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ABSTRACT

Motivated by deep learning regimes with multiple interacting yet distinct model
components, we introduce learning diagrams, graphical depictions of training se-
tups that capture parameterized learning as data rather than code. A learning dia-
gram compiles to a unique loss function on which component models are trained.
The result of training on this loss is a collection of models whose predictions
“agree” with one another. We show that a number of popular learning setups such
as few-shot multi-task learning, knowledge distillation, and multi-modal learning
can be depicted as learning diagrams. We further implement learning diagrams in
a library that allows users to build diagrams of PyTorch and Flux.jl models. By im-
plementing some classic machine learning use cases, we demonstrate how learn-
ing diagrams allow practitioners to build complicated models as compositions of
smaller components, identify relationships between workflows, and manipulate
models during or after training. Leveraging a category theoretic framework, we
introduce a rigorous semantics for learning diagrams that puts such operations on
a firm mathematical foundation.

1 INTRODUCTION

The deep learning literature is rife with training regimes that exhibit non-trivial interactions between
distinct models. Examples include multi-modal architectures with vision and language components
(e.g Vinyals et al. (2015), Ramesh et al. (2022)), knowledge distillation schemes Hinton et al. (2015),
multi-task learning setups, and on. The practitioner who manages such collections often juggles in-
teracting models that at times are training or frozen, sometimes classifiers and sometimes feature
extractors, sometimes trained on a single task and sometimes on many. Motivated by such practical
settings we introduce a formalism for building models that treats data sets, models, and their inter-
actions as structured data rather than as code. Our primary contribution, the learning diagram, is
graphical in nature and has a rigorous mathematical semantics, meaning that learning diagrams can
be interpreted unambiguously, manipulated with confidence, and related to one another. Learning
diagrams are also compositional, meaning that complex training setups can be built from easier to
understand pieces.

At the heart of our formalism is the observation that machine learning problems can often be framed
as a search for commuting diagrams. In what is arguably the simplest case, we begin with a collec-
tion of patterns xi ∈ Rm and labels yi ∈ R. We select an architecture f : Rm × Rn → R and learn
a parameter θ ∈ Rn such that 1 holds for all pairs (xi, yi) ∈ Rm × R.

f(xi, θ) ≈ yi (1)

If we model the patterns, labels, and parameters as functions
∗Equal contributions
†Corresponding Authors: masonlar@buffalo.edu
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X : l → Rm, Y : l → R, θ : 1 → Rn, (2)

where l is a finite set that indexes patterns and labels, then the equality in 1 means that the following
diagram (approximately) commutes, i.e. that the pair of paths starting at l and ending at R produce
the same real valued output for any choice of element in l.

Rm × Rn

l R

fX×θ

Y

⇐⇒ X × θ · f = Y (3)

Anatomically, Diagram 3 is a graph with nodes that represent spaces and edges that represent maps
between them. The goal of parameterized learning is to find θ such that the diagram comes as
close as possible to commuting. We observe that the diagram itself can contribute to this goal if
the common codomain of labels Y and function f , a role played by R in the diagram above, is
imbued with a loss function. In that case we can measure the difference between predictions of f
and ground truth labels Y and train the component models to minimize said difference. As the loss
is minimized, the diagram gets closer to commuting.

The process of generating losses is not limited to diagrams with only one pair of paths that must
commute. In fact, we will see that many training regimes are designed to make multiple pairs of
paths commute all at once. Further, the implementation of training setups as learning diagrams is
not an academic exercise. Rather, doing so allows for the construction and manipulation of training
setups in a way that would be more difficult without a structured representation. We believe such a
shift from learning pipelines as code to learning pipelines as data is needed to address open problems
identified by prior work, such as the need for a “programming interface ... to specify that various
adapted models are derived from the same pre-trained model” Bommasani et al. (2021), or “tools
that will allow us to build pre-trained models in the same way that we build open-source software”
Raffel (2021). Our specific contributions are as follows.

• We formalize the process of producing diagrams of models and data and compiling them to
loss functions. We imbue learning diagrams with a rigorous semantics by way of category
theoretic machinery.

• We introduce a software library, DiagrammaticLearning.jl, that realizes the theory of learn-
ing diagrams to supply convenient operations for building and manipulating training setups,
both before models are trained and after, when they may be used as components of other
training setups.

• We provide several examples of common training paradigms that can be captured as learn-
ing diagrams, and show how their implementation as such affords convenient functionality
for common ML tasks.

The plan of the paper is to present these contributions in reverse order. To motivate the imple-
mentation we will first show in Section 2 how certain popular training setups can be realized using
our approach. To do so, we have selected a small sample of classic machine learning papers and
re-implemented them using our framework, along the way recovering the results of the original pa-
pers and demonstrating the utility of our diagrammatic formalism for building and manipulating
models. In Section 3 we describe the beta version of our library, highlighting available features
and the engines that make them work. Finally, in Section 4 we cover the mathematical underpin-
ning of learning diagrams that enables the operations realized in our library. We conclude with an
examination of related work and directions for future research.

2 LEARNING DIAGRAM DEMONSTRATIONS

Our goal in this section is to show that our approach to developing training loops is expedient and
feature rich without negatively affecting the final performance of the produced models. We do not
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aim to outperform our baselines, but rather to recreate them. In so doing, we will motivate the in-
creasingly abstract constructions of later sections. To facilitate intuition before rigorous definitions,
we will leave some terms undefined for now.

We have identified training setups from classic papers that are both representative of widely used
paradigms, and are sufficiently complex to highlight aspects of our approach that are practically
useful. A particular paper’s omission from our experiments does not necessarily indicate that we
cannot model it as a learning diagram, nor that doing so would be a fruitless endeavor. Among
the diagrams we have worked out but not included are norm-based regularization techniques and
autoencoders.

2.1 LEARNING DIAGRAM NOTATION In each example that follows we define a learning di-
agram first by considering domains of data corresponding to datasets, their components (such as
images and labels), and the representation spaces induced by architectural choices. Each space has
an associated Lawvere metric Lawvere (1973), i.e. is a generalization of a metric space relaxing
the symmetry and separation axioms, where distances between points may be infinite. For spaces
where elements ought to be comparable and generate a loss, we assign one and denote such a space
Y as (Y,L), otherwise we assume that distinct points are infinitely far from one another and denote
the space (Y,∞). The edges in a diagram that connect one domain to another depict models and
data. We will see in Section 4 that such spaces and maps between them form an object of math-
ematical significance called a category. Our formal theory requires that parameter spaces also be
represented explicitly, but for the sake of exposition we will omit or include them in our illustrations
as convenient.

With this recipe for specifying learning diagrams in mind, we move on to our first example of
learning diagrams in action: Neural Image Captioning Vinyals et al. (2015). It is the oldest of the
group of examples and increases the complexity over standard predictions only slightly, but allows
us to introduce some useful features of our approach and library.

2.2 IMAGE CAPTIONING Vinyals et al. (2015) was the first paper to demonstrate an end to end
trainable model for image captioning. Named the “Neural Image Captioner” (NIC), it uses a fixed
visual encoder to extract features from an image, and a trainable recurrent component to produce a
caption. We can depict the model as in Diagram 4.

(N,∞) (ZI × Y,∞) (ZL,∞)

(Y,Lce)

⟨CNN,Y ⟩ LSTM

Label
Prediction (4)

In replicating the NIC diagrammatically, we aim to show that diagrams enable easy swapping of
architectures for different components, and easy manipulation of model properties such as whether
a model updates or is frozen. The components of the NIC diagram include a graph that captures the
“syntax” of our training set-up, as well as “semantic” data associated with the graph that includes
the particular choice of architectures and spaces. Such separation can be exploited; whereas the
original paper has a single choice of CNN encoder Szegedy et al. (2015), we can easily vary the
encoder backbone by simply assigning a different architecture to the CNN edge of the diagram.
In other words, there is no need to manually chain together the CNN and LSTM, as our backend
handles it for us. The code required for such a switch is depicted in Listing 1, and is only slightly
edited from our implementation. We trained three semantic variations of Diagram 4 corresponding
to three choices of CNN encoder; GoogLeNet Szegedy et al. (2015), Resnet-50 He et al. (2016),
and an image transformer Dosovitskiy (2020). Vinyals et al. (2015) used GoogLeNet in the original
paper. By using more powerful architectures and replicating other portions of the model and training
procedures, we were able to outperform the original paper’s BLEU score Papineni et al. (2002) on
the Flickr8k Hodosh et al. (2013) and Flickr30k Plummer et al. (2015) image captioning data sets.
The results of our experiments are captured in Table 1.

The mix of trainable and fixed models offers a chance to highlight some model manipulation. In
particular, we can utilize model homomorphisms to identify sub-components and apply functions
to them. To specify a homomorphism, we first specify the shape of a sub-diagram, then describe
a mapping from the sub-diagram to the larger model with components we want to manipulate. In
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Data Set GoogLeNet Resnet-50 ViT-B-16 Original

Flickr8k BLEU 66.85 66.93 71.39 63
Flickr30k BLEU 70.06 76.72 71.78 66

Table 1: Results of image captioning models trained as learning diagrams, named after the convolu-
tional component.

Listing 1 we show code that allows us to set the vision encoder to “eval” mode. While this is
easy enough to do with standard PyTorch for such a simple model, for more complex diagrams
with more models it becomes especially advantageous to leverage homomorphisms which can pick
out subgraphs based on some structural pattern matching and apply different transformations to the
different pieces of the pattern Ehrig et al. (1973).

2.3 KNOWLEDGE DISTILLATION Much like the simple Diagram 3, the image captioning use
case contains only one pair of paths that induce a loss; we want the captions produced by the
CNN+LSTM team to be the same as the ground truth. Learning diagrams are capable of handling
much more complicated setups where multiple pairs of parallel paths contribute terms to the loss. To
demonstrate this capability, we now describe how to implement knowledge distillation as a learning
diagram.

Knowledge distillation can refer to many different techniques (Buciluǎ et al. (2006); Hinton et al.
(2015)) that share the common goal of taking information from a powerful model or ensemble called
the “teacher” and recovering that information in a simpler, easier to use model called the “student.”
A particularly popular approach to distilling knowledge is to train the student on the output of the
teacher, whether such output be logits or a softmax with a temperature. Further, the student is trained
on labeled data that can be the same as that used in training the teacher, and so receives supervisory
signals from two sources; the outputs of the teacher model and labeled data.

Figure 1 recovers a knowledge distillation setup; notice there are two pairs of parallel paths. One
terminates at Y , the label space, and the other in G, the soft target space. The learning diagram
therefore induces a loss with two terms, one corresponding to the predictions of the student model
relative to the ground truth labels, and the other corresponding to the softmax outputs of the stu-
dent model relative to the soft outputs of the teacher. The official PyTorch knowledge distillation
introduction Chariton (2024) has a more detailed specification of the experiments than the original
paper Hinton et al. (2015), so we compare to those benchmarks. We see in Table 2 that the learning
diagram produces results comparable to those of the official implementation.

v_model = load_CNN(cnn_name)
train_ds = get_dataset()
...
diagram = @LD begin

N ⇒ [train_ds]
Z_I_x_Y ⇒ (Any, Vector{Float64})
Z_L ⇒ Any
Y ⇒ {Vector{Float64}, cross_entropy}
CNN_x_Y: N → Z_I_x_Y ⇒ x -> (v_model(x[0]), x[1])
LSTM: Z_I_x_Y → Z_L ⇒ (x, y) -> lstm(x)
Label: Z_I_x_Y → Y ⇒ (x, y) -> y
Prediction: Z_L → Y ⇒ x -> predict(x)
CNN_x_Y · LSTM · Prediction ≤ CNN_x_Y · Label

end

Listing 1: Key functionality for the NIC implementation. Users specify diagrams as Python or Julia
data structures (Julia shown) similar to an edge list representation of the underlying graph and assign
models to components of the diagram. Because the parts of the model are represented as data instead
of code, users can specify and manipulate sub-diagrams and components programmatically, without
the complexity of manipulating unstructured code. We also demonstrate that mapping to data spaces
provides type annotations at different levels of granularity for models in the diagram.
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(T,∞)

(N,∞) (X,∞) (S,∞) (G,Lst)

(Y,Lce)

σ

π1

π2

t

s σ

σ

π1 · s · σ = π1 · t · σ
π1 · s · σ = π2

Figure 1: A diagrammatic representation of Knowledge Distillation (left), the red and blue paral-
lel paths encode equations that the optimization procedure attempts to solve (right). Components
models used in both pairs of parallel paths are shown in violet.

Teacher Student Distilled Student

PyTorch Implementation 74.72 70.50 70.81
Learning Diagram 76.24 67.67 69.21

Table 2: Performance comparison of official PyTorch knowledge distillation vs DiagrammaticLearn-
ing.jl on CIFAR-10.

2.4 FEW SHOT LEARNING We now turn to an example that will highlight the utility of building
more complicated models in a compositional way. The multi-task and few-shot learning literature
contains many examples that would benefit from a compositional perspective, thanks to their perva-
sive use of shared backbones in conjunction with task specific modules. We select Tian et al. (2020)
as our replication target to demonstrate the utility of a compositional perspective, since it exemplifies
the idea of training a feature extractor on as much available data as one can, and subsequently train-
ing small task specific modules that exploit the learned features. More convoluted training pipelines
have had limited success in improving upon this approach. In the case of Tian et al. (2020), the data
used comes from Tiered Imagenet Ren et al. (2018), Mini-Imagenet Vinyals et al. (2016), FC100
Oreshkin et al. (2018), and CifarFS Bertinetto et al. (2018). A ResNet-12 backbone is trained on all
data, and subsequently few shot tasks are sampled at random from the respective test sets. Simple
affine classifiers are then trained on the feature-label pairs extracted by the pre-trained backbone.

The meta-train and meta-test steps of Tian et al. (2020) have very similar syntax, in that they both
extract features and train a classifier to make predictions using those features. The difference is that
during meta-training the feature extractor is updated on all tasks. Intuitively, if we can track the
task specific interactions of data and models and use them to define the composite interaction seen
during meta-training, then we can easily re-use them during meta-testing and avoid implementing a
new meta-testing loop from scratch. Learning diagrams provide such functionality by allowing us
to define task specific classification setups, and subsequently glue those setups along the shared axis
of a common encoder. The exact construction we use for composition, a colimit, is depicted and
described in Figure 2.

Approach MI 1-Shot MI 5-Shot TI 1-Shot TI 5-Shot

Tian et al. (2020) Simple 62.02 79.64 69.74 84.41
Learning Diagram 58.13 78.82 66.48 80.15

Approach CFS 1-Shot CFS 5-Shot FC100 1-Shot FC100 5-Shot
Tian et al. (2020) Simple 71.5 86.0 42.6 59.1

Learning Diagram 70.5 85.6 43.1 59.3

Table 3: Performance comparison of Tian et al. (2020) vs DiagrammaticLearning.jl on Mini-
Imagenet (MI), Tiered-Imagenet (TI), Cifar-FS (CFS), and FC100.

The compositional perspective not only allows us to build large training pipelines quickly, but also
to track the presence of notable sub-diagrams via the inclusion morphisms computed as part of the
colimit computation. As a result, upon training the foundation model, we can efficiently proceed to
the meta-test phase. Using the same “edata” syntax as in Listing 1, we first assign a new classifier
head and N-way K-shot data set to each of the classifier sub-diagrams, set the encoder to “eval
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colim
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Y1 Y2
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h1 h2


=

N1 N2

X

Y1 Y2

F

x1

y1

x2

y2

m

h1 h2

Figure 2: Learning diagrams can be built using the categorical construction of a colimit, which
generalizes the concept of a set union or quotienting by an equivalence relation. (Top) A data set
and classifier/encoder pair are composed by identifying the common image and label domains X and
Y (dashed arrows). The result of the colimit computation is a square whose induced loss trains the
classifier and encoder on the labeling task of the associated data set. (Bottom) Two classifier squares
are merged along a common feature extraction backbones m. The resulting colimit is a learning
diagram whose loss trains classifier heads on their respective tasks and the common backbone model
on all tasks. For this colimit to be well specified, both the image space X and the feature space F
have to be identical. Additional classification heads can be attached by further colimits.

mode”, build the model, and then train on a fewshot data set. Repeating this procedure per randomly
sampled few-shot data set gives us the performance noted in Table 3.

3 IMPLEMENTATION

Having motivated the functionality of DiagrammaticLearning.jl * with some common ML tasks, we
now turn to describing the implementation that provides such functionality.

3.1 SPECIFYING THE DIAGRAM DATA To generate a composite loss, users must specify a dia-
gram. Listing 1 shows an example of the structures required by the library. The required components
are

• Vertices with their labels, a mapping to a data space, and an optional distance metric. Data
spaces are captured by Julia types, which allows the user to annotate their diagram with
type information for computations. This can be circumvented by supplying Any as a type
within the diagram.

• Edges with their labels, their source and target vertices, and a mapping to the computation
the edge performs. These computations are simply Python or Julia functions.

• Relationships between edges, represented with ≤. This requirement specifies a preorder
on the edges of a graph, a concept specified further in Section 4. It can also be seen as a
specification of which edges in the graph should take part in loss calculations.

3.2 FINDING PARALLEL PATHS From a learning diagram, we aim to calculate a single loss
function. Since the loss function is a sum over all the parallel paths, we first need to compute all
pairs of parallel paths from the graph.

To accomplish this, we apply an algebraic perspective and use the fact that powers of the adjacency
matrix count paths in a graph. This approach is a generalization of the celebrated Floyd-Warshal
algorithm Floyd (1962). We represent the graph as a V ×V matrix with entries that are sets of edges

*https://github.com/AlgebraicJulia/DiagrammaticLearning.jl
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in the graph. This allows us to define a generalized version of matrix multiplication which computes
paths between vertices Fong and Spivak (2018); Pratt (1989). Multiplication of elements represents
concatenation of paths and summation represents union of sets, which leads to an algorithm that
computes all the paths in a graph. Powers of this set-of-paths valued matrix then enumerate the
paths between each pair of vertices of a fixed length. Parallel paths can then be collected from any
matrix element with more than 1 element.

Many common machine learning loss functions are not symmetric. These loss functions require
parallel paths to occur in a specified order. To facilitate this, we assume that all pairs of single edges
are ordered (i.e. e1 ≤ e2 and e2 ≤ e1 for edges e1, e2), unless only a single pair is specified in the
graph. The process that builds the matrix containing parallel paths additionally builds up a preorder
between paths, allowing a filter to include only parallel paths that conform to the preorder.

3.3 INTEGRATION WITH EXISTING LIBRARIES Due to the generic nature of our representation,
we can view a learning diagram as a sort of intermediate language, independent of a particular
neural network framework. To this end, we can compile either PyTorch or Flux models from a given
diagram. This flexibility allows for the creation of diagrams for new workflows and experiments,
as well as the retrofitting of diagrams to existing codebases. This paper focuses on PyTorch models
due to its ubiquity in machine learning research and practice.

The correctness of the compilation process is explored rigorously in the next section, but for a more
familiar explanation, we refer to PyTorch components. Vertices in a graph in our framework contain
both data sources (such as a PyTorch dataloader) as well as a loss function. A path in our graph
can quite easily be converted into a PyTorch Sequential model. Given parallel paths, a module
can be created which samples x from the data source present at the domain of the paths, passes x
through both sequential models to obtain outputs y, ŷ, and outputs l(y, ŷ), the result of applying
the loss function l found in the codomain of the paths. Summation of these modules represents
composite loss functions. This process thus encapsulates data sampling, network computation, and
loss computation into a single PyTorch module.

The requirements for compatibility with our framework are similar to those for compatibility with
pure PyTorch. For data, we require iterable components, whether it be DataLoaders or just lists. For
computations, we require functions, either in the form of torch modules, or pure Python functions.
Thus, popular frameworks within the PyTorch landscape, such as models from HuggingFace, are
compatible with our system.

4 THEORETICAL GROUNDING

Having discussed some applications and our implementation, we now turn to the underlying category
theoretic formalisms and definitions. It is the content of this section that ensures learning diagrams
have rigorous semantics, and therefore that manipulations of diagrams and maps between them can
be interpreted mathematically. The ultimate goal of the section is a machinery that “mathematically
compiles” a learning diagram into a composite loss function that drives participating models to form
approximately commuting diagrams. Throughout this section we will use some category theory that
we may not define due to space constraints. Everything left undefined should be easy to find in
introductory references Riehl (2017); Fong and Spivak (2018). Our story proceeds by defining what
a learning diagram is, explaining how parallel paths can be extracted from it, and finally how these
parallel paths combine to form a composite loss function.

4.1 LEARNING GRAPHS AND LEARNING DIAGRAMS A learning graph (G,≤) is a directed
multigraph G = (V,E, src, tgt) together with a preordering ≤ of its edges.

We will motivate the preorder in due time. On its own, a learning graph doesn’t associate a loss
function to each node of the graph. Rather, we consider it a syntactic presentation of a training
regime. As we saw in the image captioning example, this distinction can be useful when varying the
exact data or models being used. In the end, however, what we want is a full learning diagram. The
choice of the word diagram is no accident; it has a proper category theoretic definition.

Definition 4.1. (1.6.4 of Riehl (2017)) A diagram in a category C is a functor D : J → C whose
domain, the indexing category, is a small category.
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To define a diagram, therefore, we must first specify a domain category J and a codomain category
C. Our domain category comes from our learning graph and identifies the syntactic structure of our
training regime: how many spaces of data or representations we are considering, how many models,
etc. The codomain category C defines what kind of thing each node and edge in our learning graph
is, i.e. the semantics of the training setup, and the functor D is the mapping from syntactic structure
to semantic content that assigns particular spaces and models to edges. Constructing a category to
serve as our domain is fairly straightforward; we can take a learning graph and turn it into a category
by taking vertices of the graph to be objects of a category and paths in a graph to be morphisms. Such
a construction is called the free category on a graph. Defining the semantics conferring codomain
requires more slightly more work. Given that we want to associate a potentially asymmetric loss
function to each node in a learning graph, we should consider a category C whose objects are some
generalization of metric spaces. We choose the category Law.

Definition 4.2. Denote by Law the category that has objects Lawvere Metric Spaces Lawvere (1973)
and morphisms Lipschitz continuous functions.

4.2 FINDING PATHS AND BUILDING LOSSES Let Par be the free category on the following
graph.

• •
+

−

(5)

We can use the category Par (5) to formalize the construction of losses from parallel paths. If
(G,≤) is a learning graph, and if Free(G) is the free category generated by G, then a functor
P : Par → Free(G) chooses a pair of paths in G with the same initial and terminal vertex. If
D : Free(G) → Law is a learning diagram on G, then the composite functor D ◦ P : Par → Law
chooses a pair of Lipschitz continuous functions f : X → Y and g : X → Y with the same domain
and codomain. We will assign a loss to these functions as follows. If X is a finite set, then we define
ℓ(f, g) ∈ [0,+∞] to be the sum

ℓ(f, g) :=
∑
x∈X

dY (f(x), g(x)).

If X is an infinite set, then we take the supremum over all finite sums. This quantity measures the
distance between outputs of f and g summed over all inputs. It also has the following contractive
property: if f : X → Y , g : X → Y , f ′ : X ′ → Y ′, and g′ : X ′ → Y ′ are Lipschitz continuous
functions, and if p : X → X ′ and q : Y → Y ′ are surjective 1-Lipschitz functions such that

f ′(p(x)) = q(f(x)) and g′(p(x))) = q(g(x)))

for all x ∈ X , then ℓ(f, g) ≥ ℓ(f ′, g′). Formally, loss is an enriched functor ℓ : C → Cost, where C

is the subcategory of the functor category LawPar whose fibers are surjective 1-Lipschitz functions,
and where Cost is the partially ordered set [0,∞].

Theorem 4.3. The mapping P 7→ ℓ(f, g) defines a functor ℓ : C → Cost.

Proof. Let f , g, f ′, g′, p and q be the functions described above. Functoriality is the contractive
property, ℓ(f, g) ≥ ℓ(f ′, g′). To see this, let S ⊆ X ′ be a finite set. Then,∑

x′∈S

dY ′(f ′(x′), g′(y′)) ≤
∑

x∈p−1S

dY ′(f ′(p(x)), g′(p(x)))

=
∑

x∈p−1S

dY ′(q(f(x)), q(g(x)))

≤
∑

x∈p−1S

dY (f(x), g(x))

where the first line follows from the surjectivity of p and the third from the contractivity of q. The
desired inequality follows from the arbitrary selection of S.
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4.3 LIMITING THE SEARCH Diagrams in Law with a shape given by a learning graph very
nearly capture the data we require to build a composite loss, but for two problems. For one, if we
are allowing asymmetric loss functions, then we must provide the creator of a learning diagram with
a way to say how arguments to a loss should be ordered. Additionally, some vertices in the learning
graph will be assigned finite collections for indexing data sets and other vertices will be assigned
vector spaces for representing the spaces containing the data values. The loss functions should only
use parallel paths that start at indexing, because these lead to finite sums in the loss functions.

Ordering paths The preorder on edges in a learning graph naturally leads to a preorder structure
on the free category associated with a graph. This produces a locally posetal 2-category, which is a
category with a preorder on every hom-set, such that morphism composition is monotonic.

The upshot is that our syntactic 2-category now tracks user specified ordering of models, i.e. which
model’s predictions should be the first argument to a loss and which should be the second.

Indexing and Nonindexing Vertices The other problem is that we only want to build composite
losses for parallel paths that start at specific nodes. The machinery of categories provides a succicint
way to specify the relevant constraints. Let Ind be the free 2-category generated by the learning
graph

i n (6)

. By setting − ≤ +, we may upgrade the category Par defined in section 2 to a 2-category. These
categories are related by a 2-functor α : Par → Ind.

• •

i n

+

− (7)

We use the 2-category Ind to assign labels to each vertex of a learning graph. Specifically, for all
learning graphs G, a functor β : Free(G) → Ind is a labelling of the vertices of G as either indexing
or non-indexing, and the structure of Ind ensures that indexed vertices precede non-indexed ones. A
commutative diagram of the form (8) chooses a pair of parallel paths that begin at indexed nodes.

Par Free(G)

Ind

P

α β (8)

Given a learning diagram D : Free(G) → Law, the composite functor D ◦ P : Par → Law chooses
a pair f : X → Y and g : X → Y of Lipschitz continuous functions, and we can compute the loss
of these functions as in section 2. (We define the composite loss of a triple (G,D, β) to be the sum
ℓ∗(G,D, β) ∈ [0,+∞] given by

ℓ∗(G,D, β) =
∑
p

ℓ(f, g)

) where f and g are the functions corresponding to the functor D ◦ P , and where the sum is taken
over all choices of P making the the diagram in 8 commute. This construction allows us to build
losses automatically from graphical specifications of machine learning architectures. The contrac-
tive nature of loss functions ensures that composite losses are well behaved with respected to taking
subsets of each dataset in the diagram.

5 RELATED WORK

We find ourselves aligned in vision with the field of AutoML in that we seek to make the life of the
machine learning practitioner easier. More specifically, we fit with work that focuses on structuring
machine learning pipelines; a pipeline focused AutoML survey can be found in Zöller and Huber
(2021). The formulation of Zöller and Huber (2021) describes pipelines as Directed Acyclic Graphs

9



Published as a conference paper at ICLR 2025

(DAGs). We differ from this formulation and other DAG-based formulations in many important
ways. For one, we have a mathematically grounded definition of what data is captured by nodes and
paths in our learning diagrams, whereas prior art appeals to imprecise terms such as “primitives”
Lippmann et al. (2016), “algorithms”, “operators”, “transformations” and so on. There are some
works (e.g. Drori et al. (2019)) that place more structure on pipelines, but in this framework the
grammar is still defined on an unstructured set of ad-hoc operations. Further, works Kalyuzhnaya
et al. (2020); Nikitin et al. (2022); Polonskaia et al. (2021) that define somewhat flexible pipelines
usually limit themselves to DAGs that have a single source and sink representing the data and label
space. As best we can tell, there appear to be a few exceptions to this rule, e.g. Klein et al. (2017)
which is limited to Bayesian settings with a common data domain shared among tasks. Thanks to
the rigor of our model we can accommodate arbitrarily many tasks interacting in arbitrary ways, so
long as the nodes are Lawvere metric spaces and the paths between nodes are continuous.

Learning diagrams also provide a graphical programming language for constructing machine learn-
ing models, and in that sense are related to works that study foundations of languages for machine
learning models Elliott (2018), though such techniques tend to focus on probabilistic program-
ming Gordon et al. (2014) or the semantics of gradient descent and less on the semantics of the
objective to be optimized.

Category theory has already been used to examine machine learning models compositionally, for ex-
ample in Fong et al. (2019); Cruttwell et al. (2022); Gavranović (2022). Our approach is somewhat
different from most such works in that we focus on the semantics of the loss or objective function
as opposed to the semantics of model updates. That said, we believe there are connections to ex-
plore, particularly with Hanks et al. (2024) as it also considers how to specify compositionally a
loss for machine learning models. More generally, our work belongs to an emerging tradition of
using category theory to provide a diagrammatic yet rigorous approach to describing models in a
domain of interest Decapodes.jl Morris et al. (2024); Patterson et al. (2023); Libkind et al. (2022)
and AlgebraicPetri.jl Libkind et al. (2022).

6 FUTURE WORK AND CONCLUSION

We introduce DiagrammaticLearning.jl, a library built on the notion of learning graphs and learning
diagrams allowing machine learning practitioners to specify complex interactions between multi-
ple models in a way that is inherently compositional and structured. The utility of this approach
is established by capturing some popular training setups as learning diagrams and demonstrating
convenient functionality that came as a result. We further outline the implementation and theoreti-
cal backing that make learning diagrams possible, demonstrating a rich and rigorous semantics that
leads naturally to principled operations for manipulating structured collections of models.

This paper has only scratched the surface of potential capabilities. Future work should investigate
how model structure can be exploited to improve distributed training and manage high performance
systems. Additionally, our structured representation seems like a candidate for the foundation of
a more complete machine learning model management system. We hope for example to elevate
software centric definitions of reproducibility, such as the one given in He et al. (2021), to a math-
ematical plane that is “implementation free” in the sense that any implementation faithfully repro-
ducing the math will yield equivalent results. Homomorphisms between diagrams could capture re-
lationships between development iterations and facilitate operations like searching for models with
particular properties or component sub-diagrams. On the more theoretical side, our formalism is
currently limited to building losses for finite data sets, but extensions to methods where continuous
distributions can enter the diagrams are possible. Additionally, our implementation of training net-
works of models uses mini-batches, but the theory does not address such aspects of practical training
algorithms.

Development and adoption of these tools would reduce the labor necessary to produce effective
ML pipelines, accelerate iteration of ideas within and between research groups, reduce errors intro-
duced in software implementations, and provide quicker turnarounds while evaluating novel ideas.
We hope the learning diagrams paradigm will accelerate the overall process of machine learning
research.
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