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Abstract. Unsupervised domain adaptation (UDA) for abdominal or-
gan segmentation from labeled Computed Tomography (CT) to unla-
beled Magnetic Resonance Imaging (MRI) and Positron Emission To-
mography (PET) presents a significant challenge due to large cross-
modality gaps. To address this, we propose a comprehensive multi-stage
framework that synergistically combines structure-preserving image syn-
thesis, a robust segmentation architecture, and an advanced self-training
pipeline. Initially, we leverage an Organ Attention CycleGAN to syn-
thesize anatomically-faithful MRI and PET images from labeled CTs.
These synthetic images first train a Coarse-to-Fine segmentation net-
work, which is then refined through a sophisticated self-training scheme.
This scheme features a novel dual-stage pseudo-label filtering pipeline
that first selects plausible samples based on anatomical consistency and
then generates high-precision consensus labels via model ensembling.
Evaluated on the FLARE 2025 Task 3 validation set, our complete frame-
work achieves a mean Dice score of 81.21% on MRI and 81.43% on PET,
demonstrating the efficacy of our approach in bridging the domain gap
without requiring any target-domain annotations.
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1 Introduction

Abdominal organ segmentation in medical images is a cornerstone for numerous
clinical applications, including computer-aided diagnosis, surgical planning, and
radiotherapy treatment [26]. While deep learning models, particularly Convolu-
tional Neural Networks (CNNs), have achieved remarkable success in this area,
their performance heavily relies on large-scale, accurately annotated datasets [18].
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The majority of these advancements have been concentrated on Computed To-
mography (CT) imaging, for which annotated data is relatively abundant. How-
ever, other imaging modalities like Magnetic Resonance Imaging (MRI) and
Positron Emission Tomography (PET) offer unique and complementary clinical
advantages. MRI provides superior soft-tissue contrast without ionizing radi-
ation, while PET offers crucial functional and metabolic information, making
multi-modal segmentation a task of significant clinical value [19].

Despite their importance, the development of robust segmentation models
for MRI and PET is severely hampered by the scarcity of annotated data. As
exemplified by this year’s FLARE 2025 challenge, the task involves segmenting
organs in both MRI and PET scans, yet publicly available, large-scale anno-
tated datasets for these modalities remain rare. This data imbalance presents
a formidable challenge: how can we leverage the rich annotations from the CT
domain (source) to build high-performance segmentation models for unlabeled
MRI and PET scans (targets)? This problem falls into the realm of Unsuper-
vised Domain Adaptation (UDA), where the goal is to overcome the significant
"domain gap" between the source and target modalities, which arises from fun-
damentally different imaging physics and appearance characteristics [3].

Image-to-image translation, often powered by Generative Adversarial Net-
works (GANSs) like CycleGAN [28], has emerged as a popular UDA strategy.
By synthesizing target-style images from labeled source images, one can train a
segmentation model in a fully supervised manner. However, a critical drawback
of standard translation methods is their tendency to distort or lose fine anatom-
ical details during the cross-modality synthesis process, which is detrimental
to segmentation accuracy [24]. To mitigate this issue, we previously developed
an Organ Attention CycleGAN, which incorporates a lightweight segmentation
task head to guide the generator, ensuring better preservation of anatomical
structures during translation [25]. Furthermore, given the inherent complexity
of accurately delineating multiple organs, a direct end-to-end segmentation ap-
proach can be suboptimal. A multi-stage strategy, such as the coarse-to-fine
framework, the winning solution of the FLARE 2024 challenge [11], has demon-
strated superior performance by first localizing the region of interest and then
performing precise segmentation.

Building upon these foundations, this work tackles the multi-target UDA
problem for abdominal organ segmentation from CT to both MRI and PET. We
hypothesize that by combining our structure-preserving synthesis method with a
robust coarse-to-fine segmentation pipeline, and further enhancing it with a so-
phisticated self-training mechanism, we can effectively bridge the cross-modality
gap without requiring any annotations for the target MRI and PET domains.

The main contributions of this work are as follows:

— We employ Organ Attention CycleGAN framework with lightweight seg-
mentation task head for cross-modality image translation, which effectively

preserves anatomical structures during the translation from CT to various
MRI and PET modalities.
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— We demonstrate the effectiveness of Coarse-to-Fine segmentation framework
that first localizes the region of interest and then performs fine segmentation,
emphasizing the importance of a dual-stage approach for fully supervised
training and pseudo label generating in self-training.

— We propose a dual-stage pseudo label filtering pipeline that first filtering reli-
able samples using a multi-strategy approach and then aggregating consensus
labels at pixel-wise level, significantly improving segmentation accuracy on
real-world MRI and PET data.

2 Method

Our proposed methodology for unsupervised multi-modal abdominal organ seg-
mentation is structured as a comprehensive pipeline (Fig. 1) designed to bridge
the significant domain gap between labeled CT scans and unlabeled MRI and
PET scans. The framework is organized into three main stages, each correspond-
ing to a core contribution of our work. First, we address the cross-modality image
synthesis challenge by employing our Organ Attention CycleGAN framework.
This stage focuses on generating high-fidelity, structure-preserving synthetic
MRI and PET images from CT data, forming the foundation for supervised
training. Second, we utilize these synthetic images to train a robust segmenta-
tion model based on a Coarse-to-Fine architecture, which enhances accuracy by
first localizing organ regions and then performing precise delineation. Finally, to
adapt the model to real-world data, we introduce a sophisticated self-training
scheme that leverages a novel dual-stage pseudo-label filtering pipeline. This
final stage iteratively refines the model’s performance on the unlabeled target
domains. The subsequent subsections will elaborate on each of these components
in detail.

2.1 Style Transfer with Organ Attention

A model trained on labeled source images (CT), Ds, performs poorly on unla-
beled target domains (MRI/PET), D;, due to the significant domain shift [23].
While CycleGAN [28] is a common unsupervised domain adaptation approach
using adversarial (Lgq,) and cycle-consistency (Lcyc) losses, it often introduces
anatomical distortions that are detrimental to medical segmentation tasks.

To mitigate this, we leverage our Organ Attention CycleGAN [25], which
integrates a task-specific guidance mechanism to explicitly preserve organ struc-
tures. The core idea is to generate a spatial attention map for each source image
X? using a pre-trained segmentation network S. This map, A(X?), highlights
all foreground organ regions by effectively subtracting the predicted background
probability from one:

A(X?) =1 — softmax(S(X})) (1)

? (2

This attention map is then fused with the translated image, forcing the generator
to focus on preserving structural details within these highlighted areas during
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synthesis. This process ensures the generation of an anatomically reliable dataset
for training the downstream segmentation network.
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Fig. 1. Overview of Unsupervised Domain Adaptation for Cross-modality Abdominal
Organ Segmentation via Organ Attention Style Transfer and Dual-stage Pseudo Label
Filtering.

2.2 Fully Supervised Training with Coarse-to-Fine Framework

We train the segmentation model on our synthetic data using a two-stage Coarse-
to-Fine framework [11], which effectively decomposes the task into localization
and then precise delineation. First, a "coarse" model trained on down-sampled
3D volumes identifies a Region of Interest (ROI) encompassing all target or-
gans. Second, a "fine" model performs detailed, multi-class segmentation on
high-resolution patches cropped from within this ROI. The entire pipeline is
implemented using the powerful and automated nnU-Net v2 framework [9], pro-
viding a robust foundation for the subsequent self-training phase.

2.3 Self-Training with Dual-Stage Pseudo Label Filtering

While the models trained on synthetic data provide a strong baseline, a perfor-
mance gap to real-world data invariably remains due to the imperfect nature
of image synthesis. To bridge this final gap and adapt our models to the true
data distributions of unlabeled MRI and PET scans, we introduce a sophisti-
cated self-training pipeline. The core of this pipeline is a dual-stage pseudo-label
filtering mechanism designed to iteratively generate high-quality pseudo-labels
from the unlabeled target domain data. The process flows from initial pseudo-
label generation to sample-wise filtering, then to pixel-wise filtering, and finally,
the refined labels are used to retrain our Coarse-to-Fine segmentation models.
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Stage 1: Sample-Wise Filtering for Plausibility. The first stage aims to
filter out entire image samples whose pseudo-labels are anatomically implausible
or generated with low confidence. For each unlabeled image Xj'? (preprocessed to
match the median spacing of the source CT dataset), we first generate an initial
pseudo-label 17] using our best-performing model trained on synthetic data. Each
sample is then subjected to two key filtering criteria:

— Anatomical Volume Consistency: We check if the predicted organ sizes
are realistic. For each foreground organ class ¢, we compute its relative vol-
ume R., defined as the ratio of the organ’s volume to the volume of the
minimal 3D bounding box encompassing all foreground organs.

V(YY)
V(8 (U 7))

where V(-) is the volume operator, B(-) computes the minimal bounding
box, and fg is the set of all foreground classes. We pre-calculate the mean
(1e) and standard deviation (o) of these relative volumes from the ground
truth labels in the source CT dataset Ds. A pseudo-labeled sample }73 is
considered plausible only if the relative volume of every organ falls within a
trusted interval:

R(Y;) = (2)

Ve e fga He — 3o, < Rc(}/}) < pe + 30.. (3)

— Prediction Confidence Score: To measure model confidence, we use the
top two checkpoints from our validation set to generate two independent
predictions for each sample. We then compute the mean Dice score across
all foreground classes between these two predictions. A sample is retained
only if it is among the top-k ranked samples (e.g., top 100) and its mean Dice
score exceeds a high threshold (e.g., 0.9 for MRI, 0.82 for PET), indicating
strong agreement between the models.

Stage 2: Pixel-Wise Filtering for Consensus. Samples that pass the
initial filtering stage are considered reliable at a macroscopic level. The second
stage refines these labels at the pixel level to generate a high-precision consensus
label. To achieve this, we employ an ensemble of NV diverse models. This ensemble
includes multiple checkpoints from our training runs, models trained with differ-
ent data augmentations (e.g., non-linear transformations, etc), and pseudo labels
from the FLARE22 winning algorithm [8] and the best-accuracy-algorithm [21].

For each voxel v in a selected sample, the final pseudo-label for a class c,
denoted }A/jc(v), is determined by a majority vote across the N model predictions:

N
Vi) =1 (Z Via(v) > J;’) : (4)

where )N/]Cn(v) is the binary prediction for class c at voxel v from the n-th model
in the ensemble, and I(-) is the indicator function. This process effectively filters
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out noisy or uncertain predictions at the pixel level, resulting in a cleaner and
more accurate set of consensus labels.

This dual-stage filtering pipeline yields a high-confidence pseudo-label dataset,
Dpy. This refined dataset is then used to retrain our Coarse-to-Fine segmenta-
tion models, completing one cycle of self-training and significantly improving
segmentation performance on real-world MRI and PET data.

2.4 Loss Function

we use the summation between Dice loss and cross-entropy loss because com-
pound loss functions have been proven to be robust in various medical image
segmentation tasks [13].

3 Experiments

3.1 Dataset and evaluation measures

The training dataset is curated from more than 30 medical centers under the
license permission, including TCIA [2], LiTS [1], MSD [20], KiTS [6,7], au-
toPET [5,4], AMOS [10], LLD-MMRI [12], TotalSegmentator [22], and AbdomenCT-
1K [17], and past FLARE Challenges [14,15,10].

Training Set: The training set includes 2050 labeled CT scans, 4817 unla-
beled MRI scans and unlabeled 1000 PET scans. Among CT scans, 50 cases
are provided with high-quality, manually-curated ground-truth segmentation
masks. The remaining 2,000 cases are annotated with reliable pseudo-labels,
which were generated by the FLARE22 winning algorithm [3] and the best-
accuracy-algorithm [21].

Validation Set: The public validation set is multi-modal and comprises a
total of 160 cases, including 110 MRI and 50 PET scans. This set is used for
hyperparameter tuning, model selection, and evaluating the effectiveness of our
domain adaptation and self-training strategies before the final testing phase.

Evaluation Measures: We use Dice Similarity Coefficient (DSC) and Nor-
malized Surface Dice (NSD) for accuracy evaluation, and running time and area
under the GPU memory-time curve for model efficiency. Furthermore, the run-
ning time for each case should within 60 seconds.

3.2 Implementation details

Environment settings: The development environments and requirements are
presented in Table 1.

Preprocessing: For the style transfer framework, we adopted the preprocessing
steps from our previous work on 3D medical images[25]. Specifically, CT images
were clipped to a window of [-600, 600], while MRI and PET scans were clipped
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Table 1. Development environments and requirements.

System Ubuntu 20.04.3 LTS

CPU Intel(R) Xeon(R) CPU E5-2678 v3 @ 2.50GHz
RAM 125GB

GPU (number and type) NVIDIA GeForce RTX 2080 Ti (11GB)
CUDA version 11.8

Programming language Python 3.10.4
Deep learning framework PyTorch 2.3.04-cull8, torchvision 0.18.0
Specific dependencies antspyx, einops, etc

to intensity values between the 1st and 99th percentiles. All images were then lin-
early normalized to the range [-1, 1]. For the segmentation network, we followed
the same preprocessing as in[11], including cropping, z-score normalization, and
gamma transformation. When generating pseudo labels for self-training, we re-
sampled all unlabeled MRI and PET images to the median spacing of the labeled
CT dataset to mitigate spatial discrepancies across datasets.

Training protocols: The training parameters are listed in Table 2. Additional
training details for style transfer and segmentation can be found in our previous
works on Organ Attention[25] and the two-stage framework [11].

Post-processing: Post-processing, including connected component analysis and
test-time augmentation, remains identical to that in last year’s winning solu-
tion [L11].

Table 2. Training protocols.

Network initialization

Batch size 1

Patch size 96x192x192

Total epochs 200

Optimizer AdamW

Initial learning rate (Ir) le-5, le-6(self-train)
Lr decay schedule Cosine Annealing LR
Training time 10 hours

Loss function Cross entropy + Dice

Number of model parameters 4.2M°
Number of flops 251.19G?




Huamin Wang et al.

Table 3. Quantitative evaluation results of MRI and PET scans on the validation

dataset.
Tarcet MRI PET
& DSC(%) NSD(%) DSC(%) NSD (%)
Liver 93.77 £ 2.29 95.50 4+ 3.75 | 88.41 + 4.17 79.50 £+ 11.78

Right Kidney

Left Kidney

Spleen

Pancreas

Aorta

Inferior Vena Cava
Right Adrenal Gland
Left Adrenal Gland
Gallbladder
Esophagus
Stomach
Duodenum

94.55 £ 3.33 95.54 £ 5.09
95.32 &£ 1.99 96.96 + 2.59
93.68 £ 9.24 96.06 £ 9.92
80.79 + 10.57 92.12 £ 11.09
91.48 £ 8.76 94.99 + 8.88
85.65 £ 7.38 90.23 £ 8.00
60.19 + 15.77 77.06 £ 16.80
66.02 &+ 19.18 79.46 £ 21.67
77.40 £ 24.37 73.95 + 24.84
68.29 + 14.62 85.21 £ 15.05
82.74 + 16.01 86.95 £ 17.35
65.88 + 13.61 87.02 £ 12.93

78.45 £ 11.72 68.33 £ 15.24
80.26 £ 13.00 73.98 + 14.66
78.59 £+ 14.99 65.97 £ 18.91

Average

81.21 £ 12.11 88.54 £ 7.47

81.43 £4.09 71.94 £ 5.24

Table 4. Sample-wise Pseudo Label Selection Quantities for Unlabeled Dataset. Where
(N*) represents the number of modalities, and N denotes approximate quantities.

Strategy CT MR-AMOS MR-LLD(8%) PET(2¥)
total 2000 800 4000 1000
+ class number 1500 500 3700 500
+ relative volume 900 260 2200 140

+ top 2 sorted dice 100 100 618 14

Table 5. Performance metrics for different baselines on MR and PET, where C2F:
Coarse-to-Fine, OA: Organ Attention, DSF: Dual-Stage Filtering for pseudo labels,
RCT: Real CT, FI: Fake Images, PL: Pseudo Label.

Baseline Strategy  Training Data MR PET

C2F OA DSF RCT F1 PL |DSC (%) NSD (%)|DSC (%) NSD (%)
baseline 1| / Vv 80.05 87.08 79.26 69.14
baseline 2| v/ 4/ v vV 80.51 87.78 80.87 71.14
ours v v v Vv v V| 8121 8854 | 8143  71.94
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4 Results and discussion

4.1 Quantitative results on validation set

We evaluated our framework on the FLARE 2025 validation set. Quantitative
results are summarized in Table 3, detailing the final organ-wise performance,
and Table 5, which presents a progressive ablation study.

Our final model (Table 3) demonstrates strong performance, achieving ex-
cellent DSC scores for large organs on MRI (e.g., 95.32% for Left Kidney) but
predictably lower scores for smaller structures (e.g., 60.19% for Right Adrenal
Gland). On PET, the model also performs well, reaching a DSC of 88.41% for
the Liver. Overall, the final model achieves an average DSC of 81.21% on MRI
and 81.43% on the evaluated PET organs.

The ablation study in Table 4 and Table 5 confirms the efficacy of our com-
ponents. A baseline Coarse-to-Fine (C2F) model trained only on real CT data
achieves 80.05% DSC on MR and 79.26% on PET. Integrating our Organ At-
tention (OA) mechanism for synthetic image generation boosts performance,
particularly on PET (80.87% DSC). Finally, applying our Dual-Stage Filtering
(DSF) in a self-training loop further improves the scores to our final results
of 81.21% (MR) and 81.43% (PET). This incremental improvement validates
the significant contribution of both the structure-preserving synthesis and the
pseudo-label filtering pipeline.

4.2 Qualitative results on validation set

Figure 2 presents two examples of successful segmentation and two examples of
poor segmentation from the validation set. Furthermore, undersegmented fore-
ground regions are indicated by green arrows, and false positive segmentation
regions are enclosed in yellow boxes.

4.3 Segmentation efficiency results on validation set

We also present efficiency metrics in Table 6, including running time and GPU
memory consumption. These metrics were evaluated on an NVIDIA GeForce
RTX 2080 Ti GPU with 11 GB of memory.

4.4 Results on final testing set

This is a placeholder. We will send you the testing results during MICCAT 2025.

4.5 Limitation and future work

The current UDA approach for style transfer involves training separate Cycle-
GAN models for each MRI and PET modality to preserve modality-specific
anatomical features. While effective, this design incurs additional computational
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Case #amos_8179(slice#38)

image baseline1 baseline2 ours ground truth
Fig. 2. Visualization of two examples with good segmentation results and two examples

with bad segmentation results in the validation set.

Table 6. Quantitative evaluation of segmentation efficiency in terms of the running
time and GPU memory consumption. Total GPU denotes the area under GPU Memory-
Time curve. Evaluation GPU platform: NVIDIA GeForce RTX 2080 Ti (11GB).

Case ID Image Size  Running Time (s) Max GPU (MB) Total GPU (MB)
amos_0540 (192, 192, 100) 1351 3083 13075
amos_ 7324 (256, 256, 80) 13.97 2641 13728
amos_ 0507 (320, 290, 72) 13.76 2641 12880
amos__ 7236 (400, 400, 115) 14.48 2641 13985
amos_ 7799 (432, 432, 40) 13.99 2641 13438
amos_ 0557 (512, 152, 512) 17.14 3083 17185
amos_ 0546 (576, 468, 72) 15.69 3079 15668
amos_ 8082 (1024, 1024, 82) 28.37 3083 31920

fdg_605369e88d (400, 400, 92) 14.27 2837 13084
fdg d951leeb735 (400, 400, 58) 14.30 3081 13310

psma_ af293f5b5149087a (200, 200, 121) 13.40 2641 11855
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costs and may limit scalability. Furthermore, the dual-stage pseudo label filter-
ing is an offline strategy, rendering it unsuitable for real-time self-improvement
during the self-training phase. In the future, integrating a self-training pipeline
that dynamically improves pseudo label quality could yield more precise seg-
mentation.

5 Conclusion

In this work, we presented a comprehensive unsupervised domain adaptation
framework that combines structure-preserving image synthesis, a coarse-to-fine
segmentation strategy, and a novel dual-stage pseudo-label filtering pipeline to
segment abdominal organs in unlabeled MRI and PET scans. Our extensive ex-
periments demonstrated that each component provides significant, incremental
performance gains, validating the effectiveness of our multi-stage design. Ul-
timately, this synergistic approach successfully bridges the large domain gap
between CT, MRI, and PET, yielding a robust segmentation model without
requiring any annotations in the target domains.
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