.18054 ± 0.00289 0.12594 ± 0.01701
halfcheetah-random 0.08946 ± 0.00139 0.10963 ± 0.00532

Table 9. Mean Absolute Error for ETMs using different numbers of negative samples for training, averaged over 3 seeds.

Task 8 16 24

hopper-medium-replay 0.047 ± 0.006 0.053 ± 0.015 0.050 ± 0.005
hopper-medium 0.179 ± 0.027 0.086 ± 0.038 0.127 ± 0.013
walker2d-medium-replay 0.295 ± 0.028 0.243 ± 0.056 0.248 ± 0.032
walker2d-medium 0.330 ± 0.039 0.291 ± 0.023 0.312 ± 0.018

Table 10. Rank Correlation for ETMs using different numbers of negative samples for training, averaged over 3 seeds.

Task 8 16 24

hopper-medium-replay 0.977 ± 0.008 0.969 ± 0.020 0.965 ± 0.004
hopper-medium 0.834 ± 0.044 0.940 ± 0.038 0.925 ± 0.012
walker2d-medium-replay 0.867 ± 0.042 0.750 ± 0.120 0.714 ± 0.131
walker2d-medium 0.686 ± 0.111 0.778 ± 0.116 0.667 ± 0.144

Table 11. Regret@1 for ETMs using different numbers of negative samples for training, averaged over 3 seeds.

Task 8 16 24

hopper-medium-replay 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
hopper-medium 0.125 ± 0.071 0.080 ± 0.060 0.104 ± 0.098
walker2d-medium-replay 0.030 ± 0.010 0.030 ± 0.010 0.010 ± 0.010
walker2d-medium 0.011 ± 0.016 0.000 ± 0.000 0.011 ± 0.016
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Table 12. Performance comparison across different tasks, including results of Diffuser (Janner et al., 2022) and Decision Diffuser
(DD, Ajay et al. (2023)).

Task Name DT TT Diffuser DD CQL EDAC MOPO MOBILE EMPO (Ours)

halfcheetah-m-e 86.8 95.0 79.8 90.6 91.6 106.3 90.8 108.2 103.8±2.3
hopper-m-expert 107.6 110.0 107.2 111.8 105.4 110.7 81.6 112.6 113.7±0.6
walker-m-expert 108.1 101.9 108.4 108.8 108.8 114.7 112.9 115.2 115.4±0.8
halfcheetah-m 42.6 46.9 44.2 49.1 44.0 65.9 73.0 74.6 77.4±0.6
hopper-medium 67.6 61.1 58.5 79.3 58.5 101.6 62.8 106.6 106.2±1.2
walker-medium 74.0 79.0 79.7 82.5 72.5 92.5 84.1 87.7 97.2±1.3
halfcheetah-m-r 36.6 41.9 42.2 39.3 45.5 61.3 73.0 71.7 73.8±1.5
hopper-m-replay 82.7 91.5 96.8 100.0 95.0 101.0 62.8 103.9 105.1±0.7
walker-m-replay 66.6 82.6 61.2 75.0 77.2 87.1 84.1 89.9 95.2±0.3

Average 74.7 78.9 75.3 81.8 77.6 93.5 80.6 96.7 98.6

Table 13. Normalized average returns on NeoRL tasks, averaged over 4 random seeds.

Task Name BC CQL TD3+BC EDAC MOPO EMPO (Ours)

HalfCheetah-L 29.1 38.2 30.0 31.3 40.1 35.5 ± 3.8
Hopper-L 15.1 16.0 15.8 18.3 6.2 18.5 ± 4.2
Walker2d-L 28.5 44.7 43.0 40.2 11.6 41.4 ± 5.6

HalfCheetah-M 49.0 54.6 52.3 54.9 62.3 54.6 ± 3.1
Hopper-M 51.3 64.5 70.3 44.9 1.0 66.7± 12.5
Walker2d-M 48.7 57.3 58.5 57.6 39.9 58.0 ± 1.4

HalfCheetah-H 71.3 77.4 75.3 81.4 65.9 77.1 ± 4.7
Hopper-H 43.1 76.6 75.3 52.5 11.5 77.8 ± 17.4
Walker2d-H 72.6 75.3 69.6 75.5 18.0 74.0 ± 3.2

Average 45.4 56.1 54.5 50.7 28.5 56.0
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(a) hopper-medium-replay

(b) hopper-medium

(c) hopper-medium-expert

(d) walker2d-medium-replay

(e) walker2d-medium

(f) walker2d-medium-expert

Figure 7. Comparison of simulated trajectories within ETM (top), real dynamics (middle), and FTM (bottom) in different tasks.
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