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ABSTRACT

Machine learning methods can be unreliable when deployed in domains that differ
from the domains on which they were trained. One intuitive approach for addressing
this is to learn representations of data that are domain-invariant in the sense that
they preserve data structure that is stable across domains, but throw out spuriously-
varying parts. There are many approaches aimed at this kind of representation-
learning, including methods based on data augmentation, distributional invariances,
and risk invariance. Unfortunately, it is often unclear when a given method actually
learns domain-invariant structure, and whether learning domain-invariant structure
actually yields robust models. The key issue is that, in general, it’s unclear how
to formalize “domain-invariant structure”. The purpose of this paper is to study
these questions in the context of a particular natural domain shift notion that
admits a natural formal notion of domain invariance. This notion is a formalization
of the idea that causal relationships are invariant, but non-causal relationships
(e.g., due to confounding) may vary. We find that whether a given method learns
domain-invariant structure, and whether this leads to robust prediction, both depend
critically on the true underlying causal structure of the data.

1 INTRODUCTION

Machine learning methods could have unreliable performance at the presence of domain shift
(Shimodaira, 2000; Quinonero-Candela et al., 2008), a structural mismatch between the training
domain(s) and the deployed domain(s). A variety of techniques have been proposed to mitigate
domain shift problems. One popular class of approach—which we’ll focus on in this paper—is to
try to learn a representation function ϕ of the data that is in some sense “invariant” across domains.
Informally, the aim of such methods is to find a representation that captures the part of the data
structure that is the “same” in all domains while discarding the part that varies across domains. It then
seems intuitive that a predictor trained on top of such a representation would have stable performance
even in new domains. Despite the intuitive appeal, there are fundamental open questions: when does a
given method actually succeed at learning the part of the data that is invariant across domains? When
does learning a domain invariant representation actually lead to robust out-of-domain predictions?

There are many methods aimed at domain-invariant representation learning. When applied to broad
ranges of real-world domain-shift benchmarks, there is no single dominant approach, and an attack
that works well in one context is often worse than vanilla empirical risk minimization in another (i.e.,
just ignoring the domain-shift problem). We’ll study three broad classes of method:

Data augmentation Each example is perturbed in some way and we learn a representation that is
the same for all perturbed versions. E.g., if t(X) is a small rotation of an image X , then
ϕ(X) = ϕ(t(X)) (Krizhevsky et al., 2012; Hendrycks et al., 2019; Cubuk et al., 2019; Xie
et al., 2020; Wei & Zou, 2019; Paschali et al., 2019; Hariharan & Girshick, 2017; Sennrich
et al., 2015; Kobayashi, 2018; Nie et al., 2020).

Distributional invariance We learn a representation so that some distribution involving ϕ(X) is
constant in all domains. There are three such distributional invariances that can be required
to hold for all domains e, e′:
marginal invariance: Pe(ϕ(X)) = Pe′(ϕ(X)) (Muandet et al., 2013; Ganin et al., 2016;
Albuquerque et al., 2020; Li et al., 2018a; Sun et al., 2017; Sun & Saenko, 2016; Matsuura
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& Harada, 2020);
conditional invariance: When Y is a label of interest, Pe(ϕ(X) | Y ) = Pe′(ϕ(X) | Y ) (Li
et al., 2018b; Long et al., 2018; Tachet des Combes et al., 2020; Goel et al., 2020)
sufficiency: Pe(Y | ϕ(X))=Pe′(Y | ϕ(X)) (Peters et al., 2016; Rojas-Carulla et al., 2018;
Wald et al., 2021).

Risk minimizer invariance For supervised learning, we learn a representation ϕ(X) so that there
is a fixed (domain-independent) predictor w∗ on top of ϕ(X) that minimizes risk in all
domains (Arjovsky et al., 2019; Lu et al., 2021; Ahuja et al., 2020; Krueger et al., 2021; Bae
et al., 2021).

In each case, the aim is to learn a representation that throws away information that varies ‘spuriously’
across domains while preserving information that is reliably useful for downstream tasks. However,
the notion of what is thrown away is substantively different across all the approaches and it is unclear
which, if any, is appropriate for any particular problem.

The principle challenge to answering our motivating questions is that it’s unclear in general how
to formalize the idea of “part of the data that is invariant across domains”. To make progress, it is
necessary to specify the manner in which different domains are related. In particular, we require
an assumption that is both reasonable for real-world domain shifts and that precisely specifies
what structure is invariant across domains. In many problems, it is natural to assume that causal
relationships—determined by the unobserved real-world dynamics underpinning the data—should be
the same in all domains. We’ll use an assumption of this form; the first task is to translate it into a
concrete notion of domain shift.1

Specializing to supervised learning with label Y and covariates X , we proceed as follows. The
covariates X are caused by some (unknown) factors of variation. These factors of variation are also
dependent with Y . For some factors of variation, jointly denoted as Z, the relationship between Y
and Z is spurious in the sense that Y and Z are dependent due to an unobserved common cause.
The distribution of this unobserved common cause may change across environments, which in turns
means the relationship between Y and Z can shift. However, the structural causal relationships
between variables will be the same in all environments—e.g., P(X | pa(X)) is invariant, where
pa(X) denotes the (possibly unobserved) causal parents of X . We call a family of domains with this
structure Causally Invariant with Spurious Associations (CISA).

Concretely, consider the problem of classifying images X as either Camel or Cow Y . In training, the
presence of sand in the image background Z is strongly associated with camels. But, we may deploy
our new classifier in an island domain where cows are frequently on beaches—changing the Z-Y
association. Nevertheless, the causal relationships between the factors of variation—Y , Z, and others
such as camera type or time of day—and the image X remain invariant.

In this example, a natural formalization of “domain invariant part” of the image is the part that
does not changes if grass Z is added or removed from the background; an invariant representation
learning method should learn a ϕ(X) that throws away such information. The aim of CISA is to be
a reasonably broad notion of domain-shift that also allows us to formalize this intuitive notion of
domain-invariance. Namely, under CISA, we define the domain-invariant part of X to be the part
that is not causally affected by the spurious factors of variation Z. Accordingly, a representation ϕ is
domain invariant if ϕ(X) is not causally affected by Z. We say a representation with this property is
counterfactually invariant to spurious factors (CF-invariant for short).

We now return to the motivating questions: when does a given method actually succeed at learning
the part of the data that is invariant across domains? And, when does learning a domain invariant
representation actually lead to more robust out-of-domain predictions? In the context of CISA-
compatible domain shifts, we can answer the first question by determining the conditions under
which each approach learns a CF-invariant representation, and the second question by studying the
relationship between CF-invariance and domain shift performance.

Informally, the technical contributions of the paper are:

1. Formalization of CISA and Counterfactually Invariant Representation Learning.
1This kind of causal-invariance assumption is already used in the domain-shift literature, though the formal

domain shift notion we’ll use here differs from previous approaches, see Section 2.
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2. A characterization of the causal (real-world) conditions where each domain invariant repre-
sentation learning method yields CF-invariant representations. This turns out to yield both a
hierarchy of methods, and guidance for which methods are appropriate for a given problem.

3. Results relating invariant learning to robust learning. We’ll find that, in general, there is not
a simple relationship. For instance, learning a representation via risk minimizer invariance
(an intuitive formalization of robustness) is impossible in general. However, we’ll also find
that there are (common) cases where there is a close connection. These results highlight the
fundamental role of the underlying causal structure of the data.

2 RELATED WORK

Causal invariance in domain generalization Several works (Peters et al., 2016; Rojas-Carulla
et al., 2018; Arjovsky et al., 2019; Lu et al., 2021) specify domain shifts with causal models. In these
frameworks, the invariant predictor learns P (Y | pa(Y )). However, this rules out, e.g., cases where
Y causes X (Schölkopf et al., 2012; Lipton et al., 2018). CISA allows learning with more general
structures, which we’ll see is helpful in understanding the representation learning methods.

Domain generalization methods There are many methods for domain generalization; we give a
categorization in the introduction. There have been a number of empirically-oriented surveys testing
domain generalization methods in natural settings (Koh et al., 2021; Wiles et al., 2021; Gulrajani &
Lopez-Paz, 2020). These find that no method consistently beats ERM, but many methods work well
in at least some situations. Our aim here is to give theoretical insight into when each might work.

Robust methods The CISA framework is reasonable for many real-world problems, but certainly not
all. There are other notions of domain shifts and differently motivated methods that do not fit under
this framework. For example, many works (e.g., Sagawa et al., 2019; Liu et al., 2021; Ben-David
et al., 2022; Eastwood et al., 2022) assume the testing domains are not too different from the training
domains (e.g., test samples are drawn from the mixture of training distributions).These methods are
complementary to the invariant representation learning approaches we study here; e.g., they would all
fail in the two-bit-environments experiment in Appendix A.

3 CAUSAL INVARIANCE WITH SPURIOUS ASSOCIATIONS

Setup In domain generalization problems, we have training and test data from several related
domains. The goal is to learn a predictor using data from training domains, and apply it to unseen
test domains. The data comes in the form of (X,Y,E) where X ∈ X is the input, Y ∈ Y the label
and E ∈ E is the domain index. We abstract each domain as a probability distribution Pe, where
Xi, Yi | Ei=e

iid∼ Pe. At training time, we have access to data from a finite set of domains Etrain ⊂ E .

Our goal is to learn a representation ϕ so that ϕ(X) is in some sense invariant across the domains.
Many methods (e.g., Arjovsky et al., 2019; Ganin et al., 2016; Goel et al., 2020) frame their learning
procedures this way, though there are many distinct formal notions of "invariance". The first task is
to establish a canonical notion of invariance.

Causal Invariance with Spurious Associations All methods for handling domain shifts must
specify the structure that is preserved across domains, and the ways in which they are allowed to
vary.2 Here, we’ll rely on a particular variant of the assumption that causal relationships are held
fixed, while non-causal relationships may vary. To formalize this, we assume that X is caused by
some unobserved factors of variation, and give a notion of what it means for these factors to be
spuriously associated with Y :

Definition 1. We say a latent cause of X is a spurious factor of variation if it is not a cause of Y and
there is some latent confounder that affects (directly or indirectly) both it and Y . Call the set of all
such causes the spurious factors of variations.

Figure 1 shows examples of causal structures for prediction problems involving spurious factors of
variation (Z). X is divided into two parts: X⊥

z denotes the part of X not affected by the spurious
2Without such an assumption, the test domain could be chosen adversarially to have support only on points

where the training-domain predictor makes mistakes.
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Figure 1: Examples of CISA-compatible causal structures. In each case, all causal relationships
(solid arrows) are invariant across domains. Only the distribution of the unobserved confounder U
can vary, changing the induced association between Y and the unobserved spurious factors Z.

factors Z, and Xz the remaining part affected by Z. We do not assume the division of X is known a
priori (indeed, Z is not even known!). Also note that X⊥

z may affect Xz , so these parts need not be
independent. Formally, we use the notion of counterfactual invariance from Veitch et al. (2021).

Definition 2. Let ϕ be a function fromX toH and Z the spurious factors. We say ϕ is counterfactually
invariant to spurious factors (abbreviated CF-invariant), if ϕ(X(z)) = ϕ(X(z′)) a.e., ∀z, z′ ∈ Z .
Here, X(z) is potential outcomes notation, denoting the X we would have seen had Z been set to z.
Then, we can formalize the part of X that’s not affected by Z:

Definition 3. X⊥
z is a X-measurable variable such that, for all measurable functions f , f is CF-

invariant iff f(X) is X⊥
z -measurable.3

Now, we characterize how the relationship between Z and Y changes across domains with a definition
of unobserved confounder.

Definition 4. We say an unobserved variable is an unobserved confounder if it is a common cause of
Z and Y , does not confound the relationship between X⊥

z and Y , and is caused by E alone. Call the
set of all such confounders unobserved confounders.

We introduce unobserved confounders U that induces the spurious correlations between Xz and Y .
Now put together all the ingredients and formally specify how the domains are related:

Definition 5. We say a set of domains E are Causally Invariant with Spurious Associations (CISA),
if there are unobserved spurious factors of variation Z, unobserved confounders U , and only U is
directly caused by domain E, so that Pe(X,Y ) =

∫
P0(X,Y, Z|U)Pe(U)dZdU,∀e ∈ E , where

P0 is a fixed distribution determined by the underlying dynamics of the system and Pe(U) is a
domain-specific distribution of the unobserved confounder.

Assumptions in domain shifts should be about the real-world processes that govern the domains from
which the data is collected. This allows us to assess whether an assumption is reasonable for a given
real-world situation. CISA is such an assumption; the spurious factors Z and unobserved confounders
U are unknown and unobserved, but are assumed to correspond to real-world properties. This
assumption about the real-world structure implies an assumption about the distributions Pe(X,Y ) in
each domain. However, in general, the variables Z and U need not be identifiable from (i.e., uniquely
determined by) the observational data. This point is only conceptually important, and does not affect
the technical development in the following.

CF-invariant representation learning We now return to the question of what the right notion of
domain-invariant representation is. In the case of CISA domains, there is a canonical notion for the
part of X that has a domain-invariant relationship with Y . Namely, X⊥

z , the part of X that is not
affected by the spurious factors of variation. Accordingly, the goal of domain-invariant representation
learning in this context is to find a representation ϕ such that ϕ(X) is counterfactually-invariant to
Z (or, equivalently, ϕ(X) is X⊥

z measurable). Of course, we could satisfy this condition by simply
throwing away all of the information in X (e.g., ϕ(X) = 0 everywhere). So, we further look for the
counterfactually-invariant representation that preserves the most predictive power for the label Y .
Let Φcf-inv(E) denote the set of CF-invariant representations for CISA domains E . Then, we take our
domain-invariant representation learning objective to be:

min
ϕ:X→H,w:H→Y

EPEtrain
[L(Y, (w ◦ ϕ)(X))]

subject to ϕ ∈ Φcf-inv(E)
3Such a variable exists under weak conditions; e.g., Z discrete (Veitch et al., 2021).
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Here, the predictor w and loss function L capture the sense in which ϕ(X) should be predictive of Y .

The challenge here is that the spurious factors of variation are unknown and unobserved, so identifying
the set of counterfactually-invariant representations is difficult. Now we can turn to understanding
various approaches to domain adaptation methods as achievable relaxations of this ideal objective.

4 CAUSAL VIEW ON DOMAIN INVARIANT REPRESENTATION LEARNING

4.1 DATA AUGMENTATION

Data augmentation is a standard technique in machine learning pipelines, and has been shown to
(sometimes) help when faced with domain shifts (Wiles et al., 2021). Our goal now is to understand
when and why data augmentation might enable domain-invariant representation learning. The basic
technique first applies pre-determined "label-preserving" transformations t to original features X to
generate artificial data t(X). There are two ways this transformed data can be used. The first option
is to simply add the transformed data as extra data to a standard learning procedure. Alternatively, we
might pass in pairs (Xi, t(Xi)) to our learning procedure, and directly enforce some condition that
ϕ(X) ≈ ϕ(t(X)) (Garg et al., 2019; Von Kügelgen et al., 2021). In both case, the natural questions
are: What transformations are “label-preserving”? And, when do these techniques help with domain
generalization?

We first formalize a notion of “label-preserving” for CISA domains. The key idea is that we can think
of transformation t(X) of X as being equivalent to changing some cause of X and then propagating
this change through. For example, suppose a particular transformation t rotates the input images by
30 degrees, and W is the factor of variation corresponding to the angle away from vertical. Then, we
can understand the action of t as t(X(w)) = X(w+ 30), where we again use the potential outcomes
notation for counterfactuals. With this idea in hand, we see that a transformation is label-preserving
in CISA domains if it is equivalent to a change that affects only spurious factors of variation. That is,
label-preserving transformations cannot affect X⊥

z . Otherwise, the transformation may change the
invariant relationship with Y ; replacing the background of cows with "sand" with "grass" doesn’t
change animal type; but distorting the part corresponding to the "cow" object may.

Definition 6. We say a data transformation t : X → X is label-preserving for CISA domains E if,
for each X(z) there is z′ so that t(X(z)) = X(z′), a.e..

Label preserving transformations leave the CISA invariant relationships (between X⊥
z and Y ) alone,

but can change the relationship between Y and the spurious factors of variation Z. Intuitively, if we
have a ‘large enough’ set of such transformations, they can destroy the relationship between Y and Z
that exists in the training data. So, we might expect that training with such data augmentation will
automatically yield an optimal counterfactually-invariant predictor.

This is nearly correct, with the caveat that things can go wrong (for the naive training approach) if
there is a part of X causally related to both Z and Y . That is, if there is a part of X that relies on the
interaction between Z and Y . We follow Veitch et al. (2021) in formalizing how to rule out this case:

Definition 7. The spurious factors of variation Z are purely spurious if Y ⊥⊥ X|X⊥
z , Z

That is, without the unstable correlation (removed by conditioning on Z), X⊥
z is sufficient for Y .We

can now state the main result connecting data augmentation and domain-invariance:

Theorem 8. For a CISA domain, if the set of transformations T satisfies label-preserving and
enumerates all potential outcomes of Z, then

1. If the model is trained to minimize risk on augmented data, and Z is purely spurious, or
2. If the model is trained to minimize risk on original data, with hard consistency regularization

(i.e. enforcing ϕ(X) = ϕ(t(X)),∀t ∈ T )

Then we recover the CF-invariant predictor that minimizes risk on original data.

Thus for CISA domains, ideal data augmentation (i.e. enumerating label-preserving transformations)
will exactly learn CF-invariant representations. Moreover, this holds irrespective of what the true
underlying causal structure is. Accordingly, such data augmentation would be the gold standard for
domain-invariant representation learning.
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Figure 2: Every CISA compatible set of domains obeys one of the causal DAGs defined as follows:
The DAG must match one of the three templates, where the black edges must be included, and the
non-edges must be excluded. Orange edges may be included or excluded. In the case of Figure 2c, at
least one of the two dashed black arrows must be included. (Note that in Figure 2a and Figure 2b,
the edges between X⊥

z and Y are typically included, as otherwise there is no part of X that has a
non-trivial and stable relalationship with Y .)

However, in practice, it can be hard to satisfy the idealized conditions. Applying predefined transfor-
mations without thinking about the specific applications can lead to violations of the label preserving
condition. For example in a bird classification task, changing color may really change the bird species
(this is called manifold intrusion in Guo et al. (2019)). Further, heuristic transformations often cannot
enumerate all potential outcomes of X(z). Indeed, deep models can sometimes memorize predeter-
mined transformations and fail to generalize with previously unseen transformations (Vasiljevic et al.,
2016; Geirhos et al., 2018).

Considering the limitations of using handcrafted transformations, a natural idea is to replace them
with transformations learned from data. However, in practice, Z is unknown and we only observe the
data domains E. Then, learning transformations must rely either on detailed structural knowledge
of the problem (Robey et al., 2021, e.g.,), or on some distributional relationship between E, Y and
X and t(X) (e.g., Goel et al., 2020). Since t(X) is only used for the representation learning, this is
equivalent to learning based on some distributional criteria involving E, Y , and ϕ(X)—the subject
of the next section.

4.2 DISTRIBUTIONALLY INVARIANT LEARNING

Many domain-invariant representation learning methods work by enforcing some form of distribu-
tional invariance Section 1. There are three possible notions of distributional invariance, each of which
appears in the literature. Early work tries to learn a representation ϕ so that ϕ(X) ⊥⊥ E while ϕ(X)
is still predictive of Y (Muandet et al., 2013; Ganin et al., 2016). The intuition is that predictions
must be based on features that cannot discriminate between training and test domains. Later work
recognized that that P (Y |X) may be unstable across domains, and instead aims at ϕ(X) ⊥⊥ E|Y
(Li et al., 2018b; Long et al., 2018). Finally, some causally-motivated approaches have considered
learning representations so that Y ⊥⊥ E|ϕ(X) (Peters et al., 2016; Wald et al., 2021).

When the representation ϕ(X) is predictive of Y and Y is dependent with E, these three indepen-
dence statements—ϕ(X) ⊥⊥ E, ϕ(X) ⊥⊥ E|Y, Y ⊥⊥ E|ϕ(X)—are the only possible distributional
invariance relationships, which are usually mutually exclusive. The question now is: when, if ever,
are each of these distributional invariances the right approach for domain-invariant representation
learning?

CISA compatible causal structures To answer this, the first step is to characterize the set of causal
structures that are compatible with CISA.

Theorem 9. Suppose a set of domains E share the common causal structure underlying
P0(X,Y, Z|U). Then E satisfies CISA if and only if the corresponding causal DAG is one of
the set given in Figure 2. In particular, there are three families of allowed DAGs: anti-causal,
confounded-outcome, and confounded-descendant.

The idea here is that for a set of CISA domains, the causal structure is the same in each domain. There
are only three kinds of causal structure, distinguished by whether Y causes X⊥

z or X⊥
z causes Y (anti-

causal vs confounded-outcome/descendant), and by whether the confounding affects Y directly or just
affects some (potential) causal descendant of Y (confounded-outcome vs confounded-descendant).

6



Under review as a conference paper at ICLR 2023

Anti-causal Image classification can be naturally viewed as an anti-causal problem. Various factors
of variations such as lighting, background, angles, etc, and the object class Y , generate the image
X . Some of the factors of variation Z are confounded with Y —e.g., background and Y may be
associated due to evolutionary pressures. The Cow/Camel on Grass/Sand example fits here.4

Confounded outcome The goal is to predict the helpfulness of a review. Each review receives a
number of "helpful" votes Y , produced by site users. We use the review’s text content X as covariates.
The data is collected for different types of products E. The model’s performance drops significantly
when deployed in new product type. We think that the general sentiment Z of the review, and the
helpfulness has unstable relationship across E: e.g. for books, customers write very positive reviews
which are often voted favorably; for electronics this relationship is reversed.

Confounded descendant Consider predicting unemployment rate Y from a variety of economic
factors X . It’s not clear which factors cause Y directly, and which are descendants of Y . The
relationships among X,Y change under certain big events, say financial crisis or pandemics. We
denote those events as domains E, and take U = E. U might affect Y ’s descendants jointly with Y
(through intermediate variable Z), but Y is not changed. Or U might affect pa(Y ) directly, which
changes Y . Notice that in this case, the CF-invariant representation is also the representation that
uses only pa(Y ). Thus, for this causal structure, the counterfactually invariant notion matches the
traditional causally-invariant representation learning desiderata (Peters et al., 2016; Arjovsky et al.,
2019).

Distributionally invariant learning We now return to the question of when distributional invariance
(partially) enforces counterfactually-invariant representations. It turns out that the answer relies
critically on the true causal structure of the problem:

Theorem 10. If ϕ is a counterfactually-invariant representation,

1. if the underlying causal graph is anti-causal, ϕ(X) ⊥⊥ E|Y ;
2. if the underlying causal graph is confounded-outcome, ϕ(X) ⊥⊥ E;
3. if the underlying causal graph is confounded-descendant, Y ⊥⊥ E|ϕ(X).

Remark 11. This theorem looks similar to Veitch et al. (2021, Thm. 3.2). This is deceptive; here we
observe the environment E, whereas they assumed observations of the spurious factors Z.

In words: each of the distributional invariances arises as a particular implication of CF-invariance.
This suggests a learning strategy that relaxes CF-invariance. Namely, for a given problem, determine
the distributional invariance implied by CF-invariance and then enforce that distributional invariance.
That is, we learn a representation according to:

min
ϕ∈ΦDI(Etrain),w

EPEtrain
[L(Y, (w ◦ ϕ)(X))],

where ΦDI(E) is the set of representations matching the causal structure of the domains.

Notice that the right distributional invariance is necessary but not sufficient for CF-invariance. There
are two reasons: first, the causal condition of CF-invariance is not implied by its distributional
signature in Theorem 10. Second, the distributional invariance can only be measured on a limited
number of training domains, which may provide a limited constraints. In this sense, distributional
invariance is a relaxation of CF-invariance; i.e., Φcf-inv(E) ⊊ ΦDI(Etrain).

Also notice that in general enforcing the wrong distributional invariance will directly contradict
CF-invariance, and increase dependency on the spurious factors of variation. Distributional invariance
is only a relaxation when we actually get the underlying causal structure correct!

4.3 INVARIANT RISK MINIMIZATION

The Invariant Risk Minimization (IRM) paradigm (Arjovsky et al., 2019) aims to find representations
that admit a single predictor that has the optimal risk across all domains. That is, the set of IRM

4There is some controversy here since the label Y is often due to human annotators (Lu et al., 2021).
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representation is

ΦIRM(E) := {ϕ : ∃ w st w ∈ argmin
w̄

EPe [L(Y, (w̄ ◦ ϕ)(X))] ∀e ∈ E} (4.1)

Here, the question is: when, if ever, does the IRM procedure yield a CF-invariant predictor?

Again the answer will turn out to depend on the underlying causal structure. IRM is justified in the
case where X includes both causes and descendants of Y , and the invariant predictor should use
only information in the parents of Y . As explained above, this coincides with CF-invariance—and
with distributional invariance—in the confounded-descendant case. Indeed, we can view IRM as
a relaxation of Y ⊥⊥ E|ϕ(X). Instead of asking the distribution P e(Y |ϕ(X) = h) to be invariant
across domains for every h ∈ H, we only require the risk minimizer under P e(Y |ϕ(X) = h)
to be invariant. So, a partial answer is that IRM is a relaxation of distributional invariance (and
CF-invariance) when the underlying causal structure is confounded descendant.

However, the situation is harsher in the case of other causal structures. For anti-causal and confounded-
outcome problems, the typical case is ΦIRM(E) = ∅. For the anti-causal case, this is a consequence
of prior shift (Zhang et al., 2013). We can change the optimal predictor just by changing the prior
distribution on Y without affecting the causal structure. Thus, there is no X⊥

z -measurable predictor
with invariant risk. The confounded-outcome case is even harder. In general, the generating function
for Y could involve interaction between U and X . Then P (Y |X⊥

z ) can be quite different because of
the shifting U . Thus the risk minimizers may be very different across domains.

Fortunately, for anti-causal problems there is a natural generalization of IRM that partially enforces
the distributional invariance. Similarly, we can relax the invariance of P e(ϕ(X)|Y = y) to the
invariance of a re-weighted risk. We define generalized-IRM (g-IRM) as follows, which is essentially
importance sampling based on Y (this simple procedure has causal implications (section 5)):

Definition 12. For anti-causal domains, we define the set of representations satisfying g-IRM as:

Φg-IRM(E , P0) := {ϕ : ∃ w st w ∈ argmin
w̄

EPe
[
P0(Y )

Pe(Y )
L(Y, (w̄ ◦ ϕ)(X))],∀e ∈ E}

where P0(.) is a chosen baseline distribution for Y .

If we know the label marginal in the test domain, we could use that as P0. Then the optimal predictor
(on top of ϕ) on training domains is optimal on the test domain. Next we can show the (generalized)
IRM is a relaxation of the corresponding distributional invariance:

Theorem 13. Let E satisfy CISA, then

1. if E is confounded-descendant, then ΦDI(E) ⊂ ΦIRM(E)
2. if E is anti-causal, then ΦDI(E) ⊂ Φg-IRM(E , P0) for any chosen P0

Although this simple generalization works for the anti-causal case, there is no such easy fix for the
confounded-outcome case. For confounded outcome, the idea of having the same risk minimizer
across domains does not make sense without further assumptions. The general case has Y ←
f(X,U, η) where η is noise independent of X,U . For example when U = E we can write Y ←
fE(X, η) so there could be arbitrarily different relationships between X and Y in every domain. It
may be possible to circumvent this by making structural assumptions on the form of f ; e.g., there is
an invariant risk minimizer in the case where the effect of U and X is additive (Veitch et al., 2021).

4.4 RELATIONSHIP OF METHODS

Data augmentation training is the gold standard for CF-invariant representation learning if
it’s possible to enumerate all label-preserving transformations (Theorem 8). This is impossible in
general as it requires direct manipulation of the spurious factors Z. Still, using augmentation with
label-preserving transformations (but not exhaustively) enforces a relaxation of CF-invariance.

Distributional invariance relaxes CF-invariance if and only if chosen to match the underlying causal
structures (Theorem 10). This can be a good option when full augmentation is not possible.

(generalized) IRM further relaxes distributional invariance for anti-causal and confounded-
descendant problem, when it’s chosen to match the causal structure of the problem (Theorem 13). It
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weakens the full independence criteria to use just the implication for a single natural test statistic: the
loss of the model. This allows for more efficient algorithms (Arjovsky et al., 2019).

5 INSIGHTS FOR ROBUST PREDICTION

Often, learning domain-invariant representations is an intermediate step towards learning robust
predictors. Here, robust means that the predictor should have good performance when deployed in a
previously unseen domain. We now discuss the implications of our domain-invariant representation
learning results for robust prediction.

whether robust prediction is even possible depends on the underlying causal structure For
confounded-descendant problems, robust prediction is straightforward. Enforcing the correct distribu-
tional invariance on representation function ϕ leads to invariant risk in test domains for every value
of ϕ(X). If we enforce the weaker IRM requirement, the optimal predictor (on top of ϕ) on training
domains is optimal on test data. For anti-causal problems, there is no invariant risk minimizer in
general because Pe(Y ) can change across domains — indeed, even in the most simple anti-causal
problem in Appendix A.1, IRM fails. However, we can generalize IRM to match the causal structure:
adjusting for prior shift using importance sampling, gIRM successfully recovers the optimal invariant
predictor. For the confounded-outcome case, there is no notion of robust predictor without making
some further structural assumptions.

no method works for all domain generalization problems Heuristic data augmentation enforces
CF-invariance directly regardless of causal structures, but requires truly label-preserving transforma-
tions and only solves the invariant representation problem if the transformation set affects all spurious
factors. Distributionally-invariant methods can work, but each approach is only valid if it matches the
underlying causal structure of the problem. Enforcing the wrong distributional invariance can actually
harm performance (Veitch et al., 2021). Sometimes even seemingly innocent technique, such as im-
portance sampling, has causal implications and could destroy invariant relalationship (appendix A.2).
Similarly, (generalized) invariant risk minimizer can work for some types of problems, but only when
it matches the causal structure. This is consistent with the findings from various benchmark studies
that there is no single method that does well in all tasks (Wiles et al., 2021; Koh et al., 2021; Gulrajani
& Lopez-Paz, 2020).

data augmentation helps in most cases Label-preserving data augmentation won’t hurt domain
generalization and can often help. This is true no matter the underlying causal structure of the problem.
This matches empirical benchmarks where data augmentations usually help domain generalization
performance, sometimes dramatically (Wiles et al., 2021; Koh et al., 2021; Gulrajani & Lopez-
Paz, 2020). For example, Wiles et al. (2021) finds that simple augmentations used in Krizhevsky
et al. (2012) generally improves performance when "augmentations approximate the true underlying
generative model".

pick a method matching the true causal structure Many papers apply distributional invariance
approaches with no regard to the underlying causal structure of the problem. In particular, many
tasks in benchmarks have the anti-causal structures, but the methods evaluated do not include
those enforcing ϕ(X) ⊥⊥ E|Y (Koh et al., 2021). Tachet des Combes et al. (2020) find that methods
enforcing ϕ(X) ⊥⊥ E|Y consistently improve over methods that enforce ϕ(X) ⊥⊥ E—retrospectively,
this is because they benchmark on anti-causal problems. Wiles et al. (2021) finds that learned data
augmentation (Goel et al., 2020) consistently improves performance in deployment—this method can
be viewed as enforcing ϕ(X) ⊥⊥ E|Y ; again, the benchmarks mostly have anti-causal structure.

6 CONCLUSION

We have introduced the CISA notion of domain shift and used it to study invariant representation
learning methods. The key property of CISA is that it has a cannonical notion of “domain-invariant”
representation: CF-invariance. We have seen that of data augmentation, distributional invariance
learning, and risk invariant learning can be (sometimes) understood as relaxations of CF-invariance.
The validity of the methods—as well as the connection between domain-invariance and domain-robust
learning—depend fundamentally on the underlying causal structure of the data.
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A EXPERIMENTAL DEMONSTRATION

A key point in the above analysis is that the invariant representation learning method we use must
match the underlying causal structure of the data. In Section 5, we discuss this point in the context of
existing large-scale, real-world experiments. However, such demonstrations rely on out of domain
performance of various methods, which depends on both the match to the true causal structure but
also on lower level implementation issues—e.g., hyperparameter tuning, overfitting, or optimization.
This can make it somewhat difficult to draw precise conclusions.

To demonstrate the role of causal structure clearly we now study it in a simple case: two bit
environments from Kamath et al. (2021). 5 This is a toy setting mimicing the well-known colored
MNIST example used to demonstrate Invariant Risk Minimization Arjovsky et al. (2019). We create
two domain shifts. The first is anti-causal and the second is confounded-descendant. As predicted
from Theorem 10, we find that IRM fails but gIRM works in the first case, and vice versa in the
second. 6

In short, we find that even in the simplest possible case, causal structure plays a key role. In particular,
vanilla IRM fails totally on an apparently innocuous modification of the data generating process
(prior shift), and this is readily fixed by modifying the method to match the correct causal structure.
Further, the experiments demonstrate that importance sampling based on Y —an apparently innocent
technique—actually has causal implications and can destroy invariant relaltionship under certain
causal structures (e.g. confounded-descendant in the second example).

A.1 TWO-BIT-ENVS (ANTI-CAUSAL)

For each domain e ∈ E , the data generating process is as follows:

Y ← Rad(γe)
X1 ← Y · Rad(α)
X2 ← Y · Rad(βe)

where Rad(π) is a random variable taking value−1 with probability π and +1 with probability 1−π.

This is a simplification of the ColoredMNIST problem (Arjovsky et al. (2019)): we know X1

(corresponds to the digit shape) and Y have invariant relationship: P (X1 = Y ) = 1 − α. The
correlation between X2 (corresponds to color) and Y is spurious, as P (X2 = Y ) = 1 − βe that
varies across domains. The label imbalance across domains is due to prior-shift: P (Y = −1) = γe.
We observe 4 training domains and predict on 1 test domain. We use α = 0.25, and set βe =
0.1, 0.2, 0.15, 0.05 in the training domains respectively, so that using the spurious correlation could
get better in-domain performance. However, in the test domain the spurious correlation is flipped: we
use βe = 0.9 so the out-of-domain performance would be very bad if X2 is used. Finally, we use
γe = 0.9, 0.1, 0.7, 0.3 in training domains to create prior-shift. In the test domain the label is balanced
(γe = 0.5). These 4 domains constitute E . The goal is to find a predictor f ∈ {{+1,−1}2 → R}
(prediction is ŷ := sign(f(x)) for data (x, y)). The optimal 75% test accuracy is obtained when f
satisfies f(1, ·) > 0 and f(−1, ·) ≤ 0.

The original two-bit-envs problem has γe = 0.5 across domains, and IRM obtains one optimal
predictor. However, it fails in this modified problem with prior-shift (Table 1). To understand and fix
its failure, we can find a causal interpretation that both explains the data and is CISA-compatible:
introduce U,Z and set Z ← U ;U ← E as shown in Figure 3a. Then this domain shift problem
falls under anti-causal subtype, and a CF-invariant predictor should only rely on X1. IRM does not
enforce the right invariance and fails to remove spurious X2 as a result. Instead, we should use gIRM
to (partially) enforce CF-invariance. Indeed, gIRM successfully forces the model to discard X2 and
obtain the optimal test accuracy (Table 1). Note that in the original two-bit-envs problem without
prior-shift, both X1 ← Y · Rad(α) and Y ← X1 · Rad(α) can explain the data. Therefore we we

5Code would be made available upon accepted as a conference paper.
6Our experiment uses IRMv1 (and analogously gIRMv1), which is shown to fail with some choices of α

Kamath et al. (2021) because of the relaxation from IRM to IRMv1. We avoid those choices of α so that we can
focus on the high-level question instead of being distracted by the fragility of IRMv1. Below we use IRM and
IRMv1 (also gIRM and gIRMv1) exchangebly.
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X2 YZ

X1

U E

(a) anti-causal

X2 YZ

X1

U E

(b) confounded-descendant

Figure 3: Causal graphs that are both are CISA-compatible, and can explain the data generating
process (for Appendix A.1 and Appendix A.2 respectively). From the original data generating process,
we introduced extra variables U,Z and set Z ← U and U ← E.
Table 1: In two-bit (anti-causal) experiment, IRMv1 predictor fails to discard spurious features
because of prior-shift in Y . However, after modifying the method to match the underlying causal
structure (using gIRMv1), we can recovers a CF-invariant predictor that obtains optimal test accuracy.
The results are under cross-entropy loss (similar for for squared loss).

fIRMv1 fgIRMv1

X2 = +1 X2 = −1 X2 = +1 X2 = −1
X1 = +1 2.53 −0.93 1.16 1.08
X1 = −1 −0.08 −3.19 −1.11 −1.03

can interpret the data generating process as either anti-causal or confounded-descendant. So both
IRM and gIRM (partially) enforce CF-invariance — in fact ΦIRM(E) = Φg-IRM(E) so the resulting
predictor is the same.

A.2 TWO-BIT-ENVS (CONF-DESC)

Our implementation of enforcing gIRM regularization 7 is equivalent to: first, perform importance
sampling with weight we((x1, x2), y) =

P0(y)
Pe(y)

; next, enforce IRM regularization. Similarly, it’s a
common practice to perform importance sampling based on label Y when it’s imbalanced. However,
as we shall show in this example, importance sampling can remove invariant features under certain
causal structures.

In this example, the data generating process is as follows: for each domain e ∈ E ,

X1 ← Rad(γe)
Y ← X1 · Rad(α)
X2 ← Y · Rad(βe)

Compared to the previous example, we do not change P (X1 = Y ) and P (X2 = Y ). The only
change is on how the label imbalance is created: through covariate shift in X1. We use the same
parameters for α, βe, γe.

7There are two ways to implement gIRM. The first way is apply importance sampling to the regularization
term only; the second way is to apply it to both the loss term and regularization term. In these two examples, the
two implementations give the same result. Thus to better illustrate our point on importance sampling, we study
the second implementation.

Table 2: In two-bit (confounded-descendant) experiment, directly applying IRMv1 recovers a CF-
invariant predictor that obtains optimal test accuracy. On the contrary, applying importance sampling
can destroy the invariant relationship in data — as a result, gIRMv1 learns only the trivial invariant
predictor. The results are under cross-entropy loss (similar for for squared loss).

fIRMv1 fgIRMv1

X2 = +1 X2 = −1 X2 = +1 X2 = −1
X1 = +1 1.1 1.1 0 0
X1 = −1 −1.1 −1.1 0 0
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Again Pe(Y ) is different across domains, but this time gIRM forces the model to always predict 0
(Table 2)! To understand why, we find a CISA-compatible DAG that explains the data as shown in
Figure 3b (similarly introduce U,Z and set Z ← U ;U ← E). This is confounded-descendant and
IRM enforces the right invariance whereas gIRM enforces the wrong one.

To understand how the importance sampling destroys even the invariant relationship between X1 and
Y , we look at the target distribution after reweighting (call it Qe). Since the weighting function is
we(x1, y) =

P0(x1)
Pe(y)

and that we(x1, y) =
Qe(x1,y)
Pe(x1,y)

, we have Qe(x1, y) = Pe(x1, y)
P0(y)
Pe(y)

. Observe
that the probability Qe(X1 = Y ) = g(γe) where the [0, 1]-supported function g (treat α as a constant
and assume α > 0.5) satisfies the following:

1. g(γ) = g(1− γ) so g is symmetric around 0.5.
2. g strictly increases on [0, 0.5] and strictly decreases on [0.5, 1]
3. g(0) = g(1) = 0.5, and g(0.5) = 1− α, so g decreases as γe deviates from 0.5

Thus 0.5 < Q1(X1 = Y ) = Q2(X1 = Y ) < Q3(X1 = Y ) = Q4(X1 = Y ) < 1 − α. Therefore,
importance sampling not only weakens the relalationship between X1 and Y , but also makese it
unstable! As a result, enforcing IRM on the resampled distribution finds no non-trivial invariant
predictors.

B PROOFS

Theorem 8. For a CISA domain, if the set of transformations T satisfies label-preserving and
enumerates all potential outcomes of Z, then

1. If the model is trained to minimize risk on augmented data, and Z is purely spurious, or
2. If the model is trained to minimize risk on original data, with hard consistency regularization

(i.e. enforcing ϕ(X) = ϕ(t(X)),∀t ∈ T )

Then we recover the CF-invariant predictor that minimizes risk on original data.

Proof. First, for the convenience of notation let’s assume X = X(z0) a.e. for some z0 ∈ Z . Then
by the label-preserving T , we have: for each t ∈ T we have t(X)(= t(X(z0))) = X(z) for some
z ∈ Z .

Consider consistency training. Let Φc(T ) denote the set of representation functions satisfying
consistency requirement under transformation set T , i.e. Φc(T ) := {ϕ : ϕ(X) = ϕ(t(X)) a.e. ∀t ∈
T }. If ϕ ∈ Φc(T ), then for any z, z′ ∈ Z , can find t ∈ T such that X(z′) = t(X(z)) since T
enumerates all potential outcomes of Z; therefore ϕ(X(z′)) = ϕ(t(X(z))) = ϕ(X(z)) a.e. by
consistency requirement. Thus ϕ ∈ Φcf-inv(E). On the other hand if ϕ ∈ Φcf-inv(E), then for any
t ∈ T , we have ϕ(t(X)) = ϕ(X(z)) = ϕ(X) for some z ∈ Z . Thus ϕ ∈ Φc(T ). Therefore
Φc(T ) = Φcf-inv(E). Therefore, training the model to minimize risk on original data, with hard
consistency regularization is equivalent to CF-invariant representation learning, which recovers the
optimal CF-invariant predictor on training distribution.

Consider ERM training on augmented data with purely-spurious Z. Let P denote the original
distribution, and P̃ denote the distribution after the augmentation. Let T be the random variable
for transformation operation. First, the generating process of the augmented data is: first sample
T ∼ P̃T (.); then sample (X,Y )|T = t from the distribution of (t(X), Y ). Then we have:

P̃ (X,Y ) =

∫
P (t(X), Y )dP̃T (t)

=

∫
P (X(z), Y )dP̃Z(z)

=

∫
P (X(z), Y (z))dP̃Z(z)

=

∫
P (X,Y |do(z))dP̃Z(z)

by the label-preserving of T , and the fact that Y is not a descendant of Z.
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Figure 4: We put below Figure 2 again and the base graph for convenience of inspection.The black
arrows are included in all graphs. The orange arrows are optional. At least one of the two dashed
blue arrows in Figure 4d must exist.

Next, observe that P (y|x, do(z)) = P (y|x⊥
z ). This is because: in original probability we have

Y ⊥⊥ X|X⊥
z , Z; the do(z)-operation removes the incoming edges of Z and set Z = z; as a result

P (y|x, do(z)) = P (y|x⊥
z , do(z)) = P (y|x⊥

z ).

Put together:

P̃ (X,Y ) =

∫
P (X,Y |do(z))dP̃ (z)

=

∫
P (Y |X, do(z))P (X|do(z))dP̃ (z)

=

∫
P (Y |X⊥

z )P (X|do(z))dP̃ (z)

= P (Y |X⊥
z )

∫
P (X|do(z))dP̃ (z) = P (Y |X⊥

z )P̃ (X)

Therefore the objective is:

EP̃ [L(Y, f(X))] = EP̃ (X)[EP (Y |X⊥
z )(L(Y, f(X)))]

Then for any input x, the the optimal predictor output f∗(x) = argmina(x)

∫
L(y, a(x))dP (y|x⊥

z ).
This is the same as directly restricting predictor to be CF-invariant.

Theorem 9. Suppose a set of domains E share the common causal structure underlying
P0(X,Y, Z|U). Then E satisfies CISA if and only if the corresponding causal DAG is one of
the set given in Figure 2. In particular, there are three families of allowed DAGs: anti-causal,
confounded-outcome, and confounded-descendant.

Proof. There are a finite number of possible causal DAGs relating the variables U,Z,Xz, Y,X
⊥
z .

Moreover, for a DAG to be compatible with CISA it must satisfy some conditions that narrows down
the set. In particular, Z causes Xz but not X⊥

z or Y (by definition of Z); U should confound Z and
Y , but cannot confound X⊥

z and Y (by definition of U ); E only affects U (as only Pe(U) changes
across environments and P (X,Y, Z|U) is invariant). Below we use these conditions to enumerate 5
all CISA-compatible DAGs.

Now we have Z → Xz , X⊥
z → X (optional) and E → U (and it’s the only edge from E). Note that

we define Z to not have any causal effect on Y . Accordingly, the path Z → Xz → Y is ruled out.
Thus Xz → Y is not allowed but Y → Xz is optional. These edges form the base graph 4a to build
upon.
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Figure 5: Enumerating CISA-compatible causal graphs

base graph 4a

anti-causal 4b

conf-outome 4c conf-descend 4d

Y
→

X
⊥ z

X
⊥z

→
Y

U
→

Y
U

→
X

⊥z

Next, we divide into two cases: X⊥
z → Y and X⊥

z ← Y (when there is no edge between them, we
can treat it as either case and the resulting graphs are the same).

When X⊥
z ← Y : we require that U confounds Z, Y , so we need U → Y (otherwise U can’t cause Y )

and U → Z (otherwise U can’t confound the relationship between U,Z). We do not allow U → X⊥
z

as otherwise the relationship between X⊥
z and Y is confounded. There are a few optional edges

U → Xz, Y → Z,X⊥
z → Z, as they do not violate CISA assumptions. Other edges cannot be

allowed as they will violate CISA assumptions. These constitute the anti-causal subtype as illustrated
in 4b.

When X⊥
z → Y , we can again divide into two exclusive cases: U → Y and U → X⊥

z . Why? We
need at least one of these two edges, as otherwise U does not cause Y ; the two edges cannot exist
simultaneously as otherwise the relationship between X⊥

z and Y is confounded.

So, when X⊥
z → Y and U → Y : we need U → Z as otherwise U does not confound Z, Y . There are

a few optional edges U → Xz, Y → Z,X⊥
z → Z, as they do not violate CISA assumptions. Other

edges cannot be allowed as they will violate CISA assumptions. These constitute the confounded-
outcome subtype as illustrated in 4c.

Next, when X⊥
z → Y and U → X⊥

z : to let U cause Z and confound Z, Y , we need at least one of
the two edges (or both) X⊥

z → Z, U → Z.There are a few optional edges U → Xz, Y → Z, as
they do not violate CISA assumptions. Other edges cannot be allowed as they will violate CISA
assumptions. These constitute the confounded-descendant subtype as illustrated in 4d.

Theorem 10. If ϕ is a counterfactually-invariant representation,

1. if the underlying causal graph is anti-causal, ϕ(X) ⊥⊥ E|Y ;
2. if the underlying causal graph is confounded-outcome, ϕ(X) ⊥⊥ E;
3. if the underlying causal graph is confounded-descendant, Y ⊥⊥ E|ϕ(X).

Proof. Reading d-separation from the corresponding DAGs, we have X⊥
z ⊥ E|Y for anti-causal

problems; X⊥
z ⊥ E for confounded-outcome problems; Y ⊥ E|X⊥

z for confounded-descendant
problems. Since ϕ is CF-invariant, that means ϕ(X) is X⊥

z -measurable. Thus the claim follows.
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Theorem 13. Let E satisfy CISA, then

1. if E is confounded-descendant, then ΦDI(E) ⊂ ΦIRM(E)
2. if E is anti-causal, then ΦDI(E) ⊂ Φg-IRM(E , P0) for any chosen P0

Proof. Confounded-descendant case: let ϕ ∈ ΦDI(E), i.e. Y ⊥⊥ E|ϕ(X). To show the risk minimizer
is the same, it suffices to show Pe(Y |ϕ(X)) to be the same for all e ∈ E . This is immediate from the
distributional invariance.

Anti-causal case: if the representation ϕ ∈ ΦDI(E), i.e. ϕ(X) ⊥⊥ E|Y ,

EPe
[
P0(Y )

Pe(Y )
L(Y, (w̄ ◦ ϕ)(X))] = EY∼Pe

[
P0(Y )

Pe(Y )
[Eϕ(X)∼Pe(.|Y )(L(Y, (w̄ ◦ ϕ)(X))|Y )]]

= EY∼P0 [Eϕ(X)∼P (.|Y )(L(Y, (w̄ ◦ ϕ)(X))|Y )]

The second equality is because ϕ(X) ⊥⊥ E|Y .

Thus the objective function is the same across domains, so the optimal w is the same. Therefore
ϕ ∈ Φg-IRM(E)
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