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Abstract—We explore the impact of coarse quantization on matrix
completion in the extreme scenario of generalized one-bit sampling, where
the matrix entries are compared with time-varying threshold levels. In
particular, instead of observing a subset of high-resolution entries of a
low-rank matrix, we have access to a small number of one-bit samples,
generated as a result of these comparisons. To recover the low-rank
matrix from its highly-quantized known entries, we first formulate the
one-bit matrix completion problem with time-varying thresholds as a
nuclear norm minimization problem, with one-bit sampled information
manifested as linear inequality feasibility constraints. We then modify the
popular singular value thresholding (SVT) algorithm to accommodate
these inequality constraints, resulting in the creation of the One-Bit
SVT (OB-SVT). Our findings demonstrate that incorporating multiple
time-varying sampling threshold sequences in one-bit matrix completion
can significantly improve the performance of the matrix completion
algorithm. We perform numerical evaluations comparing our proposed
algorithm with the maximum likelihood estimation method previously
employed for one-bit matrix completion, and demonstrate that our
approach can achieve a better recovery performance.

Index Terms—Coarse quantization, matrix completion, one-bit sam-
pling, singular value thresholding, time-varying thresholds.

I. INTRODUCTION

Matrix completion, the recovery of an unknown low-rank matrix
from limited information, is a pervasive challenge across various
practical domains, including collaborative filtering [1], system identi-
fication [2], and sensor localization [3]. As a special case of low-rank
matrix sensing, matrix completion poses unique challenges due to
the sampling matrices potentially not satisfying the matrix restricted
isometry property (RIP) conditions [4, 5].

The literature contains numerous methods for addressing this
problem. For instance, one approach is the singular value thresholding
(SVT) method proposed in [6, 7], which employs a projected gradient
descent technique. Another method, the alternating minimization
(AltMin) algorithm, is comprehensively discussed in [4]. Low-rank
matrix factorization is suggested in [8] as a means of solving matrix
completion problems using gradient descent approaches. The Sketchy
Frank-Wolfe algorithm, explored in [9], is another option. Addition-
ally, the OptSpace algorithm [10], one of the earliest nonconvex
methods for matrix completion with proven results, utilizes gradient
descent on the Grassmann manifold to converge to the optimal
solution with high probability.

A prime example of this is the Netflix data matrix consisting of user
ratings, which is presumed to be approximately low rank owing to
the widely accepted notion that only a handful of factors significantly
influence a person’s taste or preference [5, 6]. Another emerging
application of matrix completion is in waveform design for multiple-
input and multiple-output (MIMO) radars [11, 12]. MIMO radars
equipped with sparse sensing and matrix completion techniques have
the potential to drastically decrease the amount of data necessary for
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precise target detection and estimation. This reduction in data volume
can lead to a more efficient and accurate MIMO radar system [11,
13, 14].

Quantization is a crucial step in digital signal processing that
converts continuous signals into discrete representations. However, to
achieve high-resolution quantization, a large number of quantization
levels are required, which can result in increased power consump-
tion, manufacturing cost, and a reduced sampling rate in analog-to-
digital converters (ADCs). To mitigate these issues, researchers have
explored the use of fewer quantization bits, including the extreme
case of one-bit quantization where the signals are compared with a
fixed threshold at the ADCs, resulting in sign outputs [15, 16]. This
approach enables high-rate sampling while reducing implementation
cost and energy consumption compared to multi-bit ADCs.

However, one-bit quantization with a fixed threshold can lead
to challenges in estimating the signal amplitude. To address this,
recent studies have proposed the use of time-varying thresholds,
which have been shown to improve signal recovery performance [17–
19]. These findings have sparked further investigation into one-bit
quantization techniques as a promising alternative to high-resolution
signal processing. Several recent studies have explored one-bit quanti-
zation using time-varying sampling thresholds and have demonstrated
improved estimation of signal characteristics [17, 20, 21].

The reconstruction of low-rank matrices from highly-quantized
measurements, where the number of measurements is expected to be
much smaller than that of unknowns, is an emerging research area in
statistical signal processing and machine learning. This field of study
has the potential to facilitate the development of cost-effective and
efficient systems.

The theory behind matrix completion typically assumes that ob-
servations consist of continuous values within the matrix. However,
the Netflix problem involves ”quantized” observations that are re-
stricted to integers between 1 and 5. This presents a challenge
for high-resolution matrix completion techniques, as the impact of
coarse quantization becomes more apparent. This issue is particularly
prominent in recommender systems, where ratings are reduced to a
single bit indicating a positive or negative rating (e.g., rating music
on Pandora, determining the relevance of advertisements on Hulu,
or evaluating posts on sites like MathOverflow). In such cases, the
assumptions made in existing matrix completion theory do not hold
true [22]. MIMO radar systems with one-bit ADC receivers provide
another example where traditional matrix completion techniques
cannot be used for waveform design due to coarse quantization
applied to the received measurements.

In [22, 23], the initial attempt to address one-bit matrix completion
involved developing theoretical guarantees under the generalized
linear model. The authors derived a maximum likelihood estimate
(MLE) based on a probability distribution determined by the real-
valued noisy entries of the low-rank matrix. To constrain the MLE
problem, the authors employed the nuclear and Frobenius norms,



drawing inspiration from previous work on one-bit compressed
sensing [22]. They utilized projected gradient descent to solve the
regularized MLE obtained.

To derive the MLE and take advantage of time-varying thresholds
(dithering), authors of [22] considered noisy measurements, where the
noise can be seen as time-varying thresholds. However, as demon-
strated in [17, 19, 21, 24], the design of time-varying thresholds is
a critical aspect of one-bit sampling that can significantly improve
signal reconstruction performance. However, by utilizing noise as our
dithering, as was demonstrated in [22], we constrain our thresholds
to follow the behavior of the noise, which is not under our control.

Dithering is particularly relevant in matrix completion scenarios
like recommendation systems, where users may prefer to compare
products rather than provide exact ratings. This approach can improve
the user interface’s usability and, in some cases, enhance the accuracy
of ratings [22, 25]. For example, a user may evaluate an anime’s
quality by comparing it to their favorite show, such as Attack on
Titan, and rate it on IMDb accordingly, or simply give it a thumbs-
up or thumbs-down as one-bit data.

In this paper, we propose a model for one-bit matrix completion
that incorporates time-varying sampling thresholds. We frame this
as a nuclear norm minimization problem, constrained by a linear
inequality system obtained from the one-bit sampling scheme. Our
formulation allows for the freedom to design or select appropriate
thresholds to enhance the reconstruction performance. We propose
the One-Bit SVT (OB-SVT) algorithm, which utilizes an SVT specifi-
cally developed to address nuclear norm minimization problems with
linear inequality constraints. We numerically compare our proposed
scheme with the MLE proposed by [22] and demonstrate that our
method achieves superior performance in both noiseless and noisy
scenarios.

Notation: Throughout this paper, we use bold lowercase and
bold uppercase letters for vectors and matrices, respectively. We
represent a vector x and a matrix B in terms of their elements
as x = [xi] and x = [Bi,j ], respectively. The sets of complex
and real numbers are C and R, respectively; (·)⊤, (·)∗and (·)H are
the vector/matrix transpose, conjugate and the Hermitian transpose,
respectively. The function diag(.) returns the diagonal elements of the
input matrix. The nuclear norm of a matrix B ∈ CM×N is denoted
∥B∥⋆ =

∑r
i=1 σi where r and {σi} are the rank and singular values

of B, respectively. The Frobenius norm of a matrix B ∈ CM×N

is defined as ∥B∥F=
√∑M

r=1

∑N
s=1 |brs|

2, where brs is the (r, s)-
th entry of B. We denote the ω-bandlimited Paley-Wiener subspace
of the square-integrable function space L2 by PWω . The Hadamard
(element-wise) products is ⊙ . The vectorized form of a matrix B
is written as vec (B). Given a scalar x, we define the operator (x)+

as max {x, 0}. For an event E , 1(E) is the indicator function for that
event meaning that 1(E) is 1 if E occurs; otherwise, it is zero. The
function sgn(·) yields the sign of its argument.

II. ONE-BIT MATRIX COMPLETION

In this section, we first present the one-bit sampling approach using
multiple time-varying thresholds as a linear inequality feasibility
problem. We then formulate the one-bit matrix completion problem
as a nuclear norm minimization problem with linear inequality
constraints for both noisy and noiseless scenarios. Finally, we develop
the SVT algorithm in such a way to handle the linear inequality
constraints and recover the low-rank matrix. We call our proposed
algorithm, OB-SVT.

A. One-Bit Sampling With Time-Varying Thresholds

Consider a bandlimited continuous-time signal x ∈ PWω that we
represent via Shannon’s sampling theorem as [26]

0 < T ⩽
π

ω
, x(t) =

k=+∞∑
k=−∞

x(kT) sinc

(
t

T
− k

)
, (1)

where 1/T is the sampling rate, ω is the signal bandwidth, and
sinc(t) = sin(πt)

πt
is an ideal low-pass filter. Denote the uniform

samples of x(t) with the sampling rate 1/T by xk = x(kT).
In practice, the discrete-time samples occupy pre-determined quan-

tized values. We denote the quantization operation on xk by the
function Q(·). This yields the quantized signal as rk = Q(xk). In
one-bit quantization, compared to zero or constant thresholds, time-
varying sampling thresholds yield a better reconstruction performance
[17, 27]. These thresholds may be chosen from any distribution.
For one-bit quantization with such time-varying sampling thresholds,
rk = sgn (xk − τk).

The information gathered through the one-bit sampling with time-
varying thresholds may be formulated in terms of an overdetermined
linear system of inequalities. We have rk = +1 when xk > τk and
rk = −1 when xk < τk. Collecting all the elements in the vectors
as x = [xk] ∈ Rn and r = [rk] ∈ Rn, therefore, one can formulate
the geometric location of the signal as

rk (xk − τk) ≥ 0. (2)

Then, the vectorized representation of (2) is r ⊙ (x− τ) ≥ 0 or
equivalently

Ωx ⪰ r⊙ τ, (3)

where Ω ≜ diag (r). Suppose x,τ ∈ Rn, and that τ(ℓ) denotes
the time-varying sampling threshold in ℓ-th signal sequence, where
ℓ ∈ L = {1, · · · ,m}.

For the ℓ-th signal sequence, (3) becomes

Ω(ℓ)x ⪰ r(ℓ) ⊙ τ(ℓ), ℓ ∈ L, (4)

where Ω(ℓ) = diag
(
r(ℓ)

)
. Denote the concatenation of all m sign

matrices as

Ω̃ =
[
Ω(1) · · · Ω(m)

]⊤
, ∈ Rmn×n. (5)

Rewrite the m linear system of inequalities in (4) as

Ω̃x ⪰ vec (R)⊙ vec (Γ) , (6)

where R and Γ are matrices, whose columns are the sequences{
r(ℓ)

}m

ℓ=1
and

{
τ(ℓ)

}m

ℓ=1
, respectively.

The linear system of inequalities in (6) associated with the one-
bit sampling scheme is overdetermined. We recast (6) into a one-bit
polyhedron as

P =
{
x | Ω̃x ⪰ vec (R)⊙ vec (Γ)

}
. (7)

B. One-Bit Matrix Completion as Nuclear Norm Minimization Prob-
lem

Assume we apply the coarse quantization to the observed partial
entries of a low-rank matrix X ∈ Rn1×n2 of rank r. Define
PΩ (X) =

[
X̂i,j

]
be the orthogonal projector onto the span of

matrices vanishing outside of Ω. These partial entries of X is obtained
in subset Ω as below

X̂i,j =

{
Xi,j (i, j) ∈ Ω,

0 otherwise.
(8)

In one-bit matrix completion, we solely observe the partial matrix
through the l-th one-bit data matrix R(ℓ) =

[
r
(ℓ)
i,j

]
∈ Rm1×m2 ,

where m1m2 ≪ n1n2. The entries in R(ℓ) are dependent on



the comparison between corresponding entries in PΩ (X) and l-th
dithering matrix T (ℓ) =

[
τ
(ℓ)
i,j

]
∈ Rn1×n2 according to the following

relationship:

r
(ℓ)
i,j =

{
+1 Xi,j > τ

(ℓ)
i,j ,

−1 Xi,j < τ
(ℓ)
i,j ,

(i, j) ∈ Ω, ℓ ∈ L. (9)

Define P ∈ Rm1m2×n1n2 be a permutation matrix that only selects
subset Ω. For l-th threshold matrix, we formulate the obtained one-bit
scheme as the following linear inequality feasibility problem:

Ω(ℓ)P vec (X) ⪰ vec
(
R(ℓ)

)
⊙

(
P vec

(
T (ℓ)

))
, ℓ ∈ L,

(10)
where Ω(ℓ) = diag

(
vec

(
R(ℓ)

))
, P vec (X) and P vec

(
T (ℓ)

)
only return subset Ω from vec (X) and vec

(
T (ℓ)

)
, respectively. As

demonstrated earlier, we rewrite (10) as

B vec (X) ⪰ vec (R)⊙ vec (Γ) , (11)

where R and Γ are matrices, whose columns are the sequences{
vec

(
R(ℓ)

)}m

ℓ=1
and

{
P vec

(
T (ℓ)

)}m

ℓ=1
, respectively, and

B =
[
Ω(1)P · · · Ω(m)P

]⊤
. (12)

Therefore, to recover the low-rank matrix X from highly-quantized
observed measurements, we must find the optimal solution from the
following feasible set:

F =
{
X | B vec (X) ⪰ vec (R)⊙ vec (Γ) , ∥X∥⋆ ≤ ϵ

}
. (13)

where ϵ is the predefined threshold. The feasible set of one-bit matrix
completion is written as a nuclear norm minimization problem as
below

F (1) : minimize
X

τ ∥X∥⋆ +
1

2
∥X∥2F

subject to B vec (X) ⪰ vec (R)⊙ vec (Γ) ,
(14)

for some fixed τ ≥ 0. More than nuclear norm, the Frobenius norm
is also considered to control the amplitudes of the unknown data [7].
In Subsection II-D, we will use the SVT algorithm to tackle this
problem.

C. One-Bit Matrix Completion With Noisy Entries

Herein, we formulate the noisy version of one-bit matrix comple-
tion with time-varying thresholds. Denote Z ∈ Rn1×n2 as the noise
vector. The noisy one-bit samples are generated as

r
(ℓ)
i,j =

{
+1 Xi,j + Zi,j > τ

(ℓ)
i,j ,

−1 Xi,j + Zi,j < τ
(ℓ)
i,j ,

(i, j) ∈ Ω. (15)

Consequently, the linear inequalities of feasible set F is rewritten as

B (vec (X) + vec (Z)) ⪰ vec (R)⊙ vec (Γ) , (16)

or equivalently,

B vec (X) + ν ⪰ vec (R)⊙ vec (Γ) , (17)

where ν = B vec (Z) is the noise of our system. For instance, if we
consider vec (Z) ∼ N (µ,Σz) with mean vector µ and covariance
matrix Σz , the distribution of ν will be N

(
Bµ,BΣzBH

)
.

To find the feasible solution from a linear inequality feasibility
problem such as Cx ⪰ b, we can rewrite the problem as [28]

(b−Cx)+ = 0. (18)

If our system encounters a noise vector n, we can slightly adjust (18)
to minimize the impact of noise using the following formula:∣∣(b−Cx)+

∣∣ ⪯ σn, (19)

where σn is the effect of noise. Thus, if x is contained within Cx ⪰
b, there is no need to take (19) into account. However, if it is not,

we must consider the following:

|b−Cx| ⪯ σn. (20)

Since Cx ⪯ b, (20) is equivalent to

b− σn ⪯ Cx ⪯ b. (21)

By applying the same process to (16), the modified linear inequality
feasibility constraint is given by

Y = {{B vec (X) ⪰ t} ∪ {t− σz ⪯ B vec (X) ⪯ t}} . (22)

where t = vec (R)⊙vec (Γ), and σz is the effect of vec (Z). There-
fore, the nuclear norm minimization problem F (1) is reformulated as

F (2) : minimize
X

τ ∥X∥⋆ +
1

2
∥X∥2F

subject to (t−B vec (X))+ ⪯ σz.
(23)

D. Proposed Algorithm: OB-SVT

To tackle F (1), we employ the SVT algorithm generalized for
linear inequality constraints inspired by [7] as follows: Denote a linear
transformation A : Rn1×n2 → Rmm1m2 and A⋆ : Rmm1m2 →
Rn1×n2 as its adjoint operator. In F (1), we have A (X) = B vec (X).
Then the Lagrangian for this problem is of the form

L(X,y) = τ ∥X∥⋆ +
1

2
∥X∥2F + y⊤ (t−A(X)) , (24)

where y is the Lagrangian multiplier and t = vec (R) ⊙ vec (Γ).
The Karush-Kuhn-Tucker (KKT) conditions dictate that when dealing
with inequality constraints, the Lagrange multiplier must be positive,
i.e., y ⪰ 0. Drawing inspiration from Uzawa’s method [7, Sec-
tion 3.2] , we introduce slight modifications to the SVT algorithm
to accommodate the inequality constraint and ensure satisfaction of
y ⪰ 0 at every iteration k. The resulting expression is: X(k) = argminL

(
X,y(k−1)

)
,

y(k) =
(
y(k−1) + δk

(
t−A

(
X(k)

)))+

,
(25)

where {δk} are positive step sizes. If we consider the singular value
decomposition (SVD) of X as X = UΣV⊤ and {σi} as its singular
values, the first step can be easily solved by using the singular value
shrinkage operator comprehensively investigated in [7, 29] which
applied the partial singular value decomposition to achieve the low-
rank matrix structure as

Dτ (X) = UDτ (Σ)V⊤, Dτ (Σ) = diag
(
(σi − τ)+

)
, (26)

where τ ≥ 0 is the predefined threshold. The SVT algorithm
is a popular approach for matrix sensing and matrix completion,
where the partial SVD can be numerically calculated using Krylov
subspace methods (e.g. Lanczos algorithm) [30]. Consequently, (26)
is rewritten as X(k) = Dτ

(
A⋆

(
y(k−1)

))
,

y(k) =
(
y(k−1) + δk

(
t−A

(
X(k)

)))+

.
(27)

For the noisy scenario (21), the Lagrangian problem of F (2) is given
by

Ln(X,y1) = τ ∥X∥⋆ +
1

2
∥X∥2F + y⊤

1

(
(t−B vec (X))+ − σz

)
,

(28)
where y1 is the Lagrangian multiplier parameter. As outlined in
Subsection II-C, incorporating the noisy inequality constraint (19) can
be achieved by only considering B vec

(
X(k)

)
⪯ t at each iteration

k. Otherwise, i.e., B vec (X) ⪰ t, there is no need to update the
Lagrangian multiplier y1. As a result, (·)+ can be easily removed
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Figure 1. (a) Comparison between our proposed OB-SVT method and the MLE approach proposed in [22] for noiseless measurements in terms of the relative
error when reconstructing a 500 × 500 matrix X with the rank r = 10. (b) Demonstrating the impact of time-varying sampling threshold selection in the
accuracy of input matrix reconstruction by OB-SVT method. (c) Comparison between our proposed noisy OB-SVT method and the MLE approach proposed
in [22] for noisy measurements in terms of the relative error when reconstructing a 500 × 500 matrix X with the rank r = 10. (d) Enhancement of the
reconstruction accuracy via the OB-SVT method as the number of time-varying thresholds grows large.

from (28):

Ln(X,y) = τ ∥X∥⋆ +
1

2
∥X∥2F + y⊤

1 (t− σz −B vec (X)) .

(29)
Denote t1 = t−σz , according to Uzawa’s method, the update process
proposed to address F (2) is expressed as:

X(k) = Dτ

(
A⋆

(
y
(k−1)
1

))
,

y
(k)
1 =

(
y
(k−1)
1 + δkg

(k)
)+

,

g(k) =
(
t1 −B vec

(
X(k)

))+

1(B vec(X(k))⪯t).

(30)

III. NUMERICAL INVESTIGATIONS

In this section, we numerically scrutinize the efficacy of our
proposed OB-SVT method by comparing its recovery results with the
state-of-the-art method (MLE approach) proposed in [22]. In partic-
ular, we constructed a random 500×500 matrix X with rank r = 10
by forming X = X1X

⊤
2 , where X1 and X2 are 500× 10 matrices

with entries drawn i.i.d. from the Gaussian distribution N (0, 1).
We then obtained one-bit observations by comparing the high-
resolution values with the generated time-varying sampling thresholds
τ and recording the sign of the resulting value. Herein, we have
utilized the Gaussian and Uniform distributed random thresholds.
Accordingly, inspired by [31], we have generated the Gaussian time-
varying thresholds as

{
τ(ℓ) ∼ N

(
0,

β2
X
9
I
)}m

ℓ=1
, where βX denotes

the dynamic range of the PΩ (X). Similarly, we have generated the
Uniform random thresholds as

{
τ(ℓ) ∼ U[a,b]

}m

ℓ=1
, where a and b

denote the minimum and maximum entries of PΩ (X), respectively.
For simplicity in OB-SVT method, we have utilized step sizes that are
independent of the iteration count; i.e. δk = δ for all k. Inspired from
[7], we have set the value of δ to δ = 1.2 n1n2

m1m2
. The reason behind

this selection has been heuristically justified in [7]. The parameter τ
is chosen empirically and set to τ = α

√
n1n2, where the value of α

varies for different values of m1m2. Define the relative error of the
reconstruction as

relative error ≜

∥∥X̄−X
∥∥
F

∥X∥F
, (31)

where X is the real unknown matrix and X̄ denotes the reconstructed
version of X by either OB-SVT or MLE methods.

In Fig. 1a, the accuracy of input matrix reconstruction using OB-
SVT and MLE methods is compared in terms of relative error for
noiseless measurements, with one sequence of time-varying sampling
threshold (m = 1). It can be seen that OB-SVT outperforms MLE
in reconstructing the input matrix. The experiment used Gaussian
random thresholds. Figure 1b shows the effect of time-varying sam-
pling thresholds on input matrix recovery, where Gaussian random

thresholds yield better reconstruction accuracy than Uniform random
thresholds. This observation can be attributed to the fact that the
matrices X1 and X2 were generated using entries drawn from a Gaus-
sian distribution. Similar to the previous case, we have considered the
number of random thresholds m = 1. In line with previous work [22],
we added Gaussian noise with Σz = 0.09I to the high-resolution
measurements to facilitate a numerical comparison between the noisy
OB-SVT and MLE methods. Fig. 1c illustrates the reconstruction
results associated with the noisy OB-SVT and MLE methods. Our
proposed approach outperforms the MLE method in terms of relative
error, just like in the noiseless case. Through numerical observations,
we found that setting the noise effect σz = γz1 to 1.5σz ≤ γz < 3σz

works well for Gaussian noise with standard deviation σz . It is worth
noting that these results are based on a single time-varying threshold
sequence (m = 1). Fig. 1d displays the relative error in relation to the
number of time-varying threshold sequences. As shown, increasing
the number of time-varying thresholds leads to better reconstruction
accuracy. This phenomenon occurs because as the number of time-
varying sampling thresholds increases, the probability of generating
a random threshold that is spatially close to the high-resolution
measurements also increases; i.e. increasing the richness of the input
information.

IV. SUMMARY

This study aimed to investigate how matrix completion is affected
by the use of one-bit sampling with time-varying thresholds. By
formulating the problem as a nuclear norm minimization coupled
with linear inequality feasibility constraints derived from one-bit
samples, we achieved significant performance improvements. We
adapted the singular value thresholding algorithm to accommodate
these constraints in both noiseless and noisy scenarios. Our numerical
comparisons with the MLE method demonstrate that the proposed
OB-SVT algorithm achieves a better recovery performance.
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