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Abstract

The goal of offline reinforcement learning (RL)
is to extract a high-performance policy from the
fixed datasets, minimizing performance degra-
dation due to out-of-distribution (OOD) sam-
ples. Offline model-based RL (MBRL) is a
promising approach that ameliorates OOD issues
by enriching state-action transitions with aug-
mentations synthesized via a learned dynamics
model. Unfortunately, seminal offline MBRL
methods often struggle in sparse-reward, long-
horizon tasks. In this work, we introduce a novel
MBRL framework, dubbed Temporal Distance-
Aware Transition Augmentation (TempDATA),
that generates augmented transitions in a tempo-
rally structured latent space rather than in raw
state space. To model long-horizon behavior,
TempDATA learns a latent abstraction that cap-
tures a temporal distance from both trajectory and
transition levels of state space. Our experiments
confirm that TempDATA outperforms previous
offline MBRL methods and achieves matching
or surpassing the performance of diffusion-based
trajectory augmentation and goal-conditioned RL
on the D4RL AntMaze, FrankaKitchen, CALVIN,
and pixel-based FrankaKitchen.

1. Introduction

RL has long been recognized as a powerful paradigm for
sequential decision-making. However, it is hindered in
real-world applications by its reliance on trial-and-error
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(a) AntMaze Umaze (b) Experimental Results
Figure 1. Performance comparison overview. (a) Umaze envi-
ronment, the most naive level among AntMaze. The 8-DoF ant
robot navigates the maze to reach the goal state, marked as a yellow
star. (b) Comparison between the proposed solution and previous
MBRL on two D4RL benchmark datasets. TempDATA (proposed)
achieves the best performance in two benchmarks.

interactions. The offline paradigm allows RL to control its
limitations by leveraging the offline dataset without real-
time interactions, achieving notable successes in several
domains ( s ; s ; s
; ) ; ; ; )-

Previous off-policy RL often suffers from evaluating OOD
actions taken by the learned policy when estimating a state-
action value. Although online RL does not need to consider
OOD, offline setups cannot consider additional data through
online interactions. Therefore, offline RL aims to extract the
best possible policy from the fixed offline dataset by con-
sidering how to handle OOD. One promising workaround
is offline model-free RL (MFRL), which imposes conserva-
tive regularization on policies or value functions toward the
distribution of state—action pairs in the offline data (

, ; ) )-

An alternative option is offline MBRL methods that learn a
dynamic model. They alleviate the OOD issue by synthesiz-
ing new transitions via planning with the learned dynamics
model and a behavior policy ( , ; ;

s ; s ). These methods have cov-
ered OOD samples efficiently, achieving better performance
than offline MFRL baselines on dense-reward, short-horizon
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robotic tasks (i.e., DARL Gym Locomotion). However, it
has been observed that most offline MBRL methods can
be problematic in sparse-reward and long-horizon environ-
ments, related to goal-achieving tasks. Our empirical evalu-
ation confirms near-zero success rates for MBRL baselines
on the canonical AntMaze benchmark, which is a representa-
tive goal-achieving environment. Even on the simpler umaze
variant, most MBRL methods fail as shown in Figure

Unlike the MFRL (IQL by in Fig-
ure 1), offline MBRL stems from three core issues: over-
generalization in out-of-support areas (e.g., obstacles, walls),
a biased model-based dataset, or insufficient learning sig-
nals about long-horizon behaviors ( s ;

s ). Recent offline MBRL learns an adversarial or
a reverse dynamic model to avoid over-generalization, e.g.,
RAMBO by and ROMI by in Fig-
ure |. However, they still struggle to synthesize transitions
that incorporate temporal information, which is how distant
apart from a goal state, to learn long-horizon behavior.

This work aims to tackle sparse-reward and long-horizon
RL tasks via offline MBRL. To do this, we introduce a
novel MBRL framework, dubbed TempDATA. TempDATA
consists of three components: an autoencoder, a latent dy-
namics model, and an offline policy. The autoencoder has
two objectives: 1) embed the temporal distance in terms
of both trajectory and transition levels as a representation,
and 2) reconstruct original states from latent representations.
The latent dynamic model generates additional transitions
in a latent space, mitigating overgeneralization. Moreover,
offline policy is trained by skill RL or goal-conditioned RL
(GCRL) techniques. This design enables more efficient aug-
mentation than operating in high-dimensional state spaces.

In our experiments, we assess TempDATA, a suite of goal-
oriented benchmarks, covering state-based domains, e.g.,
AntMaze ( R ), Kitchen (

), CALVIN ( s ), and a pixel- based
Kitchen variant. We confirm that our solution outperforms
previous baselines. Furthermore, the proposed solution
achieves better or comparable performance compared to
prior goal-conditioned MFRL methods. To our knowledge,
TempDATA is the first offline MBRL approach to enable
efficient transition augmentation for sparse-reward and long-
horizon challenges.

2. Related Works

Offline Reinforcement Learning. Offline RL has two
branches for solving MDP: model-free and model-based
solutions. Offline MFRL algorithms regularize the distribu-
tion of the policy and () function to be close to the distri-
bution of the dataset. For example, behavioral-regularized
approaches explicitly constrain policy distribution using KL

divergence ( , ; s ), MMD ker-
nel ( s ; s ), Wasserstein
distance ( , ), and BC loss ( ,

; , ). Other methods implicitly regu-
larize via weighted regression ( ;

s ), conservative (-learning (CQL) ( R

), uncertainty quantification to the () estimations (

s ), and next-action query avoidance (

s ; , ). Different from these methods,
the proposed solution augments the dataset by leveraging
the learned dynamic model with the offline dataset.

Next, Offline MBRL algorithms involve learning a model
of the environment via supervised learning (SL) with maxi-
mum log-likelihood estimation of the MDP, and then gen-
erating transition data using the learned model ( ,

; s ). This approach uses additional
data to optimize a policy and alleviate the conservativeness
of offline RL, thereby having the potential for better general-
ization. Although these prior works have shown promising
results, they could not solve the goal-reaching tasks and use
pixel-based states. This work aims to construct a dynamic
model in a representation space that preserves the temporal
distance within a state space of any MDP.

Goal-conditioned Reinforcement Learning.  Early
GCRL formulations are primarily tackled using SL ap-
proaches ( s ; , ) with pre-
defined goals and reward functions to guide the agent to-
ward them. They aim to develop efficient exploration meth-
ods ( , ) and planning ( ,

) for long-horizon tasks. These supervised methods
struggle to generalize because they depend on goal-specific
supervision. A recent line of GCRL is towards an unsu-
pervised setting, where the goal is to train agents capa-
ble of reaching any goal state in the environment without
goal-reaching supervision. This unsupervised method aims
to learn value functions ( s ;

, ) or representations ( s ;

, ), which can discover goals and correspond-
ing goal-conditioned policies. Several works extract these
goal-conditioned networks using skill discovery ( ,

), hierarchical planning ( , ; ,

), contrastive learning ( s ), and
distance mapping ( s ; s ).

This work builds a state abstraction that embeds temporal
distance with any goal state or next state. Afterward, we
optimize a policy by leveraging the representation network
and dynamic model in a latent space.

Learning State Space Abstractions. Learning represen-
tations in RL, referred to as abstraction, aims to map the
Markov state space into a latent space, which helps to un-
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derstand the state space by capturing the essential features
within the MDP. More precisely, it can compress higher-
dimensional space (e.g., pixel-based state) as a smaller
one ( ; ; ; ; ,
) and extract temporal difference information between
two states within any MDP ( s ; s
). Objectives span successor features ( s ;
; ), contrastive
losses ( R ; > 5
s ), metric learning ( , ), dynamics
modeling ( R ), bisimulation ( .
), and distance learning ( R ).

E) ) )

Particularly, distance learning proves effective for GCRL.
Understanding temporal differences provides an intuitive
measurement of how transitions between states are diffi-
cult. Temporal distance becomes a better mathematical
tool than Euclidean distance for tackling real-world prob-
lems involving various objects, structural obstacles, and
image-based information. Existing studies map distance
into Lipschitz ( s ), metric (

, ), quasimetric ( s ), Hilbert (

s ), and Riemannian spaces (

, ). Including triangular inequality in these spaces

enhances their utility in efficiently reaching goal states.

This work aims to learn a geometric autoencoder that ex-
tracts temporal distance from a raw state and recovers it
from a latent state. We design its objectives to reconstruct
the raw state from both the micro- and macroscopic levels.

3. Preliminaries

Markov Decision Process (MDP). An RL problem can be
formulated using an MDP, which is defined as a tuple M =
(S, A, P, pg,r,7). This includes a state s € S, an action
a; € A, a state transition probabilities P : S x A — A(S),
an initial state probability pg : A(S), a reward function
r : § — R, and a temporal discounted factor v.' This
work casts the MDP as a discrete-time, infinite-horizon, and
deterministic environment, where state transition probability
maps a state-action pair to the next state ( ,

; , ).

Offline RL. An offline paradigm aims to extract a value
function and policy by leveraging a fixed dataset D col-
lected by a mixture of several behavioral policies. Each
behavioral policy 7g can be optimal, suboptimal, and ran-
dom for a specific task. An offline dataset D includes
a set of trajectories 7 = (so,ag, $1,- - ,Sm), where H
is a time horizon of an episode. Each trajectory sam-
ple is sampled from trajectory distribution p™8(r) =
po(so) Hf:Bl 7(ag|s:) P(st+1]8¢, at). The main objective
of an RL is to learn a policy 7 : S — A(A) that maximizes

"A(-) represents the probability simplex.

the cumulative discounted reward E[Zi oYir(se, ar)]. We
can extract such a policy using a value-based approach (i.e.,
-learning), which approximates a state-action value func-
tion Q(s,a) (or state-action value function V'(s)) with a
Bellman optimality operator 5 as follows.

BQ(s,a) = Eyp(s|s,a)lr + varg lma(x,) Q(s',a")]
In practice, value function (s, a) (or V (s)) is parameter-
ized using a neural network. Such a parameter 6 is optimized
by minimizing the temporal-difference error as follows:

/3(9) = ]E(s,a,r,s’)w'D [Q(b - BQJ)]v

where ¢ means a target network parameter to stabilize the
learning process ( , ). The target network pa-
rameter is updated by the Polyak averaging method (

b )'

Offline MBRL. Offline RL extracts a value function and
policy by leveraging a fixed dataset. The model-based so-
lution includes approximating a state transition function to
make the most of the fixed dataset. More precisely, this
approach builds the learned MDP M= (S, A, ]3, £0,7,7)s
which P is a learned state transition function that trained
using maximum log-likelihood estimation as follows (

9 9 Py )'
£(ﬁ) = IE(s,a,s’)N’D [ - lOg ;\)<S/|S7 a)}

Once a model hAas been learned, MBRL rollouts a transition
by leveraging P(s’|s, a) with any state s € D. Augmented
transitions are stored in a separate replay buffer D. Finally,
offline MBRL extracts a policy and value function using
data sampled from D U D.

Problem Setting. This work focuses on goal-reaching tasks.
We consider an offline setting with a fixed unlabeled (reward-
free) trajectory dataset. We handle such problems using goal
state information sga1 € G, Where goal space G is the same
as state space S. The main objective is to reach the goal
state Sgoa1, thus reward function can be defined as goal-
conditioned reward function 74(s) = 1(s = sgoa1) (

s > ’ )'

We aim to augment a state transition dataset useful for
achieving a given goal state g. Existing MBRL algorithms
sometimes synthesize state transitions on inaccessible re-
gions beyond obstacles or cul-de-sacs. To effectively ad-
dress this, we will show constructing a temporal distance-
aware representation z € Z of the state s € S and then
augmenting transitions within the representation space Z.

4. TempDATA: Temporal Distance-aware
Transition Augmentation

This section introduces TempDATA, our offline model-
based scheme that augments new transitions, which help
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(d) Policy Extraction with Offline RL

Figure 2. Illustration for the proposed MBRL framework. (a)
Train autoencoder using offline dataset. (b) Train a dynamic model
using a trained encoder and offline dataset. (c) Generate transition
dataset using autoencoder and offline dataset. This happens in a
representation space. (d) Extract a policy from offline and gener-
ated datasets using offline RL algorithm. Processes (c) and (d) are
performed iteratively together.

search the pathway to reaching goals. We begin by learning
a geometric autoencoder that captures the temporal distance
between states of an MDP. Next, we train a transition model
in this latent space, allowing rollouts that respect the learned
geometry. Finally, we augment the offline dataset with syn-
thetic transitions and train an offline policy engineered for
downstream goal-reaching tasks. A graphical overview of
TempDATA appears in Figure 2.

4.1. Temporal Distance-aware Representation

We would like to learn a temporal distance-aware repre-
sentation encoder f : S — Z from the offline dataset D
which we can later use as a state abstraction z for building
transition models and policies to solve downstream goal
tasks. Such state abstraction could provide temporal dis-
tance to reach the goal beyond spatial distance ||s — Sgoal|-
Intuitively, the closeness of the Euclidean space does not
simply translate into the temporal distance (Figure 3). Next,
we need a decoder i : Z — S to recover the augmented
transition from the representation space to the state space.

To achieve it, we train the autoencoder by leveraging recon-
struction loss (Bank et al., 2023).

Erec = arg mainEsw'D HS —ho f(sv 0)”]

Subsequently, we consider geometrical constraint R (), mo-
tivated by (Nazari et al., 2023), where 6 is a parameter of

S Z

et el

i, AL
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Figure 3. Intuition of state abstraction. (7Top) Temporal-aware
autoencoder, our main idea, maps into state space into a represen-
tation that preserves temporal distance information. (Down) An
empirical result shows that our encoder can map raw state space
as latent state space in antmaze-medium environments. Here, we
consider an ant position state of raw state space as fixed and use
t-SNE to plot latent state space visually.

the autoencoder. Through such a constraint, the desiderata
we want to achieve are as follows.

1. (Trajectory-level) Macroscopically, a representation
space embeds the temporal distance information of the
shortest path between a state and a goal.

2. (Transition-level) Microscopically, a temporal distance-
aware representation between a state s and a next state
s’ is less than a pre-defiend distance d.

The geometrical constraint R(6) for an autoencoder ¢ in
goal-conditioned RL tasks starts from following Proposi-
tion 4.1 (Wang & Isola, 2022; Wang et al., 2023).
Proposition 4.1 (Value-metric Equivalence). Generally, an
optimal goal-conditioned value function for a state s and
goal Sgoa1 is same with an optimal temporal distance as
follows:

V*(Sa Sgoal) = 7d* (f(S, 0)3 f(sgoal; 0)); (1)

where f(s;0) is a representation encoder that captures the
temporal distance of an MDP on state space S.

The goal-conditioned value function V (s, Sgoa1) quantifies
how quickly a given policy can reach the goal sgoa1. There-
fore, the optimal goal-conditioned value function equals the
@-function with an optimal policy.

V*(s, Sgoal) e max V™ (s, Sgoal)

ngeaj(Q (s, a, Sgoal) 2
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Consequently, we regularize the autoencoder such that
z preserves a temporal distance d(f, s, Sgoa1, ) of state
space. This is achieved by leveraging the temporal dif-
ferences with the Bellman optimality operator, similar to
learning a value function. Additionally, we adopt r4(s) —
1 (i.e.,1(s # Sgoa1)), instead vanilla goal-conditioned re-
ward functlon ( s ; , ;
s ; s ).~ Comprehensively, the

Bellman optimality target for building temporal distance-
aware representation is defined as Bd = E[(ry(s) — 1) +
maxg yd(f(s';6), f(sgoar; #))]. In practice, we use expec-
tile regression ( , ) to implement Bell-
man optimality operator as follows ( , ):

Ltraj =E (s,8")~D |:L72— (Bd - d(f(57 9)3 f(sgoal; 0))>:| )

Sgoal ~Pgoal
where L7 (z) = |7 — 1(z < 0)|22. Thanks to this formula-
tion, we can extract a representation capturing the shortest
path from s t0 Sg0a1 instead estimate an averaging distance
distribution from the probabilistic transitions.

Theorem 4.2. If 7 = 1, 7-th representation function-
based temporal distance d(f, 8, Sgoal, ), trained by Lirq;,
is equal to a value function with optimal policy for any s as
follows:

‘lrlgi d‘r (f($7 9)7 f(sgoal; 9)) = — Hl;lX V’T(s, Sgoal) (3)

= shortest path from s to sgoal
Proof. See Appendix B. O

Next, transition-level regularizer is related to temporal co-
herence of consecutive state (s, s’). It constrains a repre-
sentation space to maintain temporal consistency between
single-step transitions as d(s, s’) < dg. The loss function is
as follows.

Liran = E(s,s’)ND |:L72-_1 (d(f(57 9)7 f(sla 9) - dO)):l

In this equation, we set dg as |r4(s) — 1|, akin to a moving
cost. This approach is similar to ( , ). They
have observed that it encourages the smoothness of repre-
sentation space and avoids overestimation about a distance
of consecutive states.

Full Objective. We use the stochastic gradient de-
scent ( , ) to update the parameter of autoencoder
0 with the following loss function.

L(0) “

In (4), n1 and 7y are balancing weights for regularizers.
This work considers a deterministic autoencoder, but can be
replaced with a variational one ( , ).

- ﬁrec + nlﬁtraj + 7]2£tran

2General methods use transitions by subtracting 1 from rg(s).
3The encoder and decoder can be decoupled for training.

Figure 4. Transitions in a representation space Z. Dashed lines
are related to representation space.

4.2. Latent Dynamic Transition Model

This work aims to construct a forward dynamic model in a
representation space, dubbed a latent dynamic model, not
a state space. Unlike a dynamic model in a state space, the
latent dynamic model can handle high-dimensional domains
(e.g., pixel-based environments), enhancing generalization
and prediction performance.

More precisely, we suppose that a latent dynamic model fol-
lows a Gaussian distribution, where both the mean and vari-
ance are parameterized by a feed-forward neural network.
This model predicts the one-step transition of representation
z — 2’ by marginalizing out the state space S.

(2'|z,a) = / dsds'p(Z'|s")p(z|s)P(s'|s, a)

In this equation, we can replace a latent probability p(z|s)
as alearned encoder f(s; 0) in Section 4.1. We parameterize
the latent dynamic model ¢ and optimize it via a negative
log-likelihood estimate minimization.

E(C) =E (s,a,8")~D [ - IOg C(Z/|Z7 a’)] (5)
(2,2)~£(:0)
Importantly, the log-likelihood of a Gaussian distribution
with unit variance is equivalent to the mean squared error,
differing only by a constant ( , ). Note
that we do not consider training a parameterized reward
model because GCRL can leverage intrinsic goal-achieving
rewards, akin to reward-free setting ( , ;

; )

4.3. Model-based Policy Training

Model-based policy training is two-fold: 1) data augmen-
tation with a learned dynamic model in Section 4.2 and 2)
policy extraction via any existing offline RL algorithm. This
process runs iteratively until offline policy converges.

The first step generates representation-action tuples (z, a, z')
via model rollouts, where @ and Z’ are getting from a pol-
icy 7 and (. Generated transition samples are decoded to
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(a) AntMaze Medium (b) Antmaze Large

(c) AntMaze Ultra

(d) FrankaKitchen (e) Calvin

Figure 5. Selected experimental environments. (a-c) State-based, single goal-reaching, and long-horizon navigation. (d-e) State-based,
multi-goal subtasks, and long-horizon manipulation. We reuse the Kitchen environment as a Pixel-based task.

Algorithm 1 TempDATA with offline RL

Require: offline dataset D, rollout buffer ﬁ, batch sizes
By, B¢, By, learning rates g, 1¢, 74, rollout frequency
I, sampling ratio 05
Initialize: network parameters 6, (, ¢, rollout buffer, ﬁ,
learning rates 79, 1¢, 1)¢
Label goal state: D <— GoalLabeling(D)
# Train autoencoder fy, hg
while not converged do
Sample By transitions (s, s, Sgoa1) ~ D
0 < 0 —n9gVoL(0) with (s, 5, Sgoal)
end while
# Train latent dynamic model ¢
while not converged do
Sample B¢ transitions (s, s, Sgoa1) ~ D
Map state into representation (z, 2, Zgoa1) With fg
¢ C—ncVeL(C) with (2,a, 2) # equation (5)
end while
# Extract offline policy 7,
while not converged do

# equation (4)

if IterationsA mod / == 0 then
Collect D < Rollout(D, 4, fo, he, ()
end if

Sample (1 — 0.5) B from D and o5 By, from D
Calculate intrinsic reward on B # equation (6)
Extract policy with any existing offline RL algorithm
Ty < Tp — NV L(9)

end while

(s,a,s) using h(z;#), and then decoded samples are stored
in the augmented rollout dataset D.

Next, in our framework, policy optimization can be divided
into two folds: actor-critic methods and weighted SL. Actor-
critic methods include a training process of the value func-
tion, but we consider a reward-free dataset. Therefore, we
define an intrinsic reward to learn goal-conditioned value
function efficiently, as follows.

7;(87 Sl) = d(f(sla 9)7 f(sgoal; 9)) - d(f(87 9)7 f(sgoal; 0()6))

This can be interpreted as an advantage of s’ compared to s
for goal-achieving. We can train a value function with the
following loss function.

£(6Q) = B[ (F+1Q(, 7(5)) — Q(s,0))%]

Consequently, the weighted SL method can extract a policy
without additional value function training, as follows:

L(67) = E(s0,00 | —exp(Bx7 (s, 5')) log w(als)], (7

where (3 is an inverse temperature (Nair et al., 2020), and
7(s,s’) can be replaced for an advantage function of the
weighted SL (Kostrikov et al., 2022).

4.4. Algorithm Summary

Algorithm | presents the pseudocode of TempDATA com-
prising three phases. Before beginning the network training,
we label the goal information across each transition sample
of the dataset using GoalLabeling procedure. We pre-train
an autoencoder f with an equation (4), and then training
latent dynamic model ¢ with an equation (5) and the encoder
fo. Once the pre-training autoencoder and latent dynamic
model are completed, we extract an offline policy based
on the offline MBRL solution. We collect rollout data D
using Rollout procedure at each preset rollout frequency 1.
Subsequently, we sample data from two datasets with preset
ratios 0.5, and extract a policy 7y using off-the-shelf offline
RL algorithms. Each phase is reiterated until it converges
or during pre-defined iterations. We provide full training
details in Appendix A.

Remark: Modularity of Temporal Representation

Our autoencoder is fully compatible with any off-
the-shelf model-free or model-based RL algorithm.
Moreover, its latent dynamics support a wide array
of downstream objectives, including RL, skill RL,
and GCRL, without requiring any modifications to
the core encoding or planning modules.
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Table 1. Evaluating TempDATA (Proposed) on D4RL AntMaze environment. The best performance is highlighted in Bold.

TARL-based methods

MBRL-based methods

AntMaze Dataset S4RL' SynthER GTA'T MOPOT  RepB-SDEf  COMBO'  RAMBOT ROMIT Proposed
umaze 55.00+21.0 17.1+12.9 66.5+13.8 0.0 0.0 80.3+18.5 25.0+12.0 68.7+2.7 96.34+0.0
umaze-diverse 51.6+23.4 23.9+23.6 57.9+19.0 0.0 0.0 57.3+33.6 0.0 61.2+3.3 90.4+8.6
medium-play 80.94+10.4 41.0+41.2 81.948.4 0.0 0.0 0.0 16.4+17.9 35.3£1.3 74.8+8.3
medium-diverse 74.0+£19.4 40.1+28.4 78.1+£15.8 0.0 0.0 0.0 23.2+14.2 27.3+£3.9 69.5+10.8
large-play 42.9417.4 37.5+13.0 44.449.3 0.0 0.0 0.0 0.0 20.2+14.8 56.5+14.1
large-diverse 46.1+16.7 37.5+16.7 47.8+13.4 0.0 0.0 0.0 2.4+3.3 41.24+4.2 44.2+15.3
ultra-play — — — - — 0.040.0 0.0+0.0 4.942.1 53.2+18.2
ultra-diverse - - - — - 0.0+0.0 0.0+0.0 8.84+6.8 35.3+10.9
Total score w/o ultra 350.5 236.2 376.5 0.0 0.0 137.6 88.6 253.9 431.7
Total score — — — — — 137.6 88.6 272.6 520.2
s TempDATA s COMBO = RAMBO = ROMI m— GC-IQL -==- 1QL o
antmaze-ultra-diverse-v0 antmaze-ultra-play-v0 E 20 i 3
=) QM Optimality Gap
£ 050 % TempDATA . :
S <104 GTA I I
P ° SynthER . .
8 0251 3 S4RL . .
2 [z == = dldcd romi .
< 0,00 O 0 RAMBO ,
00 05 10 0.0 05 10 @OQ &Qé
Iterations Iterations (x10%) va&q’é& 0.25 0.50 0.75 0.2 0.4 0.6 0.8

(a) Success Rate on AntMaze Ultra

(b) Wall-clock Time

(c) Aggregate Metrics on AntMaze and Kitchen

Figure 6. Further investigation on performance. (a) Learning curve about success rate on AntMaze Ultra task. (b) Wall-clock time for

each MBRL implementation. (c) RLiable plots (

s

5. Experiments

In our experiments, we evaluate TempDATA’s performance
on diverse downstream tasks. In particular, the main per-
formance comparison is performed on three goal-achieving
tasks. We also assess the generalizability of TempDATA on
pixel-based and dense reward tasks.

Demonstration Tasks. We initially outline the environ-
ments used for our evaluation, visualized in Figure
AntMaze is a widely-used benchmark environment (

R ), where an 8-DoF Ant robot navigates
to reach a given goal state from the initial one. We con-
sider four different levels of this environment (i.e., Umaze,
Medium, Large, and Ultra) and its dataset from D4RL bench-
mark ( R ). Kitchen is a realistic long-horizon
benchmark environment ( . ), where a 9-
DoF Franka robot manipulates four different sub-tasks (i.e.,
open a drawer, move a kettle, etc.). We also use the D4RL
benchmark dataset, and we consider two classes (‘partial’
and ‘mixed’ without a complete dataset). CALVIN an-
other environment designed for long-horizon manipulation
tasks ( s ), includes four target subtasks (i.e.,
push a button, pull the lever, etc.) akin to FrankaKitchen.
The main difference is the dataset: CALVIN provides signif-
icantly larger, encompassing task-agnostic trajectories from
34 distinct subtasks ( s ).
Visual Kitchen is a pixel-based version of Kitchen task.

For dense reward tasks, we adopt four dataset from D4RL

benchmark, including halfcheetah and walker2D tasks
({“medium-replay” and “medium-expert”}).

) for DARL benchmark.

Baseline Algorithms. We compare the performance of
the proposed solution with five offline MBRLs, five of-
fline GCRLs, and three trajectory augmentation-based RL
(TARL) methods. For offline MBRL methods, we con-
sider model-based policy optimization (MOPO) ( ,
), conservative MOPO (COMBO) ( s ) that
combines offline MBRL with conservative () regularizer,
robust adversarial MOPO (RAMBO) ( )
that trains an adversarial dynamic model against an offline
policy, representation balancing with stationary distribution
estimation (RepB-SDE) ( R ), and reverse of-
fline model-based imagination (ROMI) ( )
that trains a reverse dynamic model instead of a forward
dynamic model. Next, for offline GCRL methods, we use
a flat or goal-conditioned variant of SL (GCSL) (
, ), CQL (GC-CQL) (
(or GC-IQL) ( ), policy-guided offline
RL (GC-POR) ( , ) that includes a hierarchy
policy structure, and hierarchical IQL (HIQL) (
) that is a hierarchical version of GC-IQL. Finally, for
offline TARL methods, we use S4RL ( ),
SynthER ( , ), and GTA ( ),
which are based on the diffusion model.

)

s

), IQL

k)

>

)

k]

In the following subsections, our experiments are based on
8 random seeds with two standard deviations (in Table) or
confidence intervals (in Figure). The recorded scores are
normalized scores of average success rate on 50 test trials.
The performance marked { implies reported benchmark
scores by ;

) b} b}
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Table 2. Evaluating TempDATA on multi-goal tasks, FrankaKitchen and CALVIN.

Dataset GCSL' GC-CQL'" GC-IQL" GC-POR" HIQL'  Proposed
kitchen-mixed 46.7+20.1  15.7+17.6 51.3+12.8  27.9+179  67.T+e.8  65.3+11.7
kitchen-partial ~ 38.5+11.8  31.2+16.6  39.2+135  18.4+143 65.0+9.2  70.0+12.8
CALVIN 17.3+14.8 5.9412.3 7.8+17.6 12.44+18.6  43.8439.5 50.4+34.6
Total score 102.5 52.8 98.3 58.7 176.5 185.7

5.1. Performance Comparison with MBRL and TARL

This subsection compares the performance of TempDATA
with our baseline methods on D4RL AntMaze.

As shown in Table 1 (Left), TempDATA significantly out-
performs the existing offline MBRL methods, especially
achieving the best score of 8 out of 8 tasks. TempDATA
records a total score difference of approximately 200 com-
pared to the second-best method, ROMI. What is surprising
is that TempDATA achieves this even though it does not con-
sider the ensemble structure of the dynamic model, unlike
prior MARL methods, and thus can drastically reduce the
training time (Figure 6(b)). We conjecture this performance
improvement comes from model-based additional data gen-
erated within the temporal distance-aware representation
space. Next, Figure 6(a) confirms that TempDATA has com-
parable or superior performance even when compared with
MFRL methods on an extreme-level task. Finally, Table
and Figure 6(c) also demonstrates that the proposed solution
mostly achieves the best performance compared to TARL-
based methods on D4RL benchmark datasets (AntMaze and
Kitchen). Notably, TempDATA attains a substantial perfor-
mance enhancement of 90.79% over MBRL methods and
of 14.66% over TARL ones.

5.2. Performance Comparison with GCRL

Next, this subsection compares the performance of Temp-
DATA with GCRL baseline methods on multi-goal tasks
from FrankaKitchen and Calvin. As summarized in Table 2,
TempDATA achieves the highest overall score, outperform-
ing GCRL baseline methods. While the prior model-based
approaches did not explicitly target these environments,
TempDATA demonstrates that a carefully designed model-
based algorithm can rival and even surpass model-free RL
techniques on multi-goal tasks.

Notably, TempDATA’s advantage is consistent across both
the kitchen-mixed and kitchen-partial settings, where it
nearly closes the performance gap with HIQL in kitchen-
mixed and substantially exceeds it on kitchen-partial. More-
over, on the challenging calvin dataset, TempDATA again
records a higher average return compared to all GCRL base-
lines. These results highlight the flexibility of TempDATA’s
temporal distance-aware representation, which enables the
model to adapt effectively to complex goal-conditioned en-
vironments that have not been thoroughly addressed by

previous model-based RL approaches.

5.3. Performance on Pixel-based Tasks

Table 3. Evaluating TempDATA on pixel-based task, Visual
FrankaKitchen, using two different datasets.

Visual dataset GC-IQL' RepB-SDE  Proposed
kitchen-mixed 52.9+4.7 0.00=+0.0 58.1+5.9
kitchen-partial ~ 63.6+4.2 0.00+0.0 56.543.5
Total score 116.5 0.00 114.6

Lastly, we next evaluate the effectiveness of TempDATA
in pixel-based tasks, comparing it against the GCRL base-
line (GC-IQL) and an MBRL baseline (RepB-SDE). As
shown in Table 3, TempDATA achieves performance compa-
rable to the GC-IQL, while RepB-SDE struggles entirely in
these pixel-based settings. Surprisingly, this marks a signifi-
cant improvement for offline MBRL on pixel-based tasks,
demonstrating that our proposed solution can successfully
overcome the challenges posed by high-dimensional inputs
and pave the way for future advances in visual control.

5.4. Generalizability on Dense Reward Tasks

1 MopPO GTA I IQL [T TempDATA

wol ﬂlm

Halfcheetah (MR) Halfcheetah (ME) Walker2D (MR) Walker2D (ME)
Dataset

=}
S

33
=}

Normalized rewards

o

Figure 7. Performance comparison on dense reward tasks of
D4RL. We evaluate the TempDATA on dense reward tasks, i.e.,
Halfcheetah and Walker2D. In z-axes of this plot, MR and ME
denote medium-replay and medium-expert datasets.

While our primary focus is on long-horizon, sparse-reward
problems, we also evaluated TempDATA on dense-reward
benchmarks from D4RL to demonstrate its broader appli-
cability. In Figure 7, TempDATA matches or outperforms
MOPO, GTA, and IQL across HalfCheetah (MR/ME) and
Walker2D (MR/ME), despite not being tailored to dense
rewards. These results show that TempDATA scales effec-
tively to classic continuous-control tasks. Comprehensively,
these findings validate that the performance gains arise di-
rectly from our augmentation framework and underscore
the generalizability of TempDATA across diverse RL tasks.
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5.5. Ablation Study
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Figure 8. Ablation study by policy and training type on four
dataset variants (medium-play, medium-diverse, large-play,
large-diverse). Bright bars (blue: vanilla RL; red: Skill-based RL)
show baselines, while darker bars add TempDATA augmentation.
Boxed markers underneath indicate naive model-based rollouts.

Figure 8 presents an ablation study comparing four algorith-
mic variants on D4RL datasets. The naive model-based
extensions consistently reduce average returns, whereas
TempDATA maintains or boosts performance relative to
each baseline. In particular, MFRL with naive rollouts
suffers a clear drop, but the proposed solution elevates re-
sults to match or exceed pure MFRL. Similarly, skill RL
alone boosts performance, yet naive rollouts nullify this
gain, while the integrated augmentation preserves and en-
hances the skill RL benefits. This ablation underscores that
TempDATA performs better than naive MBRL solutions
regardless of policy types.

5.6. Scalability on Arbitrary Goal

] H s 20 [ H s 20
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i 20 [ H Bt

Goal (20, 0)
Figure 9. Heatmap according to four different goals in learned
latent space. This visualization shows the distance between ev-
ery quantized state and goal positions in the learned latent space.
Brighter and darker colors imply lower and higher costs.
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Figure 9 presents heatmap visualizations of learned latent
distances between every quantized state and four distinct
goal positions at (0, 20), (20, 20), (0,0), and (20,0). In
each visualization, the heatmap of the representation dis-

tance around obstacles rather than following straight-line
Euclidean paths, reflecting the true temporal cost of navi-
gation. Notably, the shape and spacing of these contours
closely match the shortest-path travel times to each goal,
indicating that the encoder has internalized environment
dynamics. This consistency across all four goal tasks shows
that the autoencoder captures a universal temporal metric,
not merely goal-specific shortcuts. Consequently, given an
arbitrary goal at a test time, TempDATA can approximate
the true effort, as a temporal distance, required to reach that
goal. These quantitative heatmaps confirm that TempDATA
generalizes robustly to unseen goal locations by aligning
learned distances with obstacle-aware travel times. Together
with our ablation studies, this evidence demonstrates that a
single learned representation suffices to plan efficient paths
for varied goal-reaching scenarios.

6. Conclusion

This work introduces a novel offline MBRL method, Tem-
pDATA, which augments new transitions in a latent space
instead of a raw state space. This solution builds a repre-
sentation space that should capture the temporal distance
between microscopic and macroscopic levels. Next, we train
a latent dynamic model to generate new transitions, thereby
leveraging off-the-shelf offline RL algorithms. The pro-
posed solution not only outperforms the offline MBRL ap-
proaches in challenging goal-reaching benchmarks but also
competes favorably with the GCRL or TARL approaches.

Closing Statements. The combination of model-based RL
and temporal encoding in latent space distills a fixed dataset
into a compact latent space that encodes both the dynamics
and the geometry needed for long-horizon planning and
robust policy extraction. Although we found such efficiency
and robustness, there are still questionable points.

¢ How well do these model-based rollouts venture be-
yond the empirical support?

* What if observations are partial, noisy, or stochastic,
and global distance preservation shatters?

* How can an ego-agent embed worlds where other
agents, not just itself, drive state transitions?

* Why restrict ourselves to symmetric metrics when
many tasks are temporally asymmetric?

Should the offline pre-training remain strictly offline?

Answering these questions will chart the course for truly
generalizable, distance-aware control: by blending robust
representation learning with principled uncertainty mod-
eling, multi-agent reasoning, asymmetric geometry, and
hybrid online—offline adaptation, we can move beyond to-
day’s safe but limited rollouts toward methods that excel in
real-world, long-horizon decision making.
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Impact Statement

This paper presents TempDATA, a general method for syn-
thesizing temporal-distance-aware transitions that guide
goal-reaching policies without extra environment interac-
tions. By generating meaningful data in latent space, our
approach accelerates learning of long-horizon behaviors and
reduces reliance on costly real-world trials. TempDATA’s
framework can broadly enhance sample efficiency and ro-
bustness in offline RL applications.
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A. Training Details

Convolutional encoder for the pixel-based task. For pixel-based environments, we handle image input using the IMPALA
CNN architecture ( , ). The TempDATA auto-encoder uses the 512-dimensional output features of Impala
CNN. In addition to the auto-encoder, our dynamic model and RL policy also use such compressed image features of
IMPALA CNN. Therefore, we do not need to build a raw image decoder model.

Goal-conditioned Reinforcement Learning. We train a skill-conditioned policy in an unsupervised manner to enable
efficient learning in goal-achieving environmental settings. Moreover, this solution can be applied to multiple goal scenarios
instead of fixed goal scenarios. We introduce a latent skill variable w, which is randomly sampled from p(w) inspired
by DIYAN, and learn a policy 7(a|s,w) to explore and capture diverse behaviors from a reward-free offline dataset.
This unsupervised phase leverages a pre-trained encoder to compute rewards and measure skill progress in the latent
space. Specifically, as we discussed in Section 4.3, we define an intrinsic reward, 7 (s, s') = d(f(s';6), f(sgoal; 0)) —
d(f(s;0), f(Sgoas; 0)). Next, we implement our offline RL training using the IQL combined with AWR objective function,
ensuring stable policy improvement in an in-sample learning manner. Our overall pipeline is integrated within the TempDATA
codebase, which extends HIQL implementations ( s ). However, we do not consider a hierarchical policy
structure in this work.

Policy execution. At the test phase, the trained policy requires a specific skill variable according to the given goal state. To
do this, we adopt the test-time skill adaptation, which is proposed in HILP ( s ), as follows:

o F(goui0) — f(5:6)
1 (suou: 6) — F(s:O)

which guides the policy to decrease the distance to f(sgoal; ) by moving the latent direction f(sgoa1; @) — f(s;6). This
approach requires no additional training and can be performed in a zero-shot manner.

w

Procedures: Goal labeling. To train autoencoder and offline RL networks, we relabel goal distributions using hindsight
experience relabeling ( , ). Specifically, for a randomly selected state, we assign it as the goal with
a 20% probability, a future state from the trajectory with a 50% probability, and a completely random state with a 30%
probability. The reward is set to —1 for every timestep until the goal is achieved, at which point the done mask is set to True.
During the encoding process, we ensure that at least one of the samples contains the goal state.

Procedures: Model rollout. We adopt a standard model rollout approach ( , ) in which a fully trained dynamics
model is used to simulate additional trajectories during policy learning. Specifically, the agent performs rollouts of length k
steps in the learned model to generate synthetic state-action-reward transitions that complement the original offline dataset.
To ensure a stable and well-grounded initialization, we train the policy for the first 30% of the total training duration
without any rollouts. This phase provides the agent with a direct understanding of the environment’s dynamics before
synthetic samples are introduced. Subsequently, at every 10% iteration of the remaining training period, we generate
synthetic samples equivalent to half the current size of the offline buffer and add them to the training pool. By gradually
incorporating model-generated data, we allow the agent to refine its decision-making while mitigating potential inaccuracies
from extensive model rollouts.
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B. Proof of Theorem

Proof. We use a Bellman operator with expectile regression to learn dg (s, sgoa1). Concretely, each update enforces
d(f(5:0), f(sg0a1;0)) ~ 1 + v min d(f(s";0), f(sgoa; 0)),

where ~ is the discount factor, and (s, a, ") are transitions sampled from the dataset or replay buffer. The loss itself is
formulated via expectile regression, which replaces the usual squared Bellman error with a 7-expectile operator.

A property of expectile regression states that if X is a bounded random variable with supremum x*, then

lim m.(X) = z*,
T—1

where m.. (X) is the T-expectile of X . Translating this to our Bellman setting, driving 7 toward 1 forces the learned distance
d, to match the supremum of returns along feasible trajectories.

In a deterministic environment, the total cost from s to sg0,1 along any path is at least as large as the shortest-path cost.
From standard arguments, we have:

do(s, Sgoa1) < (shortest-path cost from s to sgoal) = —V"(s, Sgoal)-

Meanwhile, the Bellman-like constraints in our training also ensure that dg cannot collapse below the maximum relevant
cost, since the expectile objective pushes it toward the worst-case outcome as 7 — 1.

Because dy(s, Sgoa1) is bounded both above and below by the same shortest-path or —V* cost in the limit, it converges
exactly to
d0(87 Sgoal) = —V*(S, Sgoal)~

Equivalently,
}_IL% dT(f(S; 9), f(sgoed; 9)) = —max V7 (s, 5g0a1)7

T

completing the proof. O
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C. Implementation Details

Our implementation for TempDATA is based on JaxRL and is available at the following repository. We run our experiments
on RTX 3090 GPUs. Each experiment runs for no more than 3 hours in state-based environments and no more than 12 hours
in pixel-based environments.

C.1. Environments

AntMaze. We examine eight distinct scenarios within the AntMaze task: ‘antmaze-umaze-v2’, ‘antmaze-umaze-diverse-v2’,
‘antmaze-medium-diverse, play-v2’, ‘antmaze-large-diverse, play-v2’, and ‘antmaze-ultra-diverse, play-v0’. The datasets
for the ‘umaze’, ‘medium’, and ‘large’ scale environments originate from the D4RL benchmark ( s ), while
the datasets for AntMaze-ultra are sourced from a separate work. Notably, the AntMaze-ultra environment ( ,

) is twice as large as AntMaze-large. Each dataset comprises 999 trajectories, each with a length of 1000 steps, where
the Ant agent moves from a randomly chosen starting position to a goal location, which is not necessarily the evaluation
target. During testing, to define a goal g for the policy, we modify the first two state dimensions—corresponding to x-y
coordinates—to the designated target position in the environment, while the remaining proprioceptive state variables are
set to those from the first observation in the dataset. The agent receives a reward of 1 upon successfully reaching the goal
during evaluation.

Kitchen. The Kitchen datasets from D4RL ( s ) consists of two datasets as ‘kitchen-{partial, mixed}-v0’. These
datasets capture trajectories of a robotic arm interacting with various objects in different sequences within its environment.
For this task, the agent gets a reward of 1 upon completing each subtask, with each episode comprising four subtasks. In
addition to state-based work, for pixel-based Kitchen experiments, we transform each state into a 64 x 64 x 3 camera image

through rendering, employing the same camera configuration used by and
CALVIN. The CALVIN offline datasets are rooted in the teleoperated demonstrations by and, thereby being
introduced by and . This dataset comprises 499 trajectories; each trajectory has 1204 transitions,

capturing various subtasks performed in an arbitrary order. Similar to the FrankaKitchen task, the CALVIN task consists of
four subtasks and the agent obtains a reward of 1 upon completing each subtask.

C.2. Hyperparameters
Hyperparameter Value
Iterations 106 (state-based), 5 x 10° (pixel-based)
Learning rate 3 x 10~* (all networks)
Optimizer Adam ( , )
Batch size 512 (AntMaze), 256 (FrankaKitchen), 128 (CALVIN)
The number of evaluation episodes 50 (all tasks)

[512,512,512,{32,10},512,512,512]
32 (AntMaze), 10 (CALVIN, FrankaKitchen)
Discount factor for autoencoder 0.99 (all tasks)
Expectile coefficient for Autoencoder 0.95 (AntMaze), 0.97 (CALVIN, FrankaKitchen), 0.7 (Pixel-based)

Dimensions for autoencoder network

Dimensions for dynamic model network [512,512,512]

The number of rollout steps 3

Dimensions for critic network [512,512,512]

Dimensions for actor network [512,512,512]

Target smoothing coefficient 5x 1073

Discount factor for offline RL 0.99

Inverse temperature for offline RL 10 (AntMaze), 3 (CALVIN, FrankaKitchen)
Expectile coefficient for offline RL 0.9 (state-based), 0.7 (pixel-based)
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