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ABSTRACT

Recent works show we can linearize large language models (LLMs)—swapping
the quadratic attentions of popular Transformer-based LLMs with subquadratic
analogs, such as linear attention—avoiding the expensive pretraining costs. How-
ever, linearizing LLMs often significantly degrades model quality, still requires
training over billions of tokens, and remains limited to smaller 1.3B to 7B
LLMs. We thus propose Low-rank Linear Conversion via Attention Transfer
(LOLCATS), a simple two-step method that improves LLM linearizing quality
with orders of magnitudes less memory and compute. We base these steps on
two findings. First, we can replace an LLM’s softmax attentions with closely-
approximating linear attentions, simply by training the linear attentions to match
their softmax counterparts with an output MSE loss (“attention transfer”). Then,
this enables adjusting for approximation errors and recovering LLM quality sim-
ply with low-rank adaptation (LoRA). LOLCATS significantly improves lineariz-
ing quality, training efficiency, and scalability. We significantly reduce the lin-
earizing quality gap and produce state-of-the-art subquadratic LLMs from Llama
3 8B and Mistral 7B v0.1, leading to 20+ points of improvement on 5-shot
MMLU. Furthermore, LOLCATS does so with only 0.2% of past methods’ model
parameters and 0.04-0.2% of their training tokens. Finally, we apply LOLCATS
to create the first linearized 70B and 405B LLMs (50× that of prior work). When
compared with prior approaches under the same compute budgets, LOLCATS
significantly improves linearizing quality, closing the gap between linearized and
original Llama 3.1 70B and 405B LLMs by 77.8% and 78.1% on 5-shot MMLU.

1 INTRODUCTION

“Linearizing” large language models (LLMs)—or converting existing Transformer-based LLMs into
attention-free or subquadratic alternatives—has shown promise for scaling up efficient architectures.
While many such architectures offer complexity-level efficiency gains, like linear-time and constant-
memory generation, they are often limited to smaller models pretrained on academic budgets (Gu
& Dao, 2023; Peng et al., 2023a; Yang et al., 2023; Arora et al., 2024; Beck et al., 2024). In a
complementary direction, linearizing aims to start with openly available LLMs—e.g., those with
7B+ parameters trained on trillions of tokens (AI, 2024; Jiang et al., 2023)—and (i) swap their
softmax attentions with subquadratic analogs, before (ii) further finetuning to recover quality. This
holds exciting promise for quickly scaling up subquadratic capabilities.

However, to better realize this promise and allow anyone to convert LLMs into subquadratic models,
we desire methods that are (1) quality-preserving, e.g., to recover the zero-shot abilities of modern
LLMs; (2) parameter and token efficient, to linearize LLMs on widely accessible compute; and
(3) highly scalable, to support linearizing 70B+ LLMs available today (Touvron et al., 2023a;b).

Existing methods present opportunities to improve all three criteria. On quality, despite using moti-
vated subquadratic analogs such as RetNet-inspired linear attentions (Sun et al., 2023; Mercat et al.,
2024) or state-space model (SSM)-based Mamba layers (Gu & Dao, 2023; Bick et al., 2024; Wang
et al., 2024), prior works significantly reduce performance on popular LM Evaluation Harness tasks
(LM Eval) (Gao et al., 2023) (up to 23.4-28.2 pts on 5-shot MMLU (Hendrycks et al., 2020)). On pa-
rameter and token efficiency, to adjust for architectural differences, prior methods update all model
parameters in at least one stage of training (Mercat et al., 2024; Wang et al., 2024; Bick et al., 2024),
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Figure 1: LOLCATS framework. We linearize LLMs by (1) training attention analogs to approximate
softmax attentions (attention transfer), before swapping attentions and (2) minimally adjusting (with LoRA).

and use 20 - 100B tokens to linearize 7B LLMs. On scalability, these training costs make linearizing
larger models on academic compute more difficult; existing works only linearize up to 8B LLMs.
This makes it unclear how to support linearizing 70B to 405B LLMs (Dubey et al., 2024).

In this work, we thus propose LOLCATS (LOw-rank Linear Conversion with Attention TranSfer),
a simple approach to improve the quality, efficiency, and scalability of linearizing LLMs. As guiding
motivation, we ask if we can linearize LLMs by simply reducing architectural differences, i.e.,

1. Starting with simple softmax attention analogs such as linear attention (Eq. 2), and training their
parameterizations explicitly to approximate softmax attention (“attention transfer”).

2. Subsequently only training with low-cost finetuning to adjust for any approximation errors, e.g.,
with low-rank adaptation (LoRA) (Hu et al., 2021) (“low-rank linearizing”).

In evaluating this hypothesis, we make several contributions. First, to better understand lineariz-
ing feasibility, we empirically study attention transfer and low-rank linearizing with existing linear
attentions. While intuitive—by swapping in perfect subquadratic softmax attention approximators,
we could get subquadratic LLMs with no additional training—prior works suggest linear attentions
struggle to match softmax expressivity (Keles et al., 2023; Qin et al., 2022) or need full-model up-
dates to recover linearizing quality (Kasai et al., 2021; Mercat et al., 2024). In contrast, we find
that while either attention transfer or LoRA alone is insufficient, we can rapidly recover quality
by simply doing both (Figure 3, Table 2). At the same time, we do uncover quality issues related
to attention-matching architecture and training. With prior linear attentions, the best low-rank lin-
earized LLMs still significantly degrade in quality vs. original Transformers (up to 42.4 pts on 5-shot
MMLU). With prior approaches that train all attentions jointly (Zhang et al., 2024), we also find that
later layers can result in 200× the MSE of earlier ones (Figure 7). We later find this issue aggravated
by larger LLMs; jointly training all Llama 3.1 405B’s 126 attention layers fails to viably linearize.

Next, to resolve these issues and improve upon our original criteria, we detail LOLCATS’ method
components. For quality, we generalize prior notions of learnable linear attentions to sliding win-
dow + linear attention variants. These remain subquadratic to compute yet consistently yield better
attention transfer via lower mean-squared error (MSE) on attention outputs. For parameter and
token efficiency, we maintain our simple 2-step framework of (1) training subquadratic attentions
to match softmax attentions, before (2) adjusting for any errors via only LoRA. For scalability, we
use finer-grained “block-by-block” training. We split LLMs into blocks of k layers before jointly
training attentions only within each block to improve layer-wise attention matching. We pick k to
balance the speed of training blocks in parallel with the memory of saving hidden state outputs of
prior blocks (as inputs for later ones). We provide a simple cost model to navigate these tradeoffs.

Finally, in experiments, we validate that LOLCATS improves on each of our desired criteria.

• On quality, when linearizing popular LLMs such as Mistral-7B and Llama 3 8B, LOLCATS
substantially improves past linearizing methods (by 1.1−8.6 points (pts) on zero-shot LM Eval
tasks; +17.2 pts on 5-shot MMLU)). With Llama 3 8B, LOLCATS for the first time closes the
zero-shot LM Eval gap between linearized and Transformer models (73.1 vs 74.2 pts), while
supporting 3× the throughput and 64× the batch sizes vs. popular FlashAttention-2 (Dao, 2023)
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Name Architecture Quality
Preserving

Parameter
Efficient

Token
Efficient

Validated
at Scale

Pretrained Attention ✓✓ ✗✗ ✗✗ ✓✓
SUPRA Linear Attention ✗ ✗ ✓ ✓
Mohawk Mamba (2) ✗ ✗ ✓ ✗
Mamba in Llama Mamba (2) ✗ ✗ ✓ ✓

LoLCATs Softmax-Approx.
Linear Attention ✓ ✓ ✓✓ ✓✓

Figure 2: Linearizing comparison. LOLCATS significantly
improves LLM linearizing quality and training efficiency. No.
of ✓ or ✗ indicate relatively better or worse support.

models (generating 4096 tokens on an 80GB H100). As an alternative to pretraining, LOLCATS
outperforms strong pretrained 7B subquadratic LLMs and hybrids by 1.2–9.9 pts (LM Eval avg.).

• On parameter and token-efficiency, by only training linear attention feature maps in Stage 1,
while only using LoRA on linear attention projections in Stage 2, LOLCATS enables these gains
while updating only <0.2% of past linearizing methods’ model parameters, making a single 40GB
GPU sufficient for 7B LLM linearizing. This also only takes 40M tokens, i.e., 0.003% and 0.04%
of prior pretraining and linearizing methods’ token counts.

• On scalability, with LOLCATS we scale up linearizing to support Llama 3.1 70B and 405B
LLMs (Dubey et al., 2024). LOLCATS presents the first viable approach to linearizing larger
LLMs. We create the first linearized 70B LLM, taking only 18 hours on one 8×80GB H100
node, and the first linearized 405B LLM with a combination of 5 hours on 14 80GB H100 GPUs
(attention transfer) + 16 hours on three 8×80GB H100 nodes (LoRA finetuning) for Llama 3.1
405B. For both models, this amount to under half the total GPU hours than prior methods reported
to linearize 8B models (5 days on 8×80GB A100s) (Wang et al., 2024). Furthermore, under
these computational constraints, LOLCATS significantly improves quality versus prior linearizing
approaches without attention transfer. With Llama 3.1 70B and 405B, we close 77.8% and 78.1%
of the 5-shot MMLU gap between Transformers and linearized variants respectively.

2 PRELIMINARIES

To motivate LOLCATS, we first go over Transformers, attention, and linear attention. We then
briefly discuss related works on linearizing Transformers and Transformer-based LLMs.

Transformers and Attention. Popular LLMs such as Llama 3 8B (AI@Meta, 2024a) and Mistral
7B (Jiang et al., 2023) are decoder-only Transformers, with repeated blocks of multi-head softmax
attention followed by MLPs (Vaswani et al., 2017). For one head, attention computes outputs y ∈
Rl×d from inputs x ∈ Rl×d (where l is sequence length, d is head dimension) with query, key,
and value weights Wq,Wk,Wv ∈ Rd×d. In causal language modeling, we compute q = xWq ,
k = xWk, v = xWv , before getting attention weights a and outputs y via

an,i =
exp(q⊤n ki/

√
d)∑n

i=1 exp(q
⊤
n ki/

√
d)

, yn =

n∑
i=1

an,ivi, for n in [1, . . . , l] (1)

Multi-head attention maintains inputs, outputs, and weights for each head, e.g., x ∈ Rh×l×d or
Wq ∈ Rh×d×d (h being number of heads), and computes Eq. 1 for each head. In both cases, we
compute final outputs by concatenating yn across heads, before using output weights Wo ∈ Rhd×hd

to compute ynWo ∈ Rl×hd. While expressive, causal softmax attention requires all {ki,vi}i≤n to
compute yn. For long context or large batch settings, this growing KV cache can incur prohibitive
memory costs even with state-of-the-art implementations such as FlashAttention (Dao, 2023).

Linear Attention. To get around this, Katharopoulos et al. (2020) show a similar attention op-
eration, but with linear time and constant memory over generation length (linear time and space
when processing inputs). To see how, note that softmax attention’s exponential is a kernel function
K(qn,ki), which in general can be expressed as the dot product of feature maps ϕ : Rd 7→ Rd′

.
Swapping exp(q⊤n ki/

√
d) with ϕ(qn)

⊤ϕ(ki) in Eq. 1 gives us linear attention weights and outputs:

ŷn =

n∑
i=1

ϕ(qn)
⊤ϕ(ki)vi∑n

i=1 ϕ(qn)
⊤ϕ(ki)

=
ϕ(qn)

⊤
(∑n

i=1 ϕ(ki)v
⊤
i

)
ϕ(qn)⊤

∑n
i=1 ϕ(ki)

(2)
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This lets us compute both the numerator sn =
∑n

i=1 ϕ(ki)v
⊤
i and denominator zn =

∑n
i=1 ϕ(ki)

as recurrent “KV states”. With s0 = 0, z0 = 0, we recurrently compute linear attention outputs as

ŷn =
ϕ(qn)

⊤sn
ϕ(qn)⊤zn

for sn = sn−1 + ϕ(kn)v
⊤
n and zn = zn−1 + ϕ(kn) (3)

Eq. 2 lets us compute attention over an input sequence of length n in O(ndd′) time and space,
while Eq. 3 lets us compute n new tokens in O(ndd′) time and O(dd′) memory. Especially during
generation, when softmax attention has to compute new tokens sequentially anyway, Eq. 3 enables
time and memory savings if d′ < (prompt length + prior generated tokens).

Linearizing Transformers. To combine efficiency with quality, various works propose different
ϕ, (e.g., ϕ(x) = 1 + ELU(x) as in Katharopoulos et al. (2020)). However, they typically train
linear attention Transformers from scratch. We build upon recent works that swap the softmax
attentions of existing Transformers with linear attention before finetuning the modified models with
next-token prediction to recover language modeling quality. These include methods proposed for
LLMs (Mercat et al., 2024), and those for smaller Transformers—e.g., 110M BERTs (Devlin et al.,
2018))—reasonably adaptable to modern LLMs (Kasai et al., 2021; Mao, 2022; Zhang et al., 2024).

3 METHOD: LINEARIZING LLMS WITH LOLCATS

We now study how to build a high-quality and highly efficient linearizing method. In Section 3.1, we
present our motivating framework, which aims to (1) learn good softmax attention approximators
with linear attentions and (2) enable low-rank adaptation for recovering linearized quality. In Sec-
tion 3.2, we find that while this attention transfer works surprisingly well for low-rank linearizing
with existing linear attentions, on certain tasks, it still results in sizable quality gaps compared to
prior methods. We also find that attention-transfer quality strongly corresponds with the final lin-
earized model’s performance. In Section 3.3, we use our learned findings to overcome prior issues,
improving attention transfer to subsequently improve low-rank linearizing quality.

3.1 LOLCATS PART 1: A FRAMEWORK FOR LOW-COST LINEARIZING

In this section, we present our initial LOLCATS framework for linearizing LLMs in an effective
yet efficient manner. Our main hypothesis is that by first learning linear attentions that approximate
softmax, we can then swap these attentions in as drop-in subquadratic replacements. We would then
only need a minimal amount of subsequent training—e.g., that is supported by low-rank updates—to
recover LLM quality in a cost-effective manner effectively. We thus proceed in two steps.

1. Parameter-Efficient Attention Transfer. For each softmax attention in an LLM, we aim to learn
a closely-approximating linear attention, i.e., one that computes attention outputs ŷ ≈ y for all
natural inputs x. We call this “attention transfer”, as we aim to transfer the attention modeling
of existing softmax attentions into target linear attentions. Due to architectural similarity, we can
treat this as a feature map learning problem, learning ϕ to approximate softmax. For each head
and layer, let ϕq and ϕk be query and key feature maps. Per head, we compute:

yn =

n∑
i=1

exp(q⊤n ki/
√
d)∑n

i=1 exp(q
⊤
n ki/

√
d)

vi︸ ︷︷ ︸
Softmax Attention

, ŷn =

n∑
i=1

ϕq(qn)
⊤ϕk(ki)∑n

i=1 ϕq(qn)⊤ϕk(ki)
vi︸ ︷︷ ︸

Linear Attention

(4)

for all n ∈ [l] with input ∈ Rl×d, and train ϕq, ϕk to minimize sample mean squared error (MSE)

ℓMSE =
1

MH

M∑
m=1

H∑
h=1

ℓh,mMSE , ℓh,mMSE =
1

d

d∑
n=1

(yn − ŷn)
2 (5)

i.e., jointly for each head h in layer m. Similar to past work (Kasai et al., 2021; Zhang et al.,
2024), rather than manually design ϕ, we parameterize each ϕ : Rd 7→ Rd′

as a learnable layer:

ϕq(qn) := f(qnW̃(q) + b̃(q)) , ϕk(ki) := f(kiW̃(k) + b̃(k))

Here W̃ ∈ Rd×d′
and b̃ ∈ Rd′

are trainable weights and optional biases, f(·) is a nonlinear
activation, and d′ is an arbitrary feature dimension (set to equal head dimension d in practice).
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2. Low-rank Adjusting. After training the linearizing layers, we replace the full-parameter train-
ing of prior work with low-rank adaptation (LoRA) (Hu et al., 2021). Like prior work, to ad-
just for the modifying layers and recover language modeling quality, we now train the mod-
ified LLM end-to-end over tokens to minimize a sample next-token prediction loss ℓxent =
−
∑

logPΘ(ut+1 | u1:t). Here PΘ is the modified LLM, Θ is the set of LLM parameters,
and we aim to maximize the probability of true ut+1 given past tokens u1:t (Fig. 1 right).
However, rather than train all LLM parameters, we only train the swapped linear attention
Wq,Wk,Wv,Wo with LoRA, updating W ′ ← W + ∆W with ∆W as the product of two
low-rank matrices BA, B ∈ Rd×r, A ∈ Rr×d. This enables parameter efficiency for r ≪ d.

Training footprint and efficiency. Both steps remain parameter-efficient. For Step 1, optimizing
Eq. 5 is similar to a layer-by-layer cross-architecture distillation. We compute layer-wise (x,y) as
pretrained attention inputs and outputs, using an LLM forward pass over natural language samples
(Fig. 1 middle). However, to keep our training footprint low, we freeze the original pretrained
attention layer’s parameters and simply insert new ϕq, ϕk after Wq,Wk in each softmax attention
(Fig. 1 left). In Step 1, we compute outputs y, ŷ with the same attention weights in separate passes
(choosing either Eq. 1 or Eq. 2; “teacher-forcing” by only sending softmax outputs y to future layers
and preventing error propagation, Fig. 1 middle). For Llama 3 8B or Mistral 7B, training ϕq, ϕk with
d′ = 64 then only takes 32 layers × 32 heads × 2 feature maps × (128 × 64) weights ≈ 16.8M
trainable weights (0.2% of LLM sizes). In Step 2, LoRA with r = 8 on all attention projections
suffices for state-of-the-art quality. This updates just <0.09% of 7B parameters.

3.2 BASELINE STUDY: ATTENTION TRANSFER AND LOW-RANK LINEARIZING

As a first step, we aim to understand if attention transfer and low-rank adjusting as proposed are
sufficient for linearizing LLMs. While simple, it is unclear whether these steps can lead to high-
quality linearizing, as all prior works default to more involved approaches (Mercat et al., 2024; Bick
et al., 2024; Wang et al., 2024). They use linearizing layers featuring GroupNorms (Wu & He, 2018)
and decay factors (Sun et al., 2023), or alternate SSM-based architectures (Gu & Dao, 2023; Dao
& Gu, 2024). They also all use full-LLM training after swapping in the subquadratic layers. In
contrast, as a first contribution we find that simple linear attentions can lead to viable linearizing,
with attention transfer + LoRA obtaining competitive quality on 4 / 6 popular LM Eval tasks.

Feature Map ϕ(q) (same for k) Weight Shapes

T2R ReLU(qW̃ + b̃) W̃ : (128, 128), b̃: (128,)
Hedgehog [SMd(qW̃ )⊕ SMd(−qW̃ )] W̃ : (128, 64)

Table 1: Learnable feature maps. Transformer
to RNN (T2R) from Kasai et al. (2021), Hedgehog
from Zhang et al. (2024), both ⊕ (concat) and SMd

(softmax) apply over feature dimension.

Experimental Setup. We test the LOLCATS
framework by linearizing two popular base
LLMs, Llama 3 8B (AI, 2024) and Mistral 7B
v0.1 (Jiang et al., 2023). For linearizing lay-
ers, we study two feature maps used in prior
work (Table 1). To support the rotary posi-
tional embeddings (RoPE) (Su et al., 2024) in
these LLMs, we apply the feature maps ϕ after
RoPE,1 i.e., computing query features ϕq(q) = f(RoPE(q)W̃q + b̃)). For linearizing data, we
wish to see if LOLCATS with a small amount of data can recover general zero-shot and instruction-
following LLM abilities. We use the 50K samples of a cleaned Alpaca dataset2, due to its ability
to improve general instruction-following in 7B LLMs despite its relatively small size (Taori et al.,
2023). We train all feature maps jointly. Training code and implementation details are in App. C.

To study the effects of attention transfer and low-rank linearizing across LLMs and linear attention
architectures, we evaluate their validation set perplexity (Table 2, Fig. 3) and downstream LM Eval
zero-shot quality (Table 4). We use the same data for both stages, early stopping, and either 2 epochs
for attention transfer and LoRA adjusting or 4 epochs for either alone (≈ 40M total training tokens).
We use LoRA r = 8 by popular default (Hu et al., 2021), training 0.2% of LLM parameter counts.

Attention Transfer + LoRA Enables Fast LLM Linearizing. In Table 2 and Fig. 3, we report
the validation PPL of linearized LLMs, ablating attention transfer and LoRA adjusting. We find

1Unlike prior works that apply ϕ before RoPE (Mercat et al., 2024; Su et al., 2024), our choice preserves the
linear attention kernel connection, where we can hope to learn ϕq, ϕk for exp(q⊤

n ki/
√
d) ≈ ϕq(qn)

⊤ϕk(ki).
2https://huggingface.co/datasets/yahma/alpaca-cleaned
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Llama 3 8B Mistral 7B

Attention T2R Hedgehog T2R Hedgehog

Transfer? PPL@0 PPL@2/4 PPL@0 PPL@2/4 PPL@0 PPL@2/4 PPL@0 PPL@2/4

No ✗ 1539.39 16.05 2448.01 9.02 2497.13 8.85 561.47 4.87
Yes ✓ 79.33 4.11 60.86 3.90 32.78 3.29 18.94 3.04

Table 2: Alpaca validation set perplexity (PPL) of linearized LLMs, comparing attention transfer, no LoRA
adjusting (PPL@0) and PPL after training (PPL@2/4; 2 with attention transfer, 4 without, for equal total steps).

Figure 3: Attention transfer training efficiency. Even accounting for initial training steps, low-rank lineariz-
ing with attention transfer still consistently achieves lower perplexity faster across feature maps and LLMs.

that while attention transfer alone is often insufficient (c.f., PPL@0, Table 2), a single low-rank
update rapidly recovers performance by 15–75 PPL (Fig. 3), where training to approximate softmax
leads to up to 11.9 lower PPL than no attention transfer. Somewhat surprisingly, this translates to
performing competitively with prior linearizing methods that train all model parameters (Mercat
et al., 2024; Wang et al., 2024) (within 5 accuracy points on 4 / 6 popular LM Eval tasks; Table 4),
while only training with 0.04% of their token counts and 0.2% of their parameter counts. The results
suggest we can linearize 7B LLMs at orders-of-magnitude less training costs than previously shown.

LOL SAD: Limitations of Low-Rank Linearizing. At the same time, we note quality limitations
with the present framework. While sometimes close, low-rank linearized LLMs perform worse than
full-parameter alternatives and original Transformers on 5 / 6 LM Eval tasks (up to 42.4 points on 5-
shot MMLU; Table 4). To understand the issue, we study if the attention transfer stage can produce
close linear attention approximations of LLM softmax attentions. We note three observations:

1. Attention transfer quality (via output MSE) strongly ties to final linearized LLM quality (via
PPL) (Fig. 5), suggesting we can improve quality by reducing MSE with softmax attentions.

2. However, larger MSEs coincide with lower softmax attention weight entropies (Fig. 6a). Zhang
et al. (2024) find linear attentions struggle to approximate such “spikier” distributions, suggesting
we may need better attention-matching layers to reduce MSE and improve final linearized quality.

3. When training layers jointly like in prior work (Zhang et al., 2024), larger MSEs also heavily
concentrate in later layers (Fig. 6b). To bring the MSE in these layers down, we may thus need
more fine-grained layer-wise supervision, rather than the objective over all layers in Eq. 5.

3.3 LOLCATS PART 2: COMPONENTS TO IMPROVE LOW-RANK LINEARIZING

Following our motivating hypotheses, framework, and observations, we now introduce two simple
improvements to improve linearized LLM quality by reducing MSE: (1) better attention-matching
architectures (Section 3.3.1), and (2) finer-grained layer-wise attention transfer (Section 3.3.2).

Model Tokens (B) PiQA ARC-E ARC-C HS WG MMLU

Llama 3 8B - 79.9 80.1 53.3 79.1 73.1 66.6
→Mamba2 100 76.8 74.1 48.0 70.8 58.6 43.2
→ LoRA Hedgehog 0.04 77.4 71.1 40.6 66.5 54.3 24.2

Mistral 7B - 82.1 80.9 53.8 81.0 74.0 62.4
→ SUPRA 100 80.4 75.9 45.8 77.1 70.3 34.2
→ LoRA Hedgehog 0.04 79.3 76.4 45.1 73.1 57.5 28.2

Figure 4: Linearizing comparison on LM Eval.
Task names in Table 4. Acc. norm: ARC-C, HS.
Acc. otherwise. 5-shot MMLU. 0-shot otherwise. Figure 5: Attention MSE vs. PPL. Across feature maps,

LLMs; lower MSE coincides with better linearized quality.
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(a) Attention Entropy (b) Model Layer

Figure 6: Sources of Attention Transfer Error with Llama 3 8B. We find two potential sources of
attention transfer difficulty: (a) low softmax attention entropy and (b) attentions in later layers.

3.3.1 ARCHITECTURE: GENERALIZING LEARNABLE LINEAR ATTENTIONS

As described, we can apply our framework with any linear attentions with learnable ϕ (e.g., T2R
and Hedgehog, Figure 3). However, to improve attention-matching quality, we introduce a hybrid ϕ
parameterization combining linear attention and sliding window attention. Motivated by prior works
that show quality improvements when combining attention layers with linear attentions (Arora et al.,
2024; Munkhdalai et al., 2024), we combine short sliding windows of softmax attention (Beltagy
et al., 2020; Zhu et al., 2021) (size 64 in experiments) followed by linear attention in a single layer.
This allows attending to all prior tokens for each layer while keeping the entire LLM subquadratic.
For window size w and token indices [1, . . . , n−w, . . . , n], we apply the softmax attention over the
w most recent tokens, and compute attention outputs ŷn as

ŷn =

∑n
i=n−w+1 γ exp(q

⊤
n ki/

√
d− cn)vi + ϕq(qn)

⊤(∑n−w
j=1 ϕk(kj)v

⊤
j

)∑n
i=n−w+1 γ exp(q

⊤
n ki/

√
d− cn) + ϕq(qn)⊤

(∑n−w
j=1 ϕk(kj)⊤

) (6)

γ is a learnable mixing term, and cn is a stabilizing constant as in log-sum-exp calculations (cn =
maxi

{
q⊤n ki/

√
d : i ∈ [n− w + 1, . . . , n]

}
). Like before, we can pick any learnable ϕ.

Subquadratic efficiency. The hybrid layer retains linear time and constant memory generation.
For n-token prompts, we initially require O(w2d) and O((n − w)dd′) time and space for window
and linear attention respectively, attending over a w-sized KV-cache and computing KV and K-states
(Eq. 3). For generation, we only need O(w2d + dd′) time and space for every token. We evict the
KV-cache’s first k, v, compute ϕk(k), and add ϕk(k)v

⊤ and ϕk(k) to KV and K-states respectively.

Hardware-aware implementation. To make Eq. 6 competitive with modern softmax attentions
like FlashAttention-2 (Dao, 2023), we provide a “hardware-aware” Eq. 6 with the Hedgehog feature
map. For space, we defer implementation details to App. A, C.2. We evaluate this version by default.

3.3.2 TRAINING: LAYER (OR BLOCK)-WISE ATTENTION TRANSFER

We describe our training approach and provide a simplified model to show its cost-quality tradeoffs.
Based on the layer-wise MSE differences in Sec. 3.2 from training all layers jointly (Eq. 5), we

Figure 7: Improving Attention matching MSE. Linearizing with linear + sliding window attention
better matches LLM softmax attentions (lower MSE) over attention entropy values and LLM layers.
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instead generalize to training over finer-grained b-layer blocks, and train each block independently:

ℓblock
MSE =

1

bH

i+b∑
m=i

H∑
h=1

ℓh,mMSE (for blocks starting at layers i = 0, b, 2b, . . .) (7)

We choose b to balance quality and cost in both memory and training time, which we find partic-
ularly helpful for linearizing larger LLMs. Several block-wise training approaches exist, including
joint training with separate optimizer groups per block, sequentially training separate blocks, or pre-
computing hidden states and training blocks in parallel across GPUs. For space, we report results
on LLM quality trade-offs in App. B.6.3, where we find smaller b improves LOLCATS Llama 3.1
405B PPL by 1.02 points (Table 23). Below we discuss primary cost trade-offs:

• Compute: While the joint training of Llama 3.1 405B in 16-bit precision uses multiple nodes
(e.g., NVIDIA H100 8×80GB nodes), an individual block of b = 9 or fewer layers can be trained
on a single GPU (e.g., H100 80GB GPU) at sequence length 1024.

• Time: However, doing so on a single GPU multiples total training time by M/b. With multiple
GPUs, we can distribute training different blocks on difference devices in parallel. To train blocks
at layers b, 2b, ..., we need the outputs from each prior block. As we teacher-force with the “true”
softmax attention outputs, we can simply precompute these with the original Transformer.

• Memory: Lastly, we need to save each precomputed block’s outputs to disk. The total disk space
required is 2×T × d× L

k for total training tokens T , model dimension d, number of layers L and
2-byte (16-bit) precision. For Llama 3.1 405B, saving states per-layer (b = 1) for just 50M tokens
requires over 200TB of disk space. Larger b divides this storage, potentially at the cost of quality.

For each target LLM, we thus aim to make low-rank linearizing feasible by first doing block-wise
attention transfer, adjusting parameters based on linearizing quality and what is feasible in compute,
time, and memory. We summarize LOLCATS with Alg. 1, 2, providing pseudocode in App. C.1.

Algorithm 1 LOLCATS Step 1: Attn. Transfer
Input: Pretrained Transformer with M attn. layers; input tokens u
Input: Linear attn. feature map params. {ϕm

q , ϕm
k , γm : m ∈

[M ]}, window size w; layer block-size b, learning rate α
1: Freeze all Transformer parameters
2: Initialize block-wise losses {ℓi ← 0 : i ∈ [M//b]}
3: Compute initial attn. input x1 ← embed(u)
4: for attn. layer m ∈ [M ] do ▷ Compute attentions
5: q,k,v = xmWm

q ,xmWm
k ,xmWm

v

6: ym = softmax attn(q,k,v) (Eq. 1) ▷ (No grad.)
7: ŷm = linear attn(q,k,v, w, ϕm

q , ϕm
k , γm) (Eq. 6)

8: ℓm//b ← ℓm//b + ℓMSE(ŷ
m,ym) (Eq. 7)

9: xm+1 = mlpm(ymWm
o ) ▷ (Teacher-force next layer)

10: for attn. layer m ∈ [M ] do ▷ Update feature maps
11: for weights θ ∈ {ϕm

q , ϕm
k , γm} do

12: Update θ ← θ − α ∂
∂θ ℓm//b

Algorithm 2 LOLCATS Step 2: LoRA Adjust
Input: Linearized Transformer with M attn. layers; input tokens u
Input: Trained feature map params. {ϕm

q , ϕm
k , γm : m ∈ [M ]},

window size w; learning rate α
1: for attn. layer m ∈ [M ] do ▷ (Add LoRA weights)

Init. LoRA Am,Bm for each Wm
q ,Wm

k ,Wm
v ,Wm

o

2: Compute initial attn. input x1 ← embed(u)
3: for attn. layer m ∈ [M ] do ▷ Compute attentions
4: q = xm(Wm

q + Bm
q Am

q ) ▷ (LoRA forward pass)
5: k = xm(Wm

k + Bm
k Am

k )

6: v = xm(Wm
v + Bm

v Am
v )

7: ŷm = linear attn(q,k,v, w, ϕm
q , ϕm

k , γm) (Eq. 6)
8: xm+1 = mlpm(ym(Wm

o + Bm
o Am

o ))

9: Compute next-token pred û = lm head(xM ) ▷ Train LoRA
10: Compute sample loss ℓ = ℓCrossEnt(û0:n−1,u1:n)
11: Update θ ← θ − α ∂ℓ

∂θ for all θ in all A,B

4 EXPERIMENTS

Through experiments, we study: (1) if LOLCATS linearizes LLMs with higher quality than ex-
isting subquadratic alternatives and linearizations, and higher generation efficiency than original
Transformers (Sec. 4.1); (2) how ablations on attention transfer loss, subquadratic architecture, and
parameter and token counts impact LLM quality (Sec. 4.2); and (3) how LOLCATS’ quality and
efficiency holds up to 70B and 405B LLMs by linearizing the complete Llama 3.1 family (Sec. 4.3).

4.1 MAIN RESULTS: LOLCATS EFFICIENTLY RECOVERS QUALITY IN LINEARIZED LLMS

In our main evaluation, we linearize the popular base Llama 3 8B (AI, 2024) and Mistral 7B (Jiang
et al., 2023) LLMs. We first test if LOLCATS can efficiently create high-quality subquadratic LLMs
from strong base Transformers, comparing to existing linearized LLMs from prior methods. We also
test if LOLCATS can create subquadratic LLMs that outperform modern Transformer alternatives
pretrained from scratch. For space, we defer linearizing training details to Appendix A.
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Model Training
Tokens (B) PiQA ARC-e ARC-c

(norm)
HellaSwag

(norm)
Wino-
grande

MMLU
(5-shot) Avg. Avg.

(no MMLU)

Mistral 7B - 82.1 80.9 53.8 81.0 74.0 62.4 72.4 74.4
Mistral 7B SUPRA 100 80.4 75.9 45.8 77.1 70.3 34.2 64.0 69.9
Mistral 7B LoLCATs (Ours) 0.04 81.5 81.7 54.9 80.7 74.0 51.4 70.7 74.5
Llama 3 8B - 79.9 80.1 53.3 79.1 73.1 66.6 72.0 73.1
Mamba2-Llama 3 20 76.8 74.1 48.0 70.8 58.6 43.2 61.9 65.6
Mamba2-Llama 3, 50% Attn. 20 81.5 78.8 58.2 79.5 71.5 56.7 71.0 73.9
Llama 3 8B Hedgehog 0.04 77.4 71.1 40.6 66.5 54.3 24.2 55.7 62.0
Llama 3 8B LoLCATs (Ours) 0.04 80.9 81.7 54.9 79.7 74.1 52.8 70.7 74.2

Table 3: LOLCATS comparison among linearized 7B+ LLMs. Among linearized 7B+ LLMs, LOLCATS-
linearized Mistral 7B and Llama 3 8B consistently achieve best or 2nd-best performance on LM Eval tasks (only
getting 2nd best to Mamba-Transformer hybrids). LOLCATS closes the Transformer quality gap by 79.8%
(Mistral 7B) and 86.6% (Llama 3 8B) (average over all tasks; numbers except Hedgehog cited from original
works), despite only using 40M tokens to linearize (a 2,500× improvement in tokens-to-model efficiency).

Model Tokens (B) PiQA ARC-e ARC-c
(acc. norm)

HellaSwag
(acc. norm) Winogrande MMLU

(5-shot)
Avg.

(w MMLU)
Avg.

(no MMLU)

Transformer
Gemma 7B 6000 81.9 81.1 53.2 80.7 73.7 62.9 72.3 74.1
Mistral 7B 8000* 82.1 80.9 53.8 81.0 74.0 62.4 72.4 74.4
Llama 3 8B 15000 79.9 80.1 53.3 79.1 73.1 66.6 72.0 73.1

Subquadratic
Mamba 7B 1200 81.0 77.5 46.7 77.9 71.8 33.3 64.7 71.0
RWKV-6 World v2.1 7B 1420 78.7 76.8 46.3 75.1 70.0 - 69.4 69.4
TransNormerLLM 7B 1400 80.1 75.4 44.4 75.2 66.1 43.1 64.1 68.2
Hawk 7B 300 80.0 74.4 45.9 77.6 69.9 35.0 63.8 69.6
Griffin 7B 300 81.0 75.4 47.9 78.6 72.6 39.3 65.8 71.1
Hybrid Softmax
StripedHyena-Nous-7B - 78.8 77.2 40.0 76.4 66.4 26.0 60.8 67.8
Zamba 7B 1000 81.4 74.5 46.6 80.2 76.4 57.7 69.5 71.8
Linearized
Mistral 7B LoLCATs (Ours) 0.04 81.5 81.7 54.9 80.7 74.0 51.4 70.7 74.5
Llama 3 8B LoLCATs (Ours) 0.04 80.9 81.7 54.9 79.7 74.1 52.8 70.7 74.2

Table 4: LOLCATS comparison to pretrained subquadratic LLMs. LOLCATS-linearized Mistral 7B and
Llama 3 8B outperform pretrained Transformer alternatives by 1.2 to 9.9 points (Avg.), only training 0.2% of
their parameter counts on 0.013 to 0.003% of their training token counts. ∗Reported in Mercat et al. (2024).

In Table 4, we report results on six popular LM Evaluation Harness (LM Eval) tasks (Gao et al.,
2023). Compared to recent linearizing methods, LOLCATS significantly improves quality and
training efficiency across tasks and LLMs. On quality, LOLCATS closes 79.8% and 86.6% of the
Transformer-linearizing gap for Mistral 7B and Llama 3 8B respectively, notably improving 5-shot
MMLU by 60.9% and 40.9% over next best fully subquadratic models (17.2 and 9.6 points). On ef-
ficiency, we achieve these results while only training <0.2% of model parameters via LoRA versus
prior full-parameter training. We also only use 40M tokens versus the prior 20 – 100B (a 500 –
2500× improvement in “tokens-to-model” efficiency). Among all 7B LLMs, LOLCATS-linearized
LLMs further outperform strong subquadratic Transformer alternatives, representing RNNs or lin-
ear attentions (RWKV-v6 (Peng et al., 2024), Hawk, Griffin (De et al., 2024), TransNormer (Qin
et al., 2023)), state-space models (Mamba (Gu & Dao, 2023)), and hybrid architectures with some
full attention (StripedHyena (Poli et al., 2023b), Zamba (Glorioso et al., 2024)).

4.2 LOLCATS COMPONENT PROPERTIES AND ABLATIONS

We next validate that LOLCATS enables subquadratic efficiency, and study how each of LOLCATS’
components contribute to these quality gains. We include additional ablations in Appendix B.

(a) Batch size vs. Thruput (b) Batch size vs. Mem.

Figure 8: Generation Efficiency, Llama 3 8B.

Subquadratic Generation Throughput and
Memory. We measure generation throughput
and memory of LOLCATS LLMs, validating
that linearizing LLMs can significantly improve
their generation efficiency. We use the popu-
lar Llama 3 8B HuggingFace model3, and com-
pare LOLCATS implemented in HuggingFace

3https://huggingface.co/meta-llama/Meta-Llama-3-8B
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Feature Map LM Eval
Metric

Swap &
Finetune

+Attention
Transfer

+Sliding Window,
+Attention Transfer

+ Sliding Window,
No Attention Transfer

Average 44.20 55.32 70.66 68.78Hedgehog MMLU (5-shot) 23.80 23.80 52.77 45.80

Average 38.84 54.83 68.28 39.52T2R MMLU (5-shot) 23.20 23.10 40.70 23.80

Table 5: LOLCATS component ablations, linearizing Llama 3 8B over 1024-token sequences.
LOLCATS default shaded. Across Hedgehog and T2R feature maps, LOLCATS’ attention transfer
and sliding window increasingly improve linearized LLM quality. Full task results in App. B.1.1.

PiQA ARC Easy ARC Challenge HellaSwag WinoGrande MMLU (5-shot)
acc acc (acc norm) (acc norm) acc acc

Llama 3.1 8B 79.87 81.52 53.58 79.01 73.48 66.11
Linearized, no attn. transfer 78.67 78.11 49.83 77.83 68.51 51.44
LOLCATS (Ours) 80.96 82.37 54.44 79.07 69.69 54.88
Llama 3.1 70B 83.10 87.30 60.60 85.00 79.60 78.80
Linearized, no attn. transfer 81.99 80.89 54.44 82.29 71.19 28.74
LOLCATS (Ours) 82.10 84.98 60.50 84.62 73.72 67.70
Llama 3.1 405B 85.58 87.58 66.21 87.13 79.40 82.98
Linearized, no attn. transfer 84.44 86.62 64.33 86.19 79.87 33.86
LOLCATS (Ours) 85.58 88.80 67.75 87.41 80.35 72.20

Table 6: Linearizing Llama 3.1 8B, 70B, and 405B. Among the first linearized 70B and 405B
LLMs (via low-rank linearizing), LOLCATS significantly improves zero- and few-shot quality.

Transformers with the supported FlashAttention-2 (FA2) (Dao, 2023). We benchmark LOLCATS
with the Hedgehog feature map and linear + sliding window attention in FP32 and BF16 on one
80GB H100. In Fig. 8a, 8b, we report scaling batch size on throughput and memory. We measure
throughput as (generated tokens × batch size / total time), with 128-token prompts and 4096-token
generations. With larger batch sizes, LOLCATS-linearized LLMs achieve higher throughput than
FA2. This primarily comes from lower memory, where FA2 runs out of memory at batch size 64.
Meanwhile, LOLCATS supports up to 3000 tokens / second with batch size 2048 (Fig. 8a), with a
fixed “KV state” vs. a growing KV cache in softmax attention (Fig. 8b).

Ablations. We study how attention transfer and linear + sliding window attention in LOLCATS
contribute to downstream linearized Llama 3 8B performance (Table 5). We start with prior linear
attentions (Hedgehog, Zhang et al. (2024); T2R, Kasai et al. (2021)), using the prior linearizing
approach that swaps attentions and finetunes the model to predict next tokens (Mercat et al., 2024).
We then add (i) attention transfer, (ii) sliding window attentions, or (iii) both. On average LM Eval
score and 5-shot MMLU accuracy, LOLCATS’ default performs best across feature maps.

4.3 SCALING UP LINEARIZING TO 70B AND 405B LLMS

We finally use LOLCATS to scale up linearizing to Llama 3.1 70B and 405B models. In Ta-
ble 6, LOLCATS provides the first practical solution for linearizing larger LLMs, achieving sig-
nificant quality improvements over prior linearizing approaches of swapping in attentions and fine-
tuning (Mercat et al., 2024). With the same linear + sliding window layer, LOLCATS gets +39.0
points in 5-shot MMLU accuracy on Llama 3.1 70B, and +38.3 on Llama 3.1 405B. These results
highlight LOLCATS’ ability to linearize large-scale models with greater efficiency and improved
performance, showing for the first time that we can scale up linearizing to 70B+ LLMs.

5 CONCLUSION

We propose LOLCATS, an efficient LLM linearizing method that (1) trains linear attentions to
match an LLM’s self-attentions, before (2) swapping the attentions and only finetuning the replacing
attentions with LoRA. This reduces linearizing to learning good softmax attention approximations,
and we study how to do so. On popular LM Eval tasks, LOLCATS enables LLMs with high quality
and inference efficiency, outperforming prior Transformers alternatives while only updating 0.2%
of model parameters and requiring 0.003% of LLM pretraining tokens. Our findings substantially
improve linearizing quality and accessibility, enabling the first linearized 70B and 405B LLMs.
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ETHICS STATEMENT

Our work deals with improving the efficiency of open-weight models. While promising for ben-
eficial applications, increasing their accessibility also raises concerns about potential misuse. Bad
actors could leverage our technique to develop LLMs capable of generating harmful content, spread-
ing misinformation, or enabling other malicious activities. We focus primarily on base models, but
acknowledge that linearizing could also be used on instruction-tuned LLMs; research on whether
linearizing preserves guardrails is still an open question. We acknowledge the risks and believe in
the responsible development and deployment of efficient and widely accessible models.

REPRODUCIBILITY

We include experimental details in Appendix A, and further implementation details with sample
code for linearizing architectures and training in Appendix C.1.
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Piotr Miłoś. Focused transformer: Contrastive training for context scaling. Advances in Neural
Information Processing Systems, 36, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Roger Waleffe, Wonmin Byeon, Duncan Riach, Brandon Norick, Vijay Korthikanti, Tri Dao, Albert
Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak Narayanan, et al. An empirical study of mamba-
based language models. arXiv preprint arXiv:2406.07887, 2024.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Junxiong Wang, Daniele Paliotta, Avner May, Alexander M Rush, and Tri Dao. The mamba in the
llama: Distilling and accelerating hybrid models. arXiv preprint arXiv:2408.15237, 2024.

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European conference on
computer vision (ECCV), pp. 3–19, 2018.

Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, and
Vikas Singh. Nyströmformer: A nyström-based algorithm for approximating self-attention. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 14138–14148,
2021.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
transformers with hardware-efficient training. arXiv preprint arXiv:2312.06635, 2023.

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transform-
ers with the delta rule over sequence length. arXiv preprint arXiv:2406.06484, 2024.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in neural information processing systems, 33:17283–17297, 2020.

Michael Zhang, Kush Bhatia, Hermann Kumbong, and Christopher Re. The hedgehog & the por-
cupine: Expressive linear attentions with softmax mimicry. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
4g02l2N2Nx.

Chen Zhu, Wei Ping, Chaowei Xiao, Mohammad Shoeybi, Tom Goldstein, Anima Anandkumar,
and Bryan Catanzaro. Long-short transformer: Efficient transformers for language and vision.
Advances in neural information processing systems, 34:17723–17736, 2021.

15

https://openreview.net/forum?id=4g02l2N2Nx
https://openreview.net/forum?id=4g02l2N2Nx


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A EXPERIMENTAL DETAILS

A.1 MAIN RESULTS, LINEARIZING 7B AND 8B LLMS

Setup. We describe our setup for linearizing Mistral 7B (v0.1) (Jiang et al., 2023), Llama 3
8B (AI@Meta, 2024a), and Llama 3.1 8B (Dubey et al., 2024).

For linearizing layers, we replace softmax attentions with hybrid linear + sliding window analogs
(Section 3.3.1), using Hedgehog’s feature map for its prior quality (Zhang et al., 2024).

(a) Sliding window (b) TK “terrace”

Figure 9: We apply softmax attention locally and
attend to all past tokens with linear attention.

For the sliding window implementation, we
considered two options: a standard sliding win-
dow where w is the same for all tokens, and
a “terraced” window where w changes based
on token index (Figure 9). While we found
both comparable in quality (Table 17), the lat-
ter lets us exploit the new ThunderKittens (TK)
DSL’s (Spector et al., 2024) primitives for im-
plementing fast CUDA kernels. Here we pre-
fer contiguous blocks of size w = 64, which
can quickly be computed in parallel on modern
GPUs. We use this “terrace” implementation in
our main results, and include further implemen-
tation details in Appendix C.2.

For linearizing data, we use the Alpaca linearizing data setup in Section 3.2 unless otherwise noted.
We also tried a more typical pretraining corpus (a subset4 of RedPajama (Computer, 2023)), but
found comparable performance when controlling for number of token updates (Appendix B.4.1). To
linearize, we simply train all feature maps in parallel for two epochs with learning rate 1e-2, before
applying LoRA on the attention projection layers for two epochs with learning rate 1e-4. By default,
we use LoRA rank r = 8, and scale LoRA updates by 2 (α = 16 in HuggingFace PEFT5), amounting
to training <0.09% of all model parameters. For both stages, we train with early stopping, AdamW
optimizer (Loshchilov & Hutter, 2017), and packing into 1024-token sequences with batch size 8.
We evaluate the best checkpoints based on validation set perplexity.

Hyperparameters. We list all model and training hyperparameters in Table 7. For learning rates,
we did an initial sweep over {1e-2, 1e-3, 1e-4}, choosing the best based on final validation set
perplexity during step 2: low-rank adjusting, and checkpointing with early stopping. We did not tune
batch size or choice of optimizer, and used default values informed by prior work for other design
parameters such as sliding window size (Arora et al., 2024), LoRA rank, and LoRA projection
layers (Hu et al., 2021). In Appendix B, we study the effect of sweeping various values such as
window sizes, ranks, and LoRA modules as ablations.

Compute Resources. For each linearizing run we use one NVIDIA 40GB A100 GPU. With batch
size 1 and gradient accumulation over 8 batches, attention transfer takes ≈ 2 hours and post-swap
finetuning takes ≈ 4.5 hours, i.e., 6.5 total GPU hours to linearize an 8B LLM.

A.2 LINEARIZING LLAMA 3.1 70B

We provide experimental details corresponding to the 70B parameter results reported in Table 6.

Setup. We compare the quality of two linearization approaches to the quality of the original Llama
3.1 70B model, including (1) the baseline linearization without attention transfer, which is represen-
tative of the approach used in prior work (Mercat et al., 2024; Yang et al., 2024; Wang et al., 2024)
and (2) our approach, LOLCATS. For both the baseline and LOLCATS, we start with Llama 3.1

4https://huggingface.co/datasets/togethercomputer/
RedPajama-Data-1T-Sample

5https://huggingface.co/docs/peft/en/index
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Hedgehog LOLCATS

Model
Precision 16-bit (bfloat16)

Sequence length 1024
Linearizing attention (Linear) (Linear + Sliding Window)

Linear attn feature map Hedgehog
Linear attn feature dimension 64 (effectively 128, see Table 1)
Linear attn feature activation Softmax (across feature dim)

Sliding window implementation N/A Terrace
Sliding window attn size N/A 64

Optimizer and LR Schedule
Optimizer AdamW

Global batch size 8
Gradient accumulation 8

Gradient clipping threshold 1.0
Learning rate schedule Reduce LR on Plateau

Step 1: Attention Transfer
Number of epochs 2
Tokens per epoch 10M

Learning rate 0.01

Step 2: Low-rank Adjusting
Number of epochs 2
Tokens per epoch 20M

Learning rate 1e-4
LoRA rank and alpha r =8, α =16

LoRA dropout 0.0
LoRA projections Wq,Wk,Wv,Wo

Table 7: Hyperparameters for Mistral 7B, Llama 3 8B, and Llama 3.1 8B experiments.

70B and replace the softmax attentions with the linear attention architecture defined in Section 3.3.1,
Equation (6). The training procedure involves:

• Baseline: We introduce LoRA parameters to the attention Wq,Wk,Wv,Wo projection matrices.
We train the linear attention feature maps, learnable mixing term γ, and the LoRA parameters
during the fine-tuning adjustment stage of the linearization process.

• LOLCATS: We first perform layer-wise attention transfer following Equation (7), with k = 80
(i.e., we optimize over all layers together). We then introduce LoRA parameters to the attention
Wq,Wk,Wv,Wo projection matrices. During fine-tuning we only train the LoRA parameters,
freezing the linear attention map and γ weights.

We use an MSE loss for the layer-wise attention transfer stage and cross-entropy loss for the next-
token prediction fine-tuning (Low-rank Finetuning) stage.

Hyperparameters. We include the hyperparameters for the baseline and LOLCATS approaches
in Table 8, following the same sweep as the 8B models. Since the baseline does not use attention
transfer, we mark these values with “N/A”. We linearize each model using the same randomly sam-
pled 20M tokens of the RedPajama pre-training corpus (Computer, 2023). We pack the sequences
to fill full context length, and evaluate the best checkpoints based on validation set perplexity.

Compute Resources. We linearize using a single NVIDIA 8×80GB H100 node. Attention trans-
fer takes 4 hours and fine-tuning takes 14 hours. We use PyTorch FSDP with activation checkpoint-
ing for distributed training.
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Baseline LOLCATS

Model
Precision 16-bit (bfloat16)

Sequence length 1024
Linearizing attention Linear + Sliding Window

Linear attn feature map Hedgehog
Linear attn feature dimension 64 (effectively 128, see Table 1)
Linear attn feature activation Softmax (across feature dim)

Sliding window implementation Terrace
Sliding window attn size 64

Optimizer and LR Schedule
Optimizer AdamW

Global batch size 8
Gradient accumulation 8

Gradient clipping threshold 1.0
Learning rate schedule Reduce LR on Plateau

Stage 1: Attention Transfer
Number of epochs N/A 1
Tokens per epoch N/A 20M

Learning rate N/A 0.01

Stage 2: Low-rank Adjusting
Number of epochs 1
Tokens per epoch 20M 20M

Learning rate 1e-4
LoRA rank and alpha r =8, α =16

LoRA dropout 0.0
LoRA projections Wq,Wk,Wv,Wo

Table 8: Hyperparameters for Llama 3.1 70B experiments.

A.3 LINEARIZING LLAMA 3.1 405B

Setup. We compare the quality of two linearization approaches to the quality of the original Llama
3.1 405B model, including (1) the baseline linearization without attention transfer, which is repre-
sentative of the approach used in prior work (Mercat et al., 2024) and (2) our approach, LOLCATS.
For both the baseline and LOLCATS, we start with Llama 3.1 405B and replace the softmax at-
tentions with the linear attention architecture defined in Section 3.3.1, Equation (6). The training
procedure involves:

• Baseline: We introduce LoRA parameters to the attention Wq,Wk,Wv,Wo projection matrices.
We train the linear attention feature maps, learnable mixing term γ, and the LoRA parameters
during the fine-tuning adjustment stage of the linearization process.

• LOLCATS: We first perform block-wise attention transfer following Equation (7), with k = 9
as the block size. To perform attention transfer for block i, we save the hidden states outputted
by block i − 1 to disk and then use this as training data for block i. We then introduce LoRA
parameters to the attention Wq,Wk,Wv,Wo projection matrices. During fine-tuning we only
train the LoRA parameters, freezing the linear attention map and γ weights.

For the reported checkpoints, we train the layer-wise attention transfer stage using use a weighted
combination of the MSE loss on attention outputs plus a cross-entropy loss between the softmax and
linear attention maps. We use cross-entropy loss for Stage 2 Low-rank Linearizing.

Hyperparameters. We include the hyperparameters for the baseline and LOLCATS approaches
in Table 9, following the same sweep as the 8B models. Since the baseline does not use attention
transfer, we mark it with “N/A”. We linearize each model using the same randomly sampled 20M
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tokens of the RedPajama pre-training corpus (Computer, 2023). We pack the sequences to fill the
full context length, and evaluate the best checkpoints based on validation set perplexity.

Baseline LOLCATS

Model
Precision 16-bit (FP16)

Sequence length 1024
Linearizing attention Linear + Sliding Window

Linear attn feature map Hedgehog
Linear attn feature dimension 64 (effectively 128, see Table 1)
Linear attn feature activation Softmax (across feature dim)

Sliding window implementation Terrace
Sliding window attn size 64

Optimizer and LR Schedule
Optimizer AdamW

Global batch size 8
Gradient accumulation 8

Gradient clipping threshold 1.0
Learning rate schedule Reduce LR on Plateau

Stage 1: Attention Transfer
Number of epochs N/A 1
Tokens per epoch N/A 20M

Learning rate N/A 0.01
MSE and X-ent weights N/A 1000, 1

Stage 2: Low-rank Adjusting
Number of epochs 1
Tokens per epoch 20M 20M

Learning rate 1e-4
LoRA rank and alpha r = 4, α = 8

LoRA dropout 0.5
LoRA projections Wq,Wk,Wv,Wo

Table 9: Hyperparameters for Llama 3.1 405B experiments.

Compute Resources. We linearize the baseline using three NVIDIA 8× 80GB H100 nodes, eval-
uating the best validation checkpoint after 19.5 hours. For LOLCATS, we perform attention transfer
with 1 80GB H100 GPU for 5 hours per block, and we finetune with 3 NVIDIA 8 × 80GB H100
nodes for 16 hours. We use PyTorch FSDP with activation checkpointing for distributed training.

B ADDITIONAL EXPERIMENTS AND RESULTS

To better understand LOLCATS’ properties and performance, we now report extended results on
LOLCATS. We first report expanded results of our main paper, including task-specific ablation
numbers, multiple seeds, and additional comparison at the 1B LLM scale. We then extend our
ablations by studying how different amounts of parameter updates, different data sources, and dif-
ferent amounts of training data affect LOLCATS quality for various tasks such as zero-shot LM
Eval, 5-shot MMLU, and passkey retrieval. We finally expand on the layer-wise training dynam-
ics of LOLCATS: how layer-wise MSE between learned and softmax attentions changes during
LoRA adjusting (App. B.6.1), how LoRA weights update over time depending on attention transfer
and softmax attention-matching quality (App. B.6.2), and how block-wise attention transfer both is
motivated by layer-wise MSE and improves linearized LLM quality for larger LLMs (App. B.6.3).
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B.1 EXPANDED RESULTS

B.1.1 TASK-SPECIFIC RESULTS FOR LOLCATS COMPONENT ABLATIONS

We report the task-specific LM Eval results when ablating the attention transfer and linear + sliding
window attention in LOLCATS, expanding on Table 5 in Table 10. Across all but one task (ARC-
easy), we validate that the LOLCATS proposed combination leads to best performance.

Feature Map +Attention
Transfer

+Sliding
Window PiQA ARC-e ARC-c

(acc. norm)
HellaSwag
(acc. norm) Winogrande MMLU

(5-shot) Average

✗ ✗ 67.8 58.1 28.9 35.8 50.8 23.8 44.2
✓ ✗ 76.5 72.6 40.1 65.6 53.3 23.8 55.3
✗ ✓ 80.5 80.6 53.4 78.8 73.6 45.8 68.8Hedgehog

✓ ✓ 80.9 81.7 54.9 79.7 74.1 52.8 70.7
✗ ✗ 62.0 42.1 24.7 32.7 48.3 23.2 38.8
✓ ✗ 76.1 72.8 40.8 63.6 52.6 23.1 54.8
✗ ✓ 54.8 26.3 26.2 56.4 49.6 23.8 39.5T2R

✓ ✓ 80.7 82.0 54.6 79.5 72.2 40.7 68.3

Table 10: LOLCATS component ablations on individual LM Eval tasks, linearizing Llama 3
8B, expanded view of Table 5. LOLCATS default shaded. Across Hedgehog and T2R feature maps,
LOLCATS’ attention transfer and sliding window increasingly improve linearized LLM quality on
popular LM Eval tasks both on average and specifically for 5-shot MMLU scores.

B.1.2 LLAMA 3 8B LOLCATS RESULTS ACROSS MULTIPLE RUNS

In Table 11, we report the LM Eval results for Llama 3 8B models linearized with two linear attention
approaches, Hedgehog (Zhang et al., 2024) and LOLCATS (ours), after doing linearizing across
three seeds (0, 1, 2). We report means and standard deviations (in parentheses). Across all tasks,
variation across seeds is low (under 1 point, other than Winogrande), with the difference in task
performance across methods being much higher (greater than 10 points).

Llama 3 8B PiQA ARC-e ARC-c
(norm)

HellaSwag
(norm) Winogrande MMLU

(5-shot) Average Average
(no MMLU)

Hedgehog 76.86 (0.32) 73.27 (0.67) 40.76 (0.69) 65.77 (0.38) 53.42 (0.22) 24.22 (0.62) 55.72 (0.35) 62.02 (0.35)
LoLCATs (Ours) 80.79 (0.11) 81.62 (0.41) 54.73 (0.41) 79.48 (0.07) 72.92 (1.02) 52.74 (0.64) 70.38 (0.33) 73.91 (0.29)

Table 11: LOLCATS comparison with prior linearizing methods, multiple runs; expanded view
of linear attention Llama 3 8B results in Table 3. We report mean and (standard deviation) across
three seeds, comparing LOLCATS and prior linear attention Hedgehog linearizing method.

B.2 LOLCATS EVALUATION FOR LINEARIZING 1B+ LLMS

We now study LOLCATS’ performance when linearizing ∼ 1B parameter LLMs. We choose two
popular models, Llama 3.2 1B (AI@Meta, 2024b) and Phi 1.5 1.3B (Li et al., 2023), and linearize
with LOLCATS using the same hyperparameters, architectures, and training details (e.g., 40M to-
kens over Alpaca) as Llama 3 8B (Table 7) except for linear attention feature dimension, instead
adjusting this to the 1B model head dimensions (i.e., 0.5 × head dimension 64 = 32). To evaluate
LOLCATS quality, we compare the LM Eval Harness performance of LOLCATS with other avail-
able linearizing methods on each Transformer LLM (Table 12, Table 13), and against competitive
1B subquadratic LLMs pretrained from scratch (Table 14), reporting results from Bick et al. (2024).

In all evaluation settings, LOLCATS demonstrates competitive or state-of-the-art linearizing qual-
ity. When first controlling for the original pretrained Transformer, LOLCATS is able to outperform
both prior linear attentions, as well as pure and hybrid Phi-Mamba models created with MOHAWK,
another method to distill Transformers into SSM-based Mamba architectures (Bick et al., 2024). No-
tably, LOLCATS makes this possible while only using 1.33% of the training tokens in MOHAWK
(Table 13), and again only using parameter-efficient updates. Furthermore, by linearizing Llama 3.2
1B and Phi 1.5 1.3B, LOLCATS efficiently creates subquadratic 1B+ LLMs that outperform various
LLMs pretrained from scratch (Table 14). These results suggest LOLCATS remains a competitive
option for linearizing LLMs at multiple parameter counts.
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Model PiQA ARC-e ARC-c
(acc. norm)

HellaSwag
(acc. norm) Winogrande MMLU

(5-shot) Avg. Avg.
(No MMLU)

Avg. % of
Transformer

Llama 3.2 1B 74.4 65.5 35.8 63.7 60.5 31.9 55.3 60.0 -
→ T2R 69.2 58.2 29.9 42.6 54.1 23.3 46.2 50.8 84.7
→ Hedgehog 70.1 55.8 29.8 47.7 50.7 23.0 46.2 50.8 84.7
→ LOLCATS (Ours) 74.6 63.0 35.1 63.7 61.5 27.3 54.2 59.6 99.3

Table 12: LOLCATS comparison with linearizing methods, Llama 3.2 1B, LM Eval. Following the
two-step linearizing procedure in LOLCATS, we compare the LOLCATS architecture against the prior
Transformer-to-RNN (T2R) and Hedgehog linear attentions. At the 1B scale, LOLCATS substantially closes
the performance gap with original Llama 3.2 1B Transformer.

Model Training
Tokens (B) PiQA ARC-e ARC-c

(acc. norm)
HellaSwag
(acc. norm) Winogrande MMLU

(5-shot)
Avg.

(No MMLU)
Avg. %

of Transformer

Phi 1.5 1.3B (MOHAWK) 150 76.6 75.6 48.0 62.6 73.4 - 67.2 -
Phi 1.5 1.3B (Our run) 150 76.6 76.1 47.6 62.6 72.8 43.6 67.1 -
Phi-Mamba 1.5 3 75.5 74.0 44.1 60.2 71.7 - 65.1 96.8
Hybrid Phi-Mamba 1.5 3 76.5 75.3 45.8 60.6 72.0 - 66.0 98.2
Phi 1.5 1.3B T2R 0.04 71.0 69.1 36.6 46.2 53.6 24.3 55.3 82.4
Phi 1.5 1.3B Hedgehog 0.04 72.7 70.9 38.0 49.4 54.1 23.5 57.0 85.0
Phi 1.5 1.3B LoLCATs (Ours) 0.04 76.9 77.0 46.9 62.3 72.7 39.2 67.2 100.1

Table 13: LOLCATS comparison with linearizing methods, Phi 1.5 1.3B, LM Eval. We compare LOL-
CATS with linearizing with prior linear attentions, and available results from Bick et al. (2024), who distill Phi
1.5B into Mamba and hybrid Mamba-Transformer architectures with their MOHAWK method (Phi-Mamba
1.5, Hybrid Phi-Mamba 1.5). LOLCATS similarly outperforms prior linearizing methods, closing the gap to
the Transformer Phi 1.5 1.3B on PiQA, ARC-Easy and average zero-shot LM Eval (no MMLU).

Model Training
Tokens (B) PiQA ARC-e ARC-c

(acc. norm)
HellaSwag
(acc. norm) Winogrande MMLU

(5-shot)
Avg.

(No MMLU)

Transformer
Pythia 1.4B 300 71.1 60.6 26.0 52.1 57.3 26.6 53.4
Llama 3.2 1B 9000 74.4 65.5 35.8 63.7 60.5 31.9 60.0
Phi 1.5 1B 150 76.6 76.1 47.6 62.6 72.8 43.6 67.1
Subquadratic
xLSTM 1.4B 300 74.6 64.3 32.6 60.9 60.6 - 58.6
Finch 1.6B (RWKV-v6) 1100 72.6 64.2 34.1 57.3 59.4 - 57.5
DeltaNet 1.3B 100 71.2 57.2 28.3 50.2 53.6 - 52.1
GLA 1.3B 100 71.8 57.2 26.6 49.8 53.9 - 51.9
Mamba 1 1.4B 315 74.2 65.5 32.8 59.1 61.5 - 58.6
Mamba 2 1.3B 315 73.2 64.3 33.3 59.9 60.9 - 58.3
Llama 3.2 1B LoLCATs (Ours) 0.04 74.6 63.0 35.1 63.7 61.5 27.3 59.6
Phi 1.5 1.3B LoLCATs (Ours) 0.04 76.9 77.0 46.9 62.3 72.7 39.2 67.2

Table 14: LOLCATS comparison to pretrained 1B LLMs. LOLCATS-linearized Llama 3.2 1B and Phi
1.5 1.3B consistently outperform strong subquadratic 1B+ LLMs pretrained from scratch, achieving best or
second-best accuracy on all tasks other than ARC-easy. Subquadratic results reported from Bick et al. (2024).

B.3 STUDY ON PARAMETER-EFFICIENT TRAINING

In our main results, we found that simple default initializations (e.g., rank 8, applied to all atten-
tion projection layers) could recover high quality linearizing while only updating <0.2% of model
parameters. In this section, we study how changing different aspects of low-rank adaptation and
sliding window size impact linearizing performance.

B.3.1 EFFECT OF LORA RANK

We study the effect of LoRA rank in post-swap finetuning for zero-shot linearized LLM perfor-
mance. Following standard implementations (Hu et al., 2021), we consider two factors. First: rank
r, which determines the rank of the low-rank matrices A,B we decompose the weight deltas into.
Second: alpha α, where α/r is a scaling factor that controls the degree to which BA affect the
output (i.e., LoRA output y = Wx+ α

rBAx).

Setup. We sweep over ranks {4, 8, 16, 32, 64, 128, 256}, and adjust α such that α/r = 2 as a
default scaling factor (Raschka, 2023). For comparison, we also do a full finetuning run, where after
attention transfer we do the stage 2 adjustment but training all Llama 3 8B parameters. For all runs,
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LoRA
Rank PiQA ARC-e ARC-c

(norm)
HellaSwag

(norm)
Wino-
grande

MMLU
(5-shot) Avg. Avg.

(no MMLU)

4 80.7 82.5 56.0 79.6 73.6 50.1 71.3 74.5
8 80.9 81.7 54.9 79.7 74.1 52.8 70.7 74.2
16 80.7 81.9 54.5 79.7 73.8 48.9 69.9 74.1
32 81.1 81.5 54.5 79.7 72.8 51.0 70.1 73.9
64 80.9 81.9 54.5 79.3 72.1 51.7 71.1 73.8

128 80.5 80.9 52.8 78.4 72.2 53.4 69.7 73.0
256 80.7 80.2 52.1 78.8 71.4 52.1 69.2 72.7

Full Finetune 80.6 81.9 54.3 79.4 72.4 52.1 70.1 73.7

Table 15: LoRA rank r comparison. Evaluation on LM Evaluation Harness tasks. When adapting all pro-
jections Wq,Wk,Wv,Wo after attention transfer, we find smaller ranks r = 4, 8 are surprisingly sufficient.
Larger ranks with more parameter-heavy updates do not necessarily improve downstream performance.

we linearize Llama 3 8B. For LoRA runs, we use the same default experimental setup as our main
results, while for the full finetuning we decreased learning rate to 1e-5 due to training instability. We
start with the linear + “terrace” window attentions, training the feature maps via attention transfer
over 20M tokens over Alpaca (2 full epochs). We then freeze feature maps and apply LoRA with
the above ranks on all attention weight projections (freezing all other parameters such as those in
MLPs or GroupNorms), finetuning for two more epochs over Alpaca using the hyperparameters in
Table 7. We evaluate with LM Eval tasks.

Results. We report results in Table 15. We find that when applying LoRA to adjust in linearizing
after attention transfer, larger rank updates, e.g., r = 128 or 256, do not necessarily lead to improved
zero or few-shot downstream performance. Full finetuning also does not improve performance.
Somewhat surprisingly, using just r = 4 leads to overall best performance, while r = 128 and r = 8
achieve best and second-best 5-shot MMLU accuracy. While we leave further exploration for future
work, we hypothesize that low-rank updates may improve quality by preventing large and potentially
harmful updates with the linearizing data to pretrained weights. During the second step of adjusting,
if the linearizing data is not particularly diverse or large (e.g., for efficient linearizing), LoRA can
then reduce the risk of overfitting to the linearizing data and losing LLM pretrained generalization.

B.3.2 EFFECT OF LORA PROJECTION LAYER

We next compare performance when applying LoRA to different weight matrices of the linear
attention layers. With the same training and evaluation setup as Appendix B.3.1, but fixing
r = 8, α = 16, we now apply LoRA to different combinations of Wq,Wk,Wv,Wo weights after
swapping in attention-transferred linear attentions. We use the same combination for each layer.

We report results in Table 16. Interestingly, when isolating for projections updated, LoRA on projec-
tions not involved in computing layer-wise attention weights (value Wv and output Wo projections)
improves quality compared to query Wq or key projections Wk. Somewhat surprisingly, updating
just Wv or Wo achieves comparable performance to updating all projections (c.f., average zeros-
shot accuracy of 74.19% when updating just {Wv}, 74.09% for {Wo} versus 74.24% updating
{Wq,Wk,Wv,Wo}). Meanwhile, updating just Wq or Wk performs significantly worse (72.68%,
72.29%; versus 74.24%). This suggests much of the quality recovery in Stage-2 low-rank fine-
tuning comes from adjusting values and outputs to the learned attention weights—as opposed to
further refining attention weight computation. While best results do come from a combination of
adapting either Wq or Wk with value and output projections, we may be able to achieve even more
parameter-efficient linearizing—with comparable quality—by focusing on subsets with the latter.

B.3.3 EFFECT OF WINDOW SIZE

We now compare model performance using different window sizes in the LOLCATS linear + sliding
window attention layer. With the standard sliding window implementation (Fig 9), we compare
LM Eval performance after linearizing with window sizes w ∈ {4, 16, 64, 256}. We also compare
against the ThunderKittens-motivated “terraced” implementation used in our main experiments with
window size 64. In Table 17, we find that in each of these settings, having more softmax attention
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LoRA Projection PiQA ARC-e ARC-c (norm) HellaSwag (norm) Winogrande Average

Wq 79.49 81.06 51.45 79.18 72.22 72.68
Wk 79.82 79.80 50.68 78.54 72.61 72.29
Wv 80.69 82.49 56.66 79.28 71.82 74.19
Wo 80.09 81.65 55.63 79.35 73.72 74.09

Wq,Wk 79.76 81.19 51.02 79.29 72.22 72.70
Wq,Wv 80.96 81.90 54.35 79.01 72.30 73.70
Wq,Wo 81.28 81.86 54.78 79.20 73.72 74.17
Wk,Wv 80.74 82.62 56.83 79.26 71.98 74.28
Wk,Wo 80.69 82.15 55.46 79.53 73.01 69.33
Wv,Wo 80.69 82.79 55.89 79.57 71.59 74.10

Wq,Wk,Wv 80.90 82.20 56.48 79.13 73.95 74.53
Wq,Wk,Wo 80.41 80.89 54.18 79.18 74.35 73.80
Wk,Wv,Wo 80.36 82.32 54.61 79.13 73.56 74.00
Wq,Wk,Wv,Wo 80.85 81.73 54.86 79.65 74.11 74.24

Table 16: LoRA projection comparison. Evaluation on zero-shot LM Evaluation Harness tasks. We apply
LoRA with the same rank r = 8 to different combinations of the attention projections, shading scores by
increasing quality (darker is better). When isolating for projections updated, LoRA on projections not involved
in layer-wise attention weight computations (value Wv and output Wo projections) achieves higher quality
over query Wq or key projections Wk. This suggests Wv,Wo may be more important to adapt after attention
transfer, although best results involve a combination across attention weight and output projections.

Window
Size PiQA ARC-e ARC-c

(norm)
HellaSwag

(norm) Winogrande MMLU
(5-shot) Avg. Avg.

(no MMLU)

4 80.7 81.4 55.8 76.6 72.1 40.8 67.9 73.3
16 80.5 82.2 56.0 78.2 73.9 50.3 70.2 74.1
64 80.7 81.7 54.7 79.1 75.3 50.3 70.3 74.3

256 80.6 81.8 55.0 75.6 74.9 41.5 68.3 73.6

TK 64 80.9 81.7 54.9 79.7 74.1 52.8 70.7 74.2

Table 17: Window size comparison. We ablate the window size in LOLCATS linear + sliding window atten-
tion. For each window size w, the layer applies softmax attention to the w-most recent positions, combined with
Hedgehog linear attention applied for all prior positions (Eq. 6, Figure 9). We compare w ∈ {4, 16, 64, 256}
using the standard sliding window implementation with our default w = 64 terraced window setup motivated
by ThunderKittens (TK 64). Window size 64 performs best, where both implementations perform comparably.

generally improves performance (c.f., w = 16,64 versus w =4). However, more softmax attention
does not always lead to better quality. Window size 256 results in up to an 8.8 point drop in 5-shot
MMLU accuracy, suggesting we may not necessarily trade-off more softmax attention for higher
quality. Comparing the standard sliding window and terracing implementations, we find similar
performance (70.3 versus 70.7 average accuracy across tasks).

B.4 STUDY ON LINEARIZING DATA

While most of our work focuses on architecture and training procedure for improving LLM lineariz-
ing quality, we now study how data selection affects LOLCATS performance.

B.4.1 DATA SOURCE: ALPACA VERSUS REDPAJAMA

We study the effect of linearizing data for downstream LLM performance. While we initially found
that just using the ∼ 50K samples of a cleaned Alpaca dataset6 (Taori et al., 2023) could lead to
surprisingly high performance on popular zero-shot LM Eval tasks, prior linearizing works (Mercat
et al., 2024) use more typical pretraining datasets to linearize such as RefinedWeb (Penedo et al.,
2023). We thus also try linearizing with a random subset of RedPajama (Computer, 2023) to evaluate

6https://huggingface.co/datasets/yahma/alpaca-cleaned
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Model Linearizing
Dataset PiQA ARC-e ARC-c

(acc. norm)
HellaSwag
(acc. norm)

Wino-
grande

MMLU
(5-shot) Avg. Avg.

(no MMLU)

Mistral 7B (v0.1) - 82.1 80.9 53.8 81.0 74.0 62.4 72.4 74.4
→ LoLCATs Alpaca Clean 81.5 81.7 54.9 80.7 74.0 51.4 70.7 74.5
→ LoLCATs RedPajama 80.1 77.6 49.0 80.3 71.7 53.2 68.6 71.7

Llama 3 8B - 79.9 80.1 53.3 79.1 73.1 66.6 72.0 73.1
→ LoLCATs Alpaca Clean 80.9 81.7 54.9 79.7 74.1 52.8 70.7 74.2
→ LoLCATs RedPajama 78.9 79.0 52.0 78.1 72.6 55.2 69.3 72.1

Table 18: Linearizing data comparison. For linearizing Mistral 7B (v0.1) and Llama 3 8B, LOLCATS with
Alpaca and RedPajama subsets perform comparably (c.f. prior methods, Table 3), though we find that Alpaca
actually leads to higher accuracy for most tasks other than 5-shot MMLU.

how LOLCATS works with pretraining data, albeit without any special curation. For both setups,
we pack samples into 1024 token sequences and randomly subsample the RedPajama data so that we
use the same number of training tokens (20M) for both attention transfer and finetune stages (40M
tokens overall). We use the setup as described in Appendix A.1 for all other hyperparameters.

In Table 18, we find that across Mistral 7B (v0.1) and Llama 3 8B, using the Alpaca cleaned dataset
actually leads to better downstream task quality for all tasks except for 5-shot MMLU, where lin-
earizing with RedPajama consistently leads to ∼ 2 percentage point improvements. LOLCATS
with both of these datasets leads to comparable or higher performance than prior methods trained
on 2500× the data (c.f., Table 3; SUPRA trained on 100B tokens gets Avg. accuracy of 64.0%),
suggesting that LOLCATS can robustly improve linearizing quality over different data sources.

B.4.2 MATCHING LINEARIZING DATA TO DOWNSTREAM (RETRIEVAL) TASK

Among LM Eval tasks, we note a sizable gap between linearized and Transformer-based LLMs on
MMLU. We hypothesize one source of this gap is due to MMLU’s evaluation setup, which not only
tests for knowledge recall in pretrained weights, but also retrieval over the input context (Hendrycks
et al., 2020). In the default 5-shot multiple choice setup, models must be able to retrieve and produce
the letter associated with the right answer choice in context. However, prior works have shown that
linear attentions and non-softmax attention models perform worse on retrieval, both explicitly on
MMLU (Waleffe et al., 2024) and in retrieval tasks at large (Waleffe et al., 2024; Shen et al., 2024).

To counteract these effects, we study if linearizing LLMs with data that explicitly reflects the target
downstream task can improve performance. We report two such settings next.

Improving MMLU. First, to test improving performance on MMLU, we linearize with additional
data from CommonsenseQA (Talmor et al., 2019) (CQA), another multiple-choice dataset. We
construct a linearizing dataset by using the same 5-shot in-context template as in MMLU, i.e.,
<bos><question 1><answer choices 1><answer 1>, <question 2><answer
choices 2><answer 2>, ..., <question 5><answer choices 5> <eos>,
where the next token to predict corresponds to the correct answer among <answer choices
5>, using the ∼10k samples of the CQA training set. For both stages, we linearize Llama 3 8B over
the combined set of 5-shot CQA samples and our default ∼50k Alpaca samples, comparing against
just Alpaca or CQA samples. We pack all samples to context length 1024.

In Table 19, we report the MMLU scores following each linearizing data choice. We find that adding
a small amount of multiple-choice samples can substantially improve MMLU accuracy (∼ 2 points).
However, CQA alone performs∼ 10 points worse than Alpaca. This suggests quantity and diversity
of samples may still be necessary for linearizing; we break this down further and study the amount
of linearizing needed during both attention transfer and low-rank adjusting in Appendix B.5.

Model Llama 3 8B LoLCATs Llama 3 8B
Linearizing Data Alpaca Alpaca + CQA CQA N/A

MMLU (5-shot) Acc. 52.8 54.5 43.9 66.6

Table 19: MMLU comparison with task-specific linearizing data. Adding multiple-choice samples (Com-
monsenseQA; CQA) to linearizing training data modestly improves downstream MMLU performance. How-
ever, CQA alone is insufficient to achieve competitive quality.
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� �
1 There is an important piece of info hidden inside a lot of irrelevant
2 text. Find it and memorize it. I will quiz you about the important
3 information there.
4 The grass is green. The sky is blue. The sun is yellow. Here we go. There
5 and back again. The grass is green. The sky is blue. The sun is yellow.
6 Here we go. There and back again. The grass is green. The sky is blue.
7 The sun is yellow. Here we go. There and back again...
8 ... <EVEN MORE FILLER>
9 The pass key is <PASSKEY>. Remember it. <PASSKEY> is the pass key.

10 The grass is green. The sky is blue. The sun is yellow. Here we go. There
11 and back again. The grass is green. The sky is blue. The sun is yellow.
12 Here we go. There and back again...
13 ... <MORE FILLER>
14 What is the pass key? The pass key is� �

Listing 1: Passkey Retrieval Prompt Template

Passkey Placement 0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-100%

Llama 3 8B 100.00 100.00 100.00 100.00 92.86 100.00 94.44 94.12 92.31 100.00
Llama 3 8B Instruct 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Llama 3 8B (Alpaca) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
LoLCATs Llama 3 8B (Alpaca) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LoLCATs Llama 3 8B (Passkey) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Table 20: 8K Context Passkey Retrieval. We report passkey retrieval accuracy for various Llama 3 8B
models, using 8192-token samples and binning by passkey placement decile. Linearizing with just packed
Alpaca samples fails, but using passkey samples as the linearizing data recovers 100% retrieval performance.

Evaluating and improving needle-in-a-haystack retrieval. Next, to further test linearizing per-
formance on downstream tasks, we evaluate the LOLCATS-linearized Llama 3 8B LLM on “needle-
in-a-haystack” tasks. We use the passkey-retrieval task setup introduced in Mohtashami & Jaggi
(2023) and evaluated in various prior works (Chen et al., 2023a;b; Tworkowski et al., 2024), where
a model must retrieve a hidden passkey uniform randomly placed inside a text span. We use ran-
domly generated prompts and 5-digit passkeys (Listing 1), and test correctness by whether the model
outputs the passkey exactly (exact-match). We evaluate over various text lengths (2048 to 10240 to-
kens), and report accuracy binned by which decile the passkey occurs in.

Like in our MMLU study, we evaluate LOLCATS with two linearizing data setups. First, we use the
default Alpaca data, but this time test linearizing Llama 3 8B at its max context length by packing the
50K Alpaca samples into 8192-token chunks. Second, to see if linearizing explicitly with retrieval
data helps, we generate 10K passkey retrieval samples with ∼8192 tokens, and use these samples
for both stages of LOLCATS linearizing. For both, we use the same hyperparameters as Table 7.

In Table 20, we first report the results for Llama models evaluated on 8192-token prompts. We
compare the LOLCATS Llama models against the base Llama 3 8B, the instruction-tuned version
(Llama 3 8B Instruct), and a Transformer Llama 3 8B LoRA-finetuned on Alpaca data (Llama 3
8B (Alpaca); using the same LoRA parameters and second stage training procedure as in Table 7).
We find that with LOLCATS models, linearizing data plays a particularly strong role in downstream
performance. As a potential drawback of LOLCATS, when just using packed Alpaca samples, the
linearized Llama 3 8B fails to get even a single passkey retrieval sample correct (LOLCATS Llama 3
8B (Alpaca)). Meanwhile, LoRA-finetuning the non-linearized Llama 3 8B maintains high passkey
retrieval accuracy. However, linearizing with passkey samples (LOLCATS Llama 3 8B (Passkey))
recovers 100% accuracy. This suggests that with LOLCATS linearizing, the linear + sliding window
attention is able to do passkey retrieval with similar performance to full softmax attention models.

We further test the robustness of this retrieval across various context lengths (2048 to 10240 tokens)
in Figure 10. We report accuracies across input context lengths and passkey placements, finding
similar strong retrieval performance for samples under Llama 3 8B’s 8192 context length. Inter-
estingly, only the Transformer Llama 3 8B LoRA-finetuned on Alpaca is able to do retrieval over
longer context samples (10240 tokens).
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Figure 10: Needle-in-a-haystack with passkey retrieval. LOLCATS-linearized Llama 3 8B with passkey
retrieval linearizing data results in comparable retrieval to original Llama 3 8B and instruction-tuned variants.

B.4.3 SAMPLE LENGTHS: EFFECT OF EFFECTIVE SEQUENCE LENGTHS

We further study the impact of sample sequence length for linearizing quality. By default, for lin-
earizing data we pack original data samples into sequences of consistent length, e.g., 1024 tokens. As
done in prior work (Raffel et al., 2020), this allows us to pack multiple short data samples together
into longer training sequences, improving training efficiency and removing any padding tokens.
However, it may also introduce situations where our linearizing sequences only carry short-context
dependencies, i.e., because we pack together many samples with few tokens, or split longer sam-
ples into multiple sequences. Especially with attention transfer, linearized LLMs may model longer
samples less well (e.g., the 5-example in-context samples in 5-shot MMLU) because we never learn
to approximate attentions over “long enough” sequence lengths.

Effective sequence length. To study this data effect, we define an “effective sequence length”
(ESL) metric. This roughly captures for each query how far back a layer needs to attend to capture
all non-zero softmax attention weights. For query at position i, we define the ESL per query as

ESL(qi) :=
i∑

j=1

(i− j)
exp(q⊤i kj/

√
d)∑

m≤j exp(q
⊤
i km/

√
d)

(8)

We compute a sample’s ESL per head as the sum over all query ESLs, i.e.,
∑n

i=1 ESL(qi) for a
sample with n tokens. We average this over all heads and layers to measure a sample’s overall ESL.

We hypothesize that if our linearizing data only has samples with shorter ESL than those encountered
at test time, then we would poorly model these test samples. Conversely, we may be able to improve
linearizing quality by specifically filtering for samples with longer ESL. We report two findings next.

Linearizing Data PiQA ARC-easy ARC-challenge HellaSwag
(acc. norm)

Winogrande
(acc. norm)

MMLU
(5-shot)

Avg.
(no MMLU)

Alpaca 80.9 81.7 54.9 79.7 74.1 52.8 74.2
RedPajama 78.9 79.0 52.0 78.1 72.6 55.2 72.1
RedPajama (Sample Top ESL) 78.4 77.0 49.8 78.0 71.4 56.5 70.9

Table 21: Effect of ESL on linearized LLM quality, Llama 3 8B. While linearizing with longer ESLs—e.g.,
RedPajama samples or specifically filtering for top ESLs in RedPajama (Sample Top ESL)—improves 5-shot
MMLU accuracy up to 3.7 points, it reduces quality on all other evaluated LM Eval tasks by 1.7 to 5.0 points.
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Figure 11: Effective sequence length distributions. Although we pack data samples into 1024-token training
sequences, different data sources can vary in effective sequence lengths (left). Furthermore, we can selectively
filter for longer ESL samples (right). We find linearizing with longer ESLs coincides with improved MMLU
scores, albeit at the cost of other LM Eval tasks (Table 21).

Finding 1: ESL corresponds with RedPajama versus Alpaca performance. In Figure 11, we
first plot the distribution of sample ESLs computed with Llama 3 8B on Alpaca and RedPajama
linearizing data subsets. We find RedPajama samples on average display longer ESLs, which conin-
cides with improved MMLU score (c.f., Table B.4.1).

Finding 2: Filtering for higher ESL improves MMLU. Furthermore, we can increase the ESLs
in linearizing data by actively filtering for high ESL samples (Figure 11 right). Here we actively filter
for the top 20,000 packed RedPajama samples with the highest ESLs, amounting to 20M tokens.
When doing one epoch of attention transfer and low-rank linearizing with this subset, we further
improve MMLU accuracy by 1.3 points (Table 21). However, this comes at a cost for all other LM
Eval tasks, dropping quality compared to random RedPajama packing by 0.2 to 2.1 points.

B.5 STUDY ON LINEARIZING TOKEN BUDGET

We further study how varying the number of tokens used for both attention transfer and low-rank
adaptation impacts LOLCATS linearizing quality.

Impact of minimal tokens. To first test how efficient we can be with attention transfer, we linearize
Llama 3 8B with varying numbers of attention transfer steps (0 - 1800), before low-rank adjusting
for up to 2000 steps. We use the Alpaca dataset and the same packed random sampling as our main
experiments, and measure evaluation perplexity on validation samples both in-distribution (held-out
Alpaca samples) and out-of-distribution (RedPajama validation samples) over different combina-
tions of steps (Figure 13). Without attention transfer, low-rank adaptation converges significantly
higher on in-distribution samples (Figure 12a), suggesting poorer quality linearizing. However, we
find similar held-out perplexities after relatively few attention transfer steps (c.f., 1000 - 1800 up-
dates, the former amounting to just 8 million tokens for attention transfer), where all runs improve
in-distribution PPL by ∼0.23 points after LoRA finetuning for 2000 steps.

In Table 22, we report the numerical values for held-out perplexities at the end of linearizing (1800
attention transfer steps + 2000 low-rank adaptation steps), as well as the average LM Eval score
over zero-shot tasks. We similarly find competitive generalized zero-shot quality with relatively few
attention transfer steps (200 steps), all achieving 7.70–8.16 higher points than the next best Mamba-
Llama model (0.16–0.62 higher points than the 50% softmax attention variant, c.f., Table 3). Without
any attention transfer, linearized LLMs perform drastically worse on out-of-distribution samples
(Table 22, RedPajama and LM Eval metrics).

Attn. Transfer Steps 0 200 400 600 800 1000 1200 1400 1600 1800

Alpaca Eval PPL 3.211 2.802 2.792 2.782 2.782 2.776 2.778 2.775 2.782 2.776
RedPajama Eval PPL 61.305 10.459 9.799 9.699 9.628 9.679 9.420 9.328 9.413 9.358
Avg. Zero-shot LM Eval Acc. 56.86 73.68 73.34 73.70 73.66 73.74 73.47 73.70 73.80 73.66

Table 22: Effect of attention transfer steps. With Llama 3 8B linearized on Alpaca data, we report the final
evaluation perplexities after 2000 LoRA steps in Fig 13, as well as downstream LM Eval performance averaged
over zero-shot tasks. We again find competitive quality with relatively few attention transfer steps.
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(a) Alpaca PPL (b) Alpaca Val. PPL (Zoomed) (c) RedPajama Val. PPL (Zoomed)

Figure 12: Evaluation curves over number of training steps. Llama 3 8B linearized with Alpaca. We report
the impact of steps allotted to attention transfer versus LoRA linearizing, using validation set perplexity (PPL)
over both in-distribution (held-out Alpaca samples) and out-of-distribution (RedPajama validation samples).
We first run linearizing with 0 - 1800 attention transfer steps, before LoRA-finetuning for up to 2000 steps.
Without any attention transfer (0 steps), linearized LLMs get much higher perplexity (Fig 12a). On the other
hand, we observe similar convergence after attention transfer over only 1000 steps.

(a) RedPajama Validation Perplexity (b) LM Eval Score

Figure 13: Evaluation quality from ablating RedPajama linearizing updates.

Impact of more pretraining data. We next study how linearizing over larger amounts of pretrain-
ing data impacts quality. We randomly sample a larger set of unique RedPajama training sequences
(1024-token packed; 72,000 such samples overall), allowing us to linearize Llama 3 8B with differ-
ent combinations of up to 9,000 attention transfer updates and 2,000 low-rank linearizing updates. To
test language modeling recovery, we report both held-out validation sample perplexity (Table 13a)
and general zero-shot LM Evaluation Harness quality (Table 13b). Increasing both Stage 1 attention
transfer steps and Stage 2 low-rank adjusting steps notably improves validation perplexity. How-
ever, we similarly find competitive zero-shot LM scores across all evaluated attention transfer steps.
Across checkpoints at different numbers of low-rank updates, attention transfer with up to 9× more
unique tokens does not seem to monotonically improve downstream quality (Table 13b). Meanwhile,
we do find that across various amounts of attention transfer steps, subsequent low-rank adaptation
consistently improves average zero-shot LM score by >1 points.

B.6 LAYER-WISE TRAINING DYNAMICS AND ANALYSIS

Finally, we further study LOLCATS layer-wise training dynamics, such as the resulting linear at-
tention approximation quality to softmax attention at every layer (App. B.6.1), how this corresponds
with LoRA updates after attention transfer (App. B.6.2), and how these layer-wise attention MSEs
(a) relate to model size and (b) further motivate block-wise training (App. B.6.3).

B.6.1 LAYER-WISE SOFTMAX ATTENTION RECOVERY WITH LORA ADJUSTING

We now study how LoRA can explicitly improve softmax attention approximation. Given learned
feature maps, can we recover softmax attention better by adjusting the attention projections?

In Figure 14a, we report the layer-wise MSE between learned linear attentions and softmax attention
using either the pure linear attention (Hedgehog) or linear + sliding window attention (LOLCATS).
We plot the mean MSE computed over all samples in our Alpaca validation set, averaging over all
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(a) Layer-wise MSE before and after LoRA adjusting (b) Layer-wise MSE change after LoRA adjusting

Figure 14: Layer-wise MSE and deltas. Layer-wise MSE and change in MSE (absolute) before and after
LoRA adjusting with the Hedgehog linear attention and LOLCATS linear + sliding window attention on Llama
3 8B. Both use the Hedgehog feature map. With larger initial MSEs after attention transfer (Fig. 14a), LoRA
adjusting with Hedgehog results in larger MSE improvements in MSE across layers (Fig. 14b).

heads, token positions, and heads per layer. In addition to plotting this metric after attention transfer
(as in Figure 7), we also plot the MSE after an additional round of LoRA adjusting (+ LoRA).
Like before, we freeze the linear attention weights and add LoRA weights to query, key, value, and
output projections. However, rather than train these weights end-to-end for next-token prediction,
we update LoRAs to explicitly minimize the MSE between our trainable linear attention and original
softmax attention outputs like in Stage 1. We use the same hyperparameters as in Table 7.

We report both the absolute MSEs (Figure 14a) and the change in MSE (Figure 14b). LoRA re-
duces MSEs with both linear attentions— frequently reducing MSE more when starting with worse
approximations after attention transfer—which may suggest some type of compensatory role. This
occurs both across layers for each linear attention, where we see greater MSE deltas for the later
layers (c.f., LOLCATS MSE change, Figure 14b), and between linear attentions (c.f., Hedgehog
MSE change, Figure 14b), where LoRA generally improves MSE more with the Hedgehog linear
attention versus LOLCATS linear + sliding window. Despite these greater improvements, LoRA
alone does not close the MSE gap (Figure 14a), suggesting that linearizing architecture still plays an
important role in learning to match softmax attention.

B.6.2 LAYER-SPECIFIC LORA TRAINING DYNAMICS

Next, we further study how LOLCATS layers behave during LoRA adjusting, and plot the cumula-
tive weight updates to LoRA low-rank A and B weight matrices while training LLMs end-to-end
for next-token prediction. As reference points, we compare against LoRA finetuning (1) the original
Transformer LLMs with softmax attention, (2) linearized LLMs without attention transfer (using
the LOLCATS linear + sliding window attention, Hedgehog feature map, but not trained to match
softmax first), (3) linearized LLMs with attention transfer and the Hedgehog pure linear attention,
and (4) linearized LLMs with Hedgehog pure linear attention without attention transfer. We finetune
Llama 3 8B with two epochs on the Alpaca dataset, following Step 2 hyperparameters in Table 7.

We plot these updates per LoRA weight and projection in Figure 15, with layer-specific plots in
Figure 16 and 17. We specifically show cumulative sums of the update magnitudes over 2500 steps.

Figure 15: LoRA A,B weight updates by attention projection over training, averaged over all layers.
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Across plots, we find several interesting findings. First, LOLCATS with attention transfer results in
much more similar cumulative updates to softmax attention for value and output projection LoRAs,
where both result in noticeably larger updates than any other configuration. This may suggest the
LOLCATS attention transfer linear attentions are sufficiently similar to softmax attention, such that
when LoRA finetuning end-to-end, the weights also behave similarly. Furthermore, for query and
key projections—i.e., those involved in the attention weight computation—the situation is reversed.
The untrained or no attention transfer linearized LLMs display greater cumulative updates earlier
during training for A weights and consistently for B weights than either trained linear attention or
softmax attention. As we train all layers jointly, we find that with the untrained linear attentions,
relatively more “weight” is diverted to learning to compute attention weights via query and key
projection updates. How this impacts the downstream model—i.e., by updating the value and output
projections less than a softmax attention Transformer—is an interesting question for future work.

When plotting these updates per layer (Figure 16, 17) we find similar dynamics. Interestingly,
despite LOLCATS with attention transfer resulting in the worst softmax attention approximations
for the layer 31 (c.f., attention MSE, Figure 7, 14a), the resulting LoRA weight deltas do not seem
to track the softmax attention LoRA deltas noticeably worse than other layers.

Figure 16: LoRA A weight updates by attention projection and layer over training.

B.6.3 BLOCK-WISE ATTENTION TRANSFER

Finally, we study how attention transfer properties change with model scale, motivating LOLCATS’s
block-wise training approach (Section 3.3.2). In particular, we note that attention output MSEs can
vary quite a bit across layers, and this can be aggravated by model size (c.f., Llama 3.1 70B, Table 24;
and Llama 3.1 405B, Table 25).

Recall that attention transfer involves training the LOLCATS linear attentions to match the outputs
of softmax attention at each layer by minimizing the MSE between the softmax and linear attention
outputs. Since the MSE loss is scale-sensitive and MSE already varies across layers after atten-
tion transfer for Llama 3 8B (Figure 6b), we hypothesize that jointly training all 126 Transformer
layers in Llama 3.1 405B – by summing the MSE losses across all layers – may be difficult. Corre-
spondingly, in Table 23, we find that block-wise attention transfer leads to lower language modeling
perplexity for 405B linearized LLMs compared to joint training. However, we find that joint training
is sufficient and performs similarly to block-wise training at the smaller scales (8B, 70B).
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Method b×M//b PPL

Joint 126×1 4.23
Block-wise 9×14 3.21

Table 23: Validation per-
plexity after LoRA adjusting
for Llama 3.1 405B, compar-
ing attention transfer with M//b
blocks of b layers. M = 126 is
number of total layers.

Tradeoffs between quality and efficiency. We show that the
block-wise approach improves linearization quality at large model
scales and improves the user’s ability to flexibly balance compute
and memory efficiency tradeoffs. We compare (1) joint (k = 126)
training, where we load the full model once and compute the loss as
the sum of layer-wise MSEs, and (2) block-wise (k = 9) training,
where we break the model into blocks and train each independently.
Per our discussion in Sec. 3.3.2, this increases storage costs to save
precomputed hidden states. However, we hypothesize that optimiz-
ing a block-wise attention transfer loss can improve quality.

For quality, we compare the evaluation perplexity of both the attention transfer approaches, after
LoRA adjusting on the same subset of RedPajama data. The block-wise and joint approaches per-
form similarly at the 8B and 70B scales, however, as shown in Table 23, the block-wise approach
performs 1.02 points better than joint attention transfer at the 405B scale. These results support our
study in Section 3.2, which shows the variation in MSE magnitudes grows large at the 405B scale.

Layer-wise MSE. We report the attention MSEs across model scales, finding that variation in
MSE magnitudes corresponds with model size. In Tables 24 and 25, we report magnitude of the
MSE loss as the depth of the layers in the block increases. MSE variation increases with model size:
while the largest MSEs at the 70B scale are between 2.5−3× the MSE of the final block at the 405B
scale is 48.66 (over 13× that of the next largest MSE by block, 3.62).

Block (Layer range) Eval MSE

0-4 8e− 4
5-9 0.03

10-14 0.06
15-19 0.10
20-24 0.28
25-29 0.73
30-34 0.28
35-39 0.28
40-44 0.25
45-49 1.08
50-54 0.26
55-59 0.18
60-64 0.45
65-69 0.50
70-74 2.91
75-79 2.56

Table 24: Attention transfer block-wise MSE We report the eval MSE by 5-layer block for each of the
16 blocks in the 80 Transformer layer Llama 3.1 70B model. Each block is trained on the exact same set of
RedPajama data at sequence length 1024.
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Block (Layer range) Eval MSE

0-8 0.03
9-17 0.02
18-26 0.09
27-35 0.04
36-44 0.36
45-53 0.42
54-62 1.59
63-71 2.75
72-80 3.62
81-89 2.49
90-98 0.29

99-107 1.11
108-116 3.42
117-126 48.66

Table 25: Attention transfer block-wise MSE We report the eval MSE by 9-layers block for the 14 blocks in
the 126 Transformer layer Llama 3.1 405B model. Each block is trained on the exact same set of RedPajama
data at sequence length 1024.

Figure 17: LoRA B weight updates by attention projection and layer over training.
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C IMPLEMENTATION DETAILS

C.1 PSEUDOCODE IMPLEMENTATION

Below we provide further details on implementing LOLCATS with PyTorch-like code and example
demonstrations from the HuggingFace Transformers library.

Learnable Linear Attention. To start, we simply replace the softmax attentions in an LLM with a
linear attention. We define such a class below.� �

1 import copy
2 import torch.nn as nn
3 from einops import rearrange
4

5 class LolcatsLlamaAttention(nn.Module):
6 def __init__(self,
7 feature_dim: int,
8 base_attn: nn.Module, # original Transformer attn.
9 ) -> None:

10 super().__init__()
11

12 # Inherit pretrained weights
13 self.q_proj = base_attn.q_proj
14 self.k_proj = base_attn.k_proj
15 self.v_proj = base_attn.v_proj
16 self.o_proj = base_attn.o_proj
17

18 # Inherit other attention things
19 self.rotary_emb = base_attn.rotary_emb
20 self.base_attn = base_attn # keep for attention transfer
21 self.num_heads = base_attn.num_heads
22 self.head_dim = base_attn.head_dim
23

24 # Initialize feature maps, see Hedgehog definition below
25 self.feature_map_q = HedgehogFeatureMap(
26 self.num_heads, self.head_dim, feature_dim
27 )
28 self.feature_map_k = copy.deepcopy(self.feature_map_q)
29

30 def forward(self, x: torch.Tensor) -> torch.Tensor:
31 """
32 Compute linear attention (assume no GQA)
33 (b: batch_size, h: num_heads, l: seq_len, d: head_dim)
34 """
35 q = self.q_proj(x) # assume all are (b, h, l, d)
36 k = self.k_proj(x)
37 v = self.v_proj(x)
38

39 # Apply rotary embeddings
40 q = self.rotary_emb(q)
41 k = self.rotary_emb(k)
42

43 # Apply feature maps
44 q = self.feature_map_q(q) # (b, h, l, feature_dim)
45 k = self.feature_map_k(k) # (b, h, l, feature_dim)
46

47 # Compute linear attention
48 kv = torch.einsum(’bhlf,bhld->bhfd’, k, v)
49 y = torch.einsum(’bhlf,bhfd->bhld’, q, kv)
50 y /= torch.einsum(’bhlf,bhlf->bhl’,
51 q, k.cumsum(dim=2))[..., None]
52 # Apply output projection
53 return self.o_proj(rearrange(y, ’b h l d -> b l (hd)’))� �

Listing 2: LOLCATS Linear Attention Class
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Linear + Sliding Window Attention. We can augment this linear attention with the linear attention
and sliding window formulation described in Eq. 6. We first define standalone functions for linear
attention and sliding window softmax, before defining such as hybrid class below.� �

1 def sliding_window_softmax_attention(q: torch.Tensor,
2 k: torch.Tensor,
3 v: torch.Tensor,
4 window_size: int,
5 window_factor: float):
6 """
7 Compute sliding window softmax attention in O(n) time and space
8 by not materializing O(nˆ2) attention weights
9 """

10 d = q.shape[-1]
11 # Compute windows for keys and values, shifting by window size
12 window_kwargs = {’dimension’: 2, ’size’: window_size, ’step’: 1}
13 k = F.pad(k, (0, 0, window_size - 1, 0), value=0).unfold(**

window_kwargs)
14 v = F.pad(v, (0, 0, window_size - 1, 0), value=0).unfold(**

window_kwargs)
15

16 # Compute windowed_softmax(qk); causal in its construction
17 a_sm = torch.einsum(’bhld,bhldw->bhlw’, q, k) * (d ** -0.5)
18 # heuristic for zeroing out padding above
19 a_sm[a_sm == 0] = -torch.finfo(q.dtype).max
20

21 # Compute softmax terms for combining attentions (attn and sum)
22 a_sm_max = torch.amax(a_sm, dim=-1, keepdim=True)
23 a_sm = window_factor * torch.exp(a_sm - a_sm_max)
24 sum_sm = a_sm.sum(dim=-1, keepdim=True)
25 return torch.einsum(’bhlw,bhldw->bhld’, a_sm, v), sum_sm� �

Listing 3: Linear Attention in Linear + Sliding Window Attention� �
1 def under_window_linear_attention(f_q: torch.Tensor, # phi(q)
2 f_k: torch.Tensor, # phi(k)
3 v: torch.Tensor,
4 window_size: int,
5 linear_factor: float):
6 """
7 Compute hybrid window attention dot product with
8 linear complexity in q_len
9 """

10 dtype = f_q.dtype
11

12 # Shift keys and valuves for window
13 w = window_size
14 f_k = F.pad(f_k, (0, 0, w, 0), value=0)[:, :, :-w, :]
15 v = F.pad(v, (0, 0, w, 0), value=0)[:, :, :-w, :]
16

17 # Compute linear terms for combining attentions
18 kv = torch.einsum(’bhlf,bhld->bhfd’, k, v)
19 qkv = linear_factor * torch.einsum(’bhlf,bhfd->bhld’, q, kv)
20 sum_f_k = f_k.float().cumsum(dim=2).to(dtype=dtype)
21 sum_qk = linear_factor * torch.einsum("bhld,bhld->bhl",
22 f_q, sum_f_k)[..., None]
23 return qkv, sum_qk� �

Listing 4: Linear Attention in Linear + Sliding Window Attention
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� �
1 class LolcatsSlidingWindowLlamaAttention(LolcatsLlamaAttention):
2 def __init__(self, window_size: int = 64, **kwargs: any,):
3 super().__init__(**kwargs)
4 self.window_size = window_size # sliding window size
5 self.window_factors = nn.Parameter( # gamma mixing term
6 torch.ones(1, self.num_heads, 1, 1)
7 )
8

9 def attention(self,
10 q: torch.Tensor, k: torch.Tensor,
11 f_q: torch.Tensor, f_k: torch.Tensor,
12 v: torch.Tensor,
13 window_factor: torch.Tensor,
14 linear_factor: torch.Tensor
15 window_size: int = 64,):
16 """
17 O(n) hybrid linear + sliding window attention
18 """
19 window_kwargs = {’dimension’: 2, ’size’: window_size, ’step’: 1}
20 # 1. Sliding window (softmax attention)
21 with torch.no_grad():
22 qkv_sm, sum_qk_sm = sliding_window_softmax_attention(
23 q, k, v, window_size, window_factor)
24

25 # 2. Under window (linear attention)
26 qkv_ln, sum_qk_ln = under_window_linear_attention(
27 f_q, f_k, v, window_size, linear_factor)
28

29 # 3. Combine
30 y = (qkv_sm + qkv_ln) / (sum_qk_sm + sum_qk_ln)
31 return y
32

33 def forward(self, x: torch.Tensor) -> torch.Tensor:
34 """
35 Compute linear attention (assume no GQA)
36 (b: batch_size, h: num_heads, l: seq_len, d: head_dim)
37 """
38 q = self.q_proj(x) # assume all are (b, h, l, d)
39 k = self.k_proj(x)
40 v = self.v_proj(x)
41

42 # Apply rotary embeddings
43 q = self.rotary_emb(q)
44 k = self.rotary_emb(k)
45

46 # Apply feature maps
47 f_q = self.feature_map_q(q) # (b, h, l, feature_dim)
48 f_k = self.feature_map_k(k) # (b, h, l, feature_dim)
49

50 # Compute attention
51 window_factors = F.sigmoid(self.window_factors)
52 linear_factors = 1 # Eq. 7
53 y = self.attention(q, k, f_q, f_k, v,
54 window_factors, linear_factors,
55 self.window_size)
56 # Apply output projection
57 return self.o_proj(rearrange(y, ’b h l d -> b l (hd)’))� �

Listing 5: LOLCATS Linear + Sliding Window Attention Class
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Hedgehog Feature Map. We implement the Hedgehog feature map following Zhang et al. (2024).� �
1 import torch.nn as nn
2

3 class HedgehogFeatureMap(nn.Module):
4 def __init__(self,
5 num_heads = 32: int, # defaults for 8B LLMs
6 head_dim = 128: int,
7 feature_dim = 64: int,
8 ) -> None:
9 super().__init__()

10 self.num_heads = num_heads
11 self.head_dim = head_dim
12 self.feature_dim = feature_dim
13

14 # Initialize trainable feature map weights
15 self.weights = nn.Parameter(
16 torch.zeros(self.num_heads, self.head_dim, self.feature_dim)
17 )
18

19 def self.activation(self: torch.Tensor) -> torch.Tensor:
20 """Softmax across feature dims activation"""
21 return torch.cat([
22 torch.softmax(x, dim=-1), torch.softmax(-x, dim=-1)
23 ], dim=-1)
24

25 def forward(self, x: torch.Tensor) -> torch.Tensor:
26 """
27 Assume x.shape is (b, h, l, d)
28 (b: batch_size, h: num_heads, l: seq_len, d: head_dim)
29 """
30 x = torch.einsum(’hdf,bhld->bhlf’, self.weights, x)
31 return self.activation(x)� �

Listing 6: Hedgehog Feature Map

Linearizing LLM Setup. To initialize an LLM for linearizing, we simply replace each softmax
attention in the Transformer’s layers with our LoLCATs linear attention class. We illustrate this
with a Huggingface Transformer’s class below.� �

1 from transformers import AutoModelForCausalLM
2

3 def convert_model(model: AutoModelForCausalLM,
4 window_size: int = 64,
5 feature_dim: int = 64,):
6 """Setup linearizing attentions"""
7 for layer in model.model.layers:
8 if window_size == 0:
9 layer.self_attn = LolcatsLlamaAttention(

10 feature_dim=feature_dim,
11 base_attn=layer.self_attn,
12 )
13 else:
14 layer.self_attn = LolcatsSlidingWindowLlamaAttention(
15 window_size=window_size,
16 feature_dim=feature_dim,
17 base_attn=layer.self_attn,
18 )
19 return model� �

Listing 7: Linearizing LLM Setup
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Attention Transfer Training. We can then train LOLCATS layers in a simple end-to-end loop.
Although doing this attention transfer is akin to a layer-by-layer cross-architecture distillation, due
to architectural similarities we implement linearizing with the same footprint as finetuning a single
model. Furthermore, as we freeze all parameters except for the newly introduced feature map
weights, this amounts to parameter-efficient finetuning, training <0.2% of a 7B+ LLM’s parameters.� �

1 """
2 Example attention transfer training loop for Llama 3.1 8B
3 """
4 import torch.nn as nn
5 from transformers import AutoModelForCausalLM
6

7 # Load Llama 3.1 8B
8 model_config = {
9 ’pretrained_model_name_or_path’: ’meta-llama/Meta-Llama-3.1-8B’

10 }
11 model = AutoModelForCausalLM.from_pretrained(**model_config)
12

13 # Freeze all pretrained weights
14 for p in model.parameters():
15 p.requires_grad = False
16

17 # Prepare LoLCATs linearizing layers
18 model = convert_model(model)
19

20 # Setup MSE loss criterion
21 mse_loss = nn.MSELoss()
22 block_size = 32 # default end-to-end for 7B+ LLMs
23 num_blocks = len(model.layers) // block_size
24

25 # Get some linearizing data
26 train_loader = load_data(**data_kwargs)
27

28 # Train LoLCATs layers via attention transfer
29 for ix, input_ids in enumerate(train_loader):
30 losses = [0] * range(num_blocks) # Attention transfer loss here
31 x = model.embed_tokens(input_ids) # Input embeddings from tokens
32

33 # Forward pass thru model
34 for lix, layer in enumerate(model.layers):
35 # *** Start Attention ***
36 _x = layer.input_layernorm(x) # Just Llama things
37

38 ## Attention Transfer part
39 with torch.no_grad():
40 y_true = layer.self_attn.base_attn(_x)
41 y_pred = layer.self_attn(_x)
42 _idx = lix // block_size # Add layer or block-wise MSE
43 losses[_idx] += mse_loss(y_pred, y_true)
44 _x = y_true # Pass true attention outputs
45 # thru to rest of model
46 x = _x + x
47 # *** End Attention ***
48

49 # *** Start MLP ***
50 _x = layer.post_attention_layernorm(x)
51 _x = self.mlp(_x)
52 x = _x + x
53 # *** End MLP ***
54

55 for loss in losses: # End-to-end attention transfer
56 loss.backward()� �

Listing 8: End-to-end attention transfer pseudocode (Stage 1).
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Low-rank Adjusting. Finally, after attention transfer, we train the model end-to-end with next-
token prediction. This allows the linearized LLM to adjust to the learned linear attentions, which
may still not perfect approximations of the softmax attentions. However, with LOLCATS we hope
to make these errors small enough such that we can adjust and recover pretrained LLM capabilities
with parameter-efficient low-rank updates (e.g., LoRA finetuning).� �

1 class LoRALayer(torch.nn.Module):
2 def __init__(self,
3 base_layer: nn.Module,
4 rank: int = 8,
5 alpha: float = 16):
6 super().__init__()
7 """Init low-rank parameters"""
8 in_dim = base_layer.weight.shape[1]
9 out_dim = base_layer.weight.shape[0]

10 self.A = nn.Parameter(torch.randn(in_dim, rank))
11 self.B = nn.Parameter(torch.zeros(rank, out_dim))
12 self.alpha = alpha
13 self.base_layer = base_layer
14

15 def low_rank_forward(self, x: torch.Tensor) -> torch.Tensor:
16 """Compute LoRA pass"""
17 x = torch.einsum(’...d,dr->...r’, x, self.A)
18 x = torch.einsum(’...r,rd->...d’, x, self.B)
19 return self.alpha * x
20

21 def forward(self, x: torch.Tensor) -> torch.Tensor:
22 """Actual forward"""
23 x = self.base_layer(x) + self.low_rank_forward(x)
24 return x� �

Listing 9: Defining a LoRA layer� �
1 model = attention_transfer(model) # Do Step 1 of LoLCATs
2

3 # 0. Prepare model for LoRA
4 lora_kwargs = {’rank’: 8, ’alpha’: 16} # examples
5

6 # 1. Freeze all pretrained weights
7 for p in model.parameters(): p.requires_grad = False
8

9 # 2. Add LoRA weights to Q,K,V,O projections
10 for layer in model.layers:
11 for proj in [’q_proj’, ’k_proj’, ’v_proj’, ’o_proj’]:
12 _layer = getattr(layer.self_attn, proj)
13 _layer = LoRALayer(_layer, **lora_kwargs)
14 setattr(layer.self_attn, proj, lora_layer)
15

16 # 3. Finetune LLM with LoRA
17 xent_loss = nn.CrossEntropyLoss()
18 train_loader = load_data(**data_kwargs)
19

20 for ix, input_ids in enumerate(train_loader):
21 # Process input tokens
22 next_token_ids = model(input_ids)
23 # Train model to predict next token
24 y_pred = next_token_ids[..., :1]
25 y_true = input_ids[..., 1:]
26 loss = xent_loss(y_pred, y_true)
27 loss.backward()� �

Listing 10: End-to-end low-rank adjusting pseudocode (Stage 2).
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C.2 HARDWARE-AWARE IMPLEMENTATION OF LOLCATS SLIDING WINDOW

Despite the theoretical efficiency of linear attention, existing implementations have long underper-
formed well-optimized attention implementations (e.g., FlashAttention) in wall clock speed (Dao
et al., 2022). To translate the benefits of LOLCATS to wall clock speedups, we develop a custom
hardware-aware algorithm for LOLCATS prefill using the ThunderKittens CUDA framework.7 We
first briefly review the GPU execution model and then detail our algorithm.

C.2.1 GPU EXECUTION MODEL

GPUs workloads are executed by independent streaming multiprocessors (SMs), which contain
warps, groups of 32 threads, that operate in parallel.

Memory hierarchy. ML workloads involve moving large tensors (weights, activations) in and
out of memory to perform computation. GPUs have a memory hierarchy, which includes global
memory (HBM), shared memory (SRAM), and registers. Reading from and writing data to memory,
referred to as I/O operations, takes time. There is a large amount of HBM, which has high I/O costs,
and a small amount of SRAM and registers have much costs. All SMs access global memory,
warps within an SM threadblock can access shared memory, and threads within a threadblock have
independent register memory. To reduce the I/O costs, locality is key – kernels should perform
as many operations as possible on data that has already been loaded into fast memory (i.e., thread
registers) before writing the results back to slower memory.

Compute units. GPUs have increasingly heterogeneous compute units on newer generations of
hardware. Tensor cores—specialized compute units for matrix-matrix multiplications—are the
fastest units, operating at 1.0 PetaFLOPS on Nvidia H100 GPUs in contrast to 67 TeraFLOPS for
the general non Tensor core units. ML workloads should thus ideally exploit the tensor cores.

Cost model. Overall, workloads may either be compute or memory bound, depending on whether
they are bottlenecked by the compute speed or I/O costs. To hide latencies from either expensive
compute or I/O, a classic principle in systems is to pipeline computation among parallel workers.

C.2.2 THUNDERKITTENS CUDA KERNEL FOR PREFILL

We describe our overall approach below and provide pseudocode in Algorithm 3, designed around
the three principles above: memory locality, tensor core utilization, and pipelined execution.

The kernel fuses the entire LOLCATS layer, taking as input the attention queries, keys, and values,
for q,k,v ∈ RN×d with sequence length N and head dimension d and outputting the result of the
y ∈ RN×d. Following Llama 3 (AI@Meta, 2024a), we let d = 128 in the discussion below.

Pipeline execution overview. Each thread block handles a single batch and head element of size
N×d. The kernel loops over chunks of length 64 along the sequence dimension N , loading 64×128
tiles of q,k,v, which we’ll refer to as qt,kt,vt, in each iteration t. We use 8 warps (workers)
per thread block, splitting them into two groups of 4 workers that pipline the computation. One
“warpgroup” is in charge of launching memory loads and stores and computing the relatively cheap
terraced window attention, while the other focuses on computing the more expensive linear attention
computation and recurrent state updates.

Warpgroup 1 (Window attention). For the diagonal 64 × 128 sized tiles, recall that the output
is simply the window attention result. At iteration t, the warpgroup loads qt,kt,vt into thread
registers, use the tensor cores to multiply queries and keys, apply a causal mask, apply the Softmax,
and use the tensor cores to multiply the attention scores with the values. Note that we can use
Nvidia’s new warpgroup operations (e.g., WGMMA) introduced in the H100 architecture to perform
these operations. We refer to the terraced window output as terraceo.

7https://github.com/HazyResearch/ThunderKittens
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Because the window attention is relatively cheap, warpgroup 1 also helps handle loads and stores
between HBM and SRAM for the entire kernel. We use tensor memory acceleration (TMA), a new
H100 capability for asynchronous memory movement, to perform these loads and stores.

Warpgroup 2 (Linear attention). We briefly review the linear attention equation. The formula-
tion on the left shows a quadratic view, wherein ϕ(qn)

⊤ and ϕ(ki) are multiplied first, while the
right formulation shows a linear view, wherein ki and v⊤i are multiplied first.

ŷn =

n∑
i=1

(ϕ(qn)
⊤ϕ(ki))vi∑n

i=1 ϕ(qn)
⊤ϕ(ki)

=
ϕ(qn)

⊤
(∑n

i=1 ϕ(ki)v
⊤
i

)
ϕ(qn)⊤

∑n
i=1 ϕ(ki)

(9)

Since LOLCATS uses no linear attention on the diagonal tiles, the linear attention contribution for
tile t is as follows, where queries are multiplied by the cumulative KV state from the prior iterations
up to t− 1:

ŷt

ϕ(qt)
⊤
(∑t−1

i=1 ϕ(ki)v
⊤
i

)
ϕ(qn)⊤

∑t−1
i=1 ϕ(ki)

(10)

At t = 0, the KV state and K state are initialized to 0, maintained in warpgroup 2’s registers.

At iteration t, warpgroup 2 loads in the learned feature maps into register and computes qft. This
result gets multiplied by the running KV state so far up until t − 1 (again 0 at iteration 0), and the
result, linearo gets written to SMEM.

The warps then update the KV state to prepare for the next iteration by featurizing kt to kft using
the learned feature map, and multiplying by vt with WGMMA operations. Note that because the
KV state in linear attention is somewhat large (d × d), we leave the state in register throughout the
kernel execution to avoid I/O costs.

Combining the results. Warpgroup 1 loads the linearo contribution from SMEM to its registers,
adds the terracedo component, normalizes the overall result, and stores it back to HBM using
TMA asynchronous store operations. We provide pseudocode in Algorithm 3.

To recap, our overall algorithm uses three classical systems ideas to run efficiently: (1) pipelining the
different attention and I/O operations, (2) keeping the fastest compute—the tensor cores—occupied,
and (3) keeping the recurrent (KV) state local in fast memory (thread registers).

Algorithm 3 LOLCATS ThunderKittens prefill kernel

Input: Attention queries, keys, and values q,k,v ∈ RN×d for head dimension d and sequence
length N

Output: LOLCATS attention output o ∈ RN×d

Let localKV be the cumulative recurrent state (“KV-state”) initialized to 0 in warpgroup 2’s
registers.

1: for t← 0 to N
64 do

▷ Warpgroup 1, Terraced attention
2: Load qt,kt,vt ∈ R64×d from HBM to SMEM.
3: Compute the terraced attention output tile terraceot ∈ R64×d in register using WGMMA

operations.
▷ Warpgroup 2, Linear attention

4: Featurize qt by multiplying with the learned feature map to obtain qft

5: Compute the linear attention output tile linearot ∈ R64×d in register, using qft and
localKV .

6: Write linearot from register to SMEM
7: Featurize kt by multiplying with the learned feature map to obtain kft

8: Update localKV by multiplying kft and vt, and adding the result to localKV in place, all
in register

▷ Warpgroup 1, Combine results
9: Load linearot from SMEM to register

10: Add ot = linearot + terraceo in register
11: Write ot to HBM

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

D EXTENDED RELATED WORK

D.1 LINEARIZING TRANSFORMERS

In this work, we build upon both approaches explicitly proposed to linearize LLMs (Mercat et al.,
2024), as well as prior methods focusing on smaller Transformers reasonably adaptable to modern
LLMs (Kasai et al., 2021; Mao, 2022; Zhang et al., 2024). We highlight two approaches most related
to LOLCATS and their extant limitations next.

Scalable UPtraining for Recurrent Attention (SUPRA). Mercat et al. (2024) linearize LLMs
by swapping softmax attentions with linear attentions similar to Retentive Network (RetNet) lay-
ers (Sun et al., 2023), before jointly training all model parameters on the RefinedWeb pretraining
dataset (Penedo et al., 2023). In particular, they suggest that linearizing LLMs with the vanilla linear
attention in Eq. 2 is unstable, and swap attentions with

ŷn = GroupNorm
( n∑

i=1

γn−iϕ(qn)
⊤ϕ(ki)vi

)
(11)

GroupNorm (Wu & He, 2018) is used as the normalization in place of the
∑n

i=1 ϕ(qn)
⊤ϕ(ki)

denominator in Eq. 2, γ is a decay factor as in RetNet, and ϕ is a modified learnable feature map
from Transformer-to-RNN (T2R) (Kasai et al., 2021) with rotary embeddings (Su et al., 2024). In
other words, ϕ(x) = RoPE(ReLU(xW +b)) with W ∈ Rd×d and b ∈ Rd as trainable weights and
biases. With this approach, they recover zero-shot capabilities in linearized Llama 2 7B (Touvron
et al., 2023b) and Mistral 7B (Jiang et al., 2023) models on popular LM Evaluation Harness (Gao
et al., 2023) and SCROLLS (Shaham et al., 2022) tasks.

Hedgehog. Zhang et al. (2024) show we can train linear attentions to approximate softmax at-
tentions, improving linearized model quality by swapping in the linear attentions as learned drop-
in replacements. They use the standard linear attention (Eq. 2), where query, key, value, and
output projections (the latter combining outputs in multi-head attention (Vaswani et al., 2017))
are first copied from an existing softmax attention. They then specify learnable feature maps
ϕ(x) = [softmax(xW + b) ⊕ softmax(−xW − b)] (where ⊕ denotes concatenation, and both
⊕ and the softmax are applied over the feature dimension) for q and k in each head and layer, and
train ϕ such that linear attention weights â match a Transformer’s original softmax weights a. Given
some sample data, they update ϕ with a cross-entropy-based distillation to minimize:

Ln = −
n∑

i=1

exp(q⊤n ki/
√
d)∑n

i=1 exp(q
⊤
n ki/

√
d)

log
ϕ(qn)

⊤ϕ(ki)∑n
i=1 ϕ(qn)

⊤ϕ(ki)
(12)

as the softmax and linear attention weights are both positive and sum to 1. As they focus on task-
specific linearization (e.g., GLUE classification (Wang et al., 2018) or WikiText-103 language mod-
eling (Merity et al., 2017)), for both attention and model training they use task-specific training
data. By doing this “attention distillation”, they show significant linearized quality improvements
over T2R mainly on smaller Transformers (e.g., 110M parameter BERTs (Devlin et al., 2018) and
125M GPT-2s (Radford et al., 2019)). They further show LLM linearizing by linearizing Llama 2
7B for a specific SAMSum summarization task (Gliwa et al., 2019).

D.2 EFFICIENT ARCHITECTURES

Subquadratic Attention Alternatives. Many prior works study more efficient sequence modeling
modules compared to Transformer self-attention, commonly training proposed architectures from
scratch. While our work is most similar to and compatible to linear attentions (Katharopoulos et al.,
2020; Choromanski et al., 2020; Chen et al., 2021b; Xiong et al., 2021; Zhang et al., 2024; Qin et al.,
2022; Schlag et al., 2021; Yang et al., 2023) and sparse attentions (Beltagy et al., 2020; Chen et al.,
2021a; Zaheer et al., 2020), other efficient architectures include convolutional models (Poli et al.,
2023a; Gu et al., 2021), recurrent neural nets (RNNs) (not strictly following the attention inductive
bias) (Peng et al., 2023a; De et al., 2024; Beck et al., 2024), and state-space model (SSM)-inspired
neural net layers (Gu et al., 2021; Gu & Dao, 2023; Dao & Gu, 2024).
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Improving LLMs for Long Contexts. We share motivation various works focus on improving
context length quality (Chen et al., 2023a; kai; Peng et al., 2023b). They that the rotary embed-
dings (Su et al., 2024) of popular LLMs (Biderman et al., 2023; Touvron et al., 2023b; AI@Meta,
2024a; Jiang et al., 2023) struggle to handle contexts longer than those used in training. Chen et al.
(2023b) notably study the training efficiency of this via LoRA. Our work is complementary, where
we reduce the efficiency bottleneck by replacing self-attentions. Further work lies in how to improve
long context quality of linearized LLMs, e.g., by integrating these methods. Other works also im-
prove efficiency by optimizing the KV Cache from a systems standpoint (Kwon et al., 2023). These
may present complementary optimizations to linear attention’s algorithmic improvements.

E ADDITIONAL ARTIFACTS

E.1 SAMPLE GENERATIONS

We include sample generations for various prompts, using Llama 3 8B models linearized with dif-
ferent LOLCATS-related linearizing setups on the Alpaca dataset. For reference, we also include
responses from a standard (softmax attention) Llama 3 8B finetuned with LoRA (rank = 8, alpha =
16, applied to all attention projections) on the Alpaca training set. LOLCATS as presented often
leads to greatest coherence among linearized LLMs.

Prompt

<|begin of text|> Below is an instruction that describes a task. Write a response that
appropriately completes the request.

### Instruction:
What is the difference between H&M and Balenciaga?

### Response:

Hedgehog (Linear Only) (No LoRA)

Hindi: the difference is that in the first one is a little bit more complicated, but the other one is
that is the same. <|end of text|>

Hedgehog (Linear Only) (Attention Transfer + LoRA)

H&M and Balenciaga are two of the most popular fashion brands in the world, but there are
some differences between them.

H&M is a fast fashion retailer that sells trendy and affordable clothing. It was founded in
Sweden in 1947 and is now available in over 60 countries worldwide. The brand is known for
its fast fashion and affordable prices, making it a popular choice for those on a budget.

Balenciaga, on the other hand, is a luxury fashion house that was founded in 1977. It is known
for its high-end ready-to-wear pieces, including leather jackets, dresses, and shoes. The brand
is known for its use of luxurious fabrics and intricate designs, as well as its collaborations with
other fashion houses such as Versace and Versace.

In summary, H&M and Balenci are two popular fashion brands that offer different styles and
price points. While H&M is known for its fast fashion and affordable fashion, Balenciaga is
known for its luxury and high-end ready-to-wear pieces.<|end of text|>

LOLCATS (Linear + Sliding Window) (No LoRA)

The difference between H&M and Balenciaga is that H&M is a high street brand while Ba-
lenciaga is a luxury brand. H&M is more affordable than Balenciaga, which is a luxury
brand.<|end of text|>
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LOLCATS (Linear + Sliding Window) (No Attention Transfer)

H&M and Balenciaga are both clothing brands, but there are some key differences between the
two.

H&M is a fast fashion brand known for its affordable and trendy clothing. The company was
founded in Sweden and has stores in over 60 countries. It is known for its seasonal collections,
which include clothing, accessories, and home decor. H&M has a reputation for its ethical and
sustainable practices, and the company works with designers and brands to create its collections.

On the other hand, Burberry is a British luxury fashion house founded in 1856. It is known for
its high-end fashion, including clothing, accessories, and fragrances. The company has a strong
heritage, and its designs are inspired by British culture and history. Burberry is known for its
classic trench coats, and its signature check pattern is instantly recognizable.

Overall, both brands are high-end fashion companies, but they have different target audiences
and design styles. H&M is more accessible and affordable, while Burberry is more expensive
and known for its classic, timeless designs. <|end of text|>

LOLCATS (Linear + Sliding Window) (Attention Transfer + LoRA)

H&M and Balenciaga are both fashion brands, but they have significant differences.

H&M is a fast-fashion brand that offers a wide range of clothing, accessories, and home decor
at affordable prices. The brand is known for its trendy and stylish designs, and it often collab-
orates with high-profile designers to create limited-edition collections. H&M is a mass-market
retailer, and its products are available in its own stores, as well as in department stores and online.

Balenciaga, on the other hand, is a luxury fashion house founded in 1917 by Spanish designer
Cristobal Balenciaga. The brand is known for its avant-garde designs, high-quality materials,
and attention to detail. Balenciaga’s collections are often bold, experimental, and daring, and
the brand has a strong following among fashion enthusiasts and celebrities. H&M, on the other
hand, is a fast-fashion retailer that offers affordable clothing and accessories inspired by the latest
trends. While H&M also produces its own clothing and accessories, the brand is known for its
collaborations with high-end designers and its ability to produce fashion at a much lower price
point than other luxury brands.<|end of text|>

Softmax Attention
H&M and Balenciaga are two fashion brands that are quite different from each other.

H&M is a fast fashion brand that offers affordable clothing and accessories for both men and
women. The brand is known for its trendy and on-trend designs, and its collections often feature
collaborations with high-profile designers and celebrities. H&M is a mass-market brand that
aims to make fashion accessible to everyone.

Balenciaga, on the other hand, is a luxury fashion brand that is known for its avant-garde
designs and high-end materials. The brand is associated with couture and haute couture, and
its collections often feature bold and experimental designs. Balenciaga is a high-end brand that
caters to a more exclusive clientele.

In summary, the main difference between H&M and Balenciaga is their target audience, price
point, and design philosophy. H&M is a fast fashion brand that offers affordable and trendy
designs, while Balenciaga is a luxury brand that focuses on high-end and avant-garde de-
signs.<|end of text|>
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Prompt

<|begin of text|> Below is an instruction that describes a task. Write a response that
appropriately completes the request.

### Instruction:
Explain why the following fraction is equivalent to 1/4. 4/16

### Response:

Hedgehog (Linear Only) (No LoRA)

The number 4/4 is a fraction. This is a fraction that is equivalent to 4/4. The number 4/4 is the
number 4/4/4/4/4.<|end of text|>

Hedgehog (Linear Only) (Attention Transfer + LoRA)

The fraction 1/4 is equivalent to 4/16. To see why, we can multiply both the numerator and
denominator by 4 to obtain the equivalent fraction 16/16. This is because the multiplication of
two equal numbers will not change the value of the fraction.

The number 4/16 can be rewritten as 16/4, which is equivalent to 4/4. Similarly, the numerator
4/4 can be rewritten as 4/4. Therefore, the fraction 4/4 is equivalent to 4/16, which is the same
as 1/4. <|end of text|>

LOLCATS (Linear + Sliding Window) (No LoRA)

The fraction 4/16 is equivalent to 1/4 because the numerator and denominator are both divisible
by 2. This is because 4/16 is equal to 4/16. This is because the numerator and denominator are
both divisible by 2. This means that 4/16 is equal to 1/4. Therefore, 1/4 is equal to 1/4, which is
1/4. Therefore, 4/16 is equal to 1/4, and 1/4 is equal to 1/4.<|end of text|>

LOLCATS (Linear + Sliding Window) (No Attention Transfer)

1/4 = 4/16

To explain why the fraction 1/4 is equivalent to 4/16, we first need to understand what a fraction
is. A fraction is a way to represent a part of a whole, where the whole is divided into equal parts.
In this case, the whole is the whole number 4, which is divided into 4 equal parts, each of which
is represented by the fraction 1/4. The symbol used to represent a fraction is a fraction bar, which
is a horizontal line that goes between the numerator and the denominator. So, the fraction 1/4
can be written as 1/4 or 4/4.<|end of text|>

LOLCATS (Linear + Sliding Window) (Attention Transfer + LoRA)

The fraction 4/16 is equivalent to 1/4 because both fractions represent the same value. When
simplifying 4/16, we can divide both the numerator and denominator by 4 to get 1/4. This is
because 4 divided by 4 is equal to 1, and 16 divided by 4 is also equal to 4. So, we can cancel
out the 4s to get 1/4.<|end of text|>
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Softmax Attention
The fraction 4/16 is equivalent to 1/4 because both fractions represent the same value. To see
why this is the case, we can simplify the fraction 4/16 by dividing both the numerator and the
denominator by their greatest common factor.

The greatest common factor (GCF) of 4 and 16 is 4. We can simplify the fraction by dividing
both the numerator and the denominator by 4:
4 ÷ 4 = 1
16 ÷ 4 = 4

Thus, the simplified fraction is 1/4. Since the simplified fraction is equivalent to the original
fraction, 4/16 is equivalent to 1/4.<|end of text|>

Prompt

<|begin of text|> Below is an instruction that describes a task. Write a response that
appropriately completes the request.

### Instruction:
Why did we linearize the chungus among us?

### Response:

Hedgehog (Linear Only) (No LoRA)

- The reason that the request is to request the request is to use the request to re-
quest.<|end of text|>

Hedgehog (Linear Only) (Attention Transfer + LoRA)

The reason we linearized the chunus among us is to make it easier for us to understand and com-
pare their behavior. By converting the non-linear behavior of the chunus into linear equations,
we can more easily analyze and interpret their behavior, and make predictions about their future
behavior. Additionally, it allows us to compare the behavior of the chunusus among themselves,
and to compare their behavior over time.<|end of text|>

LOLCATS (Linear + Sliding Window) (No LoRA)

Because we have no other choice.<|end of text|>

LOLCATS (Linear + Sliding Window) (No Attention Transfer)

The word “chungus” is not in the English language, so it cannot be lin-
earized.<|end of text|>

LOLCATS (Linear + Sliding Window) (Attention Transfer + LoRA)

Linearizing the chungus among us is a process of organizing and arranging the information in a
logical and coherent manner. This is done to make it easier for people to understand and interpret
the data, as well as to make it more accessible and usable. By linearizing the data, we are able to
extract meaningful insights and patterns from the information, which can then be used to make
informed decisions and take action.<|end of text|>

Softmax Attention
I’m sorry, but I cannot respond to this question as I do not have the necessary information to
provide a meaningful response. Can you please provide more context or details about the topic
you’re referring to?<|end of text|>
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E.2 SAMPLE ATTENTION WEIGHTS

We finally visualize sample attention weights from LOLCATS Mistral 7b and Llama 3 8B layers,
computed over held-out 1024-token packed Alpaca samples. Despite only training to match attention
outputs via an MSE loss, we find LOLCATS often recovers softmax attention weights qualitatively,
with comparable quality to explicitly matching attention weights via a cross-entropy loss (XENT).
We validate that this is not just due to upweighting softmax attention terms in our sliding window
setup, plotting query-key interactions for 1024-long samples between the last 32 queries and the
first and last 32 keys (spanning distances well over the 64-token window sizes). LOLCATS linear
attentions frequently recover attention weights over these distances, suggesting that we learn both
linear attention feature maps and weighting factors to match softmax attention weights.

Finally, we note two observations on LOLCATS training and architectures. Newly initialized LOL-
CATS linear + sliding window attentions do not capture softmax attention weights (init.), supporting
earlier results that attention transfer is necessary to reduce architectural differences and improve lin-
earizing efficiency. Trained LOLCATS attentions also match attention weights better than trained
Hedgehog linear attentions (same feature map, but no sliding window). These results suggest LOL-
CATS attention transfer and linear + sliding window layers allow us to learn better approximations
of softmax attention weights, coinciding with improved lienarizing quality.
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Figure 18: Llama 3 8B attention weights; head 0; layers 0, 8, 16, 24, 31.
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Figure 19: Llama 3 8B attention weights; head 1; layers 0, 8, 16, 24, 31.
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Figure 20: Llama 3 8B attention weights; head 2,; layers 0, 8, 16, 24, 31.
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Figure 21: Llama 3 8B attention weights; head 3; layers 0, 8, 16, 24, 31.
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Figure 22: Mistral 7B v0.1 attention weights; head 0; layers 0, 8, 16, 24, 31.

50



2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

Qu
er

ie
s

Softmax
Layer 0 Head 1

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

Softmax
Layer 8 Head 1

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

Softmax
Layer 16 Head 1

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

Softmax
Layer 24 Head 1

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

Softmax
Layer 31 Head 1

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

Qu
er

ie
s

LoLCATs (MSE)
Layer 0 Head 1

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

LoLCATs (MSE)
Layer 8 Head 1

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

LoLCATs (MSE)
Layer 16 Head 1

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

LoLCATs (MSE)
Layer 24 Head 1

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

LoLCATs (MSE)
Layer 31 Head 1

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

Qu
er

ie
s

LoLCATs (XENT)
Layer 0 Head 1

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

LoLCATs (XENT)
Layer 8 Head 1

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

LoLCATs (XENT)
Layer 16 Head 1

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

LoLCATs (XENT)
Layer 24 Head 1

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

LoLCATs (XENT)
Layer 31 Head 1

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

Qu
er

ie
s

Hedgehog (MSE)
Layer 0 Head 1

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

Hedgehog (MSE)
Layer 8 Head 1

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

Hedgehog (MSE)
Layer 16 Head 1

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

Hedgehog (MSE)
Layer 24 Head 1

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

Hedgehog (MSE)
Layer 31 Head 1

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

Qu
er

ie
s

LoLCATs (init.)
Layer 0 Head 1

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

LoLCATs (init.)
Layer 8 Head 1

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

LoLCATs (init.)
Layer 16 Head 1

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

LoLCATs (init.)
Layer 24 Head 1

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

LoLCATs (init.)
Layer 31 Head 1

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

Qu
er

ie
s

Hedgehog (init.)
Layer 0 Head 1

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

Hedgehog (init.)
Layer 8 Head 1

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

Hedgehog (init.)
Layer 16 Head 1

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

Hedgehog (init.)
Layer 24 Head 1

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

Hedgehog (init.)
Layer 31 Head 1

Figure 23: Mistral 7B v0.1 attention weights; head 1; layers 0, 8, 16, 24, 31.

51



2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2025

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

Qu
er

ie
s

Softmax
Layer 0 Head 2

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

Softmax
Layer 8 Head 2

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

Softmax
Layer 16 Head 2

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

Softmax
Layer 24 Head 2

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

Softmax
Layer 31 Head 2

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

Qu
er

ie
s

LoLCATs (MSE)
Layer 0 Head 2

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

LoLCATs (MSE)
Layer 8 Head 2

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

LoLCATs (MSE)
Layer 16 Head 2

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

LoLCATs (MSE)
Layer 24 Head 2

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

LoLCATs (MSE)
Layer 31 Head 2

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

Qu
er

ie
s

LoLCATs (XENT)
Layer 0 Head 2

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

LoLCATs (XENT)
Layer 8 Head 2

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

LoLCATs (XENT)
Layer 16 Head 2

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

LoLCATs (XENT)
Layer 24 Head 2

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

LoLCATs (XENT)
Layer 31 Head 2

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

Qu
er

ie
s

Hedgehog (MSE)
Layer 0 Head 2

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

Hedgehog (MSE)
Layer 8 Head 2

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

Hedgehog (MSE)
Layer 16 Head 2

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

Hedgehog (MSE)
Layer 24 Head 2

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

Hedgehog (MSE)
Layer 31 Head 2

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

Qu
er

ie
s

LoLCATs (init.)
Layer 0 Head 2

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

LoLCATs (init.)
Layer 8 Head 2

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

LoLCATs (init.)
Layer 16 Head 2

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

LoLCATs (init.)
Layer 24 Head 2

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

LoLCATs (init.)
Layer 31 Head 2

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

Qu
er

ie
s

Hedgehog (init.)
Layer 0 Head 2

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

Hedgehog (init.)
Layer 8 Head 2

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

Hedgehog (init.)
Layer 16 Head 2

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

Hedgehog (init.)
Layer 24 Head 2

0 10 20 30 999 1009 1019
Keys

989

999

1009

1019

Hedgehog (init.)
Layer 31 Head 2

Figure 24: Mistral 7B v0.1 attention weights; head 2; layers 0, 8, 16, 24, 31.
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Figure 25: Mistral 7B v0.1 attention weights; head 3; layers 0, 8, 16, 24, 31.
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