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Abstract

Large language models (LLMs) struggle with001
compositional generalisation, limiting their002
ability to systematically combine learned com-003
ponents to interpret novel inputs. While ar-004
chitectural modifications, fine-tuning, and data005
augmentation improve compositionality, they006
often have limited adaptability, face scalabil-007
ity constraints, or yield diminishing returns008
on real data. To address this, we propose009
CARMA, an intervention that enhances the010
stability and robustness of compositional rea-011
soning in LLMs while preserving fine-tuned012
performance. CARMA employs mutual in-013
formation regularisation and layer-wise stabil-014
ity constraints to mitigate feature fragmenta-015
tion, ensuring structured representations per-016
sist across and within layers. We evaluate017
CARMA on inverse dictionary modelling and018
sentiment classification, measuring its impact019
on semantic consistency, performance stability,020
and robustness to lexical perturbations. Re-021
sults show that CARMA reduces the variabil-022
ity introduced by fine-tuning, stabilises token023
representations, and improves compositional024
reasoning. While its effectiveness varies across025
architectures, CARMA’s key strength lies in026
reinforcing learned structures rather than intro-027
ducing new capabilities, making it a scalable028
auxiliary method. These findings suggest that029
integrating CARMA with fine-tuning can im-030
prove compositional generalisation while main-031
taining task-specific performance in LLMs.032

1 Introduction033

Compositional generalisation (CG) refers to the034

ability to systematically combine known expres-035

sions to generate novel ones following learned036

rules (Partee, 1984). This capability is essential037

for advancing language models (LMs) towards ro-038

bust linguistic understanding beyond mere pattern039

matching (Ram et al., 2024).040

Despite their strong performance across various041

NLP tasks, large language models (LLMs) exhibit042

persistent weaknesses in compositional generalisa- 043

tion (Hupkes et al., 2020; Kim and Linzen, 2020a; 044

Aljaafari et al., 2024). These limitations stem from 045

multiple factors, including training objectives and 046

model architectures. Standard autoregressive train- 047

ing methods, such as next-token prediction, pri- 048

oritise statistical correlations in token sequences 049

over structured semantic understanding (Yin et al., 050

2023a; Dziri et al., 2024). As a result, token rep- 051

resentations often lack structured compositional- 052

ity, leading to fragmented information processing 053

within layers (horizontal misalignment) and across 054

layers (vertical inconsistency). 055

Additionally, while self-attention mechanisms 056

in Transformer models effectively capture local 057

dependencies, they frequently fail to maintain co- 058

herent compositional representations across multi- 059

ple layers (Murty et al., 2023). This misalignment 060

impairs the model’s ability to generalise composi- 061

tionally, resulting in sensitivity to input order (Is- 062

mayilzada et al., 2024) and difficulties in handling 063

complex syntactic and morphological structures 064

(Aljaafari et al., 2024). 065

Several approaches have been proposed to ad- 066

dress these limitations, including architectural mod- 067

ifications, enhanced encoding strategies, and tar- 068

geted regularisation techniques (Ontanon et al., 069

2022; Murty et al., 2023; Csordás et al., 2021). 070

However, these methods often struggle to balance 071

compositional improvements with maintaining per- 072

formance across diverse downstream tasks. More- 073

over, their effectiveness is typically confined to spe- 074

cific compositional structures or synthetic bench- 075

marks. Developing a robust and adaptable solution 076

that enables LLMs to achieve consistent CG across 077

diverse tasks remains a major challenge. 078

This work introduces CARMA: enhanced 079

Compositionality in LLMs via Advanced 080

Regularisation and Mutual Information Alignment, 081

illustrated in Figure 1. CARMA enhances CG by 082

addressing training challenges that hinder struc- 083
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Figure 1: This diagram depicts the computation of the loss and illustrates the integration of the Mutual Information
(MI) loss (LMI) and the Stability Loss (Lstability) into the final optimisation process. Tokens Tok1 and Tok2
form the positive set (Hpos), while Tok3, T ok4, T ok5 form the negative set (Hneg). The LMI loss is computed
vertically across layers (l to k), maximising the similarity of tokens in Hpos while contrasting them with tokens in
Hneg. The Lstability loss is computed horizontally between consecutive layers, ensuring consistency in hidden state
representations. Both auxiliary losses are combined with the task loss (Ltask) to form the total loss (Ltotal). This
integration improves token representations and enhances the model’s overall optimisation.

tured compositionality in LLMs. By balancing084

layer-specific updates and reinforcing token-level085

dependencies, CARMA provides a scalable and086

adaptable solution that improves CG without087

sacrificing downstream task performance. To088

evaluate CARMA’s effectiveness, we investigate089

the following research questions:090

• RQ1: How does regulating mutual informa-091

tion across layers influence compositionality092

in LLMs? How does it affect sensitivity to093

input and internal perturbations?094

• RQ2: To what extent does layer-specific reg-095

ularisation improve compositional generalisa-096

tion across semantic and sentiment analysis097

tasks, assessing CARMA’s adaptability across098

domains?099

The key contributions of this work are as follows:100

• A novel regularisation method that enhances101

compositional generalisation without requir-102

ing architectural modifications. CARMA103

leverages mutual information alignment to104

preserve token dependencies across layers and105

employs layer-wise stability constraints to re-106

duce representational inconsistencies.107

• A systematic evaluation of CARMA across108

compositionally demanding tasks, demonstrat-109

ing its ability to reinforce systematicity and110

substitutivity, particularly in models where 111

fine-tuning alone is insufficient. 112

• A theoretical and empirical analysis of how 113

token dependencies degrade across layers 114

in standard LLMs, revealing that CG limi- 115

tations are not solely dependent on model 116

size but rather on representational instability. 117

CARMA mitigates this by ensuring consistent 118

information flow, showing that non-intrusive 119

regularisation strategies can significantly im- 120

prove CG. 121

The remainder of this paper is structured as fol- 122

lows: Section 2 reviews compositionality in LLMs 123

and associated challenges. Section 3 introduces the 124

CARMA method. Section 4 describes the experi- 125

mental setup. Section 5 presents empirical findings. 126

Section 6 discusses related work. Section 7 offers 127

insights and future research directions. Support- 128

ing datasets and software are available at a public 129

repository.1 130

2 Compositionality in LLMs 131

Compositional generalisation (CG) in linguistics 132

encompasses five key principles: systematicity, 133

productivity, substitutivity, localism, and over- 134

generalisation (Dankers et al., 2022a). These prin- 135

ciples have been explored in LLMs across compo- 136

sitional instruction (Yang et al., 2024b), semantic 137

1Anonymised for review.
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parsing (Li et al., 2023), translation (Li et al., 2021),138

and multi-step inference (Zhang et al., 2024). Stud-139

ies show standard Transformer-based LLMs exhibit140

limited CG, struggling with basic compositional141

tasks such as assembling tokens into words or con-142

structing morphemes (Aljaafari et al., 2024; Ismay-143

ilzada et al., 2024). These limitations are linked to144

architectural constraints, training objectives, and to-145

kenisation practices that fragment information and146

increase sensitivity to input order and contextual147

noise (Murty et al., 2023).148

Training Objectives and Information Frag-149

mentation. Standard training objectives for LLMs150

typically optimise for next-token prediction, which151

prioritises surface-level correlations over deeper152

semantic integration (Dziri et al., 2024). While153

this approach is effective for data already seen, it154

often impedes CG by reducing mutual informa-155

tion between dependent tokens, thereby limiting156

the model’s ability to form coherent compositional157

representations (Aljaafari et al., 2024).158

Architectural Mechanisms and Composi-159

tional Consistency. Beyond training objectives,160

architectural mechanisms such as dropout and self-161

attention disperse information across the model,162

increasing sensitivity to input order and context.163

This undermines compositional consistency (Saj-164

jadi et al., 2016; Cai et al., 2021), the ability to165

maintain consistent outputs when processing se-166

mantically equivalent inputs through transforma-167

tions like word substitution or paraphrasing. These168

challenges impact both high-complexity reasoning169

tasks and simpler operations that demand consis-170

tent morphological and syntactic processing (Is-171

mayilzada et al., 2024).172

Existing Approaches to Enhance CG in LLMs.173

Research has explored architectural adjustments,174

regularisation techniques, and task-specific strate-175

gies to address CG limitations. Ontanon et al.176

(2022) demonstrated that combining relative po-177

sitional encoding with embeddings enhances CG in178

algorithmic tasks, while weight sharing and copy179

decoders help retain input structures. Architec-180

tural modifications like Pushdown Layers (Murty181

et al., 2023) and GroCoT (Sikarwar et al., 2022) in-182

corporate mechanisms for tracking syntactic depth183

and spatial relations, enabling recursive process-184

ing of compositional structures. RegularGPT (Chi185

et al., 2023) introduces adaptive depth and memory186

mechanisms to facilitate CG. Studies by Csordás187

et al. (2021) and Petty et al. (2024) reveal that188

architectural choices and training setups signifi-189

cantly impact CG enhancement. In neural machine 190

translation, Dankers et al. (2022b) found a positive 191

correlation between data size and compositional 192

performance. 193

Frameworks like CompMCTG and Meta-MCTG 194

(Zhong et al., 2024) suggest joint training and 195

meta-learning approaches improve fluency, though 196

performance drops persist in out-of-distribution 197

tasks. Synthetic tasks show recursive, step-by-step 198

prompt formats support combinatorial generalisa- 199

tion, despite training biases and sequence order 200

constraints (Ramesh et al., 2024). 201

3 Enhanced Compositionality via 202

Advanced Regularisation and Mutual 203

Information Alignment (CARMA) 204

This section formalises compositionality, intro- 205

duces the core principles of CARMA, and details 206

its components. Figure 1 illustrates the method, 207

highlighting its process and key components. 208

3.1 Compositionality Formalisation 209

Mathematical Foundations of Compositionality. 210

CG (Section 2) can be formally defined through 211

a compositional system where E denotes a set of 212

expressions (e.g., token sequences recognised by 213

the model), and M represents a corresponding set 214

of meanings. This relationship is formalised as a 215

function: 216

f : E → M (1) 217

For any complex expression e ∈ E , composed of 218

constituent elements e1, . . . , en according to a syn- 219

tactic rule r, the function f satisfies: 220

f(r(e1, . . . , en)) = gr(f(e1), . . . , f(en)), (2) 221

where gr is the semantic operation that corresponds 222

to the syntactic rule r. 223

Compositional Generalisation in LLMs. Effec- 224

tive CG in LLMs requires generating structured 225

compositions that preserve semantic consistency. 226

Given a novel expression enovel similar to a known 227

expression eknown within a threshold β, their seman- 228

tic functions must remain within an interpretable 229

bound or deviation α: 230

d(enovel, eknown) ≤ β ⇒ d(f(enovel), f(eknown)) ≤ α.
(3) 231

This formulation captures systematicity (struc- 232

tured combinations), substitutivity (preservation 233

under transformations), and resistance to over- 234

generalisation (bounded semantic deviation) while 235

maintaining interpretability. 236

3



3.2 CARMA Formalisation237

CARMA operates over a range of target layers,238

from l to K (0 < l ≤ K ≤ L, where L is the total239

number of layers), and consists of two core com-240

ponents: Mutual Information and Layer-Wise241

Stability Regularisation.242

Mutual Information (MI) Regularisation Across243

Layers. CARMA preserves essential dependen-244

cies and maintains structural coherence by max-245

imising MI between hidden states of related tokens.246

The MI between hidden states hki and hkj at layer k,247

representing two related tokens i and j, is defined248

as:249

I(hki ;h
k
j ) = EP (hk

i ,h
k
j )

[
log

P (hki , h
k
j )

P (hki )P (hkj )

]
(4)250

Since exact computation is intractable, MI is251

approximated using the InfoNCE loss (Oord252

et al., 2018), encouraging token-level dependen-253

cies across the same layers:254

LMI = − 1

N

K∑
k=l

Q∑
i=1

(
log

∑
hj∈Hk

j ̸=i

exp

(
f(hk

i , h
k
j )

τ

)

− log

( ∑
hj∈Hk

j ̸=i

exp

(
f(hk

i , h
k
j )

τ

)

+
∑

hm∈Nk

exp

(
f(hk

i , hm)

τ

)))
,

(5)255

where f(hki , h
k
j ) is a similarity function quantify-256

ing the relationship between hidden states at layer257

k, Hk denotes the set of positive examples related258

to hki , N k is the set of negative examples unrelated259

to hki at layer k, τ is the temperature parameter,260

and N is the total number of target layers from l261

to K, with Q representing the number of tokens262

or samples used per layer. Further details on MI263

approximation are provided in Appendix D.264

Layer-Wise Stability Regularisation. This com-265

ponent enforces smooth transitions across layers,266

reducing abrupt changes that could disrupt compo-267

sitional structures. For a layer k, the Layer-Wise268

Stability Loss is defined as:269

LStability =

K∑
k=l

E


∣∣∣f (k+1)(X)− f (k)(X)

∣∣∣2
E
[
|f (k)(X)|2

]
+ E

[
|f (k+1)(X)|2

]
+ ϵ

 ,

(6)270

where f (k)(X) denotes the output of layer k (i.e.,271

after the attention and MLP submodules), and ϵ272

is a small positive constant to ensure numerical 273

stability (e.g., ϵ = 10−8). Minimising this loss 274

preserves compositional integrity across the speci- 275

fied layers by encouraging smooth and consistent 276

transitions between them, thereby enabling more 277

stable information flow and aggregation within this 278

range. 279

CARMA Loss. CARMA integrates LMI and 280

LStability into its total loss as: 281

LCARMA = γLMI + ηLStability, (7) 282

where γ and η are hyperparameters in [0, 1] that 283

control the relative contribution of each compo- 284

nent. The final optimisation objective balances 285

task-specific performance with CARMA’s regulari- 286

sation as: 287

Ltotal = (1− λ) · Ltask + λ · LCARMA, (8) 288

where Ltask represents the task-specific loss, 289

LCARMA is the regularisation loss, and λ ∈ [0, 1] 290

controls the trade-off between task accuracy and 291

compositional robustness. 292

Layer Selection for Regularisation. We apply 293

CARMA to layers around one-third of the model 294

depth, based on evidence that early-to-mid layers 295

better capture compositional and syntactic struc- 296

ture, while deeper layers tend to specialise in task- 297

specific representations (He et al., 2024; Langedijk 298

et al., 2024). In our preliminary experiments, we 299

observed that performance gains diminish when 300

regularisation is applied to deeper layers. As a de- 301

fault, we recommend layers 3–4 in 12-layer models 302

and 6–10 in 24-layer models. 303

Evaluation Metrics. We use exact match accu- 304

racy as the primary metric for both IDM and SC. 305

This choice is motivated by the fact that both tasks 306

have closed and categorical output spaces: IDM 307

outputs are limited to a predefined set of single- 308

word lexical entries from WordNet, while SC uses 309

a fixed sentiment label set. In such settings, ex- 310

act match is a standard and appropriate evaluation 311

criterion. 312

4 Experimental Setup 313

4.1 Downstream Tasks & datasets 314

Two tasks that assess different aspects of composi- 315

tional generalisation are used in the paper: Inverse 316

Dictionary Modelling (IDM) for word-level com- 317

position and Sentiment Classification (SC) for 318
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phrase-level structure. These tasks measure sys-319

tematicity, substitutivity, over-generalisation, and320

robustness to perturbations.321

IDM evaluates a model’s ability to generate terms322

from definitions, focusing on substitutivity in se-323

mantic composition. Using WordNet (Miller, 1994)324

with an 80-10-10 train-validation-test split, models325

are prompted with a definition to generate the cor-326

responding term (e.g., The shore of a sea is called”327

→ coast”). By mapping definitions to terms, this328

task provides a robust assessment of a model’s abil-329

ity to perform compositional substitution.330

SC assesses the model’s ability to infer sentiment331

from phrases and sentences, particularly focusing332

on sentiment shifts and over-generalisation. Using333

the Stanford Sentiment Treebank (SST) (Socher334

et al., 2013) with its original splits, models predict335

sentiment labels from textual inputs (e.g., A bril-336

liant performance sentiment is” → positive”). This337

task examines how sentiment composition is pre-338

served across different levels of linguistic structure.339

For both tasks, performance is assessed using Ex-340

act Match Accuracy, providing a robust assessment341

of compositional substitution ability. Task formali-342

sation, dataset details, and task selection rationale343

are in Appendices A, B.1, and B.2, respectively.344

4.2 Models and Experimental setup345

We evaluate three setups: original models, task-346

specific fine-tuning, and fine-tuning with CARMA347

regularisation. We test GPT-2 (S/L) (Radford348

et al., 2019), Gemma1–2B (Team et al., 2024),349

LLaMA3.2 (1B/3B) (Dubey et al., 2024), and350

Qwen2.5 (0.5B/3B) (Yang et al., 2024a). We focus351

on decoder-only architectures, as they represent352

the dominant paradigm in many open-weight and353

production-ready LLMs. CARMA is generally354

applied at approximately one-third of the model’s355

depth, though specific layer positions vary. Details356

on software, FT methodologies, model specifica-357

tions, and CARMA hyperparameter selection are358

provided in Appendices B.3 and B.5.359

4.3 Interventions for Compositional360

Robustness and Performance Stability361

Two interventions are used to evaluate the robust-362

ness of compositional structures and the stability of363

learned representations: Constituent-aware pooling364

(CAP) and synonym replacement. These interven-365

tions assess hierarchical dependencies and seman-366

tic consistency under controlled perturbations.367

CAP (Aljaafari et al., 2024) groups token-level rep-368

resentations into higher-level semantic units (e.g., 369

words, constituents) to assess hierarchical depen- 370

dencies and how compositional structures are main- 371

tained across layers. In this paper, the token-to- 372

word CAP is utilised. Model robustness is mea- 373

sured by monitoring performance metrics before 374

and after applying CAP. Full methodology and for- 375

malisation are provided in Appendix C.1. 376

Synonym Replacement evaluates semantic con- 377

sistency by substituting 25% and 40% of prompt 378

words with synonyms within an interpretable 379

bound (α). Experiments were repeated at least 380

five times with different seeds for robustness and 381

performance stability assessment; further details 382

are in Appendix C.2. 383

5 Results and discussion 384

The method is evaluated across three aspects 385

its impact on: (1) model robustness against 386

compositional-based perturbations, (2) model per- 387

formance stability, and (3) model overall perfor- 388

mance. See Appendix B.4 for a detailed breakdown 389

of the evaluation metrics used for each aspect. 390

5.1 Constituent-Aware Pooling (CAP) 391

Intervention 392

Fig. 2(a) and 2(b) show the impact of CAP on 393

both tasks, comparing original, fine-tuned (FT), 394

and CARMA models.2 Each plot shows perfor- 395

mance across normalised layer positions, where 396

Accuracy is averaged over three CAP protocols 397

(Mean, Max, Sum); protocol-specific results and 398

extended comparisons are included in Appendix E. 399

The analysis examines how well models preserve 400

compositionality under hierarchical pooling. 401

CARMA’s effectiveness is influenced by model 402

size, tokenisation strategy, and task complexity. 403

In IDM tasks, CARMA models have consider- 404

able gains when applying CAP at the earliest lay- 405

ers (1% of model depth), particularly in models 406

with fine-grained tokenisation: Llama-1B (+3.61%) 407

and Gemma-2B (+16.89%). GPT2-L, despite its 408

reliance on subword tokenisation, benefits from 409

CARMA over FT (+3.67%). However, Llama-3B 410

and Qwen-3B minimal improvements (+1.0%) sug- 411

gest a capacity ceiling where increased model size 412

does not yield proportional gains due to training 413

data limitations. The combination of smaller scale 414

and multilingual training particularly affects Qwen- 415

2Throughout this paper, models incorporating CARMA
with FT are referred to as CARMA models.
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(b) SC Task

Figure 2: Layer-wise performance comparison under CAP intervention, with performance averaged over three
protocols (Mean CAP, Max CAP, Sum CAP) for Original, Fine-Tuned (FT), and CARMA (FT + CARMA) models.
Layer numbers are normalised to their relative positions within each model to enable cross-architecture comparison.
The IDM task (left) highlights CARMA’s improvements in systematicity and stability, particularly in the early and
middle layers. The SC task (right) demonstrates CARMA’s ability to enhance robustness, though convergence with
FT occurs in deeper layers.

0.5B, where limited model capacity coupled with416

broad language coverage appears to constrain En-417

glish-specific compositional learning, resulting in418

reduced CARMA benefits. In SC tasks, tokeni-419

sation effects vary with task complexity. When420

intervening at 25% layer position, Gemma-2B421

and Llama-1B show the strongest gains (+27.38%,422

+10.59%), while Llama-3B exhibits a marginal dif-423

ference between CARMA and FT (∼ 1%) but still424

outperforms the Original model (+37.68%). These425

results suggest that fine-tuning alone is sufficient426

for simpler tasks, whereas structured interventions427

like CARMA are particularly beneficial for more428

complex, compositional reasoning tasks.429

In a layer-wise analysis, the impact of CARMA430

varies significantly across network depths, reveal-431

ing crucial insights about compositional learning in432

transformers. Early layers (0-25%) benefit the most433

from regularisation, as they establish foundational434

compositional representations by exhibiting a weak435

notion of compositionality. Middle layers (25-75%)436

reinforce these patterns, maintaining structured fea-437

ture dependencies with moderate improvements.438

Deeper layers (75-100%) show minimal benefits as439

the model transitions from compositional learning440

to task-specialised representations. This pattern441

aligns with previous findings on layer-wise com-442

positional evolution in Transformers, where earlier443

layers capture hierarchical structure, while deeper444

layers exhibit increased task specificity (Feucht445

et al., 2024). CARMA can thus be strategically ap-446

plied to control these early representations, main-447

taining beneficial compositional structure while448

allowing natural task-specific adaptations in deeper 449

layers. 450

These findings demonstrate CARMA’s effective- 451

ness, particularly for models with granular tokeni- 452

sation under data constraints, mediated by model 453

capacity and task demands. The method’s dual role 454

- enhancing early compositional learning while pre- 455

serving deeper layer adaptations - enables targeted 456

improvement in model robustness without disrupt- 457

ing task-specific processing. 458

Model Ver. Task Int. CS CV

GPT2-L

CARMA IDM 25% 56.31 0.0164
FT IDM 25% 56.95 0.0311
Org IDM 25% 51.10 0.1175

CARMA SC 25% 0.8858 0.0065
FT SC 25% 0.8804 0.0082

Gemma-2B

CARMA IDM 25% 56.70 0.023
FT IDM 25% 57.42 0.030
Org IDM 25% 49.47 0.031

CARMA SC 25% 78.90 0.008
FT SC 25% 80.23 0.009
Org SC 25% 68.14 0.042

Llama-3B

CARMA IDM 25% 62.86 0.015
FT IDM 25% 62.22 0.029
Org IDM 25% 52.47 0.035

CARMA SC 25% 84.83 0.0056
FT SC 25% 85.85 0.0065
Org SC 25% 35.21 0.0136

Table 1: Model performance (25% synonym interven-
tion). Ver.: Version; Int.: Intervention rate; CS: Con-
sistSyn (%); CV: Coefficient of Variation. Best values
in bold.

5.2 Synonyms Replacement Intervention 459

Synonym Replacement evaluates semantic consis- 460

tency and robustness under lexical variations across 461

multiple runs (N ≥ 5) with different seeds. Con- 462

sistSyn measures output preservation after substitu- 463

tion, while the coefficient of variation (CV) quanti- 464

fies performance stability, with lower values indi- 465
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cating higher stability. Performance is assessed at466

25% and 40% word replacement rates to measure467

sensitivity to perturbations. Sample results are in468

Table 1; full details appear in Appendix E.469

Across models, CARMA achieves a distinctive470

performance profile, matching or exceeding FT471

ConsistSyn while consistently demonstrating supe-472

rior stability through lower CV values. At 25% in-473

tervention, Gemma-2B CARMA achieves 56.70%474

ConsistSyn with a CV of 0.0225, compared to475

FT’s 57.42% with higher variance (CV: 0.0307).476

Llama-3B CARMA outperforms FT in both Con-477

sistSyn (62.86% vs. 62.22%) and stability (CV:478

0.0148 vs. 0.0292) for IDM. Qwen-3B follows a479

similar trend but with smaller relative gains, im-480

proving stability (CV: 0.0225 vs. 0.0279) while481

maintaining a marginal ConsistSyn advantage over482

FT (62.00% vs. 61.79%). However, as interven-483

tion complexity increases to 40%, the performance484

gap widens; for example, Gemma-2B FT main-485

tains higher ConsistSyn (44.98%) than CARMA486

(42.36%), though CARMA remains more stable487

(CV: 0.0174 vs. 0.0249). This behaviour implies488

that the advantage of CARMA lies in its lower489

variance and reinforcement of compositional con-490

sistency. Thus, it maintains compositional under-491

standing without sacrificing performance, whereas492

FT produces a performance-driven approach.493

While the absolute differences in ConsistSyn be-494

tween CARMA and FT are sometimes modest, par-495

ticularly at lower replacement rates (e.g., 25%), the496

stability benefits of CARMA become more evident497

under increased perturbation (e.g., 40%), where FT498

models often show degraded consistency. In these499

higher-variance regimes, CARMA consistently re-500

duces output variability across model families, rein-501

forcing its utility as a robustness-oriented interven-502

tion, even when raw accuracy remains comparable.503

The tokenisation method significantly affects504

CARMA’s impact. Models with more structured505

tokenisation show stronger stability improvements,506

but gains vary based on vocabulary design and lan-507

guage coverage. Llama and GPT2-L generally ben-508

efit more than Qwen, even with similar sizes, likely509

due to their smaller multilingual coverage, which510

results in a more compact and consistent token dis-511

tribution. Qwen, with a larger vocabulary (151K512

tokens) supporting broader multilingual processing,513

introduces redundancy that dampens CARMA’s rel-514

ative stability advantage. Gemma-2B, optimised515

for a single dominant language with a large vocabu-516

lary size, shows the highest overall gains, reinforc-517

ing that a structured tokenisation approach focused 518

on a limited linguistic scope enhances CARMA’s 519

effectiveness. 520

Task complexity further differentiates CARMA’s 521

effect. CARMA’s advantages align with its method- 522

ological design, particularly in tasks requiring ex- 523

plicit structural reinforcement. In IDM, where sys- 524

tematicity and substitutivity are critical, CARMA 525

ensures structured mappings hold under perturba- 526

tion, particularly in Gemma-2B (+14.6% over the 527

original) and Llama-1B (+2692.5% over the origi- 528

nal in SC). However, in SC, where compositional- 529

ity is more distributed, larger models show lower 530

differences between CARMA and FT, reinforcing 531

that larger models encode sentiment shifts effec- 532

tively without additional intervention. 533

These results strengthen the hypothesis that 534

CARMA enhances model robustness across per- 535

turbations, particularly in structured learning tasks 536

and models where fine-tuning alone does not 537

fully capture compositional dependencies. While 538

FT maintains an advantage in absolute accuracy, 539

CARMA ensures greater consistency, making it 540

critical for improving compositional alignment and 541

mitigating instability in high-variance settings. 542

GPT-2 S GPT-2 L Qwen 0.5B Gemma 2B Llama 1B Llama 3B Qwen 3B
Models
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Figure 3: Task performance in IDM across GPT2 (S, L),
Gemma-2B, Llama (1B, 3B), and Qwen (0.5B, 3B).
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Figure 4: Task performance in SC across GPT2 (S, L),
Gemma-2B, Llama (1B, 3B) and Qwen (0.5B, 3B).
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5.3 Impact of CARMA on Performance543

Fig. 3 and 4 show the performance of original, FT,544

and CARMA accuracies across tasks. CARMA545

demonstrates significant improvements over orig-546

inal models across tasks. For example, in IDM,547

GPT2-L achieves 150% improvement, and Llama-548

3B shows an 89.6% increase, while in SC, Gemma-549

2B demonstrates 122.5% improvement over Origi-550

nal baselines.551

Task-specific patterns emerge when comparing552

models. For example, in IDM, CARMA outper-553

forms FT, with Llama-3B showing a +5% gain554

and GPT2-L improving by 1.7%. In SC, CARMA555

maintains comparable performance to FT while en-556

hancing robustness, suggesting it preserves learned557

features while strengthening compositional consis-558

tency.559

CARMA enhances FT by improving represen-560

tation stability and preventing feature drift, ensur-561

ing structured compositional consistency. Its bene-562

fits are most pronounced in larger models, where563

greater capacity supports robust representations564

while maintaining fine-tuned performance. This565

scalability highlights CARMA’s effectiveness in566

regularising model representations and reinforcing567

compositional structure without disrupting learned568

task features, providing a reliable solution for im-569

proving compositional reasoning in LLMs.570

6 Related work571

Research on CG in LLMs has revealed both capabil-572

ities and limitations (Tull et al., 2024; Moisio et al.,573

2023; Sinha et al., 2024), though many studies lack574

mechanistic analysis or concrete suggestions for575

improvements.576

Architectural modifications are a common ap-577

proach to tackle CG challenges. Recent proposals578

include pushdown layers for recursive attention579

(Murty et al., 2023), Layer-wise Representation580

Fusion for dynamic encoder weighting (Lin et al.,581

2023), and specialised semantic parsing methods582

(Shaw et al., 2021). While effective for specific583

tasks, these solutions face scalability challenges584

due to computational overhead, specialised annota-585

tion requirements, and architectural constraints.586

Regularisation methods provide alternative ap-587

proaches through consistency regularisation (Yin588

et al., 2023b), data augmentation strategies (On-589

tanon et al., 2022), and attention stability mecha-590

nisms (Zhai et al., 2023). Studies show dataset com-591

plexity and example frequency variations improve592

compositional reasoning (Zhou et al., 2023). How- 593

ever, these methods face key limitations: token- 594

level approaches lack adaptability to complex struc- 595

tures, augmentation shows diminishing returns on 596

real data, and stability mechanisms prioritise train- 597

ing stability over compositional generalisation. 598

Evaluation challenges persist in CG research. 599

Standard benchmarks like SCAN (Lake and Ba- 600

roni, 2017), PCFG (Hupkes et al., 2020), and 601

COGS (Kim and Linzen, 2020b) rely heavily on 602

synthetic data, limiting real-world applicability. Re- 603

cent frameworks like CoGnition (Li et al., 2021) 604

and CAP (Aljaafari et al., 2024) better align with 605

natural language phenomena, but evaluation gaps 606

remain. Current approaches often sacrifice gener- 607

alisability for task-specific performance. CARMA 608

addresses these limitations through a task-agnostic, 609

efficient solution that enhances CG while maintain- 610

ing robust cross-task performance. 611

7 Conclusion 612

This paper presents CARMA, a method for en- 613

hancing compositional generalisation in LLMs 614

through mutual information regularisation and 615

layer-wise stability constraints. By addressing 616

information fragmentation and instability across 617

layers, CARMA improves performance robust- 618

ness and stability under intervention. The method 619

requires no architectural changes and integrates 620

cleanly into standard fine-tuning pipelines. Future 621

work should explore extending CARMA to tasks 622

requiring more nuanced semantic reasoning and 623

to multilingual contexts. Another important direc- 624

tion is combining CARMA with techniques that 625

explicitly challenge generalisation, such as adver- 626

sarial perturbations or structured distribution shifts, 627

to promote the acquisition of novel compositional 628

behaviours. Incorporating CARMA into improved, 629

task-targeted architectures may further enhance its 630

effectiveness. Additionally, controlled training- 631

from-scratch studies could isolate CARMA’s im- 632

pact more precisely and reveal deeper insights into 633

how it shapes compositional representations across 634

training regimes. 635

Limitations 636

The limitations of this paper can be summed up as 637

follows: First, our results are primarily reported 638

for the English language. Further analysis across 639

languages with diverse linguistic structures is left 640

as a confirmatory future work. Second, the datasets 641
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(WordNet and SST) lack a more comprehensive642

representativeness of broader linguistic phenomena.643

Third, our focus is predominantly on decoder-based644

Transformers, and the employed Transformer mod-645

els may inherit potential biases ingrained from their646

pre-training data. Finally, while CARMA main-647

tains inference efficiency, it introduces training-648

time overhead due to auxiliary losses, which should649

be considered when integrating the method into650

resource-constrained environments.651

Ethical statement652

This work aims to enhance language model ro-653

bustness and compositional understanding through654

CARMA. While improving model reliability is ben-655

eficial, we acknowledge potential risks in enhanc-656

ing language model capabilities. Our evaluation657

focuses on controlled tasks (IDM and SC) with658

comprehensive stability metrics to ensure responsi-659

ble development and transparent reporting of model660

behaviour under perturbations.661
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A Task Selection and Compositionality989

Considerations990

To assess compositional generalisation and the ben-991

efits of CARMA, we targeted tasks that involve992

systematic meaning construction and sensitivity to993

structural modifications. To that end, we opted to994

employ Inverse Dictionary Modelling (IDM) and995

Sentiment Classification (SC) as proxies for differ-996

ent dimensions of compositionality, capturing both997

structured composition and hierarchical generalisa-998

tion.999

IDM requires models to generate a single-word1000

representation from a natural language defini-1001

tion, mapping from the composition of input con-1002

stituents (individual concept components) to a spe-1003

cific term. On the other hand, SC maps meaning1004

to a sentiment label, aggregating local meaning el-1005

ements into a global interpretation. While IDM1006

focuses on explicit compositional mapping, SC1007

evaluates distributed composition, where sentiment1008

is shaped by multiple interacting components.1009

Both tasks assess several aspects of composi-1010

tionality (Figure 5), namely systematicity (struc-1011

tured meaning formation), substitutivity (semantic1012

preservation under transformation), and resistance1013

to over-generalisation (ensuring bounded semantic1014

deviation). Further, they evaluate robustness, test-1015

ing whether models can maintain correctness and1016

consistency under internal and input-lexical pertur-1017

bations. IDM and SC provide a comprehensive test1018

of compositional generalisation across structured1019

and distributed representations.1020

B Detailed Experimental Configuration1021

B.1 Task Formalisation1022

This paper evaluates the effectiveness of CARMA1023

in enhancing the compositional generalisation of1024

large language models (LLMs) through two tasks.1025

Compositionality 

< IDM task > < SC task >

Compositional
output

Compositional
Input Processing

IDM: neuron (correct prediction)
SC: positive (correct prediction

IDM: cell (too broad, lacks
specificity for ‘neuron’)
SC: neutral (ignoring stronger
sentiment words)

Intervention
(e.g. CAP, Synonym

replacement) 

 

  

Figure 5: Illustration of compositional generalisation
in Inverse Dictionary Modelling (IDM) and Sentiment
Classification (SC). The figure highlights key composi-
tional properties: systematicity ensures coherent mean-
ing construction, substitutivity maintains meaning under
lexical variations, robustness preserves intended outputs
under perturbations, and over-generalisation leads to
overly broad or semantically weak predictions (e.g.,
neuron misclassified as cell or positive reduced to neu-
tral).

These tasks were selected based on their focus on 1026

input token structure and compositional semantics, 1027

utilising next-token prediction with single-token 1028

outputs. Formal definitions for each task are pre- 1029

sented below. 1030

Inverse Definition Modelling (IDM). This task 1031

requires the model to predict a definiendum D, 1032

given its corresponding definition definition in nat- 1033

ural language. Formally, the definition is rep- 1034

resented as a sequence of tokens, definition = 1035

{tok1, tok2, . . . , tokn}, and the model seeks to pro- 1036

duce D such that: 1037

D = argmax
t∈V

P (d | definition), (9) 1038

where V denotes the model’s vocabulary, and d 1039

represents a potential definiendum. Predictions are 1040

deemed correct only if they exactly match the target 1041

output. 1042

Sentiment classification (SC). This task in- 1043

volves assigning a sentiment label to a given sen- 1044

tence containing sentiment cues and potential mod- 1045

ifiers. The model processes the input sentence, 1046

represented as a sequence of tokens sentence = 1047
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Figure 6: IDM Performance Across Models Under CAP

{tok1, tok2, . . . , tokn}, and produces an output1048

label from a predefined set of sentiment classes1049

A (i.e., positive, negative, neutral). Formally, the1050

task is defined as:1051

label = argmax
ℓ∈L

P (ℓ | sentence), (10)1052

where P (ℓ | sentence) is the probability of the1053

sentiment label ℓ given the sentence. The model’s1054

performance is evaluated based on its ability to cor-1055

rectly predict the sentiment, accounting for compo-1056

sitional nuances such as modifiers and contrasts.1057

B.2 Datasets specification and pre-processing1058

For IDM, the training and test datasets were derived1059

from WordNet (Fellbaum, 1998), a widely used lex-1060

ical database of the English language. WordNet1061

comprises over 117,000 synsets, each representing1062

a distinct concept and annotated with semantic re-1063

lationships such as hypernyms, synonyms, and def-1064

initions. To ensure consistency and improve data1065

quality, standard preprocessing techniques were1066

applied, including the removal of special charac-1067

ters, punctuation, extra spaces, and parenthesised1068

content where necessary. The dataset focuses on1069

general-purpose vocabulary rather than specialised 1070

domains or demographic groups. The dataset was 1071

initially split into an 80-20 ratio, with 80% allo- 1072

cated for training. The remaining 20% was further 1073

divided equally into validation and test sets. 1074

The SC dataset was derived from the Stanford 1075

Sentiment Treebank (SST) (Socher et al., 2013), 1076

a corpus of English movie reviews annotated for 1077

analysis of the compositional effects of sentiment 1078

inference and was released under Apache License, 1079

Version 2.0. SST includes fine-grained sentiment 1080

labels at both the phrase and sentence levels, mak- 1081

ing it a standard benchmark for evaluating senti- 1082

ment classification models. The original dataset 1083

splits provided by the authors were maintained to 1084

ensure consistency in training, validation, and test- 1085

ing. For SST labels, sentiment scores were cate- 1086

gorised as follows: values equal to or greater than 1087

0.6 were classified as positive, scores between 0 1088

and 0.6 were considered neutral, and scores be- 1089

low zero were assigned as negative. The final test 1090

dataset sizes for each task are presented in Table 2. 1091
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Dataset Train size validation Size Test Size
WordNet 9563 1154 1231
SST 8544 1101 2210

Table 2: Train, validation, and test set sizes for WordNet
and SST datasets used in this paper.

B.3 Model training and fine-tuning settings1092

Table 3 summarises the key characteristics of the1093

models evaluated in this study. All models were ob-1094

tained from Hugging Face (Wolf et al., 2019) under1095

their respective licenses: GPT-2 (Modified MIT),1096

Llama 3.2 (Meta Llama 3 Community), Qwen 2.51097

(Apache 2.0), and Gemma-2B (Gemma Terms of1098

Use). While all models were pre-trained on En-1099

glish data, LLama and Qwen models provide ad-1100

ditional multilingual capabilities, namely English,1101

German, French, Italian, Portuguese, Hindi, Span-1102

ish, and Thai for LLama, and over 10 languages,1103

including Chinese, English, French, Spanish, Por-1104

tuguese, Russian, Arabic, Japanese, Korean, Viet-1105

namese, Thai, and Indonesian for Qwen. The mod-1106

els employ the following tokenisation approaches:1107

GPT-2, Byte Pair Encoding (BPE) with a 50,257-1108

token vocabulary, optimised primarily for English,1109

Llama 3.2 uses SentencePiece-based BPE, combin-1110

ing 100K tokens from Tiktoken3 with 28K addi-1111

tional tokens to enhance multilingual performance,1112

Qwen 2.5 employs Byte-level BPE, utilising a1113

151,643-token vocabulary designed for multilin-1114

gual processing, Gemma-2B has a SentencePiece1115

tokeniser leveraging a 256,000-token vocabulary,1116

making it highly effective for English-based tasks.1117

Each model was fine-tuned on its respective down-1118

stream task following a systematic hyperparameter1119

search to identify optimal configurations. Prior1120

to fine-tuning, prompt engineering was conducted1121

to determine well-performing prompts tailored to1122

each task, ensuring alignment with task-specific1123

requirements and enhancing the models’ ability to1124

generate accurate and contextually relevant outputs.1125

The hyperparameter search explored key factors,1126

including weights for stability regularisation, mu-1127

tual information (MI) regularisation, and the over-1128

all CARMA weight (Equation 7), as well as the1129

specific layers to which these losses were applied.1130

For training parameters, the following batch1131

sizes were set in the IDM task: 16 for the Gemma-1132

2B and GPT models, 32 for the Qwen-3B and1133

Llama models, and 64 for the Qwen-0.5B model.1134

For SC, the batch sizes were 16 for the GPT mod-1135

els, Gemma-2B and Llama-3B; 32 for Llama-1B1136

and Qwen-3B; and 64 for Qwen-0.5B. For the num- 1137

ber of training epochs, in the IDM, the Gemma and 1138

GPT models were trained for two epochs, while 1139

all other models were trained for three epochs, 1140

whereas all models were trained for two epochs, 1141

except Gemma-2B and LLama-1B, which were 1142

trained for three epochs for the SC task. The stop- 1143

ping layers for IDM and CARMA were configured 1144

as follows: GPT2-S at layer 3, GPT2-L at layer 1145

8, Gemma-2B at layer 10, Llama-1B at layer 7, 1146

Llama-3B at layers 8 (stability) and 12 (MI), Qwen- 1147

0.5B at layer 5, and Qwen-3B at layer 10. The SC, 1148

the ending layers, 4 for GPT2-S, 12 for GPT2-L, 10 1149

for Gemma-2B, 7, for LLama 1B, 8, for LLama 3B, 1150

5 for Qwen-0.5B and 7 for Qwen-3B. For CARMA 1151

weight, optimal values varied by model size: 0.4 1152

and 0.5 were most effective for larger models. We 1153

hypothesise that CARMA regularisation exhibits 1154

a weaker effect when lower weights are applied, 1155

particularly in larger architectures where stronger 1156

constraints are needed to stabilise compositional 1157

representations. In IDM, GPT2-L and Gemma per- 1158

formed best with a weight of 0.3, GPT2-S with 1159

0.2, Llama-1B with 0.4, and Llama-3B with 0.5. 1160

Qwen models used 0.5 and 0.4 for the 0.5B and 1161

3B variants, respectively. For SC Carma weight, 1162

it was 0.4 for Qwen-0.5B and GPT models, 0.5 1163

for LLama-3B and Qwen-3B, and 0.3 for the rest. 1164

For the ending layer, it was 4 for GPT2-S, 12 for 1165

GPT2-L, 10 for Gemma-2B, 7 for LLama-1B, 8 for 1166

LLama-3B, 5 for Qwen-0.5B and 7 for Qwen-3B. 1167

Model Parameters Layers Dmodel Heads Activation MLP Dimension
GPT-2 Small 85M 12 768 12 GELU 3072
GPT-2 Large 708M 36 1280 20 GELU 5120
Gemma-2B 2B 32 4096 16 GELU 8192
LLaMA3.2 1B 1.1B 16 2048 32 SiLU 8192
LLaMA3.2 3B 3.2B 28 3072 24 SiLU 8192
Qwen2.5-0.5B 391M 24 896 14 SiLU 4864
Qwen2.5-3B 3.0B 36 2048 16 SiLU 11008

Table 3: Summary of model architectures. Param-
eters: total number of trainable parameters; Layers:
total number of transformer layers; Dmodel: size of word
embeddings and hidden states; Heads: number of self-
attention heads; Activation: activation function used in
feedforward layers; MLP Dimension: dimensionality
of the feedforward network.

B.4 Evaluation Metrics 1168

This section details the evaluation metrics used 1169

in the study, including accuracy, synonym consis- 1170

tency, and performance stability. 1171

Accuracy is used as a primary measure of model 1172

performance and is defined as: 1173
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Accuracy =
TP + TN

TP + TN + FP + FN
, (11)1174

where TP (true positives) and TN (true negatives)1175

denote correctly classified instances, while FP1176

(false positives) and FN (false negatives) repre-1177

sent misclassified instances.1178

Synonym Consistency (ConsistSyn) quantifies1179

a model’s ability to maintain correct predictions1180

after synonym replacement. It is computed as:1181

ConsistSyn =
|Correct After Replacement|
|Correct Before Replacement|

×100,

(12)1182

where Correct After Replacement refers to the1183

number of correct predictions following synonym1184

substitution, and Correct Before Replacement de-1185

notes the number of correct predictions before sub-1186

stitution. The reported results are the averaged1187

ConsistSyn across (N ≥ 5) runs.1188

Coefficient of Variation (CV) measures the sta-1189

bility of model performance across multiple runs,1190

with lower values indicating greater consistency. It1191

is defined as:1192

CV =
σ

µ
, (13)1193

where σ represents the standard deviation of model1194

performance across runs, and µ denotes the mean1195

performance.1196

Normalised Improvement (NI) evaluates the1197

relative gain in consistency introduced by a model1198

over a baseline model. It is calculated as:1199

NI =
ConsistSynCARMA − ConsistSynbaseline

ConsistSynbaseline
×100.

(14)1200

This metric captures the percentage improvement1201

in synonym consistency due to a model variant1202

compared to the baseline model.1203

B.5 Experimental setup1204

Experiments were conducted using NVIDIA RTX1205

A6000 and A100 GPUs. The method was de-1206

veloped in Python (v3.10.15) with Transformers1207

(v4.44.2) (Wolf et al., 2020), PyTorch (v2.4.1)1208

(Paszke et al., 2019), and Transformer-lens (v2.8.1)1209

(Nanda and Bloom, 2022). Preprocessing tasks,1210

including tokenisation and tagging, used NLTK1211

(v3.9.1) (Bird et al., 2009), spaCy (v3.7.2) (Hon- 1212

nibal et al., 2020), and TextBlob (v0.18.0) (Loria 1213

et al.), with Scikit-learn (v1.5.1) (Pedregosa et al., 1214

2011) for evaluation. Models use 500 warm-up 1215

steps and a 0.006 learning rate. 1216

C Comprehensive Explanation of 1217

Evaluation Interventions 1218

C.1 Constituent-Aware Pooling (CAP) 1219

Formalisation 1220

Constituent-Aware Pooling (CAP) Formalisation 1221

is a method proposed in (Aljaafari et al., 2024) to 1222

systematically assess compositional generalisation 1223

via aggregating token-level activations into higher- 1224

level semantic representation. Below is a detailed 1225

explanation and formalisation of CAP. 1226

Overview. CAP aggregates model activations 1227

at any chosen constituency level (e.g. tokens to 1228

words), enabling the analysis of compositional de- 1229

pendencies. The key steps involved are: 1230

• Input Representations: For a given input 1231

sequence X = [x1, x2, . . . , xn], the model 1232

produces inner states H = [h1, h2, . . . , hn] at 1233

a specific layer. 1234

• Grouping Constituents: Using syntactic 1235

parsers such as Benepar (Kitaev et al., 1236

2019; Kitaev and Klein, 2018), or by in- 1237

versing the model tokeniser function, the se- 1238

quence is segmented into constituents C = 1239

[c1, c2, . . . , cm], where each ci represents a 1240

phrase or syntactic unit. For the experiments 1241

presented in the paper, tokens were grouped 1242

into words to form the smallest linguistic 1243

units. 1244

• Pooling Operations: For each constituent ci, 1245

the corresponding activations {hj |xj ∈ ci} 1246

are aggregated into a single representation ri 1247

using a pooling function: 1248

ri = α({hj |xj ∈ ci}) 1249

CAP supports three pooling functions: 1250

– Maximum pooling: Selects the highest 1251

activation values as: 1252

α({hj |xj ∈ ci}) = max({hj |xj ∈ ci}), 1253

– Mean pooling: Computes the average of 1254

activation values as: 1255

α({hj |xj ∈ ci}) =
1

|ci|
∑
j∈ci

{hj |xj ∈ ci}, 1256
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– Sum pooling: Accumulates activation1257

values as:1258

α({hj |xj ∈ ci}) =
∑
j∈ci

{hj |xj ∈ ci}.1259

• Updating Representations: The pooled rep-1260

resentations R = [r1, r2, . . . , rm] replace the1261

original activations H for further processing.1262

Evaluation. The impact of CAP is evaluated by1263

comparing task-specific performance metrics (e.g.,1264

accuracy, F1 score) of models before and after CAP1265

is applied. This allows for a direct assessment of1266

how CAP affects compositionality and task per-1267

formance. This paper utilises the word-level CAP,1268

pooling related token representation to their corre-1269

sponding words.1270

C.2 Synonym Replacement1271

A multi-step approach was adopted to ensure re-1272

liable synonym replacements. First, preprocess-1273

ing was applied to filter out words that were un-1274

likely to produce meaningful replacements. Specif-1275

ically, words belonging to NLTK’s predefined stop-1276

words list or shorter than two characters were ex-1277

cluded from consideration. The remaining words1278

were tagged with their part-of-speech (POS) us-1279

ing spaCy’s (Honnibal et al., 2020) POS tagger.1280

Additionally, the sentiment of each word was de-1281

termined using TextBlob (Loria et al.) to ensure1282

that replacements preserved the semantic tone of1283

the original text. Next, a synonym vocabulary was1284

constructed using words extracted from spaCy’s1285

en_core_web_md language model. This vocabu-1286

lary was filtered to include only alphabetic common1287

words with high probability scores (greater than -151288

in our case), as determined by spaCy’s word fre-1289

quency data, while stopwords and rare terms were1290

excluded. This step ensured that the vocabulary1291

consisted of meaningful and contextually appropri-1292

ate words for replacement. For each target word,1293

a list of synonym candidates was generated by it-1294

erating over the constructed vocabulary. The top1295

n candidates were selected based on their seman-1296

tic similarity to the original word, measured using1297

spaCy’s word vectors. Synonyms with high simi-1298

larity scores and alignment in POS were prioritised1299

to maintain grammatical and contextual coherence1300

in the text.1301

Model Ver. Task Int. CS CV

GPT2-S

CARMA IDM 25% 49.17 0.025
FT IDM 25% 50.89 0.017
Org IDM 25% 52.46 0.044

CARMA IDM 40% 35.90 0.0542
FT IDM 40% 37.16 0.0628
Org IDM 40% 37.20 0.1223

GPT2-L

CARMA IDM 25% 56.31 0.0164
FT IDM 25% 56.95 0.0311
Org IDM 25% 51.10 0.1175

CARMA IDM 40% 43.56 0.0485
FT IDM 40% 43.97 0.0459
Org IDM 40% 34.68 0.0895

Gemma-2B

CARMA IDM 25% 56.70 0.023
FT IDM 25% 57.42 0.030
Org IDM 25% 49.47 0.031

CARMA IDM 40% 0.4236 0.0174
FT IDM 40% 0.4498 0.0249
Org IDM 40% 0.3576 0.0480

Llama-1B

CARMA IDM 25% 58.40 0.0400
FT IDM 25% 57.86 0.0385
Org IDM 25% 47.55 0.0503

CARMA IDM 40% 47.07 0.0476
FT IDM 40% 46.75 0.0455
Org IDM 40% 33.49 0.0391

Qwen-0.5B

CARMA IDM 25% 56.98 0.0286
FT IDM 25% 54.57 0.0191
Org IDM 25% 46.84 0.0684

CARMA IDM 40% 40.55 0.0397
FT IDM 40% 39.69 0.0491
Org IDM 40% 32.98 0.0938

Qwen-3B

CARMA IDM 25% 62.00 0.0225
FT IDM 25% 61.79 0.0279
Org IDM 25% 49.37 0.0441

CARMA IDM 40% 45.05 0.0400
FT IDM 40% 45.74 0.0551
Org IDM 40% 31.95 0.0688

Llama-3B

CARMA IDM 25% 62.86 0.015
FT IDM 25% 62.22 0.029
Org IDM 25% 52.47 0.035

CARMA IDM 40% 49.05 0.0297
FT IDM 40% 48.31 0.0191
Org IDM 40% 36.95 0.0458

Table 4: Model performance (25% and 40% synonym
intervention) on the IDM task. Ver.: Version; Int.:
Intervention rate; CS: ConsistSyn (%); CV: Coefficient
of Variation. Best values in bold.

D InfoNCE for Mutual Information 1302

Estimation 1303

Mutual information (MI) quantifies the shared 1304

information between two variables X and Y . 1305

CARMA leverages MI maximisation to cap- 1306

ture dependencies between tokens effectively, 1307

thereby enhancing compositional generalisation in 1308

LLMs. Specifically, CARMA uses MI, denoted 1309

as I(X;Y ), to reinforce token-level interactions 1310

critical for compositionality. However, direct com- 1311

putation of MI is challenging in practice. 1312

To address this challenge, a variant of InfoNCE 1313

is employed to estimate MI and approximate these 1314
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(b) GPT2-L
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(c) Gemma-2B
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(d) Qwen-0.5B
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(e) Llama-1B
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Figure 7: SC Performance Across Models Under CAP

dependencies efficiently. Given an anchor token1315

hidden state hi, we construct a corresponding pos-1316

itive set H, which contains tokens hidden states1317

semantically or syntactically related to hi. Addi-1318

tionally, we define N as the set of negative exam-1319

ples consisting of unrelated tokens hidden states.1320

The InfoNCE objective provides a practical1321

lower bound on I(X;Y ) (Oord et al., 2018), as1322

follows:1323

I(X;Y ) ≥ E

[
log

∑
hj∈H f(hi, hj)∑

hj∈H f(hi, hj) +
∑

hk∈N f(hi, hk)

]
,

(15)1324

where f(hi, hj) = exp(sim(hi, hj)/τ) is a scaled1325

similarity function, and τ is a temperature parame-1326

ter. This adaptation of InfoNCE introduces token-1327

specific interactions within the layer-wise structure1328

of LLMs, ensuring that dependencies are captured1329

across layers. By maximising mutual information,1330

CARMA aligns the optimisation direction to en-1331

hance compositional structures.1332

To extend this approach across layers, the final1333

CARMA MI loss is computed as: 1334

LMI = − 1

N

N∑
i=1

(
log

∑
hj∈H
j ̸=i

exp

(
sim(hi, hj)

τ

)

− log

( ∑
hj∈H
j ̸=i

exp

(
sim(hi, hj)

τ

)

+
∑

hk∈N

exp

(
sim(hi, hk)

τ

)))
,

(16) 1335

where hi is the anchor token, hj ∈ H are positive 1336

examples related to hi, hk ∈ N are negative exam- 1337

ples, N is the number of anchors, and sim(hi, hj) 1338

is a similarity function. The negative sign ensures 1339

that MI is maximised during optimisation. Without 1340

this negative sign, the objective would incorrectly 1341

minimise MI, thereby hindering CG enhancement. 1342

E Extended results 1343

Figures 6, 7 and Tables 4 and 5 provide additional 1344

results for models’ performance comparison under 1345

CAP and synonym interventions. Figure 8 shows 1346

an overall models performance under cap for all 1347

models. CARMA models show a clear advantage 1348
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(a) IDM Task
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(b) SC Task

Figure 8: Layer-wise performance under CAP interventions on the IDM (left) and SC (right) tasks. Results are
averaged over three pooling strategies (Mean, Max, Sum) and reported for Original, Fine-Tuned (FT), and CARMA
(FT + CARMA) models. Layer indices are normalised to support comparison across model sizes. CARMA improves
robustness and systematicity in early-to-mid layers for both tasks, with diminishing differences in deeper layers.

Model Ver. Task Int. CS CV

GPT2-S

CARMA SC 25% 89.03 0.8903
FT SC 25% 89.54 0.8954

CARMA SC 40% 84.95 0.0095
FT SC 40% 85.07 0.0098

GPT2-L

CARMA SC 25% 88.58 0.0065
FT SC 25% 88.04 0.0082

CARMA SC 40% 84.61 0.0072
FT SC 40% 84.04 0.0073

Gemma-2B

CARMA SC 25% 84.81 0.0069
FT SC 25% 81.67 0.0088
Org SC 25% 68.14 0.0076

CARMA SC 40% 81.48 0.0102
FT SC 40% 74.29 0.0073
Org SC 40% 76.06 0.0136

Llama-1B

CARMA SC 25% 74.03 0.0069
FT SC 25% 75.69 0.0044
Org SC 25% 2.65 0.1239

CARMA SC 40% 71.43 0.0065
FT SC 40% 74.31 0.0102
Org SC 40% 1.73 0.2245

Qwen-0.5B

CARMA SC 25% 89.66 0.0037
FT SC 25% 89.83 0.0085
Org SC 25% 59.12 0.0691

CARMA SC 40% 86.03 0.0084
FT SC 40% 86.31 0.0046
Org SC 40% 55.27 0.0429

Qwen-3B

CARMA SC 25% 93.65 0.0061
FT SC 25% 93.85 0.0039
Org SC 25% 67.63 0.0227

CARMA SC 40% 91.26 0.0050
FT SC 40% 91.26 0.0050
Org SC 40% 64.05 0.0159

Llama-3B

CARMA SC 25% 84.83 0.0056
FT SC 25% 85.85 0.0065
Org SC 25% 35.21 0.0136

CARMA SC 40% 82.89 0.0016
FT SC 40% 83.55 0.0067
Org SC 40% 32.88 0.0188

Table 5: Model performance (25% and 40% synonym
intervention) on the SC task. Ver.: Version; Int.: Inter-
vention rate; CS: ConsistSyn (%); CV: Coefficient of
Variation. Best values in bold.

over all models and tasks. However, the gain is 1349

clearer in the IDM case, where more intricate fea- 1350

tures and compositionality generalisation are re- 1351

quired. It is also observed that the performance 1352

of the FT and CARMA models demonstrates sim- 1353

ilar curves or trends. Given this observation, we 1354

argue that CARMA’s improvements stem from its 1355

learning objectives, which align closely with cross- 1356

entropy loss while explicitly addressing intermedi- 1357

ate representation stability. The observed improve- 1358

ments are moderate in some cases, particularly for 1359

SC tasks. This behaviour is expected due to the 1360

limited size of the fine-tuning datasets compared 1361

to the original pretraining data used for these mod- 1362

els. Nevertheless, larger models, such as Llama-3B 1363

and Gemma-2B, exhibit more substantial improve- 1364

ments with CARMA, demonstrating its scalability 1365

with model capacity. 1366

E.1 Training Runtime and Overhead 1367

We report wall-clock training times (in minutes) 1368

for each model under standard fine-tuning (FT) and 1369

with CARMA. Overhead is computed as the rel- 1370

ative increase in runtime caused by the additional 1371

mutual information and stability losses. All experi- 1372

ments for models were conducted on a single GPU 1373

under identical batch size, optimiser settings, and 1374

hardware configuration. 1375

CARMA introduces non-trivial training-time 1376

overhead due to auxiliary objectives, particularly 1377

for smaller models or longer sequences. However, 1378

inference costs remain unchanged, and no architec- 1379

tural modifications are required. We observe mod- 1380

erate to high training slowdowns (e.g., ×2.2–×2.9 1381

for LLaMA-3B), with variance across models due 1382
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Model FT (min) CARMA (min) Overhead ratio

GPT2 Small 1.9 3.48 ×1.8
GPT2 Large 6.7 8.9 ×1.3
Llama 3.2–1B 2.78 6.96 ×2.5
Llama 3.2–3B 7.55 20.2 ×2.2
Qwen 2.5–0.5B 2.10 4.75 ×2.3
Qwen 2.5–3B 2.98 5.01 ×1.7

Table 6: Wall-clock IDM training time and overhead
introduced by CARMA. All runs use a single GPU
under identical batch, optimiser, and hardware settings.

Model FT (min) CARMA (min) Overhead ratio

GPT-2 Small 1.12 8.51 ×7.6
GPT-2 Large 6.02 13.18 ×2.19
LLaMA 3.2–1B 2.50 9.98 ×4.9
LLaMA 3.2–3B 6.58 14.06 ×2.13
Qwen 2.5–3B 6.01 16.86 ×2.8

Table 7: Wall-clock SC training time and overhead in-
troduced by CARMA. All runs use a single GPU under
identical batch, optimiser, and hardware settings.

to token length and loss computation. Optimising1383

runtime for mutual information and stability estima-1384

tion is an important direction for future efficiency1385

improvements.1386
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